
04 August 2022

Text retrieval from early printed books / S. Marinai. - STAMPA. - ACM International Conference Proceeding
Series(2009), pp. 33-40. ((Intervento presentato al convegno Third Workshop on Analytics for Noisy
Unstructured Text Data tenutosi a Barcellona nel July 23-24 2009
[http://doi.acm.org/10.1145/1568296.1568304].

Original Citation:

Text retrieval from early printed books

Publisher:

Published version:
http://doi.acm.org/10.1145/1568296.1568304

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/373561 since: 2019-11-07T15:23:43Z

ACM

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Text Retrieval from Early Printed Books

Simone Marinai
Dipartimento di Sistemi e Informatica

University of Firenze
Firenze, Italy

marinai@dsi.unifi.it

ABSTRACT
We describe a text indexing and retrieval technique that
does not rely on word segmentation and is tolerant to errors
in character segmentation. The method is designed to pro-
cess early printed documents and we evaluate it on the well
known Latin Gutenberg Bible.

The approach relies on two main components. First, charac-
ter objects (in most cases corresponding to individual char-
acters) are extracted from the document and clustered to-
gether, so as to assign a symbolic class to each indexed ob-
ject. Second, a query word is compared against the indexed
character objects with a Dynamic Time Warping (DTW)
based approach. The peculiarity of the matching technique
described in this paper is the incorporation of sub-symbolic
information in the string matching process. In particular,
we take into account the estimated widths of potential sub-
words that are computed by accumulating lengths of partial
matches in the DTW array.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.3.3 [Information Search and Retrieval]: Clus-
tering; I.7 [Document and Text Processing]: Document
Capture

1. INTRODUCTION
Early printed books are among the most difficult documents
to be indexed by machine reading systems. These books
share some features with manuscripts and therefore tech-
niques proposed for handwriting recognition can be adopted
also for these documents. At a first look early printed books
look very similar to medieval manuscripts, since they contain
illuminated letters (hand painted) and several ligatures and
abbreviations that were standard in manuscript writing and
have been slowly abandoned in the technological progress
of printing. Ligatures are present also in later works such
as the Trévoux dictionary of the XVII-th Century [1] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AND ’09 July 23-24, 2009, Barcelona, Spain
Copyright 2009 ACM 978-1-60558-496-6 ...$5.00

are still in use in a limited number of cases such as the ’fi’
ligature that merges ’f’ and ’i’.

The Gutenberg Latin Bible, produced in 1455, is tradition-
ally regarded as the first printed book in Western Countries
even if printing with movable type in Korea pre-dates Guten-
berg by several Centuries. Besides illuminated letters and
painted capital letters, the Gutenberg Bible has a regular
layout and each page is printed on two columns each with
42 lines (for this feature the work is also called “the 42-line
Latin Bible”).

Due to the emblematic role of this work some copies kept
in Libraries around the world have been digitized and made
available in Internet. We can mention a copy from Keyko
in Japan [18], the British Library edition, and the copy that
can be accessed from the Göttingen University Library (Ger-
many)1. In the experiments described in this paper we used
the Göttingen version since it is easier to access and the im-
ages have a higher resolution. From a practical point of view,
recognizing the Gutenberg Bible is probably not very useful,
since it is one of the most studied documents of that period.
However, since its digital versions are widely available, it can
be used as a shared benchmark in order to compare different
algorithms and methods and this is the main motivation for
using these data in our experiments.

Despite the regular layout of the pages, the automatic read-
ing of the Gutenberg Bible is a very difficult task for several
reasons: First, the image resolution and the file format avail-
able in Internet are not optimal, since each page is stored as
a JPG file with a size of 965x1390 pixels (the average char-
acter size is 10x15 pixels). Second, typical aging problems
that concern historical documents occur also in this docu-
ment: support aging, bleed trough, and see trough. The
latter problem is particular critical since the ’verso’ page is
observed in the ’recto’ one both for the textual and for the
painted regions. Third, the cost of printing supports (vellum
and parchment) was very high and therefore every possible
strategy was applied to pack the text. Therefore, many ab-
breviations and ligatures are used and there is a very limited
spacing among words. The latter feature influences the read-
ing capabilities of humans as well: for people aware of Latin
writing, but not scholars of medieval manuscripts, it is really
difficult to read the text without the help of a transcription.

From the user point of view, the most suitable tool should be

1http://www.gutenbergdigital.de

a specific OCR designed to read these documents. However,
the large use of ligatures and abbreviations significantly lim-
its the applicability of this approach since many symbols
should be considered and a suitable dictionary listing all
the possible forms for a given lemma is not easily available.
Since Gutenberg Bible is a milestone in the Western cul-
ture, it is possible that those information could be available.
However, our aim is not to deal only with the Gutenberg
Bible, but to design tools that can process early printed
books, that can adopt different ligatures and abbreviations.
We therefore designed a text retrieval tool that deals with
the text in a printed document in a different way, trying to
identify occurrences of query words rather than recognizing
the whole text.

This paper is organized as follows. In Section 2 we briefly
summarize some recent work related with the proposed tech-
nique. Additional information on the peculiarities of Guten-
berg Bible is summarized in Section 3. Details on the pro-
posed retrieval method are described in Section 4 whereas
some experimental results are described in Section 5. Con-
clusions and future work are discussed in Section 6.

2. PREVIOUS WORK
Text retrieval methods have been widely studied in the last
few years (e.g. [9] [13] [14]). One common feature of most
systems is the assumption that individual words can be reli-
ably extracted from the text. This feature holds in modern
printed books, but in general is not realistic in handwriting
and in early printed documents. For instance, word shape
coding is considered in [13] where the document content is
indexed by annotating each word image with a shape code.
The codes are extracted at the word level, rather than at
the character level, so as to minimize errors due to wrong
character segmentations. The codes are computed starting
from a set of topological shape features that include char-
acter ascenders/descenders, character holes, and character
water reservoirs.

In our previous work [14] we dealt with modern printed
books performing a word indexing and retrieval from XVIII
- XIX th Century books. The indexing was based on charac-
ter codes similarly to the approach described in this paper.
However, the indexing granularity was at the word level,
whereas in this work we do not attempt to identify word
boundaries. Character object coding has been used also in
[19] where text similarity between documents is considered.

Concerning the word matching, when the text is represented
with characters codes, one possibility relies on the use of fil-
tering strategies (e.g. [14]). An alternative approach is based
on dynamic programming techniques that have been used to
identify the occurrences of a query word in a document. The
latter techniques are related to approximate string matching
(also known as string edit distance or Levenshtein distance)
when symbolic codes are assigned to characters. When fea-
ture vectors are associated to characters, the algorithms are
most likely classified in the family of Dynamic Time Warp-
ing (DTW) approaches.

To deal with duplicate document detection, Lopresti and
Zhou modified the approximate string matching algorithm
considering split and merge editing operations in addition to

ctum est autem post multos dies ut offerret

Cain de fructibus terrae munera Domino

Abel quoque obtulit de primogenitis

gregis sui et de adipibus eorum. Et respe =

Figure 1: Portion of a page of Genesis 4:3,7. In the
lower part we report the text transcription.

the standard deletion, insertion, and substitution [10]. The
edit distance is considered also in [5] where confused char-
acters in erroneous words are located and editing operations
are applied to create a collection of erroneous error-grams.
Subsequently, query terms and error-grams are used to per-
form query expansion. More recently, the edit distance has
been used for table identification [11]. Dynamic Time Warp-
ing is an algorithm for measuring the similarity between two
sequences that has been initially applied mostly in speech
recognition systems. In the field of document image retrieval
it has been used for on-line handwritten document indexing
and retrieval [7] and for handwritten word image matching
[2] [16]. One modified DTW that takes into account under
and over segmentations of characters has been described in
[12] for Arabic documents transcription. More recently, one
DTW-based partial matching scheme has been proposed to
allow the control of morphological variants of a word [15].

The Gutenberg Bible has been already used as a testbed
for pre-processing algorithms designed to work on historical
documents. For instance [17] describes an approach for pixel
classification used for document image enhancement. The
binarisation of historical documents is described also in [6].
Other papers addressed the retrieval of ornamental initials
from historical documents [4] [8].

3. THE GUTENBERG BIBLE
To illustrate the difficulties of the automatic recognition of
the Gutenberg Bible we report in Figure 1 one excerpt with
the corresponding transcription. In the image, some liga-
tures and abbreviations can be noticed. For instance, the
second word is the verb ’est’ that is printed with a unique
symbol. Overall, the Gutenberg Bible contains more than
75 types of ligatures (15 having two or more corresponding
strings) [3]. Some examples of ligatures with the correspond-
ing meaning are shown in Figure 2.

From the page layout point of view the Gutenberg Bible has
a fixed organization with two columns per page each contain-
ing 42 lines. Similarly to manuscripts, the spacing between
lines is reduced and ascenders and descenders are very close
to neighboring lines. In addition, most capital letters are
painted and some pages begin with painted initials.

However, from the automatic recognition point of view, the
most important feature is the very limited spacing between

an ao da

de den dem

Figure 2: Examples of ligatures from the Gutenberg
Bible.

contiguous characters in the same line. The method de-
scribed in the next section performs the text indexing and
retrieval without segmenting individual words.

4. THE TEXT RETRIEVAL METHOD
The proposed text retrieval method is based on the identi-
fication of Character Objects in the text and their subse-
quent clustering by means of Self Organizing Maps (SOM).
The Character Objects (CO) [19] are connected components
(or portions of connected components) that in general cor-
respond to single characters. Once the SOM clustering is
computed, each CO is labeled with the symbolic class cor-
responding to the nearest SOM neuron. In this way it is
possible to speed-up the matching process with respect to a
pure template matching working at the image level, since we
can rely on approximate string matching. To improve the
retrieval performance, we modified the approximate string
matching algorithm so as to take into account the features
of the SOM maps and the position of actual COs in the text
lines. This matching algorithm is described in Section 4.3.

4.1 Pre-processing and layout analysis
With the pre-processing and layout analysis step we extract
the columns, the text lines and the COs from each page with
a top-down procedure based on projection profiles. Even if
the quality of documents is not perfect, and the text lines are
very close one to the other, we achieved good segmentation
results by taking into account the information about the
page structure (2 columns each with 42 lines).

The input images are in color, but the textual content is
black and white since the colored parts have been added af-
ter printing in order to decorate the pages. We binarize a
gray level image that is obtained by computing an average
of the three color bands: I = R+G+B

3
. Since we are inter-

ested in almost back pixels we remove many colored parts
that should not be considered at all by our algorithm. The
gray level image I is then binarized with a fixed threshold
obtaining the black and white image BW .

Since the page structure is rather regular and the pages
have been carefully aligned during the digitization, we imple-
mented projection-profile based algorithms to identify columns,
rows, and individual characters from each page. The text
columns are extracted with the following steps:

1. Compute the vertical projection profile of the page:
Vj =

PN

i=1 BWi,j (N is the image height and BWi,j is
the image value in position i, j);

2. Compute the “gradient” of the projection profile by
considering a mobile window of 7 pixels:

Gj =
P3

k=1(Vj+k−Vj−k)

7
;

3. Identify the columns positions by thresholding the G
values (highest values correspond to text-background
transitions, and vice-versa);

4. If two columns are not found, the step 3 is repeated
by modifying the threshold used on G.

The previous procedure is used also for text lines segmenta-
tion, considering 42 as target value for the number of lines.
Once the text lines are identified, we include also the pixels
of the connected components that extend above or below
the text line bounding box.

The last segmentation step is the character extraction that
is based on the identification of connected components in
each text line. Potential touching connected components
are searched among the largest connected components. In
this case we look for minima in the vertical projection profile
computed from the pixels of the component to be split. Even
if we carefully design and tune the segmentation algorithms
it is not possible to obtain a perfect segmentation and under-
over-segmentations can occur. For instance, in Figure 3 we
show three different segmentations that are obtained from
three instances of the word ‘Adam’. The matching algorithm
should therefore be tolerant to differences in the number of
objects composing the words.

Figure 3: Different instances of the word ‘adam’.

4.2 Character Clustering
Once the position of each CO is identified in the BW image
we extract the corresponding character from the gray level
image I and we scale it to fit an 8 × 10 grid. Each CO is
therefore represented by an 80-th dimensional feature vec-
tor. These vectors are used to train an SOM with a size
of 15 × 10 neurons. The trained SOM is then used to label
each CO to be indexed with a pair of integers in the range
([0 . . . 14], [0 . . . 9]).

Additional details of the SOM training and its use for CO
labeling in the case of modern printed documents can be
found in [14]. When dealing with early printed documents
unsuitable maps can be obtained if the COs are not correctly
extracted. In particular, if the last step of projection-based
character segmentation is omitted, we can obtain many under-
or over-segmented COs thus generating ’wrong’ SOMs. For
instance, Figure 4 shows two maps computed from an inac-
curate CO segmentation.

Clusters obtained from under−segmented COs Clusters obtained from over−segmented COs

Clusters obtained from well segmented COs

Figure 4: Examples of 12 × 8 SOM maps obtained with different segmentations of COs used for training.

For each COi extracted from the pages we index the follow-
ing n-uple that only contains integer values and therefore
can be quickly accessed with high compression rates:

COi =< Pag(COi), Col(COi), Row(COi), BBl(COi),
BBr(COi), Sx(COi), Sy(COi) >

Pag, Col, and Row are the Page, Column and Row contain-
ing the CO. BBl(COi) and BBr(COi) are the left and right
positions of the CO bounding box in its textline. Sx(COi)
and Sy(COi) are the coordinates of the SOM neuron that is
the closest to COi.

4.3 Matching Algorithm
The retrieval method that we implemented is based on a
query by example approach. The user selects from the doc-
ument collection one word image that is used as a query.
The image is represented with its COs and the search for
indexed words matching the query is performed as follows.

One solution to the approximate string matching problem is

based on dynamic programming. This algorithm and some
simple variants have been used in several contexts to com-
pute a distance between two strings allowing three basic
types of errors: substitution, insertion, and deletion.

Let us first summarize the basic algorithm that is used to
compare a query string Q (having |Q| symbols) with a text
string T (having |T | symbols). The basic data structure is a
matrix M0...|Q|,0...|T | whose elements represent the minimum
number of edit operations needed to match Q1...i with T1...j .
In other words Mi,j = ed(Q1...i, T1...j). The elements of the
matrix are computed according to the following equations:

M0,0 = 0 (1)

Mi,j = min(Mi−1,j−1 + σ(Qi, Tj), Mi−1,j + 1, Mi,j−1 + 1) (2)

In the basic formulation, σ(Qi, Tj) = 0 if Qi = Tj and 1
otherwise. From Equation (2) it is clear that the value Mi,j

is computed taking into account only values in the previous

column or just above the current value. The matrix M can
be computed starting from (i, j) = (0, 0) evaluating one col-
umn after the other. Therefore, we only need to predefine
the values of M∗,0 and M0,∗ to suitable values, for instance
∞, or with increasing values (Mi,0 = i, M0,j = j). When
the whole matrix is computed, the last position provides the
edit distance between the two strings: M|Q|,|T | = ed(Q,T).
From the implementation point of view it is possible to use
only two columns (the current and the previous one) that
are updated during the computation, instead of the whole
matrix.

This basic algorithm can be modified in several ways. We
describe in the following only the changes that are consid-
ered in our approach.

Figure 5: Three occurrences of the word ‘Abram’:
the space with neighboring words is very narrow.

4.3.1 Text searching
In our application, and in general when the word segmenta-
tion is not reliable, a text searching approach is more appro-
priate with respect to string matching. As an example, we
show in Figure 5 three words that are very close to adjacent
words and it is very difficult to identify the word bound-
ary. In text searching, we search the pattern Q in text T
allowing an occurrence to begin at any position in T . This
is obtained by setting M0,j = 0 for each j. After computing
the whole matrix, the values in the last row correspond to
edit distances of potential occurrences of Q in T . An ex-
ample is shown in Figure 6 where the pattern “adam” has
one occurrence with one error (a substitution) in the text
“ademad”.

a d e m a d
0 0 0 0 0 0 0

a 1 0 1 1 1 1 0
d 2 1 0 1 2 2 1
a 3 2 1 1 2 2 2
m 4 3 2 2 1 2 3

Figure 6: Matrix M for comparing searching the
word “adam” in the text “ademad”.

4.3.2 Weighting differences between COs
The previous formulation is typical of a symbolic domain,
where objects are represented by tokens belonging to a finite
number of classes. Typical examples are textual documents.
In syntactic pattern recognition, we deal with numerical fea-
ture vectors rather than with strings. However, in image
text retrieval it is possible to cluster the character images
(see Section 4.2) and then consider a substitution when the
query character and the test one belong to different clusters.
In the opposite, the characters are assumed to coincide when
they belong to the same cluster. In our case we use the SOM
to cluster the character objects and therefore we can take
into account the topological organization of the SOM map
when comparing characters. In the dynamic programming
formulation the edit distance needs to be slightly modified.
First, we consider Q and T to be sequences of COs instead
of sequences of symbols. Second, we weight the similarity
between symbols according to the position in the SOM map
of the corresponding clusters:

σS(Qi, Tj) =

p

(Sx(Qi) − Sx(Tj))2 + (Sy(Qi) − Sy(Tj))2

MaxSomDist
(3)

where MaxSomDist is the maximum distance between pairs
of neurons in the SOM.

Taking into account this value of σ(Qi, Tj) it is now pos-
sible to recompute the matrix M with Equation (2). The
elements of M are real values, but the overall interpretation
is the same: lowest values in the last row of M correspond
to best matching occurrences. It is also possible to consider
variable costs for insertions and deletions and this yields to
the general DTW framework that has been already used in
some word retrieval approaches.

4.3.3 Considering the sub-word width
The DTW framework is very elegant, however one significant
limitation is that we implicitly consider all the COs as having
the same size. In other words, in this framework we have
poor results when character segmentation errors occur. For
instance, if one character is split into two sub-components,
then the matching cost with a perfectly segmented word will
be at most 2 (or more generally the cost of one deletion and
one substitution). One possible solution to this problem
relies on the use of split and merge editing operations that
are more likely to occur in OCR [10]. In a recent paper [12]
the DTW algorithm has been modified to take into account
split and merged characters in handwritten Arabic text.

In our approach, we deal with this problem by taking into ac-
count the width of the query image and the expected width
of the partial match in the searching text. The width of the
query image can be computed by: W (Q) = BBr(Q|Q|) −
BBl(Q1) that is the difference between the rightmost point
of the last character and the leftmost point of the first char-
acter in Q. Similarly, the width of a generic sub-query (com-
posed by the first i characters in Q) can be computed by:
W (Qi) = BBr(Qi) − BBl(Q1).

The computation of the width of a sequence of characters

in T is more complex. When dealing with the character Tj

in matrix M the rightmost point of the sub-string in T is
BBr(Tj). However, the leftmost point depends on the path
followed in the computation of M .

Let us first remind the rationale at the basis of the standard
edit distance computation: when computing each element
Mi,j we assume inductively that all the edit distances be-
tween shorter strings have already been computed, the best
matches are summarized in M and we then try to convert
Q1...i into T1...j .

We can therefore associate to each element Mi,j a value
that corresponds to the leftmost point of the sub-word T1...j .
These values are stored in a matrix L0...|Q|,0...|T | that is up-
dated and read in parallel with M (therefore it is possible
to use also in this case two columns instead of the whole
matrix).

Mi,j and Li,j are updated according to the following steps.
First, we compute SubCost, DelCost, and InsCost as fol-
lows:

σW (Qi, Tj) =
(BBr(Tj) − L(i − 1, j − 1)) − W (Qi)

AvgW
(4)

SubCost = σS(Qi, Tj) + σW (Qi, Tj) + M(i − 1, j − 1) (5)

σW (Qi, Tj) =
(BBr(Tj) − L(i − 1, j)) − W (Qi)

AvgW
(6)

DelCost = σS(Qi, Tj) + σW (Qi, Tj) + M(i − 1, j) (7)

σW (Qi, Tj) =
(BBr(Tj) − L(i, j − 1)) − W (Qi)

AvgW
(8)

InsCost = σS(Qi, Tj) + σW (Qi, Tj) + M(i, j − 1) (9)

In general AvgW is set to the average width of characters
in the collection.

We then compute the minimum cost among SubCost, DelCost,
and InsCost and update Mi,j and Li,j as follows (for in-
stance, if condition (10) holds we update Mi,j and Li,j with
(11) and (12) respectively):

if(SubCost == min(SubCost, DelCost, InsCost)) (10)

Mi,j = SubCost (11)

Li,j = Li−1,j−1 (12)

if(DelCost == min(SubCost, DelCost, InsCost)) (13)

Mi,j = DelCost (14)

Li,j = Li−1,j (15)

if(InsCost == min(SubCost, DelCost, InsCost)) (16)

Mi,j = InsCost (17)

Li,j = Li,j−1 (18)

To begin the algorithm we need to set suitable values for L∗,0

and L0,∗: L(i, 0) = BBl(T1) for (i = 1 . . . |Q|), L(0, j) =
BBl(Tj) for (j = 1 . . . |T |)

When the whole text T is processed, the values in the last
row of the matrix M correspond to errors of possible occur-
rences of Q in T . The lower values identify potential matches
whose starting coordinate is indicated by the corresponding
value in L.

Depending on the application, it is possible to reset M and
L when a new text line begins or to continue with the cur-
rent values in the next row so as to allow the matching of
hyphenated words.

To summarize, in the proposed method two factors con-
tribute to the weight computation at each step: the distance
between cluster centers in the SOM map and a comparison
of the matching word lengths. In the next Section we discuss
the experiments that we performed to evaluate the perfor-
mance of the method.

5. EXPERIMENTAL RESULTS
The numerical validation of text retrieval in the Gutenberg
Bible is a difficult task since an accurate ground truth of
the text is not available for our experiments. The content
is obviously well known since Gutenberg used the so called
Biblia Vulgata as source. However, the textual version of
the Biblia Vulgata that we used contains a transcription of
the text that does not take into consideration ligatures and
abbreviations. In the current system implementation the
is searched with a query by example mechanism and it is
not possible to find occurrences of a query word that are
printed with a different ligature. For instance, one query
is performed with the word “dominus”, that is printed with
various abbreviations. In this case we made the query with
one of the most common abbreviations (“dus”). To evaluate
the retrieval performance we therefore needed to visually
check all the images in the answer set in order to compute
the achieved Precision. However, since we do not know the
number of occurrences of a given abbreviation we cannot
measure the Recall level obtained.

The experimental framework has been set as follows. We
first indexed 20 pages from the Genesis. Subsequently, we
identified some common words and used ten query words
and sorted the retrieved words according to three methods
(Table 1).

The proposed method (denoted as M1) takes into account
the SOM clustering and the estimation of word width by
combining σS and σW (in Equations (5),(7),(9)). In M2 we
set σS(Qi, Tj) = 1 if and only if Qi and Tj belong to the
same SOM cluster. In so doing the SOM structure is not
considered (Section 4.3.2). On the opposite in M3 we con-
sidered only the SOM contribution by setting always σW = 0

abram cain deus dominus terra que que quia quo quod Avg

5 5 3 5 5 3 2 3 1 4 2 3.3
M1 10 8 3 7 10 3 2 7 2 7 3 5.2

20 11 3 11 19 5 6 14 3 12 3 8.7

5 4 0 2 5 0 2 2 1 3 2 2.1
M2 10 5 0 4 5 0 3 3 1 4 3 2.8

20 5 1 8 10 1 4 4 1 6 3 4.3

5 5 0 3 5 0 3 2 2 4 3 2.7
M3 10 8 0 6 10 1 4 4 2 6 4 4.5

20 11 1 6 18 2 7 11 4 8 4 7.2

Table 1: Comparison of the three methods.

and excluding the width contribution (Section 4.3.3).

For each method, and for each query word, we computed the
number of positive results in the top 5, 10, and 20 positions.
In the majority of cases the M1 method recognizes more
correct words in the top-x ranks and also the average values
(in the last column) confirm the good performance of the
proposed method. We computed also the standard string
edit distance, but the values are not reported in the table
since it performed significantly poorly than the others.

Even if only ten query words are considered, we tried to
take into account several types of situations. In particular,
dominus and quod are words having a significant abbrevia-
tion and the latter word is composed by a single CO. It is
interesting to notice that in the case of quod, M3 performs
better than the other methods since the information on word
length has no influence.

The results obtained with the query Deus are very inter-
esting. We show the query word and some positive answers
(obtained with M1) in Figure 7. Each CO is annotated
with some indexing information. For instance, the first CO
has the following values: 12 is the number of CO in the
text line; 96 is the leftmost point of CO (BBl(CO)); 9 is
the CO width; 2/1 denotes the SOM neuron (Sx(CO) = 2,
Sy(CO) = 1). By comparing the SOM neurons of corre-
sponding characters in different words we can notice that
the same characters are clustered in neighboring SOM neu-
rons, and this allows us to have lower values in σS with
correct matches of characters. It is important to notice also
that the query word is over-segmented since it is composed
by five COs instead of the expected four characters. How-
ever, the proposed algorithm is able to identify also words
with four COs and also one word that is under-segmented
(the last one).

6. CONCLUSIONS
In this paper we proposed a text retrieval method designed
to deal with early printed books. This class of documents is
represented by the Latin Gutenberg Bible that we used as a
testbed since it is difficult to segment both at character and
at word level. The proposed method is designed to retrieve
words without performing word segmentation and without
assuming a perfect character segmentation. The approach is

Figure 7: Query word for ’Deus’ (top left) and five
positive answers. Each character is annotated on
top with its position, size, and cluster neurons.

based on a SOM-based clustering of indexed characters and
on a modified Dynamic Time Warping algorithm that takes
into account both the clusters similarity and the estimated
widths of alternative sub-words. We are currently perform-
ing more extensive experiments in order to assess with more
confidence the promising results described in the paper.

7. REFERENCES
[1] A. Beläıd, I. Turcan, J.-M. Pierrel, Y. Beläıd,

Y. Rangoni, and H. Hadjamar. Automatic indexing
and reformulation of ancient dictionaries. In
International Workshop on Document Image Analysis
for Libraries, pages 342–354. IEEE Computer Society,

2004.

[2] H. Cao, A. Bhardwaj, and V. Govindaraju. A
probabilistic method for keyword retrieval in
handwritten document images. Pattern Recognition,
February 2009.

[3] F. Coulmans. The Blackwell encyclopedia of writing
systems. Blackwell Publishing, 1999.

[4] M. Delalandre, J.-M. Ogier, and J. Lladós. A fast
CBIR system of old ornamental letter. In Int’l
Workshop on Graphics Recognition, pages 135–144,
2007.

[5] Y. Fataicha, M. Cheriet, J. Y. Nie, and C. Y. Suen.
Retrieving poorly degraded ocr documents.
International Journal on Document Analysis and
Recognition, 8(1), 2006.

[6] M. R. Gupta, N. P. Jacobson, and E. K. Garcia. Ocr
binarization and image pre-processing for searching
historical documents. Pattern Recognition,
40(2):389–397, 2007.

[7] A. K. Jain and A. M. Namboodiri. Indexing and
retrieval of on-line handwritten documents. In Int’l
Conference on Document Analysis and Recognition,
pages 655–, 2003.

[8] A. Karray, J.-M. Ogier, S. Kanoun, and M. A. Alimi.
An ancient graphic documents indexing method based
on spatial similarity. In Int’l Workshop on Graphics
Recognition, pages 126–134, 2007.

[9] T. Konidaris, B. Gatos, K. Ntzios, I. Pratikakis,
S. Theodoridis, and S. J. Perantonis. Keyword-guided
word spotting in historical printed documents using
synthetic data and user feedback. International
Journal on Document Analysis and Recognition,
9(2-4):167–177, 2007.

[10] D. P. Lopresti. String techniques for detecting
duplicates in document databases. International
Journal on Document Analysis and Recognition,
2(4):186–199, 2000.

[11] D. P. Lopresti. Optical character recognition errors
and their effects on natural language processing. In
Workshop on analytics for noisy unstructured text
data, pages 9–16, 2008.

[12] L. M. Lorigo and V. Govindaraju. Transcript mapping
for handwritten Arabic documents. In Society of
Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 6500, Jan. 2007.

[13] S. Lu, L. Li, and C. L. Tan. Document image retrieval
through word shape coding. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
30(11):1913–1918, Nov. 2008.

[14] S. Marinai, E. Marino, and G. Soda. Font adaptive
word indexing of modern printed documents. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 28(8):1187–1199, 2006.

[15] M. Meshesha and C. V. Jawahar. Matching word
images for content-based retrieval from printed
document images. International Journal on Document
Analysis and Recognition, 11(1):29–38, 2008.

[16] T. M. Rath and R. Manmatha. Word spotting for
historical documents. International Journal on
Document Analysis and Recognition, 9(2-4):139–152,
2007.

[17] E. Smigiel, A. Beläıd, and H. Hamza. Self-organizing
maps and ancient documents. In Document Analysis
Systems, pages 125–134, 2004.

[18] T. Takamiya. How to make good use of digital
contents: The Gutenberg bible and the HUMI project.
In Kyoto International Conference on Digital
Libraries, pages 110–112, 2000.

[19] C. L. Tan, W. Huang, Z. Yu, and Y. Xu. Imaged
document text retrieval without OCR. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24(6):838–844, June 2002.

