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Abstract

Bidirectional Encoder Representations from

Transformers (BERT; Devlin et al. 2019) rep-

resents the latest incarnation of pretrained lan-

guage models which have recently advanced

a wide range of natural language processing

tasks. In this paper, we showcase how BERT

can be usefully applied in text summariza-

tion and propose a general framework for both

extractive and abstractive models. We intro-

duce a novel document-level encoder based on

BERT which is able to express the semantics

of a document and obtain representations for

its sentences. Our extractive model is built on

top of this encoder by stacking several inter-

sentence Transformer layers. For abstractive

summarization, we propose a new fine-tuning

schedule which adopts different optimizers for

the encoder and the decoder as a means of al-

leviating the mismatch between the two (the

former is pretrained while the latter is not). We

also demonstrate that a two-staged fine-tuning

approach can further boost the quality of the

generated summaries. Experiments on three

datasets show that our model achieves state-

of-the-art results across the board in both ex-

tractive and abstractive settings.1

1 Introduction

Language model pretraining has advanced the

state of the art in many NLP tasks ranging from

sentiment analysis, to question answering, natu-

ral language inference, named entity recognition,

and textual similarity. State-of-the-art pretrained

models include ELMo (Peters et al., 2018), GPT

(Radford et al., 2018), and more recently Bidirec-

tional Encoder Representations from Transform-

ers (BERT; Devlin et al. 2019). BERT combines

both word and sentence representations in a single

very large Transformer (Vaswani et al., 2017); it is

1Our code is available at https://github.com/

nlpyang/PreSumm.

pretrained on vast amounts of text, with an unsu-

pervised objective of masked language modeling

and next-sentence prediction and can be fine-tuned

with various task-specific objectives.

In most cases, pretrained language models have

been employed as encoders for sentence- and

paragraph-level natural language understanding

problems (Devlin et al., 2019) involving various

classification tasks (e.g., predicting whether any

two sentences are in an entailment relationship; or

determining the completion of a sentence among

four alternative sentences). In this paper, we ex-

amine the influence of language model pretrain-

ing on text summarization. Different from previ-

ous tasks, summarization requires wide-coverage

natural language understanding going beyond the

meaning of individual words and sentences. The

aim is to condense a document into a shorter ver-

sion while preserving most of its meaning. Fur-

thermore, under abstractive modeling formula-

tions, the task requires language generation ca-

pabilities in order to create summaries containing

novel words and phrases not featured in the source

text, while extractive summarization is often de-

fined as a binary classification task with labels in-

dicating whether a text span (typically a sentence)

should be included in the summary.

We explore the potential of BERT for text sum-

marization under a general framework encom-

passing both extractive and abstractive model-

ing paradigms. We propose a novel document-

level encoder based on BERT which is able to

encode a document and obtain representations

for its sentences. Our extractive model is built

on top of this encoder by stacking several inter-

sentence Transformer layers to capture document-

level features for extracting sentences. Our ab-

stractive model adopts an encoder-decoder archi-

tecture, combining the same pretrained BERT en-

coder with a randomly-initialized Transformer de-

https://github.com/nlpyang/PreSumm
https://github.com/nlpyang/PreSumm
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coder (Vaswani et al., 2017). We design a new

training schedule which separates the optimizers

of the encoder and the decoder in order to accom-

modate the fact that the former is pretrained while

the latter must be trained from scratch. Finally,

motivated by previous work showing that the com-

bination of extractive and abstractive objectives

can help generate better summaries (Gehrmann

et al., 2018), we present a two-stage approach

where the encoder is fine-tuned twice, first with

an extractive objective and subsequently on the ab-

stractive summarization task.

We evaluate the proposed approach on three

single-document news summarization datasets

representative of different writing conventions

(e.g., important information is concentrated at the

beginning of the document or distributed more

evenly throughout) and summary styles (e.g., ver-

bose vs. more telegraphic; extractive vs. abstrac-

tive). Across datasets, we experimentally show

that the proposed models achieve state-of-the-art

results under both extractive and abstractive set-

tings. Our contributions in this work are three-

fold: a) we highlight the importance of document

encoding for the summarization task; a variety

of recently proposed techniques aim to enhance

summarization performance via copying mecha-

nisms (Gu et al., 2016; See et al., 2017; Nallap-

ati et al., 2017), reinforcement learning (Narayan

et al., 2018b; Paulus et al., 2018; Dong et al.,

2018), and multiple communicating encoders (Ce-

likyilmaz et al., 2018). We achieve better results

with a minimum-requirement model without using

any of these mechanisms; b) we showcase ways to

effectively employ pretrained language models in

summarization under both extractive and abstrac-

tive settings; we would expect any improvements

in model pretraining to translate in better summa-

rization in the future; and c) the proposed models

can be used as a stepping stone to further improve

summarization performance as well as baselines

against which new proposals are tested.

2 Background

2.1 Pretrained Language Models

Pretrained language models (Peters et al., 2018;

Radford et al., 2018; Devlin et al., 2019; Dong

et al., 2019; Zhang et al., 2019) have recently

emerged as a key technology for achieving im-

pressive gains in a wide variety of natural lan-

guage tasks. These models extend the idea of

word embeddings by learning contextual repre-

sentations from large-scale corpora using a lan-

guage modeling objective. Bidirectional Encoder

Representations from Transformers (BERT; De-

vlin et al. 2019) is a new language representation

model which is trained with a masked language

modeling and a “next sentence prediction” task on

a corpus of 3,300M words.

The general architecture of BERT is shown in

the left part of Figure 1. Input text is first prepro-

cessed by inserting two special tokens. [CLS] is

appended to the beginning of the text; the output

representation of this token is used to aggregate in-

formation from the whole sequence (e.g., for clas-

sification tasks). And token [SEP] is inserted after

each sentence as an indicator of sentence bound-

aries. The modified text is then represented as a

sequence of tokens X = [w1, w2, · · · , wn]. Each

token wi is assigned three kinds of embeddings:

token embeddings indicate the meaning of each

token, segmentation embeddings are used to dis-

criminate between two sentences (e.g., during a

sentence-pair classification task) and position em-

beddings indicate the position of each token within

the text sequence. These three embeddings are

summed to a single input vector xi and fed to a

bidirectional Transformer with multiple layers:

h̃l = LN(hl−1 +MHAtt(hl−1)) (1)

hl = LN(h̃l + FFN(h̃l)) (2)

where h0 = x are the input vectors; LN is the layer

normalization operation (Ba et al., 2016); MHAtt
is the multi-head attention operation (Vaswani

et al., 2017); superscript l indicates the depth of

the stacked layer. On the top layer, BERT will gen-

erate an output vector ti for each token with rich

contextual information.

Pretrained language models are usually used to

enhance performance in language understanding

tasks. Very recently, there have been attempts

to apply pretrained models to various generation

problems (Edunov et al., 2019; Rothe et al., 2019).

When fine-tuning for a specific task, unlike ELMo

whose parameters are usually fixed, parameters in

BERT are jointly fine-tuned with additional task-

specific parameters.

2.2 Extractive Summarization

Extractive summarization systems create a sum-

mary by identifying (and subsequently concate-

nating) the most important sentences in a doc-

ument. Neural models consider extractive sum-
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Figure 1: Architecture of the original BERT model (left) and BERTSUM (right). The sequence on top is the input

document, followed by the summation of three kinds of embeddings for each token. The summed vectors are used

as input embeddings to several bidirectional Transformer layers, generating contextual vectors for each token.

BERTSUM extends BERT by inserting multiple [CLS] symbols to learn sentence representations and using interval

segmentation embeddings (illustrated in red and green color) to distinguish multiple sentences.

marization as a sentence classification problem:

a neural encoder creates sentence representations

and a classifier predicts which sentences should be

selected as summaries. SUMMARUNNER (Nal-

lapati et al., 2017) is one of the earliest neural

approaches adopting an encoder based on Recur-

rent Neural Networks. REFRESH (Narayan et al.,

2018b) is a reinforcement learning-based system

trained by globally optimizing the ROUGE metric.

More recent work achieves higher performance

with more sophisticated model structures. LA-

TENT (Zhang et al., 2018) frames extractive sum-

marization as a latent variable inference problem;

instead of maximizing the likelihood of “gold”

standard labels, their latent model directly max-

imizes the likelihood of human summaries given

selected sentences. SUMO (Liu et al., 2019) capi-

talizes on the notion of structured attention to in-

duce a multi-root dependency tree representation

of the document while predicting the output sum-

mary. NEUSUM (Zhou et al., 2018) scores and se-

lects sentences jointly and represents the state of

the art in extractive summarization.

2.3 Abstractive Summarization

Neural approaches to abstractive summarization

conceptualize the task as a sequence-to-sequence

problem, where an encoder maps a sequence of

tokens in the source document x = [x1, ..., xn]
to a sequence of continuous representations z =
[z1, ..., zn], and a decoder then generates the target

summary y = [y1, ..., ym] token-by-token, in an

auto-regressive manner, hence modeling the con-

ditional probability: p(y1, ..., ym|x1, ..., xn).

Rush et al. (2015) and Nallapati et al. (2016)

were among the first to apply the neural encoder-

decoder architecture to text summarization. See

et al. (2017) enhance this model with a pointer-

generator network (PTGEN) which allows it to

copy words from the source text, and a coverage

mechanism (COV) which keeps track of words that

have been summarized. Celikyilmaz et al. (2018)

propose an abstractive system where multiple

agents (encoders) represent the document together

with a hierarchical attention mechanism (over the

agents) for decoding. Their Deep Communicat-

ing Agents (DCA) model is trained end-to-end

with reinforcement learning. Paulus et al. (2018)

also present a deep reinforced model (DRM) for

abstractive summarization which handles the cov-

erage problem with an intra-attention mechanism

where the decoder attends over previously gen-

erated words. Gehrmann et al. (2018) follow a

bottom-up approach (BOTTOMUP); a content se-

lector first determines which phrases in the source

document should be part of the summary, and a

copy mechanism is applied only to preselected

phrases during decoding. Narayan et al. (2018a)

propose an abstractive model which is particu-

larly suited to extreme summarization (i.e., single

sentence summaries), based on convolutional neu-

ral networks and additionally conditioned on topic

distributions (TCONVS2S).

3 Fine-tuning BERT for Summarization

3.1 Summarization Encoder

Although BERT has been used to fine-tune vari-

ous NLP tasks, its application to summarization



3733

is not as straightforward. Since BERT is trained

as a masked-language model, the output vectors

are grounded to tokens instead of sentences, while

in extractive summarization, most models ma-

nipulate sentence-level representations. Although

segmentation embeddings represent different sen-

tences in BERT, they only apply to sentence-

pair inputs, while in summarization we must en-

code and manipulate multi-sentential inputs. Fig-

ure 1 illustrates our proposed BERT architecture

for SUMmarization (which we call BERTSUM).

In order to represent individual sentences, we

insert external [CLS] tokens at the start of each

sentence, and each [CLS] symbol collects features

for the sentence preceding it. We also use in-

terval segment embeddings to distinguish multi-

ple sentences within a document. For senti we

assign segment embedding EA or EB depending

on whether i is odd or even. For example, for

document [sent1, sent2, sent3, sent4, sent5], we

would assign embeddings [EA, EB, EA, EB, EA].
This way, document representations are learned

hierarchically where lower Transformer layers

represent adjacent sentences, while higher lay-

ers, in combination with self-attention, represent

multi-sentence discourse.

Position embeddings in the original BERT

model have a maximum length of 512; we over-

come this limitation by adding more position em-

beddings that are initialized randomly and fine-

tuned with other parameters in the encoder.

3.2 Extractive Summarization

Let d denote a document containing sentences

[sent1, sent2, · · · , sentm], where senti is the i-th

sentence in the document. Extractive summariza-

tion can be defined as the task of assigning a label

yi ∈ {0, 1} to each senti, indicating whether the

sentence should be included in the summary. It

is assumed that summary sentences represent the

most important content of the document.

With BERTSUM, vector ti which is the vector

of the i-th [CLS] symbol from the top layer can

be used as the representation for senti. Several

inter-sentence Transformer layers are then stacked

on top of BERT outputs, to capture document-level

features for extracting summaries:

h̃l = LN(hl−1 +MHAtt(hl−1)) (3)

hl = LN(h̃l + FFN(h̃l)) (4)

where h0 = PosEmb(T ); T denotes the sen-

tence vectors output by BERTSUM, and func-

tion PosEmb adds sinusoid positional embed-

dings (Vaswani et al., 2017) to T , indicating the

position of each sentence.

The final output layer is a sigmoid classifier:

ŷi = σ(Woh
L
i + bo) (5)

where hL
i

is the vector for senti from the top

layer (the L-th layer ) of the Transformer. In

experiments, we implemented Transformers with

L = 1, 2, 3 and found that a Transformer with

L = 2 performed best. We name this model

BERTSUMEXT.

The loss of the model is the binary classifica-

tion entropy of prediction ŷi against gold label yi.

Inter-sentence Transformer layers are jointly fine-

tuned with BERTSUM. We use the Adam opti-

mizer with β1 = 0.9, and β2 = 0.999). Our learn-

ing rate schedule follows (Vaswani et al., 2017)

with warming-up (warmup = 10, 000):

lr = 2e−3 ·min (step−0.5, step · warmup−1.5)

3.3 Abstractive Summarization

We use a standard encoder-decoder framework for

abstractive summarization (See et al., 2017). The

encoder is the pretrained BERTSUM and the de-

coder is a 6-layered Transformer initialized ran-

domly. It is conceivable that there is a mis-

match between the encoder and the decoder, since

the former is pretrained while the latter must be

trained from scratch. This can make fine-tuning

unstable; for example, the encoder might overfit

the data while the decoder underfits, or vice versa.

To circumvent this, we design a new fine-tuning

schedule which separates the optimizers of the en-

coder and the decoder.

We use two Adam optimizers with β1 = 0.9 and

β2 = 0.999 for the encoder and the decoder, re-

spectively, each with different warmup-steps and

learning rates:

lrE = l̃rE ·min(step−0.5, step ·warmup−1.5

E
) (6)

lrD = l̃rD ·min(step−0.5, step ·warmup−1.5

D
) (7)

where l̃rE = 2e−3, and warmupE = 20, 000 for

the encoder and l̃rD = 0.1, and warmupD =
10, 000 for the decoder. This is based on the

assumption that the pretrained encoder should

be fine-tuned with a smaller learning rate and

smoother decay (so that the encoder can be trained

with more accurate gradients when the decoder is

becoming stable).
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Datasets # docs (train/val/test)
avg. doc length avg. summary length % novel bi-grams

words sentences words sentences in gold summary

CNN 90,266/1,220/1,093 760.50 33.98 45.70 3.59 52.90
DailyMail 196,961/12,148/10,397 653.33 29.33 54.65 3.86 52.16
NYT 96,834/4,000/3,452 800.04 35.55 45.54 2.44 54.70
XSum 204,045/11,332/11,334 431.07 19.77 23.26 1.00 83.31

Table 1: Comparison of summarization datasets: size of training, validation, and test sets and average document

and summary length (in terms of words and sentences). The proportion of novel bi-grams that do not appear in

source documents but do appear in the gold summaries quantifies corpus bias towards extractive methods.

In addition, we propose a two-stage fine-tuning

approach, where we first fine-tune the encoder on

the extractive summarization task (Section 3.2)

and then fine-tune it on the abstractive summariza-

tion task (Section 3.3). Previous work (Gehrmann

et al., 2018; Li et al., 2018) suggests that using

extractive objectives can boost the performance

of abstractive summarization. Also notice that

this two-stage approach is conceptually very sim-

ple, the model can take advantage of information

shared between these two tasks, without funda-

mentally changing its architecture. We name the

default abstractive model BERTSUMABS and the

two-stage fine-tuned model BERTSUMEXTABS.

4 Experimental Setup

In this section, we describe the summarization

datasets used in our experiments and discuss vari-

ous implementation details.

4.1 Summarization Datasets

We evaluated our model on three benchmark

datasets, namely the CNN/DailyMail news high-

lights dataset (Hermann et al., 2015), the New

York Times Annotated Corpus (NYT; Sandhaus

2008), and XSum (Narayan et al., 2018a). These

datasets represent different summary styles rang-

ing from highlights to very brief one sentence

summaries. The summaries also vary with respect

to the type of rewriting operations they exemplify

(e.g., some showcase more cut and paste opera-

tions while others are genuinely abstractive). Ta-

ble 1 presents statistics on these datasets (test set);

example (gold-standard) summaries are provided

in the supplementary material.

CNN/DailyMail contains news articles and as-

sociated highlights, i.e., a few bullet points giving

a brief overview of the article. We used the stan-

dard splits of Hermann et al. (2015) for training,

validation, and testing (90,266/1,220/1,093 CNN

documents and 196,961/12,148/10,397 DailyMail

documents). We did not anonymize entities. We

first split sentences with the Stanford CoreNLP

toolkit (Manning et al., 2014) and pre-processed

the dataset following See et al. (2017). Input doc-

uments were truncated to 512 tokens.

NYT contains 110,540 articles with abstractive

summaries. Following Durrett et al. (2016), we

split these into 100,834/9,706 training/test exam-

ples, based on the date of publication (the test

set contains all articles published from January 1,

2007 onward). We used 4,000 examples from the

training as validation set. We also followed their

filtering procedure, documents with summaries

less than 50 words were removed from the dataset.

The filtered test set (NYT50) includes 3,452 ex-

amples. Sentences were split with the Stanford

CoreNLP toolkit (Manning et al., 2014) and pre-

processed following Durrett et al. (2016). Input

documents were truncated to 800 tokens.

XSum contains 226,711 news articles accompa-

nied with a one-sentence summary, answering the

question “What is this article about?”. We used the

splits of Narayan et al. (2018a) for training, valida-

tion, and testing (204,045/11,332/11,334) and fol-

lowed the pre-processing introduced in their work.

Input documents were truncated to 512 tokens.

Aside from various statistics on the three

datasets, Table 1 also reports the proportion of

novel bi-grams in gold summaries as a measure

of their abstractiveness. We would expect mod-

els with extractive biases to perform better on

datasets with (mostly) extractive summaries, and

abstractive models to perform more rewrite op-

erations on datasets with abstractive summaries.

CNN/DailyMail and NYT are somewhat extrac-

tive, while XSum is highly abstractive.

4.2 Implementation Details

For both extractive and abstractive settings, we

used PyTorch, OpenNMT (Klein et al., 2017) and

the ‘bert-base-uncased’2 version of BERT to im-

plement BERTSUM. Both source and target texts

2https://git.io/fhbJQ

https://git.io/fhbJQ
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were tokenized with BERT’s subwords tokenizer.

Extractive Summarization All extractive mod-

els were trained for 50,000 steps on 3 GPUs (GTX

1080 Ti) with gradient accumulation every two

steps. Model checkpoints were saved and evalu-

ated on the validation set every 1,000 steps. We

selected the top-3 checkpoints based on the evalu-

ation loss on the validation set, and report the av-

eraged results on the test set. We used a greedy al-

gorithm similar to Nallapati et al. (2017) to obtain

an oracle summary for each document to train ex-

tractive models. The algorithm generates an oracle

consisting of multiple sentences which maximize

the ROUGE-2 score against the gold summary.

When predicting summaries for a new docu-

ment, we first use the model to obtain the score

for each sentence. We then rank these sentences

by their scores from highest to lowest, and select

the top-3 sentences as the summary.

During sentence selection we use Trigram

Blocking to reduce redundancy (Paulus et al.,

2018). Given summary S and candidate sen-

tence c, we skip c if there exists a trigram over-

lapping between c and S. The intuition is simi-

lar to Maximal Marginal Relevance (MMR; Car-

bonell and Goldstein 1998); we wish to minimize

the similarity between the sentence being consid-

ered and sentences which have been already se-

lected as part of the summary.

Abstractive Summarization In all abstractive

models, we applied dropout (with probability 0.1)

before all linear layers; label smoothing (Szegedy

et al., 2016) with smoothing factor 0.1 was also

used. Our Transformer decoder has 768 hidden

units and the hidden size for all feed-forward lay-

ers is 2,048. All models were trained for 200,000

steps on 4 GPUs (GTX 1080 Ti) with gradient ac-

cumulation every five steps. Model checkpoints

were saved and evaluated on the validation set ev-

ery 2,500 steps. We selected the top-3 checkpoints

based on their evaluation loss on the validation set,

and report the averaged results on the test set.

During decoding we used beam search (size 5),

and tuned the α for the length penalty (Wu et al.,

2016) between 0.6 and 1 on the validation set; we

decode until an end-of-sequence token is emitted

and repeated trigrams are blocked (Paulus et al.,

2018). It is worth noting that our decoder ap-

plies neither a copy nor a coverage mechanism

(See et al., 2017), despite their popularity in ab-

stractive summarization. This is mainly because

Model R1 R2 RL

ORACLE 52.59 31.24 48.87

LEAD-3 40.42 17.62 36.67

Extractive

SUMMARUNNER (Nallapati et al., 2017) 39.60 16.20 35.30

REFRESH (Narayan et al., 2018b) 40.00 18.20 36.60

LATENT (Zhang et al., 2018) 41.05 18.77 37.54

NEUSUM (Zhou et al., 2018) 41.59 19.01 37.98

SUMO (Liu et al., 2019) 41.00 18.40 37.20

TransformerEXT 40.90 18.02 37.17

Abstractive

PTGEN (See et al., 2017) 36.44 15.66 33.42

PTGEN+COV (See et al., 2017) 39.53 17.28 36.38

DRM (Paulus et al., 2018) 39.87 15.82 36.90

BOTTOMUP (Gehrmann et al., 2018) 41.22 18.68 38.34

DCA (Celikyilmaz et al., 2018) 41.69 19.47 37.92

TransformerABS 40.21 17.76 37.09

BERT-based

BERTSUMEXT 43.25 20.24 39.63

BERTSUMEXT w/o interval embeddings 43.20 20.22 39.59

BERTSUMEXT (large) 43.85 20.34 39.90

BERTSUMABS 41.72 19.39 38.76

BERTSUMEXTABS 42.13 19.60 39.18

Table 2: ROUGE F1 results on CNN/DailyMail test

set (R1 and R2 are shorthands for unigram and bigram

overlap; RL is the longest common subsequence). Re-

sults for comparison systems are taken from the au-

thors’ respective papers or obtained on our data by run-

ning publicly released software.

we focus on building a minimum-requirements

model and these mechanisms may introduce ad-

ditional hyper-parameters to tune. Thanks to the

subwords tokenizer, we also rarely observe is-

sues with out-of-vocabulary words in the out-

put; moreover, trigram-blocking produces diverse

summaries managing to reduce repetitions.

5 Results

5.1 Automatic Evaluation

We evaluated summarization quality automati-

cally using ROUGE (Lin, 2004). We report

unigram and bigram overlap (ROUGE-1 and

ROUGE-2) as a means of assessing informa-

tiveness and the longest common subsequence

(ROUGE-L) as a means of assessing fluency.

Table 2 summarizes our results on the

CNN/DailyMail dataset. The first block in the ta-

ble includes the results of an extractive ORACLE

system as an upper bound. We also present the

LEAD-3 baseline (which simply selects the first

three sentences in a document).

The second block in the table includes various

extractive models trained on the CNN/DailyMail

dataset (see Section 2.2 for an overview). For



3736

Model R1 R2 RL

ORACLE 49.18 33.24 46.02

LEAD-3 39.58 20.11 35.78

Extractive

COMPRESS (Durrett et al., 2016) 42.20 24.90 —

SUMO (Liu et al., 2019) 42.30 22.70 38.60

TransformerEXT 41.95 22.68 38.51

Abstractive

PTGEN (See et al., 2017) 42.47 25.61 —

PTGEN + COV (See et al., 2017) 43.71 26.40 —

DRM (Paulus et al., 2018) 42.94 26.02 —

TransformerABS 35.75 17.23 31.41

BERT-based

BERTSUMEXT 46.66 26.35 42.62

BERTSUMABS 48.92 30.84 45.41

BERTSUMEXTABS 49.02 31.02 45.55

Table 3: ROUGE Recall results on NYT test set. Re-

sults for comparison systems are taken from the au-

thors’ respective papers or obtained on our data by run-

ning publicly released software. Table cells are filled

with — whenever results are not available.

comparison to our own model, we also imple-

mented a non-pretrained Transformer baseline

(TransformerEXT) which uses the same architec-

ture as BERTSUMEXT, but with fewer parameters.

It is randomly initialized and only trained on the

summarization task. TransformerEXT has 6 lay-

ers, the hidden size is 512, and the feed-forward

filter size is 2,048. The model was trained with

same settings as in Vaswani et al. (2017).

The third block in Table 2 highlights the per-

formance of several abstractive models on the

CNN/DailyMail dataset (see Section 2.3 for an

overview). We also include an abstractive Trans-

former baseline (TransformerABS) which has the

same decoder as our abstractive BERTSUM mod-

els; the encoder is a 6-layer Transformer with 768

hidden size and 2,048 feed-forward filter size.

The fourth block reports results with fine-tuned

BERT models: BERTSUMEXT and its two vari-

ants (one without interval embeddings, and one

with the large version of BERT), BERTSUM-

ABS, and BERTSUMEXTABS. BERT-based mod-

els outperform the LEAD-3 baseline which is not

a strawman; on the CNN/DailyMail corpus it

is indeed superior to several extractive (Nalla-

pati et al., 2017; Narayan et al., 2018b; Zhou

et al., 2018) and abstractive models (See et al.,

2017). BERT models collectively outperform

all previously proposed extractive and abstractive

systems, only falling behind the ORACLE upper

bound. Among BERT variants, BERTSUMEXT

performs best which is not entirely surprising;

Model R1 R2 RL

ORACLE 29.79 8.81 22.66

LEAD 16.30 1.60 11.95

Abstractive

PTGEN (See et al., 2017) 29.70 9.21 23.24

PTGEN+COV (See et al., 2017) 28.10 8.02 21.72

TCONVS2S (Narayan et al., 2018a) 31.89 11.54 25.75

TransformerABS 29.41 9.77 23.01

BERT-based

BERTSUMABS 38.76 16.33 31.15

BERTSUMEXTABS 38.81 16.50 31.27

Table 4: ROUGE F1 results on the XSum test set.

Results for comparison systems are taken from the au-

thors’ respective papers or obtained on our data by run-

ning publicly released software.

CNN/DailyMail summaries are somewhat extrac-

tive and even abstractive models are prone to copy-

ing sentences from the source document when

trained on this dataset (See et al., 2017). Perhaps

unsurprisingly we observe that larger versions of

BERT lead to performance improvements and that

interval embeddings bring only slight gains.

Table 3 presents results on the NYT dataset.

Following the evaluation protocol in Durrett et al.

(2016), we use limited-length ROUGE Recall,

where predicted summaries are truncated to the

length of the gold summaries. Again, we report

the performance of the ORACLE upper bound and

LEAD-3 baseline. The second block in the table

contains previously proposed extractive models as

well as our own Transformer baseline. COM-

PRESS (Durrett et al., 2016) is an ILP-based model

which combines compression and anaphoricity

constraints. The third block includes abstractive

models from the literature, and our Transformer

baseline. BERT-based models are shown in the

fourth block. Again, we observe that they out-

perform previously proposed approaches. On this

dataset, abstractive BERT models generally per-

form better compared to BERTSUMEXT, almost

approaching ORACLE performance.

Table 4 summarizes our results on the XSum

dataset. Recall that summaries in this dataset are

highly abstractive (see Table 1) consisting of a sin-

gle sentence conveying the gist of the document.

Extractive models here perform poorly as corrob-

orated by the low performance of the LEAD base-

line (which simply selects the leading sentence

from the document), and the ORACLE (which se-

lects a single-best sentence in each document) in

Table 4. As a result, we do not report results

for extractive models on this dataset. The second
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l̃rE

l̃rD
1 0.1 0.01 0.001

2e-2 50.69 9.33 10.13 19.26
2e-3 37.21 8.73 9.52 16.88

Table 5: Model perplexity (CNN/DailyMail; valida-

tion set) under different combinations of encoder and

decoder learning rates.

block in Table 4 presents the results of various ab-

stractive models taken from Narayan et al. (2018a)

and also includes our own abstractive Transformer

baseline. In the third block we show the results

of our BERT summarizers which again are supe-

rior to all previously reported models (by a wide

margin).

5.2 Model Analysis

Learning Rates Recall that our abstractive

model uses separate optimizers for the encoder

and decoder. In Table 5 we examine whether

the combination of different learning rates (l̃rE
and l̃rD) is indeed beneficial. Specifically, we re-

port model perplexity on the CNN/DailyMail val-

idation set for varying encoder/decoder learning

rates. We can see that the model performs best

with l̃rE = 2e− 3 and l̃rD = 0.1.

Position of Extracted Sentences In addition to

the evaluation based on ROUGE, we also ana-

lyzed in more detail the summaries produced by

our model. For the extractive setting, we looked at

the position (in the source document) of the sen-

tences which were selected to appear in the sum-

mary. Figure 2 shows the proportion of selected

summary sentences which appear in the source

document at positions 1, 2, and so on. The analysis

was conducted on the CNN/DailyMail dataset for

Oracle summaries, and those produced by BERT-

SUMEXT and the TransformerEXT. We can see

that Oracle summary sentences are fairly smoothly

distributed across documents, while summaries

created by TransformerEXT mostly concentrate on

the first document sentences. BERTSUMEXT out-

puts are more similar to Oracle summaries, indi-

cating that with the pretrained encoder, the model

relies less on shallow position features, and learns

deeper document representations.

Novel N-grams We also analyzed the output of

abstractive systems by calculating the proportion

of novel n-grams that appear in the summaries but

not in the source texts. The results are shown in

Figure 3. In the CNN/DailyMail dataset, the pro-
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Figure 2: Proportion of extracted sentences according

to their position in the original document.

portion of novel n-grams in automatically gener-

ated summaries is much lower compared to refer-

ence summaries, but in XSum, this gap is much

smaller. We also observe that on CNN/DailyMail,

BERTEXTABS produces less novel n-ngrams than

BERTABS, which is not surprising. BERTEXTABS

is more biased towards selecting sentences from

the source document since it is initially trained as

an extractive model.

The supplementary material includes examples

of system output and additional ablation studies.

5.3 Human Evaluation

In addition to automatic evaluation, we also evalu-

ated system output by eliciting human judgments.

We report experiments following a question-

answering (QA) paradigm (Clarke and Lapata,

2010; Narayan et al., 2018b) which quantifies

the degree to which summarization models retain

key information from the document. Under this

paradigm, a set of questions is created based on

the gold summary under the assumption that it

highlights the most important document content.

Participants are then asked to answer these ques-

tions by reading system summaries alone without

access to the article. The more questions a sys-

tem can answer, the better it is at summarizing the

document as a whole.

Moreover, we also assessed the overall qual-

ity of the summaries produced by abstractive sys-

tems which due to their ability to rewrite content

may produce disfluent or ungrammatical output.

Specifically, we followed the Best-Worst Scal-

ing (Kiritchenko and Mohammad, 2017) method

where participants were presented with the output

of two systems (and the original document) and
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Figure 3: Proportion of novel n-grams in model gener-

ated summaries.

Extractive CNN/DM NYT

LEAD 42.5† 36.2†

NEUSUM 42.2† —

SUMO 41.7† 38.1†

Transformer 37.8† 32.5†

BERTSUM 58.9 41.9

Table 6: QA-based evaluation. Models with † are sig-

nificantly different from BERTSUM (using a paired stu-

dent t-test; p < 0.05). Table cells are filled with —

whenever system output is not available.

asked to decide which one was better according to

the criteria of Informativeness, Fluency, and Suc-

cinctness.

Both types of evaluation were conducted on

the Amazon Mechanical Turk platform. For the

CNN/DailyMail and NYT datasets we used the

same documents (20 in total) and questions from

previous work (Narayan et al., 2018b; Liu et al.,

2019). For XSum, we randomly selected 20

documents (and their questions) from the release

of Narayan et al. (2018a). We elicited 3 re-

sponses per HIT. With regard to QA evaluation,

we adopted the scoring mechanism from Clarke

and Lapata (2010); correct answers were marked

with a score of one, partially correct answers

with 0.5, and zero otherwise. For quality-based

evaluation, the rating of each system was com-

puted as the percentage of times it was chosen as

better minus the times it was selected as worse.

Ratings thus range from -1 (worst) to 1 (best).

CNN/DM NYT XSum
Abstractive QA Rank QA Rank QA Rank

LEAD 42.5† — 36.2† — 9.20† —

PTGEN 33.3† -0.24† 30.5† -0.27† 23.7† -0.36†

BOTTOMUP 40.6† -0.16† — — — —

TCONVS2S — — — — 52.1 -0.20†

GOLD — 0.22† — 0.33† — 0.38†

BERTSUM 56.1 0.17 41.8 -0.07 57.5 0.19

Table 7: QA-based and ranking-based evaluation.

Models with † are significantly different from BERT-

SUM (using a paired student t-test; p < 0.05). Table

cells are filled with — whenever system output is not

available. GOLD is not used in QA setting, and LEAD

is not used in Rank evaluation.

Results for extractive and abstractive systems

are shown in Tables 6 and 7, respectively. We

compared the best performing BERTSUM model

in each setting (extractive or abstractive) against

various state-of-the-art systems (whose output is

publicly available), the LEAD baseline, and the

GOLD standard as an upper bound. As shown

in both tables participants overwhelmingly pre-

fer the output of our model against comparison

systems across datasets and evaluation paradigms.

All differences between BERTSUM and compari-

son models are statistically significant (p < 0.05),

with the exception of TCONVS2S (see Table 7;

XSum) in the QA evaluation setting.

6 Conclusions

In this paper, we showcased how pretrained BERT

can be usefully applied in text summarization. We

introduced a novel document-level encoder and

proposed a general framework for both abstrac-

tive and extractive summarization. Experimental

results across three datasets show that our model

achieves state-of-the-art results across the board

under automatic and human-based evaluation pro-

tocols. Although we mainly focused on docu-

ment encoding for summarization, in the future,

we would like to take advantage the capabilities of

BERT for language generation.
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