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Abstract: Text-to-image generation is a method used for generating images related to given tex-
tual descriptions. It has a significant influence on many research areas as well as a diverse set of
applications (e.g., photo-searching, photo-editing, art generation, computer-aided design, image re-
construction, captioning, and portrait drawing). The most challenging task is to consistently produce
realistic images according to given conditions. Existing algorithms for text-to-image generation create
pictures that do not properly match the text. We considered this issue in our study and built a deep
learning-based architecture for semantically consistent image generation: recurrent convolutional
generative adversarial network (RC-GAN). RC-GAN successfully bridges the advancements in text
and picture modelling, converting visual notions from words to pixels. The proposed model was
trained on the Oxford-102 flowers dataset, and its performance was evaluated using an inception
score and PSNR. The experimental results demonstrate that our model is capable of generating more
realistic photos of flowers from given captions, with an inception score of 4.15 and a PSNR value of
30.12 dB, respectively. In the future, we aim to train the proposed model on multiple datasets.

Keywords: convolutional neural network; recurrent neural network; deep learning; generative
adversarial networks; image generation

1. Introduction

When people listen to or read a narrative, they quickly create pictures in their mind
to visualize the content. Many cognitive functions, such as memorization, reasoning
ability, and thinking, rely on visual mental imaging or “seeing with the mind’s eye” [1].
Developing a technology that recognizes the connection between vision and words and can
produce pictures that represent the meaning of written descriptions is a big step toward
user intellectual ability.

Image-processing techniques and applications of computer vision (CV) have grown
immensely in recent years from advances made possible by artificial intelligence and deep
learning’s success. One of these growing fields is text-to-image generation. The term text-to-
image (T2I) is the generation of visually realistic pictures from text inputs. T2I generation is
the reverse process of image captioning, also known as image-to-text (I2T) generation [2–4],
which is the generation of textual description from an input image. In T2I generation, the
model takes an input in the form of human written description and produces a RGB image
that matches the description. T2I generation has been an important field of study due to its
tremendous capability in multiple areas. Photo-searching, photo-editing, art generation,
captioning, portrait drawing, industrial design, and image manipulation are some common
applications of creating photo-realistic images from text.

The evolution of generative adversarial networks (GANs) has demonstrated excep-
tional performance in image synthesis, image super-resolution, data augmentation, and
image-to-image conversion. GANs are deep learning-based convolutional neural networks
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(CNNs) [5,6]. It consists of two neural networks: one for generating data and the other for
classifying real/fake data. GANs are based on game theory for learning generative models.
Its major purpose is to train a generator (G) to generate samples and a discriminator (D)
to discern between true and false data. For generating better-quality realistic image, we
performed text encoding using recurrent neural networks (RNN), and convolutional layers
were used for image decoding. We developed recurrent convolution GAN (RC-GAN),
a simple an effective framework for appealing to image synthesis from human written
textual descriptions. The model was trained on the Oxford-102 Flowers Dataset and ensures
the identity of the synthesized pictures. The key contributions of this research include
the following:

• Building a deep learning model RC-GAN for generating more realistic images.
• Generating more realistic images from given textual descriptions.
• Improving the inception score and PSNR value of images generated from text.

The following is how the rest of the paper is arranged: In Section 2, related work is
described. The dataset and its preprocessing are discussed in Section 3. Section 4 explains
the details of the research methodology and dataset used in this paper. The experimental
details and results are discussed in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

GANs were first introduced by Goodfellow [7] in 2014, but Reed et al. [8] was the
first to use them for text-to-image generation in 2016. Salimans et al. [9] proposed training
stabilizing techniques for previously untrainable models and achieved better results on
the MNIST, CIFAR-10, and SVHN datasets. The attention-based recurrent neural network
was developed by Zia et al. [10]. In their model, word-to-pixel dependencies were learned
by an attention-based auto-encoder and pixel-to-pixel dependencies were learned by an
autoregressive-based decoder. Liu et al. [11] offered a diverse conditional image synthesis
model and performed large-scale experiments for different conditional generation tasks.
Gao et al. [12] proposed an effective approach known as lightweight dynamic conditional
GAN (LD-CGAN), which disentangled the text attributes and provided image features by
capturing multi-scale features. Dong et al. [13] trained a model for generating images from
text in an unsupervised manner. Berrahal et al. [14] focused on the development of text-
to-image conversion applications. They used deep fusion GAN (DF-GAN) for generating
human face images from textual descriptions. The cross-domain feature fusion GAN (CF-
GAN) was proposed by Zhang et al. [15] for converting textual descriptions into images
with more semantic detail. In general, the existing methods of text-to-image generation use
wide-ranging parameters and heavy computations for generating high-resolution images,
which result in unstable and high-cost training.

3. Dataset and Preprocessing
3.1. Dataset

The dataset used was Oxford-102 flowers, which include 8189 images of flowers that
are all of different species. It has 102 classes; each class consists of 40 to 60 images, and
each of the images have 10 matching textual descriptions. In this study, we considered
8000 images for training. This dataset was used to train the model for 300 epochs.

3.2. Data Preprocessing

When the data were collected and extracted initially, it consisted of 8189 images with
different sizes of resolutions and corresponding textual descriptions. For normalizing the
textual data, we used an NLTK tokenizer, which converted the textual sentences into words.
These tokenized lists of words were transformed into an array of caption ids. The images
were loaded for resizing to the same dimensions. All training images and testing images
were resized to a resolution of 128 × 128. For training purposes, the images were converted
into arrays, and both the vocabulary and images were loaded onto the model.



Eng. Proc. 2022, 20, 16 3 of 6

4. Proposed Methodology

This section describes the training details of deep learning-based generative models.
Conditional GANs were used with recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) for generating meaningful images from a textual description. The
dataset used consisted of images of flowers and their relevant textual descriptions. For
generating plausible images from text using a GAN, preprocessing of textual data and
image resizing was performed. We took textual descriptions from the dataset, preprocessed
these caption sentences, and created a list of their vocabulary. Then, these captions were
stored with their respective ids in the list. The images were loaded and resized to a fixed
dimension. These data were then given as input to our proposed model. RNN was used
for capturing the contextual information of text sequences by defining the relationship
between words at altered time stamps. Text-to-image mapping was performed using an
RNN and a CNN. The CNN recognized useful characteristics from the images without the
need for human intervention. An input sequence was given to the RNN, which converted
the textual descriptions into word embeddings with a size of 256. These word embeddings
were concatenated with a 512-dimensional noise vector. To train our model, we took a batch
size of 64 with gated-feedback 128 and fed the input noise and text input to a generator.
The architecture of the proposed model is presented in Figure 1.
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Figure 1. Architecture of the proposed method, which can generate images from text descriptions.

Semantic information from the textual description was used as input in the generator
model, which converts characteristic information to pixels and generates the images. This
generated image was used as input in the discriminator along with real/wrong textual
descriptions and real sample images from the dataset.

A sequence of distinct (picture and text) pairings are then provided as input to the
model to meet the goals of the discriminator: input pairs of real images and real textual
descriptions, wrong images and mismatched textual descriptions, and generated images
and real textual descriptions. The real photo and real text combinations are provided so
that the model can determine if a particular image and text combination align. An incorrect
picture and real text description indicates that the image does not match the caption. The
discriminator is trained to identify real and generated images. At the start of training, the
discriminator was good at classification of real/wrong images. Loss was calculated to
improve the weight and to provide training feedback to the generator and discriminator
model. As soon as the training proceeded, the generator produced more realistic images
and it fooled the discriminator when distinguishing between real and generated images.

5. Results and Discussion

In this section, the experimental analysis and generated images of flowers are pre-
sented. The training of the proposed model was performed on an Nvidia 1070 Ti GPU,
32 GB memory and windows 10 operating system. The weights of the generator and
discriminator were optimized using an Adam optimizer, the mini-batch size was 64, and
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the learning rate was 0.0003. The ground truths from the dataset and the images generated
from the input textual descriptions are shown in Figure 2. For evaluating the performance
of the proposed model, the inception score (IS) and PSNR values are calculated. Incep-
tion scores capture the diversity and quality of the generated images. PSNR is used for
calculating the peak signal-to-noise ratio in decibels among two images. The quality of the
original and produced images is compared using this ratio. The PSNR value increases as
the quality of the created or synthesized image improves. PSNR value is calculated using
following equation:

PSNR = 10log10 (R2/MSE) (1)
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Figure 2. Input textual descriptions and resultant generated images with ground truths.

To validate the proposed approach, the results are compared with those of existing
models including GAN-INT-CLS, StackGAN, StackGAN++, HDGAN, and DualAttn-GAN
on the Oxford-102 flowers dataset. This performance comparison in terms of inception
score is shown in Table 1 and that of the PSNR value is shown in Table 2. These results
show that our model is capable of generating more unambiguous and diverse photos than
the other models.

Table 1. Performance comparison of state-of-the-art methods vs. the methodology presented here by
inception score.

Ref. Models Inception Score

Reed et al. [8] GAN-INT-CLS 2.66 ± 0.03
Zhang et al. [16] StackGAN 3.20 ± 0.01
Zhang et al. [17] StackGAN++ 3.26 ± 0.01
Zhang et al. [18] HDGAN 3.45 ± 0.05

Cai et al. [19] DualAttn-GAN 4.06 ± 0.05
Proposed Method RC-GAN 4.15 ± 0.03

Table 2. PSNR value of generated images.

Ref. Model PSNR Value

Proposed Method RC-GAN 30.12 dB



Eng. Proc. 2022, 20, 16 5 of 6

6. Conclusions and Future Work

In the fields of computer vision and natural language processing, text-to-image gener-
ation is a hot topic these days. For producing visually realistic and semantically consistent
images, we presented a deep learning-based model (RC-GAN) and described how it works
in the confluence of computer vision and natural language processing. The model was
trained by text encoding and image decoding. Extensive experiments on the Oxford-102
flowers dataset demonstrated that the proposed GAN model generates better-quality im-
ages compared with existing models by providing the best recorded IS. The performance of
our proposed method was compared with that of state-of-the-art methods using IS. Our
model achieved an IS of 4.15 and a PSNR value of 30.12 dB on the Oxford-102 flowers
dataset. We want to expand this work by training the model on a variety of datasets for
image generation.
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