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Abstract

Textile materials are characterised by the distinct hierarchy of structure, which should be represented by a model of textile geometry and
mechanical behaviour. In spite of a profound investigation of textile materials and a number of theoretical models existing in the textile
literature for different structures, a model covering all structures typical for composite reinforcements is not available. Hence the challenge
addressed in the present work is to take full advantage of the hierarchical principle of textile modelling, creating a truly integrated modelling
and design tool for textile composites. It allows handling of complex textile structure computations in computer time counted by minutes
instead of hours of the same non-linear, non-conservative behaviour of yarns in compression and bending. The architecture of the code
implementing the model corresponds to the hierarchical structure of textile materials. The model of the textile geometry serves as a base for
meso-mechanical and permeability models for composites, which provide therefore simulation tools for analysis of composite processing and

properties. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reliable prediction of properties (and mechanical
behaviour in the more broad sense) of composite materials
is of the primary importance for the success of usage of
textile composites. The complexity of the structure and
the presence of a hierarchy of structural and scale levels
(1075 m-fibres, 1073 m-yarns/tows, 107! m-fabrics, 10° m-
composite parts) lead to a high complexity of the predictive
models, a high level of approximation in them, and to the
high level of uncertainty of the predictions, when errors are
accumulated when the model progresses from one hierarch-
ical level to another. On the other hand, the same hierarchy
provides a very generic and reasonable route for construc-
tion of the predictive models, which is the subject of this
paper. It continues publications of the present authors on the
concept of Textile Geometry Preprocessor for the simula-
tion of composites processing and mechanical behaviour
[1-7].

Textiles are hierarchically structured fibrous materials.
As it was discussed in the classical paper of Hearle et al.
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[8], this description of the nature of textiles defines an effi-
cient approach to the construction of mathematical models
of the geometry and the mechanical behaviour of textile
structures. After more than 60 years of work creating textile
structural models, the hierarchical approach has never been
fully utilised, despite its recognised usefulness and, perhaps,
necessity. During the 30s, the first serious mechanical treat-
ments of the structure of textile materials were published by
Peirce [9] (almost unknown in the English literature,
Russian contributions by Pozdnyakov [10] and Novikov
[11] should also be cited here). Since then, the stream of
papers dedicated to the mechanical description of textile
structures was constant and resulted in a comprehensive
treatment on ‘Mechanics of Flexible Fibre Assemblies’ in
1980 [12]. In the following years, the ideas and generic
approaches outlined in this book were pursued further. The
state-of-art of textile mechanics in the beginning of the 21st
century includes models of the internal geometry of the basic
textile structures, such as continuous-filament and staple
yarns, random fibre mats, and woven and knitted structures.
Nevertheless, these models deal primarily with a particu-
lar structure (e.g. a plain weave or a rib knit). There is a lack
of generalised models (e.g. a model of a woven fabric, in
which the weave pattern itself enters as a parameter). The
other drawback is the lack of models that combine two
hierarchical levels. An example application, which asks
for such a combined model is the problem of fabric
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permeability: a suitable model should include a description
of both the macro-porosity (i.e. between the yarns) and the
micro-porosity (i.e. between the fibres in a yarn) [13].

The hierarchical approach of a geometry model architec-
ture is naturally implemented via the minimum energy prin-
ciple (MEP), introduced by Hearle and Shanahan [14] and
de Jong and Postle [15]. This principle allows the decom-
position of a problem into a set of problems for structural
elements, leading to physically sound and computationally
feasible models. There are two questions connected with the
use of a MEP in textiles. One is the heuristic nature of the
principle itself when applied to non-conservative mechan-
ical systems — like textiles. This question has not been
solved so far, and results obtained with the help of the
MEP will always remain a kind of approximation of the
behaviour of the real textile structure. The second question
relates to the application of the MEP to textiles where the
textile structure enters the problem as a parameter. As it will
be shown below, MEP provides a quite straightforward way
to do this, but has not been explored so far.

The results of the geometrical modelling serve as crucial
input to the models of composites processing and mechan-
ical behaviour. In the permeability module, the three-dimen-
sional permeability tensor is calculated, and serves as a
preprocessor for any flow modelling or mould filling soft-
ware. The main advantage is that local variations in textile
geometry, and hence in permeability, can be taken into
account in an explicit way. In the meso-mechanics module,
the thermo-mechanical properties of the composite repre-
sentative volume element are calculated. Different meso-
mechanical modelling options are available. They all result
in a prediction of the three-dimensional homogenised stiff-
ness matrix, but also allow the calculation of local stresses,
strains and damage under any external loading.

Hence the composite material, as the final product in the
sequence ‘fibre — yarn — textile — preform — composite’, is
included in the hierarchical description of the ‘textile world’,
taking full advantage of the versatility of this approach.

2. Hierarchy of the textile composite structure
Table 1 shows the ‘staircase’ of structural elements of a

Table 1
Hierarchy of structure and models of a textile composite

textile composite and modelling problems associated with
each scale/structure level. The useful ‘rule of thumb’ for the
model is to avoid unnecessary mixture of hierarchical
levels: use yarn, not fibre, properties to predict behaviour
of a fabric. Each level on the staircase is occupied by
models, which use the input data of topology and spacing
parameters of structural elements (i.e. weave pattern and
warp/weft count) and properties of the elements themselves
(i.e. yarns in a fabric) to predict properties of the structure
(i.e. geometry of the fabric). If necessary, data from the
lower level are introduced (i.e. fibrous structure of yarns
in the fabric).

The modern Object Oriented Programming (OOP) tech-
nique is ideally suited to implement the hierarchical nature
of textiles. The three main features of the OOP are encap-
sulation, inheritance, and polymorphism.

Encapsulation means that the object holds not only data,
but also the behaviour. Applying this to a Yarn object, we
can consider the data fields and methods (procedures
describing the object behaviour) shown in Table 2. Wher-
ever the Yarn object will be encountered in the software, all
these data fields and methods will be accessible, and the
model can instruct the yarn, say to Compress under the
force Q. One can say that the Yarn object virtually repre-
sents the actual yarn. Note that the Yarn object does not
contain fibre data. It is designed to be sufficient for geome-
trical calculations on the ‘yarn—fabric’ level of the textile
hierarchy.

Inheritance means that one can construct another object,
say YarnWithFibreData (Table 2), which will inherit all the
data and the behaviour of the parent Yarn object, but adds
fibre data and behaviour, which in its turn is encapsulated in
the Fibre object, placed on the lower level of the structural
hierarchy. Now it is possible not only to evaluate the yarn
properties using the fibre data and a structural model of the
yarn, but also to determine properties lying on a lower hier-
archical level (i.e. the fibrous structure of the yarn). The new
object virtually represents the actual yarn with some added
knowledge. The inheritance feature of the OOP provides
therefore a logical basis for the gradual improvement of
the model.

Polymorphism gives the developer the possibility to take
full advantage of this gradual improvement process.

Structure Elements Models
Yarn (tow) Fibres Fibre distribution in the yarn and its change under load/strain
Mechanical properties of the yarn
Fabric (woven, knitted...) Yarns Geometry of yarns in the fabric and its change under load/strain
Mechanical behaviour of the fabric repeat under complex loading
Composite unit cell Fabric Mechanical properties (stiffness matrix/non-linear; strength)
Matrix Permeability tensor

Composite part (Deformed) unit cells

Behaviour under loading
Flow of the resin
Behaviour in the forming process
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Fibre and Yarn objects as implemented in software via OOP approach
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Object Data

Group

Fields

Methods

Fibre General

Mechanics

Yarn General

Geometry of the
cross-section

Compression

Bending

Friction

Yarn with fibre data
General

Fibre

Compression

Bending

Name

Linear density, tex

Diameter, mm

Density, g/cm®

Longitudinal Young modulus, Gpa
Longitudinal Poisson ratio
Transverse Youngs modulus, Gpa
Transverse Poisson ratio
Longitudinal shear modulus, Gpa
Transverse shear modulus, Gpa
Tenacity, Mpa

Ultimate elongation

Name

Yarn type: monofilamnet, continuous filament or
spun

Linear density, tex

Assumed shape: elliptical or lenticular or
rectangular

Dimensions of the cross-section in the free state dy,,
d()z, mm

Type of compression behaviour: no compression,
‘locked’ compression in a textile structure or
compression law given

Compression coefficient 1, = d,/d;o as a value or a
function of compressive force Q per unit length

Flattening coefficient 1, = d»/dy, as a value or a
function of compressive force Q per unit length
Bending curve ‘torque-curvature’ (linear for the
constant bending rigidity) M(k)

Friction law yarn—yarn in the form F = fN", where
N is a normal force

Twist, 1/m
Twist direction (S or Z)
Fibre data (Fibre object)

Number of fibres in cross-section
Fibre distribution in the yarn

Compute mass for a given length

Compute volume of the given yarn length

Determine, whether the given point (x,y)
(co-ordinates on the plane of the cross-
section) lies inside the yarn

Compute compressed yarn dimensions
under a given force per unit length

Compute compression of two intersecting
yarns for a given normal force and angle
of intersection

Compute bending rigidity value B for a
given curvature

Compute friction force for a given normal
force

inherits data and methods of Yarn, adds the following and replaces (shown in bold) some of Yarn methods

Compute the twist angle

Compute linear density from fibre data
Compute fibrous content and fibre
direction in the vicinity of the given point
(x,y). Fibrous content is assumed constant
inside a yarn

Compute compressed yarn dimensions

under a given force per unit length and
fibre distribution in it

Compute bending resistance from fibre
data

Consider a method Compress, which for the Yarn object simply
computes the cross-sectional dimensions in the compressed
configuration, but which for the Yarn with fibre data object
additionally computes the fibre distribution in the compressed
state. When used inside the software in reference to a certain
Yarn object, the method will be applied in the former style if the
object does not contain fibre data, and in the latter style, if fibre
data are present. The Yarn object will be polymorph, changing
its behaviour according to its actual contents.

The OOP approach provides a powerful tool for the construc-
tion of ‘virtual textiles’, and will be employed in full below.

3. Level L. Fibre — yarn: fibrous structure and
mechanical properties of a yarn

The geometry of a textile structure in the relaxed state
(i.e. in absence of external forces) is determined by the
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equilibrium of the yarn interaction forces, which naturally
arise to accommodate the topology of the yarn contacts
within the textile. Bending of the yarns — necessary to
maintain the topology — creates transversal forces at the
yarn contacts. These forces lead to yarn compression and
flattening and — in case of non-symmetrical contact condi-
tions — to local deflections of the yarn path from the ideal
directions, which are in turn resisted by friction between the
yarns). In the relaxed state the yarns are free of tension. The
weaving process does not imply torsion of the yarns; for
knitted fabrics however torsion takes place.

Therefore, the following yarn properties should be
included in the input data for the geometrical model.

3.1. Linear density and dimensions of the yarn in the free
state

The linear density of a yarn has a certain unevenness. An
interesting route for the development of geometrical models
would therefore be to include stochastic effects and to
explore the influence of the yarn unevenness on the fabric
geometry. However, this has not been done so far.

The shape of the yarn cross-section in the free state is
normally assumed to be circular or elliptical (e.g. in the case
of sized glass rovings for composite reinforcements). The
diameter of the yarn is usually computed with the formula

dy = CT, (1

where d, is the yarn diameter, 7 is the linear density and C is
an empirical coefficient, taking into account the fibre
density, fibre twist and fibre packing within the yarn. It
should be clearly understood that Eq. (1) and the concept
of a diameter of the yarn with a distinct ‘border’ is itself are
approximations as the fibrous structure of the yarn on the
yarn-fabric level within the textile hierarchy is neglected
[16]. Fig. 1 illustrates the nature of this approximation.

3.2. Compression of yarns

Compression of yarns causes a change of the yarn cross-
sectional dimensions within the fabric and directly affects
the fabric geometry. Standard equipment (KES-F) allows
measuring the compressive deformation of the yarn as a
function of the applied force per unit length of the yarn
(Fig. 2)

dy = diym(Q), (2)

where d, is the compressed dimension of the yarn in the
direction of the compressive force Q, dq is the correspond-
ing dimension in the free state, and m, is an empirical
function.

A number of problems arise in the experimental charac-
terisation of the compressive behaviour of yarns

1. The first problem is the necessity to measure not only
the compressive (in the direction of the force), but also the
spreading (in the direction perpendicular to the force) defor-

mation of the yarn (Fig. 2)
dy = dym(0), 3)

where d, is the compressed dimension of the yarn in the
direction normal to the compressive force Q, dy is the corre-
sponding dimension in the free state, and 7, is an empirical
function. The standard KES-F equipment does not provide
any information about yarn spreading. The solution may be
to use a specialised experimental rig, proposed in Ref. [17],
or to use approximate empirical relationships between 7,
and 7, as introduced in Refs. [18-20].

2. The values of dj( and d, are an approximation of the
yarn cross-sectional dimensions in the free state, as the exact
cross-section is not clearly defined. A special routine for the
processing of the experimental data has been proposed in
Ref. [21].

3. Even if the functions Egs. (2) and (3) are known, their
application is complicated by the interaction effects of
crimped yarns. Kawabata [22] proposed a special device
for the investigation of the compression behaviour in this
situation. However, too many independent variables enter
the experiment (yarn crimp, angle of yarn intersection,
compressive force), and the measurement method mixes
compressive and bending deformation of yarns. Hence,
this technique cannot be considered as standard to obtain
the necessary input data for the fabric geometry models. The
use of experimental data obtained on ’flat’ compressive
equipment is therefore not a straightforward exercise and
asks for some approximate treatment when the yarns are
crimped.

4. The KES-F measurement provides data for a laterally
unconstrained compression. For sparse textile structures this
is sufficient, but in the case of a dense structure either the
constrained compression should be studied, or some
mechanical model should be introduced. The former does
not seem feasible because of the many variables involved.
The latter leads to a description of the yarn behaviour on a
lower hierarchical level, namely the fibre-yarn level.

3.3. Bending and torsion of yarns

The bending and torsion behaviour of yarns has been
studied extensively and the standard equipment to measure
it is present (KES-F for bending and a torsion rig as
described for example in Ref. [23-25]). This behaviour is
non-linear, but as a first estimate it can be approximated by a
linear behaviour with constant bending and torsion rigidities
B and C. An important and still unanswered question is the
influence of bending and torsion behaviour upon yarn
compression (caused by a change of the cross-sectional
shape and the redistribution of the fibres inside the yarn).

4. Level II. Yarn — fabric

Here we shall provide some examples of models of textile
structures at the hierarchical level ‘Yarn — Fabric’.
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Fig. 2. Compression of fibres: (a) loading scheme; (b) typical compression
diagram and a ‘locked’ approximation; (c) typical KES-F measurement
(glass roving 480 tex).

4.1. Internal geometry of a woven fabric

We shall consider here a woven fabric. The model is
extensively described elsewhere [26,1,2], here we give
just a brief description. Consider a single repeat of the
fabric. Assume further as given: (1) all the necessary yarn
properties; (2) the topology of the yarn interlacing pattern
within the fabric repeat; (3) the yarn spacing within the
repeat (i.e. the mean distance between warp/weft yarns in
a woven fabric or the course/wale spacing in weft-knitted
fabrics). The problem is to compute the spatial placement of
all yarns in the repeat. In more practical terms, this means:
determine all the yarn heart-lines within the repeat and
define the yarn cross-sectional shape and its dimensions
normal to the yarn heart-line for each point along the yarn
heart-lines.

The list of the necessary yarn properties includes yarn
geometry in free state and its behaviour in compression,

bending and friction. These data are not readily found in a
yarn specification, but can be measured on the standard
textile laboratory equipment, or predicted if a model of
the previous hierarchical level Fibre — Yarns is available.
Topology of the yarn interlacing inside a multi-layered
woven structure is described using a matrix coding algo-
rithms [27]. It allows decomposition of yarns in the unit
cell into elementary crimp intervals, which leads to a system
of algebraic equations representing the minimum energy
configuration of the yarns. Solution of the equations gives
heights of out-of-plane and in-plane crimp of warp and weft
yarns, and the complete yarn geometry is then reconstructed
with the help of a spline approximate solution for the mini-
mum energy problem on each crimp interval. This algorithm
is implemented in the WiseTex software (Figs. 3-5).

Once the geometrical model of a fabric is built, the model
of fibre distribution inside yarns can be used to produce a
complete description of the unit cell fibrous structure. In the
simplest case such a model assumes even distribution of
fibres, taking into account yarn compression inside the
fabric. Alternatively, more complex models of fibre distri-
bution can be employed. The result can be expressed in two
ways: Yarn Path Mode and Fibre Distribution Mode. The
former uses a description of spatial placement of yarns in
the unit cell. The latter mode generates fibre volume fraction
Vi and the direction of fibres for any point inside the unit
cell. The value of V; can be zero if the point does not lie
inside a yarn. These two types of output data constitute the
input for the meso-mechanical models of composites, which
are described below.

4.2. Topology of the weft-knitted fabric

We shall use here an approach to code a weft-knitted
structure described in Ref. [28]. Weft-knitted structures
can be constructed from a small set of basic building blocks,
or stitches, defined by the individual needle actions. These
blocks or stitches are interconnected according to the
number and the spatial arrangement of the needle beds.
For a double bed structure, we can schematically represent
a basic loop structure (Fig. 6a, left) and its possible interla-
cing patterns (Fig. 6a, right).

The three possible loop configurations for a weft-knitted
structure are respectively the plain stitch, the tuck stitch and
the float or miss. They can all be represented in a similar
scheme (Fig. 6b), which consequently provides a basis for
the topological description of the fabric structure.

In order to link the individual loop patterns of Fig. 6b into
a coherent structure, the number of needle beds needs to be
taken into account together with the needle bed gating. In
the present work, we will demonstrate both the rib and the
interlock gating. For the rib gating, loops are alternatively
formed on the front and back needle beds. Front and back
loops align in columns along the wale direction of the fabric.
From a machining viewpoint, the needles of the two beds
have a zero relative offset in the course direction, but are
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positioned in between each other along the wale direction.
Therefore, we can combine front and back needles into pairs
(tracks) that are arranged in a two-dimensional matrix as
indicated in Fig. 7a.

In the interlock configuration, front and back needles are
aligned along the course direction. Interlock fabrics can be
regarded as two separate fabrics knitted on the individual
needle beds, but where the threads from the back bed are
transferred to the front bed at the interlock positions and
vice versa. The tracks are now arranged in a vertical direc-
tion as shown in Fig. 7b.

The topology for weft-knitted structures can now be
described by a combination of a matrix coding and the
gating configuration. Each matrix entry represents an indi-
vidual needle action and is a combination of two pieces of
information: (1) the position of the needle (F or B) and (2)
the stitch type (X or O for a plain stitch on respectfully front
or back bed, +for a tuck stitch and blank for a miss or float).
From the topology it is always possible to create the inter-
lacing sequence of the yarns in the fabrics. Fig. 8 gives some
examples for the single jersey, rib- and interlock gating,
respectively, together with the topological code.

From the examples in Fig. 8 it becomes obvious that the
number of interlacing points in knit structures (constituting
the end points of the structural elements) is not only a func-
tion of the stitch type itself, but also from the specific way in
which the stitches from the different needle beds are
connected. This information is implicitly contained in the
schemes of Fig. 8, hence they are more convenient to use
than a coding which would be based on an explicit identi-
fication of the contact points between the yarns.

4.3. Deformation of a dry fabric: compression

Modelling of deformation of a dry fabric is the necessary
part of any predictive model of preform formability. We
consider here the case of compression of a woven fabric
[21].

When a fabric is compressed, the following changes in
geometry take place: (1) warp and weft yarns are
compressed; (2) the less crimped yarn system increases its
crimp and vice versa. The latter process is due to additional
bending forces resulting from interaction of more crimped
(and therefore higher) parts of yarns with the compressing
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Fig. 4. Photographs (left) and computed images (right) of different types of
2D glass reinforcements: (a—c) glass multy-filaments, different weave
density; (d) glass rovings; (e) unidirectional weave.

surface. To compute the compression of yarns we use the
known (measured on the Kawabata textile testing equip-
ment) compression law of individual yarns and assume an
even distribution of the compressive pressure over the
fabric surface. The change of crimp is computed from the
energy balance: work of compressive force on change of
thickness = change of bending energy of yarns. The
model, therefore, uses the same methodology as the model
of internal geometry of yarns described above. Fig. 9
demonstrates the comparison of the predicted and experi-
mental compression curves for a glass reinforcement.

4.4. Deformation of a dry fabric: tension, shear, bending

The same approach can be applied for tension (bi- and
uni-axial) of a woven fabric. Applied strain increases
spacing of yarns in the fabric. Crimp heights in the
deformed state are computed via the energy balance
between work of transversal forces on change of crimp
heights of warp and weft and change of bending energy of
yarns. Strain of yarns in crimp intervals are then computed
and forces evaluated using a non-linear tension diagram of
the yarn. Fig. 10 illustrates the output of the tension model.

Similar approach can be applied to shear and bending of
the fabric [20,29].

Thickness, mm

|

Fibrous content,%

Ocomputed
B measured

Z3 Z12

60

50 +— ]
40 +
30 +—
20 1+
10 1—
0 .
z6

z3

Z9 212

Fig. 5. Measured and computed properties of 3D carbon fabrics studied in
Ref. [38].

5. Level III. Fabric — unit cell of the composite

The textile geometry and mechanics models described in
the previous section, provide a tool — Textile Geometry
Preprocessor (TGP) — to generate an input data represent-
ing the internal geometry of a textile. These data are used to
simulate mechanical properties and permeability character-
istics of the unit cell of the textile composite, as shown in the
Fig. 11.

5.1. Meso-mechanical model

Apart from solid finite element models, meso-mechanical
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Fig. 6. (a) Schematic loop structure and interlacing pattern for double jersey
weft-knit; (b) basic stitch types in a weft-knitted structure.

models for textile composites basically require one of two
distinct, idealised geometrical input formats. Accordingly
the TGP provides two different modes of representing
textile unit cell geometry as meso-mechanical model input
(Figs. 12 and 13).

A first series of models uses the actual yarn co-ordinates
to derive the reinforcement volume fraction, orientation
distribution, yarn shape and curvature, depending upon the
model complexity. To be capable for providing the neces-
sary geometrical input needed by these models, the Yarn
Path Mode (YP) has been developed. In the Yarn Path
mode TGP stores geometry of paths of all yarns in the
unit cell together with dimensions and orientation of the
yarn cross-section and the fibrous content values inside
the yarn along the yarn path. A typical example in this

a)
Track (i,j) - Rib Gating
B|F|(B|F|B|F||2
Track Centre ] 1 Course Tracks
® -+ ® B|F|[B|F[B|F]
1 2 3
Wale Fracks
50% Needle Spacing
b)

Track (i,j) - Interlock Gating

®
Track Centre

2

B||F|B|F|B|F
F|B|F|B F||B]
B|F|B|F 1;||F]1
F|B|F|B|F|B
T 2 3

Wale Tracks

Course Tracks

Fig. 7. Needle configuration for (a) the rib gating; (b) the interlock gating.
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Fig. 8. Examples of interlacing patterns generated from topology coding
(bottom right): (a) single jersey-(b) double jersey/rib gating and (c) double
jersey/interlock gating.

category is the iso-strain based Fabric Geometry Model
(FGM) [30]. It is also applicable to certain types of finite
element models using 1D beam or truss idealisations,
including, e.g. the Binary Model [30].

Analytical based models which use a mapping of an
actual textile fibrous structure on a regular 3D mesh rely
on another type of idealisation in order to reduce the model
complexity. The idealisation consists of a volume discreti-
sation in which the original textile architecture is mapped
into a 3D grid of simpler, homogenised elements (voxel
partitioning). Examples are found both in finite element
modelling (mosaic type models) and the cell models
described further. The TGP implements the Fibre Distribution

thickne ss, mm

0.45[%

047
COMPUTED

0.35] Instron

- . . : ; .
0 10 20 30 40 PkPa

Fig. 9. Measured and computed compression curves of a glass reinforce-
ment.
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direction (on
warp one yarn)
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elongation 30%
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Fig. 10. Example of tensile test simulation for two-layered polyester fabric: (a) tension curve in the warp direction; (b) structure of the fabric under tension.

mode (FD) as an interface to this model class, creating a 3D
array of data which stores fibre content and average fibre
orientation for sub-cells of desired size.

At KULeuven, two types of meso-mechanical models
which have been developed in the past and requiring the
YP and FD interface are now briefly described.

5.1.1. YP mode
The first model is based on Eshelby’s transformation
concepts, and uses a short fibre analogy to describe the

mechanical behaviour of curved yarn segments,
combined with a Mori—-Tanaka or self-consistent
scheme [31,32] to account for interaction effects. The
method has been described for knitted fabrics in
Ref. [33], but the model description is generic and
can be used for other textile types as well, provided
that the yarn distribution within the unit cell is suffi-
ciently ‘fine’. The geometrical input consists of the yarn
heart-line representations and cross-sectional dimen-
sions. Yarns are split up into segments and replaced

| YARN DATA | TOPOLOGY || SPACING | RELAXED GEOMETRY | MECH.
TEXTILE T BEHA-
| LOADING ’| TEXTILE GEOMETRY MODEL :| DEFORMED GEOMETRY L VIOUR
I I I
\ 4
| PERMEABILITY MODEL | lwsuausmon I |IIESD-MEBHAMCALMODE. |
uNIT
CELL | PERMEABILITY TENSOR } | MECHANICAL BEHAVIOUR |
1 1
PART h 4 .4
| FLOW MODELLING |—>| FORMING SIMULATION l | STRUCTURAL ANALYSIS |

Fig. 11. Data flow for the integrated design tool.
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Fig. 12. TGP output in YP mode.

by a short fibre equivalent using the yarn orientation and the
local curvature.

To accommodate these requirements, the following data
are stored in the YP Mode (Fig. 12)

A. Repeat (unit cell) size.

B. Fibre data for all yarn types (fibre diameter, density,

mechanical properties).

C. For each warp and weft yarn:

o yarn type reference;

o a sequence of data for consecutive segments on the
yarn: segment length, radius of curvature, fibre

/ 7|
- /|
1 A/

Fibre type #2: | Fibre type #1:
type reference type ref?rence
orientation orientation

volume fraction

volume fraction

X,Y,Z

\/ hz

hy

hx

Fig. 13. TGP output in FD mode.

volume fraction, cross-section size and orientation in
the middle of the segment.

The number of segments is chosen by the user.

This data is ready available from the geometry descrip-
tion of a fabric, as described above.

The YP Mode output of TGP is processed by the meso-
mechanical model as follows. First, for each yarn the
description and the fibre data are read in. Next, for each
yarn, the segment lengths, local fibre packing in the yarn,
cross-sectional dimensions, curvature and local co-ordinate
system are read in. Using the segment curvature as a para-
meter, each segment is mathematically represented in the
meso-mechanical model by a short ‘impregnated yarns’
having an identical volume fraction, shape and orientation
as the original yarn segment. Segment properties are
calculated from the corresponding matrix and fibre proper-
ties and the local fibre packing in the segment, using an uni-
directional Mori—Tanaka model. The final model is than
solved with a classical Mori—Tanaka or self-consistent
scheme.

5.1.2. FD mode

The second model is a three-dimensional extension of
Aboudi’s method of cells [34]. The fabric repeat is mapped
into an orthorombic, regular grid of cells, where each cell
has homogenised properties according to the amount and
respective orientations of the yarn sections it contains.
The relationship between the macroscopic stress field and
the local (homogenised) cell stresses is obtained as the solu-
tion of a complementary energy minimisation problem,
subjected to stress continuity constraints across the cell
interfaces. To limit the model size, the minimisation
procedure is carried out on different length scales using



1390 S.V. Lomov et al. / Composites: Part A 32 (2001) 1379—-1394

Table 3
Comparison of mechanical data for glass fabrics (Eshelby models)

Fabric Ewarp (GPa) Ewerr (Gpa) Gxy (GPa) Vi (%)
R330-Experiment 16.9-25.7 18.7-22.5 3.8-44 36.8—-44.7
R330-Eshelby model 20.0 20.1 3.4 39.1
R330-CEM model 19.8 20.0 3.3

R420-Experiment 16.9-22.5 16.5-21.4 3.7-4.6 32.5-49.5
R420-Model 17.9 184 3.0 36.0
R420-CEM model 18.1 18.6 4.1

sub-modelling techniques. A full treatment can be found in
Ref. [35,36].

As an interface with this model, the following data are
stored in the FD mode (Fig. 13)

A. Repeat (unit cell) size.

B. Data for all fibre types (fibre diameter, density,
mechanical properties).

C. For each sub-cell:

fibre type reference;

average fibre orientation;

average fibre volume fraction.

o O o

The number of sub-cells is chosen by the user.

Averaging over a sub-cell is done as follows. The geome-
trical model gives an answer to the question ‘does a given
point P in the unit cell volume lie inside a yarn?’ If answer is
yes, then the fibre volume fraction (from the fibre count
inside the yarn and the cross-section compressed dimen-
sions) and the fibre orientation (from yarn heart-line direc-
tion and yarn twist) can be computed for the point P.
Integrating over a sub-cell volume, the average parameters
are computed for each of fibre types present in the particular
sub-cell

1
Ve= — dv,
f VJVVfV

where V is a subcell volume, v; is fibre volume fraction (of
fibres of the given type) near a given point P-centre of
differential volume dv, a; is fibre orientation vector at P,
V; is an average fibre volume fraction, A; is an average
fibre orientation (this vector is normalised after integration).
Integrals are computed with a numerical formula

1
Af= — d 4
f V,[vaf v, @

[ rav=> s 5)

i=1

where n, coefficients «; and reference points P; inside a unit
cell are pre-defined for a given polynomial order of accu-
racy (1,3,5 or 7, chosen by the user) [37].

5.1.3. Examples

Geometrical data generated by TGP have been used
together with fibre and matrix mechanical data to calculate
mechanical properties of composites.

5.1.3.1. 2D glass fabrics Consider composites produced in
an autoclave from two glass fabrics (glass fibre properties
E=172.0 GPa, v =0.23), using epoxy resin (E = 3.0 GPa,
v = 0.35). For each fabric type, both composites with high
(45-49%) and low (33-37%) volume fractions were
produced. The difference is mainly in the resin layers
between the fabric layers, but it will obviously affect in-
plane elastic properties.

The experimental and calculated data are shown in Table
3. The experimental data shown are for low and high
volume fractions. The calculated data are based upon the
geometry and the volume fractions predicted by TGP using
the dimensions of yarn cross-sections in the composite
(compressed state). For the Eshelby models, only Mori—
Tanaka predictions are shown, as they nearly coincide
with self-consistent results for woven fabric textile compo-
sites [38]. Taking into account the predicted volume frac-
tion, which is for most cases in between the experimental
low- and high-volume fraction values, the correlation is
very good.

5.1.3.2. 3D carbon fabric Mechanical properties of the
fabric shown in Fig. 5 has been computed. The FGM-
results for the fabric presented in Ref. [39] were used to
back calculate neat fibre data. Available experimental and
predicted data are summarised in Table 4. Predictions are all
based on the TGP geometry using both an isostrain and self-
consistent model (which for this type of materials again
coincides closely with a Mori—Tanaka model). The fibre
dominated E-moduli predictions are nearly identical for
both models. However, Table 4 also indicates the well-
known fact that FGM predicts systematically higher shear
moduli [36]. The comparison with experimental data in
Table 4 shows that at least the effect of the weaving
geometry, noticeably the type and amount of Z-weaver
yarns, is fairly well predicted.

5.2. Permeability models

The geometry of the reinforcement can be used to predict
the permeability to resin flow. The permeability, K, governs
the resin flow through the reinforcement during mould fill-
ing operations, such as resin transfer moulding [40], via
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Table 4
Comparison of experimental data and model predictions with FGP: Iso-strain (FGM), Eshelby (self-consistent, SC) and Cell model (CEM)

Ey Ey E; Vxy Vxz Vyz Gy Gy Gyy

73, measured 50.4 57.0 - - - - - - -
FGM 46.8 57.1 18.8 0.075 0.397 0.388 7.35 7.69 8.90
SC 48.7 56.0 15.8 0.082 0.346 0.322 4.94 5.16 7.84
CEM 479 56.4 16.2 0.083 0.366 0.342 5.14 5.38 8.10
76, measured 44.6 529 - - - - - - -
FGM 44.8 50.2 21.7 0.091 0.331 0.370 8.78 8.24 8.79
SC 44.1 50.2 19.1 0.092 0.290 0.310 5.94 5.51 7.36
CEM 45.1 51.9 20.8 0.10 0.311 0.320 6.02 5.84 7.50
79, measured 39.0 473 - - - - — - -
FGM 41.6 439 22.3 0.100 0.338 0.340 8.70 8.50 8.52
SC 40.2 43.2 20.6 0.103 0.282 0.293 5.88 5.87 6.78
CEM 40.5 43.8 21.2 0.150 0.302 0.309 5.93 5.90 6.81
712, measured 36.0 449 - - - - - - -
FGM 37.2 35.3 18.8 0.106 0.319 0.345 6.44 7.31 5.90
SC 35.7 339 17.3 0.103 0.297 0.276 3.78 4.97 4.33
CEM 36.1 342 17.9 0.151 0.310 0.303 3.86 5.01 4.41

Darcy’s law,
1
v=——KVp,
“m

where v is the superficial velocity, p is the pressure and . is
the fluid viscosity. A number of computer programs exist
that solve Darcy’s law and other relevant model equations to
simulate the mould filling operation (see Ref. [41]),
however, the availability of reliable values of K is critical
to the success of such simulations. Available data, such as
illustrated in Fig. 14, show the sensitivity of permeability to
fibre architecture [42]. Note that at fibre volume fractions
near 50%, the permeability may vary by over an order of
magnitude, depending upon the fibre architecture.

Reliable measurements of permeability are difficult under
relatively simple circumstances such as flat, undeformed
geometry. In realistic circumstances such as curved geome-
try, and the various unsaturated flow conditions that occur
during moulding, permeability values are nearly impossible
to obtain.

A model able to predict, first, the yarn geometry in a
draped fabric, and second, the permeability of the fabric
would be valuable for process design and analysis. A new
type of model, based on a lattice-Boltzmann approach [43],
may be able to provide such predictive capability when
linked to the fabric geometry model described above. The
lattice-Boltzmann model solves for the detailed fluid flow
within a unit cell of the reinforcement, and then integrates
the computed fluid velocity distribution to generate a
prediction of total flow at a prescribed pressure gradient.
The predicted flow and prescribed pressure gradient are
then combined with Darcy’s law to provide a prediction
of the permeability. When such predictions are generated
for flows in different directions, the complete permeability
tensor is generated for comparison to experiment. Although

other numerical methods can, in principle, provide the same
information, the lattice-Boltzmann method is particularly
efficient for cases involving very complex geometry and
multiphase flows, as found in resin transfer moulding.

The heterogeneous nature of the fibre reinforcements
used in composites poses unique challenges for any numer-
ical model since the very small pores between the filaments
comprising each yarn would require extremely fine spatial
discretisation if modelled in detail. The lattice-Boltzmann
model being developed in this research is based, instead, on
a hybrid description of the flow problem that mitigates the
difficulty of fine spatial discretisation. Rather than treat the
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Fig. 14. In-plane permeability measurements for several glass fabrics indi-
cate the importance of fibre architecture, in addition to volume fraction, in
determining the permeability.
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e

Do

Fig. 15. Constant axial (yarns) velocity contours in the pores between yarns at a particular axial location within a warp knitted unidirectional glass fabric.
Crossing threads do not appear in this particular slice, but are of critical importance in determining the total fluid flow. Figure originally published in Dunkers

et al. (2001) [47].

micro-geometry inside the yarns in complete detail, the
yarns are modelled as a small-scale porous medium using
Brinkman’s equation [44].

Vp=—pK v+ uvi

The larger scale of the yarn geometry and the porous
structure between the yarns is modelled in detail, and the
flow in the region between the yarns is described with
Stokes equation,

Vp = uVy

The fluid velocity and gradient are matched at the bound-
ary of the yarn and the open regions between the yarns to
satisfy material and stress continuity.

Two early results illustrate the ability of the lattice-Boltz-
mann model to predict permeability. In one case, the fibre
architecture of a warp knitted unidirectional glass reinforce-
ment was obtained with non-destructive imaging [45], and
the detailed fluid velocity distribution computed with the
lattice-Boltzman model, as illustrated in Fig. 15. Lines of
constant fluid velocity are shown in Fig. 15 in the larger
porous regions between the yarns, but not within the yarns
as the fluid velocities are very small within each yarn. Note
the irregularity of the pore shapes and sizes. The computed
permeability for flow in the fibre direction is in the range
(3.8-5.1) X 10" m?, while experimental results are in the
range (4.0-6.5) x 10" m”. Although these ranges appear
large, note that the crossing threads are extremely important
in determining the permeability, and removing them led to a
600% increase in the permeability of this particular material
[46], both experimentally and computationally.

In the second case, the fabric geometry model discussed
above was used to generate the fibre geometry of a plain-
woven fabric at volume fractions ranging from 36-50%. At
the lower volume fractions, the combined fabric geo-
metry/lattice-Boltzmann model successfully predicted
the permeability. For example, at V;=37%, the experi-
mental value for the permeability coefficient in the weft
direction was 9.4 x 107" m? and the model prediction
was 8.0 X 10" m?. At higher fibre fractions, the combined

models do not predict the permeability as well, and current
work is refining the models by incorporating the irregula-
rities apparent in Fig. 15.

6. Level IV: unit cell — composite part

When properties of a unit cell of composite material are
known, predictions on the uppermost hierarchical level
become possible using general purpose or specialised FE
packages. As shown on Fig. 11, predictive models described
above merge into an Integrated Design Tool, providing the
long-waited solution for a designer of composite structures.

7. Conclusion

The modelling strategy proposed in the present work,
provides a link between meso-mechanical and permeability
models of composites and currently developed geometry
models of textile reinforcement. It provides an opportunity
to use manufacturer’s fabric and yarns data, obtained on the
standard equipment for textile testing, as a starting point for
modelling of composite material. This gives more solid
foundation for a priori predictions of mechanical properties
of composites, allowing accounting for geometry peculiari-
ties (complex crimp and porosity pattern) and yarn mechan-
ical behaviour (compression) non-accessible in simple
models. A 2D and 3D weave structure is easily constructed
within TGP tools, providing great flexibility of input data. A
user-friendly software application WiseTex allows easy
manipulating of fabric and yarn data and visualisation
tools. The model of the textile geometry and mechanics
serves as a base for meso-mechanical and permeability
models for composites, which provide therefore simulation
tools for analysis of composites processing and properties.
The critical hierarchical concept applies to many differ-
ent types of textile reinforcement structures, resulting
in integrated design software for textile composite
modelling.
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