Electronic Supplementary Information

Textile Electrodes Woven by Carbon Nanotube/Graphene Hybrid Fibers for Flexible Electrochemical Capacitors

Huhu Cheng, Zelin Dong, Chuangang Hu, Yang Zhao, Yue Hu, Liangti Qu*, Nan Chen, and Liming Dai*

Figure S1. EDS of CNT/G fibers and the corresponding element content.

Figure S2. The CV curves of the neat graphene fiber at scan rate of 10 mV/s (a), 50–200 mV/s (b), and 500 mV/s (c) in 1M Na₂SO₄ aqueous solution.

Figure S3. (a) CV curves of the supercapacitor of CNT/G fiber textile under the scan rate ranging from 0.1 to 10 V/s. (b) The galvanostatic charge-discharge curves at current density of 20-100 μ A/cm² of CNT/G fiber textile supercapacitor.

Figure S4. CV curves of CNT/G fiber textile supercapacitor undergoing the repeated flat-to-bending cycles at 200 mV/s scan rate in the flat (a) and the bending (b) states.

Figure S5. Electrical-resistance change of a CNT/G fiber upon the repeated bending for 1000 cycles.

Materials	Current density and/or scan rate	Electrode system	Capacitance (F/g)	Ref.	
N-doped graphene	1–33A/g, 20mV/s	Two	165–282	[s1]	
N-doped graphene	0.5 –15A/g, 5mV/s	Two	99.6–145	[s2]	
Graphene aerogel	0.05A/g	Two	128	[s3]	
Graphene foam	0.5A/g	Two	110	[s4]	
Graphene hydrogel	1A/g, 10mV/s & 20mv/s	Two	160±5	[s5]	
3D macroporous Graphene	1A/g, 50mV/s	Three	202	[s6]	

Table S1. Typical EDL capacitance of some carbonaceous materials.

Exfoliated graphene	0.1A/g	Two	~150	[s7]
Exfoliated graphitic oxide	100mV/s	Two	117	[s8]
Chemical converted graphene sheets	0~100A/g, 2.0~10.0 V /s	Two	175–273	[s9]
Laser reduction of graphite oxide films	<10A/g	Two	~276	[s10]
Chemically modified graphene		Two	135–128	[s11]
Graphene paper	1A/g, 5mV/s	Two	122	[s12]
Graphene composite	1A/g, 10-50mV/s	Two	100–250	[s13]
Graphene composite	0.1A/g	Two	205	[s14]
Graphene/Multiwalled -CNTs	2A/g	Two	ca. 150	[s15]
Graphene/Multiwalled -CNTs	0.1A/g	Two	318	[s16]
Graphene/Multiwalled -CNTs	20mV/s	Three	326.5	[s17]
Graphene/Single walled-CNTs	1A/g	Two	222	[s18]
Graphene/Single walled-CNTs	0.5A/g	Two	290.4 (aqueous), 201.0 (organic)	[s19]
Graphene/CNFs	1.25A/g	Three	197	[s20]
Carbon nanotubes (CNTs)			<135	[s21, s22, s23]
Activated carbon fibers (ACFs)			<370	[s21, s22]
Carbon cloth			<200	[s21]

References

- s1 H. Mo. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. W. Choi, *Nano Lett.* 2011, **11**, 2472.
- s2 Y. C. Qiu, X. F. Zhang and S. H. Yang, Phys. Chem. Chem. Phys. 2011, 13, 12554.
- s3 X. T. Zhang, Z. Y. Sui, B. Xu, S. F. Yue, Y. J. Luo, W. C. Zhan and B. Liu, *J. Mater. Chem.* 2011, 21, 6494.
- s4 Z. Q. Niu, J. Chen, H. H. Hng, J. Ma and X. D. Chen, Adv. Mater. 2012, 24, 4144.
- s5 Y. Xu, K. X. Sheng, C. Li and G. Q. Shi, ACS Nano 2010, 4, 4324.
- s6 B. G. Choi, M. H. Yang, W. H. Hong, J. W. Choi and Y. S. Huh, *ACS Nano* 2012, 6, 4020.
- s7 W. StorageLv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu and Q. H. Yang, *ACS Nano* 2009, 3, 3730.
- s8 S. R. C. Vivekchand, S. R. Chandra, K. S. Subrahmanyam, A. Govindaraj and C. N. R. Rao, *J Chem Sci* 2008, **120**, 9.
- s9 X. Yang, J. Zhu, L. Qiu and D. Li, Adv. Mater. 2011, 23, 2833.
- s10 M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, Science 2012, 335, 1326.
- s11 M. D. Stoller, S. J. Park, Y. W. Zhu, J. An and R. S. Ruoff, Nano Lett. 2008, 8, 3498.
- s12 Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen and R. S. Ruoff, ACS Nano 2010, 4, 1227.
- s13 C. G. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett. 2010, 10, 4863.
- s14 Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen and Y. S. Chen, J. Phys. Chem. C 2009, 113, 13103.
- s15 L. W. Peng, Y. Y. Feng, P. Lv, D. Lei, Y, T. Shen, Y. Li, and Wei Feng, *J. Phys. Chem. C* 2012, **116**, 4970.
- s16 Y. Wang, Y. P. Wu, Y. Huang, F. Zhang, X. Yang, Y. F. Ma and Y. S. Chen, *J. Phys. Chem. C* 2011, **115**, 23192.

- s17 S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M. Ma and C. C. Hu, *J. Mater. Chem* 2011, 21, 2374.
- s18 N. J. P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, *Adv. Energy Mater.* 2012, 2, 438.
- s19 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, *Phys. Chem. Chem. Phys.* 2011, 13, 17615.
- s20 Z. X. Tai, X. B. Yan, J. W. Lang and Q. J. Xue, J. Power Sources 2012, 199, 373.
- s21 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520.
- s22 Y. Q. Sun, Q. Wu and G. Q. Shi, Energy Environ. Sci. 2011, 4, 1113.
- s23 Y. P. Zhai, Y. Q. Dou , D. Y. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, *Adv. Mater*. 2011, 23, 4828.