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Abstract: Shielding of instruments and humans from electromagnetic interference (EMI) has become
increasingly important during the last decades due to more and more machines and devices radiating
electromagnetic waves. While several applications can use rigid shields, more flexibility is enabled by
developing bendable, drapable, ideally even stretchable EMI shielding. Textile fabrics can have these
properties, combined with potentially good mechanical properties, depending on the textile structure
and the chosen material. On the other hand, the necessary physical properties, especially conductivity
and magnetic properties, cannot be taken for granted in normal textile fabrics. These properties
have to be added by conductive yarn or layer coatings, integration of conductive or magnetic fibers,
producing intrinsically conductive or magnetic fibers, etc. The article gives a critical comparison of
the properties of materials typically used for this purpose, such as intrinsically conductive polymers,
metal-coated fabrics and metal wires, MXene coatings, MXene fibers, carbon coatings, and fibers. The
review concentrates on thematically suitable papers found in the Web of Science and Google Scholar
from the last five years and shows that especially MXenes are highly investigated recently due to their
high conductivity and EMI shielding effectiveness, while other conductive and magnetic coatings
and fibers are nevertheless still interesting for the preparation of EMI shielding textile fabrics.

Keywords: shielding effectiveness; conductive coating; magnetic properties; porosity; cover factor

1. Introduction

Electromagnetic interference (EMI) shielding materials are capable of protecting hu-
mans, instruments, etc. from electromagnetic (EM) irradiation by absorbing or reflecting the
radiation, often combining both aspects [1,2]. EM shielding is used to minimize exposure by
electromagnetic radiation, recently especially in the context of cyber security, i.e., protection
of electronic equipment against the influence of external electromagnetic disturbances. For
this purpose, textile fabrics are often taken into account since they are flexible, drapable,
lightweight, and relatively thin.

Due to the secondary electromagnetic irradiation of reflection by conductive materials,
absorption is often regarded as the ideal mechanism of EMI shielding [3,4]. Such EMI
shielding is becoming more and more important due to an increasing number of emitters on
the one hand and new standards, e.g., regarding medical electrical equipment, on the other
hand [5]. Typical frequency ranges in which shielding materials are tested are 104–1012 Hz
due to power lines, motors, or computers [6,7], while other experiments concentrate on low-
frequency or quasistatic measurements, as occurring in magnetic resonance tomography,
etc. [8,9]. These different frequency ranges necessitate different physical properties of the

Fibers 2023, 11, 29. https://doi.org/10.3390/fib11030029 https://www.mdpi.com/journal/fibers

https://doi.org/10.3390/fib11030029
https://doi.org/10.3390/fib11030029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fibers
https://www.mdpi.com
https://orcid.org/0000-0002-6569-124X
https://orcid.org/0000-0001-5080-913X
https://orcid.org/0000-0002-8483-8657
https://orcid.org/0000-0003-0695-3905
https://doi.org/10.3390/fib11030029
https://www.mdpi.com/journal/fibers
https://www.mdpi.com/article/10.3390/fib11030029?type=check_update&version=1


Fibers 2023, 11, 29 2 of 21

shielding materials, i.e., especially magnetic properties for shielding of static magnetic fields,
grounded conductive materials for shielding static electric fields, and, again, conductive
materials for high-frequency EM fields [10].

The shielding effectiveness SE is composed of shielding by reflection, absorption, and
multiple-reflection inside the shielding material, and is measured as SE = 20 log T−1 or as
SE = 10 log (P0/Pt), with the transmission coefficient T, the power P0 without shielding,
and the power Pt with shielding [11,12]. For detailed calculations based on calculation
theory and Schelkunoff theory, the reader is referred to [2]. A recent overview of potential
shielding mechanisms as well as measurement techniques for electromagnetic shielding
and related parameters is given in our previous review of EMI shielding by electrospun
nanofiber mats [13]. Here, we concentrate on common “macroscopic” textiles, excluding
nanofibers. Textile-based EMI shielding has been investigated more deeply recently, as
Figure 1 shows, with this strongly increased interest being based on the introduction of
new materials classes into EMI shielding textile coatings, such as MXenes and 1D or 2D
carbon modifications. Especially for researchers starting in this emerging field of research,
this overview will be supportive.
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We explain the physical properties related to EMI shielding in brief, followed by a
broad overview of recent studies increasing the EMI shielding properties of differently
functionalized textile fabrics.

2. Physical Properties and Their Measurements

As explained above, EMI shielding is based of reflection, absorption, and multiple
reflections inside the shielding fabric [11]. Thus, electrical and magnetically conductive
materials are advantageous due to large reflection losses, while absorption losses necessitate
electric or magnetic dipoles in the material and are supported by high electrical conductivity
and magnetic permeability. The fabric thickness, porosity, and amount of conductive,
magnetic, and dielectric materials naturally influence the EMI shielding properties of
textiles. Multiple reflections must be also taken into account for thin shielding layers, with
a thickness similar to the skin depth [14]. Mathematically, the transmission coefficient of an
electromagnetic wave is defined by

T =
Et

E0
=

Ht

H0
(1)

where E0 (H0) denotes the electric (magnetic) field intensity without shielding, and the
values Et (Ht) with shielding, respectively [12]. The shielding effectiveness SE is usually
calculated by
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SE = 20 log
1
T

= 20 log
E0

Et
= 20 log

H0

Ht
= 10 log

P0

Pt
(2)

with P0 (Pt) being defined as the power for the measurement without (with) shielding [12].
The shielding effectiveness SE is composed of shielding due to reflection (R), absorption
(A), and multiple reflections (M) [11]:

SE = SER + SEA + SEM (3)

As for the high-frequency properties of good shielding materials, they are determined
by the electrical conductivity and thickness of the material. Measuring the conductivity
of textile fabrics necessitates a more sophisticated setup than measuring the conductivity
of a metal sheet or the like due to the problematic contact between the textile fabric and
the measurement equipment which can be overcome, e.g., by four-probe measurements,
well-fitting contact clamps exerting a standard pressure, additional solder lines on the
textile fabrics, etc. [15–17]. Conductive properties of textile fabrics are useful in many smart
textile applications and thus are often measured and consequently improved [18–20].

Magnetic properties are important in the context of shielding low-frequency or static
magnetic fields. Magnetic properties are usually performed by superconducting quan-
tum interference device (SQUID), alternating gradient magnetometer (AGM), vibrating
sample magnetometer (VSM), or the like [21–24], while magneto-optical measurements
(e.g., magneto-optic Kerr effect, MOKE) are highly challenging on rough surfaces and
recently not available for textile materials [25]. Magnetic properties of textile fabrics are
less often investigated since they are correlated with fewer applications.

For investigations of the EMI shielding of different materials, several methods are de-
fined, which can be subdivided into open-field (free-space) methods, shielded-box methods,
shielded-room methods, and coaxial transmission-line methods (e.g., according to ASTM
D4935 standard), which can be applied in different frequency ranges and necessitate dif-
ferent amounts of time and equipment [26]. Geetha et al. describe the methods briefly as
follows [26]:

- With coaxial transmission lines, planar specimens are investigated. Sample prepara-
tion needs to be done carefully; measurements necessitate reference measurements
which makes them time-consuming, necessitating minutes to hours for each spectrum.
This technique is usually applied in the frequency range from 10 kHz to 1 GHz.

- In the open field (free space) method, a large distance (30 m) is applied between the
device and the receiving antenna. Differences in product assembly may lead to large
differences in the results, reducing the reproducibility of these measurements.

- The shielded box method uses a metal box with a sample port in one wall. The receiv-
ing antenna is inside the box, the transmitting antenna outside. The electrical contact
between the test specimens and the shielded box is difficult to establish; besides, the
frequency range is limited to approximately 500 MHz. Reproducibility was shown to
be low, comparing investigations in different laboratories.

- The shielded room method is similar to the shielded box method. An anechoic chamber,
usually with a ground area 2.5 m2, is used for this test, resulting in the necessity to
use large test specimens to investigate shielding between the transmitting and the
receiving antenna, making this method unsuitable for specimens which can only be
produced in small sizes [26].

For a more detailed discussion of the effect of these physical properties of EMI shield-
ing materials and their measurements, the reader is referred to [13].

3. MXene

While many approaches to prepare textile fabrics with EMI shielding properties are
based on metal or carbon coatings or fibers, one new approach is more and more often
found in the literature, using MXenes to prepare conductive coatings and sometimes even
fibers. This section describes which materials belong to MXenes and how they can be used
to prepare EMI shielding textile fabrics.
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3.1. Different MXenes and Their Preparation

MXenes are two-dimensional layered materials containing early transition metal
carbides, nitrides, and carbonitrides [27]. They are prepared by starting from so-called three-
dimensional MAX phases, where MAX is the abbreviation of Mn+1AXn with (n = 1, 2, 3),
and M denotes an early d-block transition metal (i.e., Ti, Sc, V, Cr, Ta, Nb, Zr, Mo, or Hf), A
means a main group sp element especially from the groups 13 and 14, and X represents C
and/or N [28]. By etching the sp element layers out of the MAX phases, two-dimensional
MXenes (without the “A”) remain [29]. MXenes have additional terminated functional
groups (e.g., -OH, -O, -F) named “T”, resulting in their general formula Mn+1XnTx [30].

More than 60 of these MXenes have been found, yet with different metal or ceramic
properties, depending on the chemical constitution [31]. One of the problems of MXenes is
their susceptibility to oxidation in humid or aqueous environments, necessitating either
excluding water vapor to reach them or increasing their stability against oxidation [32].

3.2. MXene Coatings

Due to their two-dimensional nature, MXenes are mostly applied in the form of coatings
on textile fabrics, either solely or together with intrinsically conductive polymers, metals, or
carbon-based fillers. Li et al. reported electromagnetic interference shielding combined with
the potential applications of photothermal conversion and solar water evaporation, using a
layer-by-layer assembly method on a textile fabric [33]. They combined SiO2 nanoparticles/
poly(dimethylsiloxane) (PDMS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES)
to reach superhydrophobicity (i.e., a water contact angle larger than 160◦) as well as MXene
to reach a high conductivity of 1200 S/m, resulting in an EMI shielding of 36 dB.

Zheng et al. prepared bark-shaped MXene/textiles which showed not only high EMI
shielding, but also good Joule heating and good piezoresistive sensing [34]. The bark-shape
was suggested to enhance multiple interfaces scattering of EM waves to improve the EMI
shielding effectiveness. To reach this shape, the authors used the pad-drying technology
normally used in fabric dyeing to apply MXene flakes on a cellulose nonwoven. In their
study, they synthesized Ti3C2Tx MXene sheets, immersed a cellulose nonwoven into an
aqueous MXene solution and used a padder to remove the excess water before drying,
repeating this cycle 1–9 times. This process is depicted in Figure 2. By increasing the number
of pad-drying cycles from 3–9, the EMI shielding effectiveness could be increased from
3.2 dB to 36.3 dB in a range from 8.2 GHz–12.4 GHz (X-band) due to improving single
conductive paths towards a conductive network, which was also visible in the decreased
sheet resistance for larger numbers of pad-drying cycles.
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Using a spray-drying procedure, Zhang et al. reported good electrical conductivity and
low sheet resistance of 5 Ω already for low MXene loading of 6 wt% on a woven cotton fabric,
resulting in efficient EMI shielding and well-balanced Joule heating as well as the possibility
of using this fabric as a strain sensor to detect human motion [35]. Besides EMI shielding
and thermal heating, Yu et al. also mentioned bactericidal activity of their Mxene-decorated,
polydopamine (PDA) modified cellulose nonwovens [36]. They reached an EMI shielding
of 38.6 dB in the X-band, good heating performance, and a very high bactericidal efficacy of
more than 99.99% against E. coli and S. aureus.

Working on basalt fiber fabrics, Yu et al. used multilayer spray-drying to coat Ti3C2Tx
nanosheets and Ti3C2Tx/natural rubber layers, the latter protecting the inner Ti3C2Tx
coating and additionally formed conductive connections between the conductively coated
basalt fibers [37]. The Mxene phase was prepared by etching Al from commercially available
Ti3AlC2 powder, using LiF, followed by exfoliation by ultrasonication in an ice bath under
Ar flow. With this procedure, a sheet resistance of (5 ± 3) Ω was reached with the maximum
tested Ti3C2Tx amount of 4 mg/cm2, resulting in EMI shielding up to 41 dB in the X-band.

Yao et al. also combined Mxene with a polymer network, here PDMS, to give a textile
fabric EMI shielding, electro-thermal and photo-thermal conversion as well as pressure-
sensing properties [38]. While different numbers of dip-coating cycles into a suspension of
Ti3C2Tx Mxene were examined, these coated textile fabrics were dipped into low cross-linked
PDMS and thermally cured to reach adhesive properties. While samples without Mxene
showed nearly no EMI shielding in the X-band, Mxene coated samples with 3–9 dip-coating
cycles reached more than 30 dB along the whole X-band, mostly due to absorption.

Much higher EMI shielding values were even reported by Uzun et al. who used dip-
coating of cotton and linen fabrics in Ti3C2Tx Mxene dyes [39]. While 4 dip-coating cycles
resulted in approx. 40 dB shielding in the X-band, 24 dip-coating cycles increased this value
to approx. 80 dB. Interestingly, these values were decreased by only 8% and 13% for cotton
and linen fabrics, respectively, after storing them for 2 years under ambient conditions.

Even higher values were reported from groups who combined Mxene coating with
intrinsically conductive polymers, such as polyaniline (Pani), polypyrrole (Ppy), poly-
thiophene, polyphenyl sulfide, polyacetylene, polyphenylene, polyphenylene vinylene, or
poly (3,4-ethylene dioxythiophene) (PEDOT) [40]. Wang et al., e.g., applied Ppy-modified
Mxene sheets on poly(ethylene terephthalate) (PET) textiles and subsequently coated them
with silicone, resulting in high electrical conductivity around 1000 S/m and EMI shielding
efficiency of approx. 90 dB as well as good Joule heating performance [41].

Combining Mxene with Pani nanowires on a carbon fiber fabric followed by PDMS
coating resulted in a good conductivity of 325 S/m and EMI shielding effectiveness around
35 dB [42]. A 3D nanoflower structure from Ti3C2Tx/Pani was prepared by Li et al. by
polymerization of aniline monomer on single-layer Ti3C2Tx nanosheets, resulting in a shield-
ing effectiveness of 52 dB in the X-band [43]. Previously, combining Mxenes and Pani in a
layer-by-layer assembly, Yin et al. reached a conductivity of 25 S/m and an EMI shielding
efficiency of 26 dB [44].

Other authors combined Mxene with metal, e.g., with Ag nanowires (Ag NWs), reaching
an EMI shielding efficiency of 54 dB in the X-band [45], or with Fe3O4 hollow nanospheres,
resulting in low sheet resistance of about 5 Ω and high EMI shielding effectiveness of
33 dB, enabling tuning the shielding mechanism between absorption and reflection [46].
Alternatively, combining MXene with carbon-based conductive materials is reported, e.g., a
Ti3C2Tx/carbon nanotube (CNT) coated thermoplastic polyurethane nonwoven, leading to
high EMI shielding around 43 dB [47].

As these examples show, there are many possibilities to apply MXene coatings on
textile fabrics to prepare EMI shielding fabrics. However, only few reports about MXene
fibers can be found in the literature. They are discussed in the next section.



Fibers 2023, 11, 29 6 of 21

3.3. MXene Fibers

One possibility to prepare MXene fibers is to use them as core or shell in coaxially
spun fibers, as described by Liu et al. and depicted in Figure 3 [48]. The authors prepared a
cellulose spinning solution by dissolving cotton linter pulp with LiOH solution, urea, and
distilled water, and received regenerated cellulose after putting the cellulose dispersion
into an acetic acid coagulation bath. Ti3C2Tx MXene was mixed with graphene oxide (GO)
to prepare the other spinning solution. Both solutions were coaxially spun into a rotating
bath, with cellulose or MXene/GO building the core (Figure 3a). In this way, it was possible
to prepare meter-long hollow fibers from regenerated cellulose and GO/MXene (Figure 3b)
which could lift a mass of 100 g (Figure 3c). These fibers were found to have conductivities
up to 105 S/m. The EMI shielding effectiveness depended on the mesh grid spacing of
woven or sewn structures prepared from these fibers, showing values around 27–33 dB
for a single layer with the smallest grid spacing and up to more than 100 dB for 3 layers,
building an only 12 µm thick MXene film.
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The same group also showed coaxial spinning of core-shell fibers with MXene core
and aramid nanofiber shell [49]. In this way, they reached a conductivity of 3 × 105 S/m
and an EMI shielding efficiency of 83 dB.

Zhou et al. suggested preparing compact MXene fibers by combining wet spinning
from a MXene-glutaraldehyde (GA) solution with thermal drawing, resulting in signifi-
cantly increased tensile strength and toughness, conductivity around 8 × 105 S/m and EMI
shielding effectiveness of 50–60 dB in the X-band [50].

Instead of these filament-based approaches, Xiong et al. used short MXene fibers,
produced by wet-spinning, to produce a MXene nonwoven by wet-assembly [51]. In this way,
a strong interfiber bonding was reached. This MXene nonwoven showed high conductivity
around 70,000 S/m and an EMI shielding effectiveness of 75 dB in the X-band.

Another path was suggested by Zheng et al. who prepared a core–shell aerogel from
reduced graphene oxide (rGO) with MXene by wet-spinning and freeze-drying [52]. In this
way, they reached an EMI shielding effectiveness up to 83 dB which degraded by only 17%
after 120 days.

As these few examples show, MXene fibers are challenging to produce and thus are
less often prepared for EMI shielding applications. Carbon fibers and metal wires, on the
other hand, are commercially available in diverse qualities and diameters; however, EMI
shielding is nevertheless mostly reached by functionalizing textile fabrics with carbon or
metal containing coatings, as the next sections will show.

4. Metals

Many metals, such as Cu, Al, or Ag, have very high conductivities. Lower conductivi-
ties are usually found in transition metals [53] as well as in thin films [54], limiting the range
of materials as well as the expected conductivities for very thin coatings. Nevertheless,
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many attempts are made to produce EMI shielding coatings with metals included in the
form of nanoparticles, nanowires or other shapes, partly taking advantage of the metals’
magnetic properties.

4.1. Metal Coatings

Smart textiles often contain metal coatings on fabrics for diverse applications, such
as strain sensors for human motion detection [55], electrodes for ECG monitoring [56],
textile batteries and supercapacitors [57], textile-based solar cells [58], or more special
systems such as metal-organic frameworks (MOFs) to hydrolyze organophosphonate-based
nerve agents [59]. Correspondingly, a large number of research groups reported different
possibilities to add EMI shielding properties to textile fabrics by coatings containing metals,
either solely, e.g., in the form of a thin layer around the textile fibers, or combined with a
binder, coating a full textile layer.

Hu et al., e.g., described copper-coating a polyester (PES) nonwoven by chemical
surface activation of the fabric, followed by immersing in hydrochloric acid and then in
a bath containing salt CuSO4, before a reducing bath containing borohydride led to the
formation of Cu nanoparticles on the fiber surfaces [60]. In this way, a dense copper layer
was formed on the fibers, as depicted in Figure 4. The authors found volume resistivities
between 1 Ωm and 5 Ωm and a shielding effectiveness, measured between 30 MHz and
1.5 GHz, between 42 dB and 63 dB, depending on the coating thickness (cf. Figure 4) and
the frequency. For multi-layer systems, up to approx. 90 dB were reached with 3–5 layers
of the Cu-coated nonwovens.
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The same base material was investigated after electroless plating of Cu particles
on the PES nonwoven, using NaOH treatment before activation in tin(II) chloride and
palladium(II) chloride solution, followed by electroless copper plating bath including
CuSO4 and other chemicals [61]. In this way, a shielding effectiveness between approx. 30
and 55 dB was reached in the frequency range of 0.5 GHz–1.5 GHz.

Another study based on Cu coating the same PES nonwoven used activation by hydrol-
ysis or plasma treatment and metallization in a strong alkali bath, followed by silanization
with different types of silane to stabilize the copper layer on the fibers [62]. Different silanes
showed quite different effects on the EMI shielding effectiveness measured at a frequency of
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1.5 GHz, either leaving the original value nearly unaltered, or nearly dividing it by a factor
of 2, as well as nearly doubling it, depending on the chosen silane.

Another important metal, often chosen to reach high conductivity in coatings, is silver.
Hong et al. oxidized a cellulose textile surface, thus converting hydroxymethyl to carboxyl
moieties under sonochemical activation, before Ag nanoparticles were generated directly
on the oxidized cellulose [63]. These textiles had a low sheet resistance of 1 Ω and a high
EMI shielding efficiency of 47 dB for a single layer or 69 dB for a triple-layer system.

Combining Ag nanowires with Fe3O4 nanoparticles, Zong et al. produced an EMI
shielding fiber coating [64]. The authors impregnated a cotton fabric, cleaned with NaOH
solution, in a commercially available Ag nanowire solution in isopropyl alcohol (IPA), using
different numbers of dip-coating cycles. Afterwards, a Fe3O4/ethanol solution was sprayed
onto the Ag nanowire-coated cotton fabric, before the fabric was dip-coated in silicone
oligomer/n-hexane solution to reach a PDMS coating which increased the adhesion of Ag
nanowires and Fe3O4 nanoparticles on the cotton fabric. In this way, shielding efficiencies
around 60 dB in the X-band were reached for a single fabric and up to approx. 100 dB for
three fabric layers.

A similar mixture of Ag nanowires with CNTs, poly(tetrafluoroethylene) (PTFE)
nanoparticles, and fluoroacrylic polymer was suggested by Jia et al. who reached more
than 51 dB EMI shielding in the as-prepared functionalized fabric, which was mostly
retained after 5000 stretching-releasing cycles, ultrasonic treatment for 60 min, peeling tests
up to 100 cycles, and introduction in strong acidic/alkaline solutions and various organic
solvents, thus showing high robustness against mechanical and chemical impact [65].

Nickel belongs to the metals which are not only conductive, but also ferromagnetic.
Moazzenchi and Montazer placed a PES woven fabric in nickel acetate solution with
hydrazine hydrate, leading to formation of Ni nanoparticles on the fabric surface [66].
By this, a resistivity less than 2 Ω and ferromagnetic properties with a coercivity around
100 Oe were found as well as an EMI shielding effectiveness around 32 dB.

Duan and Lu firstly plated acetate fabrics with nickel and then coated them with carbon
nanotubes from a silk sericin dispersion, resulting in abundant nickel ions being adsorbed
on the CNT surfaces, leading to an EMI shielding effectiveness larger than 30 dB [67].

Bai et al. used electroless deposition of the ternary alloy Ni-W-P on a polyamide (PA)
fabric to reach an EMI shielding effectiveness of 44 dB within the range of 2 GHz–12.5 GHz [68].
They also reported good durability of this effect after heating to 180 ◦C, ultrasonication, and
repetitive peeling tests.

To reach this stability against mechanical, thermal, and chemical impact, many re-
searchers combined metal coatings with protective polymer layers or embedded metal
nanoparticles or nanowires in polymeric coatings. Liu et al., e.g., embedded Ag nanowires
in polyvinyl butyral (PVB) ethanol solution in which they immersed a textile fabric, result-
ing in an EMI shielding effectiveness of 59 dB in the range of 5–18 GHz [69]. Ag nanowires
integrated in a polyurethane (PU) protective layer, Jia et al. prepared an EMI shielding
textile with shielding effectiveness of 64 dB, which was retained to 89% after 20 machine
washing cycles and to 82% after 5000 stretching cycles, making this coated fabric useful for
garments or other applications where textiles have to be washed [70].

Additional flame-retardant properties are reported by Zhang et al. who used dip-
coating of a cotton fabric alternatingly into a cationic polyethylenimine (PEI) solution and
an anionic phytic acid solution, before they were dipped into an Ag nanowire/ethanol
suspension, as depicted in Figure 5 [71]. This multi-layer approach led to immediately
extinguishing the flame in vertical flame tests after removing the fire source, as well as
electrical conductivity up to 2400 S/m and shielding effectiveness between 20 dB and 35 dB
in the X-band, depending on the amount of Ag nanowires adsorbed on the samples.

It should be mentioned that commercially available yarns containing silver-coated
fibers or filaments are scarcely mentioned in studies on EMI shielding textiles in spite of
reasonable EMI shielding effectiveness values around 25–50 dB [72–74], possibly due to
oxidation during handling and washing [75–77].
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In addition to these conventional metals in the form of nanowires or nanoparticles,
some researchers reported more special materials, such as liquid metals, i.e., metals with
low melting points such as Pb, In, Ga, Sn or Bi [78], e.g., in the form of liquid metal/PDMS
coating which reached an EMI shielding efficiency of 73 dB in relaxed state and 52 dB at
50% strain as well as high retention after 5000 stretching cycles [79].

Besides textile coatings, metals can also be inserted in their macroscopic form, i.e., as
wires, as described in the next section.

4.2. Metal Wires

Similar to silver-coated polyamide filament yarns, there are also yarns containing
stainless steel fibers or filaments commercially available, often used for diverse smart textile
applications [80–84]. It should be mentioned that stainless steel fibers are often magnetic
and thus may be well-suitable for EMI shielding applications [85,86]. These commercially
available yarns, however, are rarely reported in studies on EMI shielding textile fabrics [87,88].
Instead, some groups report about self-spun yarns including different stainless steel wires.

Gupta et al., e.g., prepared a ring-spun composite yarn from stainless steel (20 wt%)
and polyester fibers which they used as the core of a sheath core yarn with PET fibers as
sheath material [89]. Fabrics woven from this yarn reached EMI shielding effectiveness of
31–35 dB in the range of 8.2–18.0 GHz.

A wrap yarn with stainless steel filament core and carbon helical yarns as wrapping
threads was prepared by Krishnasamy et al. who reported EMI shielding effectiveness val-
ues around 5–28 dB for different wrapping densities in the frequency range of 4–8 GHz [90].

Li et al. prepared composites from warp-knitted stainless steel meshes and thermoplas-
tic polyurethane (TPU) with CNTs and found a high conductivity of 1348 S/m and an EMI
shielding effectiveness of 22 dB in the X-band which was more than doubled, compared
with the pure warp-knitted mesh [91].

Most studies on metal wires used to prepare EMI shielding textiles, however, were
published several years ago [92–94], which may be attributed to the relatively low EMI
shielding effectiveness reached with these approaches, as compared to the previously
described metal-containing coatings or MXene coatings.
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5. Carbon

Another well-known method to make textile fabrics conductive, namely by carbon
coatings or carbon fibers, has been investigated more deeply during the last years.

Carbon-based coatings are very often used on textiles, e.g., to produce batteries and
supercapacitors [95], garment-integrated sensors [96], photocatalytic degradation of dyes
and organic pollutants [97,98], and more applications in the area of smart and electronic
textiles [99–101]. On the other hand, carbon yarns are commercially available and thus often
used in diverse applications. However, due to the fragility of macroscopic carbon fibers,
they are most often embedded in a resin or in cement to form a composite [102–104]. Carbon
exists in diverse shapes, from carbon quantum dots [105] to graphene [106] and CNTs [107],
from carbon black [108] to graphite [109]. Depending on their dimensionality, i.e., whether
they are zero-dimensional (0D), one-dimensional (1D), two- or three-dimensional (2D or
3D) as well as their crystallography, carbon can have quite different conductivities [110];
however, many of these modifications are highly conductive and thus are well suited for
EMI shielding applications, as described in the next sub-sections.

5.1. Carbon Coatings

Carbon coatings on textile fabrics, applied to improve the EMI shielding effectiveness
of a fabric, often contain carbon nanotubes. Due to their one-dimensional shape and the
correspondingly highly anisotropic conductivity, the orientation of such carbon nanotubes
significantly influences their effect on EMI shielding properties. Lan et al. thus describe a
new approach to reach high axial alignment of CNTs along cotton fibers, based on sponta-
neous capillary-driven self-assembly [111]. By this technique, EMI shielding effectiveness
values of 21.5 dB in the X-band and 20.8 dB in the Ku band were reached, which was nearly
two orders of magnitude higher than the values for disordered CNT microstructure. Besides,
they reported a high stability against bending, scratching, and washing, making this coating
suitable for portable and wearable electronics. Without such special techniques to reach a
defined orientation of the CNTs, Moonlek et al. reported an EMI shielding effectiveness of 8
dB or 19 dB for relatively thick silk fabric/natural rubber latex/CNT composites of 2 mm or
8 mm thickness, respectively [112].

Another possibility to increase the EMI shielding effectiveness of CNT coatings is
based on adding other carbon fillers, such as graphene. Dai et al. added 80% CNT and 20%
graphene to waterborne PU and dipped a PES/cotton woven fabric into this dispersion [4].
Besides high hydrophobicity, they found a conductivity of 64 S/m for 3% mixed filler,
which is higher than 50 S/m for the textile with 3% CNT containing coating and 7.7 S/m
for the textile with 3% graphene containing coating. Correspondingly, a relatively high
EMI shielding effectiveness around 35 dB in the X-band was reached by these samples.

Another way to increase the EMI shielding effectiveness was suggested by Gupta
et al. who added highly dielectric ZnO nanoparticles to reduced graphene oxide (rGO) in a
textile coating [113]. In this way, they reached a shielding effectiveness of 55 dB which was
mostly (82%) based on absorption, as it is desired in most shielding applications.

On the other hand, several groups investigated textile coatings with combinations
of carbon and metal fillers to reach high conductivity. Xu et al. prepared a CNT film by
chemical vapor deposition, followed by metallization with a Cu nanolayer, using electron
beam evaporation [114]. To prepare a sandwich textile, both sides were covered by PA6
nanofibers, electrospun on them, as depicted in Figure 6 [114]. In this way, they reached an
EMI shielding effectiveness around 50–55 dB in the frequency range of 1.7–5.85 GHz, which
was higher than the value of the pure CNT film, which was approx. 40 dB, indicating the
importance of the additional metal deposition.

Besides Cu, Ag nanowires or nanoparticles are often used in combination with graphene
or other carbon fillers. Sim et al. prepared silver nanowire/graphene oxide (GO) coated
textile fabrics, reaching an EMI shielding effectiveness of 72 dB at 8.2 GHz, which was mostly
retained after cracking and subsequent self-healing [115]. Using Ag nanoparticle-decorated
rGO sheets, applied on a textile fabric by non-ionic polymer adhesive, Ghosh et al. reached
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EMI shielding effectiveness of 27 dB in the X-band, combined with high conductivity and
bactericidal effect against E. coli [116]. Combining CNTs with nickel ferrite (NiFe2O4) instead
of Ag nanoparticles in a PDMS coating on a textile fabric, Wang et al. reached a much higher
EMI shielding effectiveness of 84 dB in the X-band as well as good thermal conductivity and
improved structural stability due to the coating [117].
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Combinations of carbon materials can not only be found with metal fillers as partners,
but also common with intrinsically conductive polymers. Zou et al., e.g., showed that PANI
polymerized on CNTs could improve the CNT distribution on a cotton woven fabric, obtained
by dip-coating [118]. In this way, the sheet resistance was reduced by approx. a factor 5,
as compared to pure CNT and PANI coatings, and the EMI shielding effectiveness was
improved from around 5–6 dB for the single-material coatings to 23 dB for the composite
coating.

Besides these carbon-based coatings, there are also several recent studies based on
carbon fibers, either used solely or combined with metal fibers or metal coatings, as shown
in the next sub-section.

5.2. Carbon Fibers and Filaments

Since carbon fibers are increasingly used in lightweight constructions nowadays, the
carbon fiber waste is also increasing. Pakdel et al. addressed this problem by investigating
how carbon fiber waste could be re-used in EMI shielding hybrid nonwovens [119]. For
this, they combined carbon fiber scraps with a defined length of 100 mm with nylon (PA6)
fibers of 75 mm length to form a nonwoven by needle-punching from carding webs with
different carbon:nylon ratios, as depicted in Figure 7. While these nonwovens showed
conductivities from 0.4–34 S/m, the EMI shielding effectiveness was found to be between
approx. 25 dB and 80 dB, depending on the carbon fraction, the number of carding cycles
and the thickness of the samples.

Hu et al. also worked with recycled carbon fibers recovered from composite waste
and formed a felt by adding polymeric binder and applying a paper-making process to
the fibers [120]. In this way, they reached conductivities between 17 S/m and 140 S/m,
depending on the polymeric binder as well as the sample thickness, and an EMI shielding
effectiveness around 30–70 dB, mostly based on reflection due to high electrical conductivity
and impedance mismatch between the shielding and the neighboring air.

Besides such nonwovens, many authors investigated carbon fiber composites. Lin
et al. prepared composites from different TPUs and long-fiber carbon reinforcement in
the core and used these composite yarns as weft yarns in woven fabrics with polyester
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fiber yarns in the warp [121]. With these woven fabrics, EMI shielding effectiveness values
around 8 dB–40 dB in the range of 30–3000 MHz, depending on the frequency and the fabric
thickness. Similarly, Duan et al. reached up to 73 dB shielding effectiveness for a carbon
fiber/TPU composite and suggested it due to its flexibility and robustness for aerospace
applications [122]. Another approach was suggested by Jia et al. who carbonized a cotton
fabric and coated it with nano-sized carbon black as well as PDMS, in this way reaching a
shielding effectiveness of 43 dB combined with superhydrophobic properties [123].
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As seen before in the case of carbon-based coatings, combing carbon with metals may
further improve the EMI shielding effectiveness of a textile fabric. Similarly, carbon fibers
can either be coated with metal layers or nanoparticles, or additional metal nanoparticles
can be embedded in the matrix or a carbon composite. Zhu et al. used the first of these
methods and coated carbon fiber fabrics by electroless plating with nickel to increase
their conductivity [124]. After polymerization of dopamine on the fabric to improve the
interlaminar shear strength with an epoxy matrix, the composite showed not only good
mechanical properties, but also an EMI shielding effectiveness of 30–35 dB in the X-band.

Abdelal stitched carbon fiber laminates with copper, titanium, Kevlar metallic and
non-conductive threads, and investigated the composites after vacuum-assisted infusion,
finding EMI shielding effectiveness values around 40–47 dB in the X-band, with slightly
larger values for copper threads, but generally a significant increase in shielding effective-
ness due to the compacter fiber arrangement in the stitched multi-layer composites [125].

Spray-coating a woven carbon fiber fabric with a highly conductive silver film, Liu and
Kang reported up to 81 dB shielding effectiveness after 100 spraying cycles [126]. Adding
magnetic Fe3O4 particles in the matrix of a carbon composite, Tang et al. reached an EMI
shielding effectiveness of 38 dB in the X-band, mostly due to absorption [127].

Finally, it should be mentioned that combinations of carbon fibers with MXenes can
also be found in the literature. Duan et al., e.g., prepared a composite from Ti3C3Tx MX-
ene, deposited on a carbon fiber fabric by electrohydrodynamic atomization, in a TPU
matrix [128]. By this procedure, they reached EMI shielding effectiveness values up to 40 dB,
depending on the MXene fraction, mostly based on absorption.

Besides the previously describe methods to make isolating textile fibers or textile
fabrics conductive by adding conductive nanoparticles, nanowires, or blending them with
metal wires or carbon fibers, another possibility to add conductive properties is coating
textiles with intrinsically conductive polymers. Approaches to prepare EMI shielding
textiles based on such conductive polymers are described in the next section.
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6. Intrinsically Conductive Polymers

Opposite to most polymers which are isolating, some conductive polymers exist,
such as poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS), PEDOT,
polyaniline (PANI), polypyrrole (PPy), or polythiophene (PTh) [129]. Their π-conjugated
orbital structure allows electron transport, resulting in a tailorable conductivity [130].
Conductive polymers are often used as coatings on yarns and textiles [131], e.g., for energy
storage applications [132], in smart textiles [133], or biosensors [134]. Naturally, they are
also used for EMI shielding coatings on textile fabrics, as described here.

Conductive polymers can be used solely, i.e., without other conductive materials, to
provide shielding properties to a textile fabric. Rybicki et al. tested PANI as well as PPy on
poly(acrylonitrile) (PAN) fabrics [135]. The conductive polymers were deposited on the
woven PAN fabric by an oxidizing inkjet printing of aniline hydrochloride or pyrrole with
ammonium peroxodisulfate, where one nozzle sprayed the aqueous solution of aniline
hydrochloride or pyrrole, respectively, followed by the second nozzle spraying the aqueous
solution of ammonium peroxodisulfate, in this way polymerizing the material. Depending
on the number of PANI or PPy layers, shielding effectiveness values between 5 dB and
22 dB were found for PANI and values between 2.25 dB and 7 dB for PPy, using 1–5 layers
of the conductive polymers.

By adding a thin protective layer of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS)
on a PPy-coated fabric Zou et al. reached self-healing properties of the EMI shielding
effect by microwave heating for a few seconds [136]. The functionalization process involved
dip-coating into a Py monomer solution for 5 min, immersion in FeCl3 aqueous solution for
polymerization of PPy, repeating this process if desired, followed by washing and finally
dip-coating in a POTS/ethanol solution, as depicted in Figure 8. In this way, sheet resistances
of 350 Ω for 1 PPy deposition cycle down to 34 Ω after six deposition cycles were reached.
The long-term stability against mechanical impact was found to be much better for the
POTS-coated fibers than for pure PPy coated fabrics. The EMI shielding effectiveness was
always slightly smaller for the POTS-coated fabrics than for pure PPy coatings, but reached
values around 25 dB in the X-band after six deposition cycles in both cases. After mechanical
impact, such as bending, twisting, or stripping, however, the POTS-coated samples showed
nearly unaltered shielding properties, while those of the purely PPy coated samples were
reduced to around 20 dB.

A similar PPy deposition method was investigated by Yu et al. who modified the
PPy concentration in the dipping solution, followed by in situ polymerization of poly(N-
isopropylacrylamide) (PNIPAAm) on the PPy-coated cotton fabrics [137]. In this way, they
reached an EMI shielding effectiveness around 40 dB in the X-band, mostly based on
absorption.

Gahlout and Choudhary tested PPy on different fabrics from cotton, PES, nylon and
cotton/Lycra with 1–4 impregnation cycles [138]. They added sodium lauryl sulphate as a
dopant to the Py solution before polymerization in FeCl3 solution. The authors reported
conductivities increasing with increasing numbers of impregnation cycles, reaching max.
4000 S/m on the cotton/Lycra sample and values below 10 S/m for the others. Correspond-
ingly, the cotton/Lycra fabrics showed the highest EMI shielding effectiveness of 19 dB in
the X-band, which could be increased to 25 dB by stacking two layers of this sample.

Another approach was suggested by Ghosh et al. who prepared a dip-coating sus-
pension from PEDOT:PSS pellets and poly(ethylene glycol) (PEG) and dipped a cotton
fabric for up to 25 times [139]. The conductivity for 20 dip-coating cycles reached 5000 S/m
and survived bending and twisting, resulting in up to 47 dB shielding effectiveness, as
compared to around 15 dB for a cotton fabric coated with pure PEDOT:PSS.

Besides these examples of EMI shielding coatings from conductive polymers without
additional conductive fillers, several groups combined conductive polymers with different
metals. Riaz et al. dip-coated cotton fabrics by with PEDOT:PSS/PEG for 5 cycles and
afterwards removed the PSS by introducing them in H2SO4, followed by electroless plating
with copper and silver, as depicted in Figure 9 [140]. The metallic nanofillers were additionally
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coupled to the fibers by a silane coupling agent to improve the durability of the coating.
Measuring the EMI shielding effectiveness in the range of 100 MHz to 13.6 GHz, they found
values around 6 dB for the PEDOT/PEG coated samples, increased to about 32 dB for an
additional Cu layer and to about 42 dB for an additional Ag layer, measured at 8 GHz.
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Figure 8. Preparation of PPyn@POTS fabrics. (a) Fabrication process of PPyn@POTS fabrics via
a dip-coating approach. The desired number of PPy coating layers can be obtained by repeating
the adsorption-oxidation process before the final protection layer coating of POTS. (b–d) Resulting
multifunctionality of the coated fabric with high EMI shielding (PPy), self-cleaning (POTS), and
durable performance assisted by near-instantaneously self-healing capability. From [136], copyright
(2021), the authors. (i–iv) denote subsequent steps of the fabrication process.
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from Elsevier.

Combining PPy, Ag nanoparticles, and PEDOT:PSS, Siavashani et al. reached a similar
EMI shielding effectiveness of 40 dB, nearly twice the value than with PPy/Ag nanoparticle
coating, which they explained by the PEDOT:PSS filling gaps in the PPy/Ag nanoparticle



Fibers 2023, 11, 29 15 of 21

coating [141]. Wang et al. used L-cysteine as a binder for Ag nanoparticles on a cotton
fabric, followed by PEDOT:PSS coating to improve fixation of the Ag nanoparticles on the
fabric [142]. By this technique, they reached a sheet resistance of 9 Ω and EMI shielding of
27 dB, which was nearly unaltered after stretching, bending or folding the fabric.

Instead of silver, Liu et al. performed Ni plating after PPy polymerization on warp-
knitted and nonwoven PET fabrics [143]. By this technique, they reached a conductivity of
9632 S/m and an EMI shielding effectiveness of 78 dB in the X-band for the nonwoven and
slightly reduce values for the warp-knitted fabric.

Finally, it should be mentioned that not only the coating and its conductivity, but also
the textile structure influences the EMI shielding effectiveness, as Duan et al. showed using
PPy and GO [144].

7. Summary and Discussion

As the previous sections showed, many approaches can be used to prepare textiles
fabrics with EMI shielding properties. Here, we give an exemplary overview of materials,
manufacturing technologies, thickness, electrical and magnetic (E/M) properties, frequency
range, measured values of shielding efficiency, potentially additional properties (mechanical,
thermal, waterproof, etc.) in Table 1. Most measurements were performed in the X-band,
resulting in a shielding effectiveness around 30–90 dB, based on specimens with a thickness
often below 1 mm.

Table 1. Comparison of textile fabrics with EMI shielding properties. E/M: electrical and magnetic; f:
frequency; RS: sheet resistance; RV: volume resistivity; EC: electrical conductivity; HC: coercive field;
SE: shielding effectiveness (max. value).

Material Manufact. Thickness E/M Properties f SE/dB Other Properties Ref.

MXene
Coating 0.62 mm RS = 2.2 Ω,

EC = 890 S/m X-band 35 Joule heating,
pressure sensing [34]

Coating 0.33 mm RS = 5 Ω X-band 39 Joule heating,
bactericidal [36]

Wet-spun fibers 0.5 mm EC = 11,360 S/cm X-band 75 Joule heating [50]

Metals
Cu coating 0.112 mm RV = 1 Ωm . . . 5 Ωm 30 MHz–1.5 GHz 55 Air permeability [60]

Ni coating Not given RS < 2 Ω,
HC ~ 100 Oe X-band 32 Not reported [66]

Carbon
CNT/graphene

coating 0.35 mm EC = 64 S/m X-band 35 Superhydrophobicity [113]

Carbon/PA6
nonwoven 4.48 mm EC = 34 S/m X-band 85 Sound absorption [120]

Conduct.
polymers

PANI/PPy coating 80 µm/56 µm RS = 20 Ω/96 Ω 2.5–18 GHz 22/7 Not reported [135]
PPy dip-coating 0.37 mm EC = 1.5 S/m X-band 40 Joule heating [137]

These shielding effectiveness values are comparable to those found for EMI shielding
by electrospun nanofiber mats [13]. Here, however, sample preparation is often easier
and possible with common textile technologies, and macroscopic textiles are more robust
against mechanical forces, while the sample thickness of freestanding nanofiber mats is
significantly lower. Thus, both kinds of EMI shielding fabrics, macroscopic textiles, and
nanofibrous mats, have their own fields of applications, due to their advantages and
disadvantages.

8. Conclusions

EMI shielding belongs to the strongly investigated topics in the research area of smart
textiles. The necessary physical properties, such as electrical and/or magnetic conductivity,
can be added to common textile fabrics by coatings with conductive polymers, carbon- or
metal-based coatings as well as with the new material class of MXenes. Besides, devel-
oping yarns with conductive metal wires or using conductive carbon fibers are potential
approaches to produce EMI shielding textile fabrics.
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Our review of the most recent developments in this field of research presents suitable
production methods by different coating and spinning techniques and gives an overview of
the shielding effectiveness which can be reached by the different methods, e.g., approx. 80
dB for a combined coating from conductive polymer and a metal layer [143], around 47 dB
for a PEDOT:PSS/PEG coating [139], 73 dB for a carbon fiber/TPU composite [123], 72 dB for
a Ag nanowire/(GO) coating [116], 55 dB for an rGO/ZnO coating [114], 100 dB for 3 layers
of an Ag nanowire/Fe3O4 nanoparticle coated fabric [64], or more than 100 dB for 3 layers
of a very thin fabric from GO/MXene hollow fibers [48]. As these examples show, many
approaches can be used to reach high EMI shielding effectiveness, typically measured in the
technologically relevant X-band, but also in other frequency ranges. We hope our review will
stimulate more researchers to start working in this highly interesting research area.
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