
TWINE: A Lightweight Block Cipher

for Multiple Platforms

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi

NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki, Japan
{t-suzaki,k-minematsu,s-morioka,e-kobayashi}@jp.nec.com

Abstract. This paper presents a 64-bit lightweight block cipherTWINE
supporting 80 and 128-bit keys. TWINE realizes quite small hardware
implementation similar to the previous lightweight block cipher propos-
als, yet enables efficient software implementations on various CPUs, from
micro-controllers to high-end CPUs. This characteristic is obtained by
the use of generalized Feistel combined with an improved block shuffle,
introduced at FSE 2010.

Keywords: lightweight block cipher, generalized Feistel, block shuffle.

1 Introduction

Motivation. Recent advances in tiny computing devices, such as RFID and
sensor network nodes, give rise to the need of symmetric encryption with highly-
limited resources, called lightweight encryption. While AES has been widely
deployed, it is often inappropriate for such small devices due to their size/power/
memory constraints, even though there are constant efforts for small-footprint
AES, e.g., [13,30,39]. To fill the gap, many hardware-oriented lightweight block
ciphers have been recently proposed, e.g., [8, 12, 17, 18, 20, 22, 23, 26, 40, 44], and
more.

In this paper, we propose TWINE, a new lightweight 64-bit block cipher. Our
primary goal is to achieve hardware efficiency equivalent to previous proposals,
and at the same time good software performance on various CPUs, from low-end
micro-controllers to high-end ones (such as Intel Core-i series). For this purpose,
we avoid the hardware-oriented design options, most notably a bit permutation,
and build a block cipher using 4-bit components.

Design. Specifically, we employ Type-2 generalized Feistel structure [45], GFS
for short, with 16 nibble-blocks. The drawback of such design is a poor diffusion
property, resulting in a small-but-slow cipher due to quite many rounds. To
overcome the problem, we employ the idea of Suzaki and Minematsu at FSE
’10 [42] which substantially improves diffusion by using a different block shuffle
from the original cyclic shift. As a result, TWINE is also efficient on software
and enables compact unification of encryption and decryption. The features of
TWINE are (1) no bit permutation, (2) generalized Feistel-based, and (3) no
Galois-Field matrix. The components are only one 4-bit S-box, XOR, and 4-
bit-wise permutation (shuffle). As far as we know, this is the first attempt that

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 339–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

340 T. Suzaki et al.

unifies these three features. There is a predecessor called LBlock [44] which has
some resemblances to ours, however TWINE is an independent work and has
several concrete design advantages (See Section 3).

Implementation. We implemented TWINE on hardware and software. Our
hardware implementations suggest that the encryption-only TWINE can be
implemented with 1, 503 Gate Equivalent (GE), and a serialized implementation
results in 1, 011 GEs using a shared sbox architecture. For both cases, we did
not consider the hard-wired key or special key signaling (as employed by [40]).
These figures are comparable to, or even better than, the leading hardware-
oriented proposals, in particular when a standard key treatment is required.

On 8-bit micro-controllers, TWINE is implemented within 0.8 to 1.5 Kbytes
ROM. The speed is relatively fast compared to other lightweight ciphers. We also
tried implementations on 32 and 64-bit CPUs. Due to the nature of GFS (and
the use of identical 4-bit S-box), TWINE is quite easy to implement using a
SIMD instruction doing a vector-permutation, which we call vector-permutation
instruction (VPI). Starting from Hamburg’s works on AES [19], VPI has been
recognized as a powerful tool for fast cryptography (e.g. [1, 10, 11]), and we
find that VPI extremely works fine with TWINE. For example, on Intel Core-i5
U560 we observed 4.75 cycles/byte1 using VPI called pshufb. This figure is quite
impressive in the realm of (lightweight) block ciphers. For reference, we observed
that AES using VPI [19] runs at 6.66 cycles/byte on the same processor. As our
VPI-based implementation has a quite simple structure, it is easy to understand
and port to other CPUs. TWINE’s well-balanced performance under multiple
platforms makes it suitable to heterogeneous networks, consisting of (e.g.) a huge
number of tiny sensor nodes which independetly encrypt sensor information and
one server computer which performs the information aggregation and decryption.

Security. As TWINE is a variant of GFS it is definitely important to evaluate
the security against attacks suitable to GFS, such as the impossible differential
cryptanalysis (IDC) and the saturation cryptanalysis (SC). We perform a thor-
ough analysis (as a new cipher proposal) on TWINE including IDC and SC,
and present IDC against 23-round TWINE-80 and 24-round TWINE-128 as
the most powerful attacks we have found so far. The attack is fully exploits the
key schedule, and can be seen as an interesting example of highly-optimized IDC
against GFS-based ciphers.

The organization of the paper is as follows. In Section 2 we describe the specifi-
cation ofTWINE. Section 3 explains the design rationale for TWINE. Section 4
presents the results of security evaluation, and Section 5 presents the implementa-
tion results of both hardware and software. Section 6 concludes the paper.

2 Specification of TWINE

Notations. A bitwise exclusive-OR is denoted by ⊕. For binary strings, x and
y, x‖y denotes their concatenation. Let |x| denote the bit length of x. If |x| = m,

1 In a double-block encryption. See Section 5.2.

TWINE: A Lightweight Block Cipher for Multiple Platforms 341

we may write x(m) to emphasize its bit length. If |x| = 4c for a positive integer
c, we write x → (x0‖x1‖ . . . ‖xc−1), where |xi| = 4, is the partition operation
into the 4-bit sub-blocks. The opposite operation, (x0‖x1‖ . . . ‖xc−1) → x, is
similarly defined. The partition operation may be implicit, i.e., we may simply
write xi to denote the i-th 4-bit subsequence for any 4c-bit string x.

Data Processing Part. TWINE is a 64-bit block cipher with 80 or 128-bit
key. We write TWINE-80 or TWINE-128 to denote the key length. The global
structure of TWINE is a variant of Type-2 GFS [41,45] with 16 4-bit sub-blocks.
A round function of TWINE consists of a nonlinear layer using 4-bit S-boxes
and a diffusion layer, which permutes the 16 blocks. Unlike original Type-2 GFS,
the diffusion layer is not a cyclic shift and is chosen to provide a better diffusion
than the cyclic shift from the result of [42]. This round function is iterated for 36
times for both key lengths, where the diffusion layer of the last round is omitted.
For i = 1, . . . , 36, i-th round uses a 32-bit round key, RKi, which is derived from
the secret key, K(n) with n ∈ {80, 128}, using the key schedule. The encryption
process is written as Algorithm 2.1.

The data processing part essentially consists of a 4-bit S-box, denoted by S,
and a permutation of block indexes, π : {0, . . . , 15} → {0, . . . , 15}, where j-th
sub-block is mapped to π[j]-th sub-block. The figure of the round function is in
Fig. 1. The decryption of TWINE uses the same S-box and key schedule as used
in the encryption, with the inverse block shuffle. See Algorithm 2.2.

Key Schedule Part. The key schedule produces RK(32×36) from the secret
key, K(n), for n ∈ {80, 128}. It is a variant of GFS with few S-boxes (the same
as one used at the data processing). The 80-bit key schedule uses 6-bit round
constants, CONi

(6) = CONi
H(3)‖CONi

L(3) for i = 1 to 35, and Rotz(x) means z-
bit left cyclic shift of x. Its pseudocode is in Algorithm 2.3. For 128-bit key, see
Appendix A. We remark that CONi corresponds to 2i in GF(26) with primitive
polynomial z6 + z + 1.

Algorithm 2.1: TWINE.Enc(P(64), RK(32×36), C(64))

X1
0(4)‖X1

1(4)‖ . . . ‖X1
14(4)‖X1

15(4) ← P, RK1
(32)‖ . . . ‖RK36

(32) ← RK(32×36)

for i← 1 to 35

do

⎧
⎨

⎩

RKi
0(4)‖RKi

1(4)‖ . . . ‖RKi
6(4)‖RKi

7(4) ← RKi
(32)

for j ← 0 to 7 do Xi
2j+1 ← S(Xi

2j ⊕RKi
j)⊕Xi

2j+1

for h← 0 to 15 do Xi+1
π[h]
← Xi

h

for j ← 0 to 7 do X36
2j+1 ← S(X36

2j ⊕ RK36
j)⊕X36

2j+1

C ← X36
0 ‖X36

1 ‖ . . . ‖X36
14 ‖X36

15

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

342 T. Suzaki et al.

Algorithm 2.2: TWINE.Dec(C(64), RK(32×36), P(64))

X36
0(4)‖X36

1(4)‖ . . . ‖X36
14(4)‖X36

15(4) ← C, RK1
(32)‖ . . . ‖RK36

(32) ← RK(32×36)

for i← 36 to 2

do

⎧
⎨

⎩

RKi
0(4)‖RKi

1(4)‖ . . . ‖RKi
6(4)‖RKi

7(4) ← RKi
(32)

for j ← 0 to 7 do Xi
2j+1 ← S(Xi

2j ⊕RKi
j)⊕Xi

2j+1

for h← 0 to 15 do Xi−1
π−1[h]

← Xi
h

for j ← 0 to 7 do X1
2j+1 ← S(X1

2j ⊕ RK1
j)⊕X1

2j+1

P ← X1
0‖X1

1‖ . . . ‖X1
14‖X1

15

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

FFFFFFFF

ix0 ix1
ix2

ix3 ix4
ix5

ix6
ix7

ix8
ix9

ix10 ix11
ix12

ix13 ix14
ix15

1
0
+ix 1

1
+ix 1

2
+ix 1

3
+ix 1

4
+ix 1

5
+ix 1

6
+ix 1

7
+ix 1

8
+ix 1

9
+ix 1

10
+ix 1

11
+ix 1

12
+ix 1

13
+ix 1

14
+ix 1

15
+ix

iRK

S

i
jRK

Fig. 1. Round function of TWINE

Algorithm 2.3: TWINE.KeySchedule-80(K(80), RK(32×36))

WK0(4)‖WK1(4)‖ . . . ‖WK18(4)‖WK19(4) ← K
for r ← 1 to 35

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RKr
(32) ←WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

WK1 ←WK1 ⊕ S(WK0), WK4 ←WK4 ⊕ S(WK16)
WK7 ←WK7 ⊕ 0‖CON r

H , WK19 ←WK19 ⊕ 0‖CON r
L

WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
WK0‖ · · · ‖WK19 ← Rot16(WK0‖ · · · ‖WK19)

RK36
(32) ←WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

RK ← RK1‖RK2‖ . . . ‖RK35‖RK36

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24

3 Design Rationale

3.1 Basic Objective

Our goal is to build a lightweight block cipher enabling compact hardware com-
parable to previous proposals, while keeping the efficiency on multiple CPUs,
from low-end microcontroller to general-purpose 32/64-bit CPU.

TWINE: A Lightweight Block Cipher for Multiple Platforms 343

On LBlock. We remark that LBlock [44], proposed independently of ours, is
quite similar to our proposal. It is a 64-bit block cipher using a variant of bal-
anced Feistel whose round function consists of 8 4-bit S-boxes and a nibble-wise
permutation and a 8-bit cyclic shift. Such a structure can be transformed into a
structure proposed at [42], though we do not know whether the authors of [44] are
aware of it. We investigated LBlock in this respect and found that the LBlock’s
diffusion layer is equivalent to that of the decryption of TWINE. Note that this
choice is reasonable from Table 6 of [42], as it satisfies both of the fastest dif-
fusion and the highest immunities against linear and differential attacks among
other block shuffles.

Nevertheless, there are important differences between TWINE and LBlock2.
First, LBlock uses ten distinct S-boxes while TWINE uses single S-box.
TWINE’s design contributes to a compact serialized hardware and fast soft-
ware (indeed, our fast SIMD implementation was impossible if multiple S-boxes
were used). Second, LBlock uses a bit permutation in its key scheduling, which
decreases software efficiency.

3.2 Parameters and Components

Rounds. As far as we investigated, the most powerful attack against TWINE
is a dedicated impossible differential attack, which breaks 23-round TWINE-
80 and 24-round TWINE-128. From this, we consider 36-round TWINE-128
has a sufficient security margin. Employing the same 36-round for TWINE-
80 may look slight odd, however, it enables various multiple-round hardware
implementations with a small overhead as 36 has many factors.

Block Shuffle. The block shuffle π comes from a result of Suzaki and Minematsu
[42]. In [42], it was reported that by changing the block shuffle different from
the ordinal cyclic shift one can greatly improve the diffusion of Type-2 GFS.
Here, goodness-of-diffusion is measured by the minimum number of rounds that
diffuses any input sub-block difference to all output sub-blocks, called DRmax.
Smaller DRmax means a faster diffusion. DRmax of cyclic shift with k sub-
blocks is k, while there exist shuffles with DRmax = 2 log2 k, called “optimum
block shuffle” [42]. Our π is such one3 with k = 16, hence DRmax = 8 while
DRmax = 16 for the cyclic shift. DRmax is connected to the resistance against
various attacks. For example, Type-2 GFS with 16 sub-blocks has 33-round
impossible differential characteristics and 32-round saturation characteristics.
However, using π of Algorithm 2.1 they can be reduced to 14 and 15 rounds.

There exist multiple optimum block shuffles [42]. Hence π was chosen consid-
ering other aspects which is not (directly) related to DRmax. In particular, we

2 We also would like to point out that the security evaluation of LBlock is insufficient.
We already found a saturation attack against 22-round LBlock without considering
the key schedule, thus the security margin is smaller than the claimed by the authors
(20-round), though a recent work [25] shows a 21-round impossible differential attack.

3 More precisely, an isomorphic shuffle to one presented at Appendix B (k = 16, No.
10) of [42].

344 T. Suzaki et al.

chose π considering the the number of differentially and linearly active S-boxes
(See Table 1 in Section 4).

S-Box. The 4-bit S-box is chosen to satisfy (1) the maximum differential and
linear probabilities are 2−2, which is theoretically the minimum for invertible
S-box, and (2) the Boolean degree is 3, and (3) the interpolation polynomial
contains many terms and has degree 14. Following the AES S-box design, we use a
Galois field inversion. Specifically our S-box is defined as y = S(x) = f((x⊕b)−1),
where a−1 denotes the inverse of a in GF(24) (the zero element is mapped
to itself.) with irreducible polynomial z4 + z + 1, and b = 1 is a constant,
and f(·) is an affine function such that y = f(x) with y = (y0‖y1‖y2‖y3) and
x = (x0‖x1‖x2‖x3) is determined as y0 = x2 ⊕ x3, y1 = x0 ⊕ x3, y2 = x0, and
y3 = x1.

Key Schedule. The key schedule of TWINE enables on-the-fly operations and
produces each round key via sequential update of a key state, that is, there is
no intermediate key. As mentioned, it uses no bit permutation. As hardware
efficiency is not our ultimate goal, the design is rather conservative compared
to the recent hardware-oriented ones [12, 34, 40], yet quite simple. For security,
we want our key schedule to have sufficient resistance against slide, meet-in-the-
middle, and related-key attacks.

4 Security Evaluation

4.1 Overview

We examined the security of TWINE against various attacks. Due to the page
limit, we here focus on the impossible differential and saturation attacks and
explain the basic flows of these attacks since they are the most critical attacks
in our evaluation. The results on other attacks, such as differential and linear
attacks, will also be briefly described.

In this section, we use the notations X i
j and RKi

j following Algorithm 2.1,

and define F i
j (x)

def
= S(RKi

j ⊕ x) for i = 1, . . . , 36, j = 0, . . . , 15, and denote

F i
j (x) ⊕ F i

j (x ⊕ δ) by F i
j (δ). For any symbol S let S̄

k
denote the sequence of k

symbols, e.g. 0̄3 means (0, 0, 0) and Ā3 means (A,A,A).

4.2 Impossible Differential Attack

Generally, impossible differential attack [3] is one of the most powerful attacks
against Feistel and GFS-based ciphers, as demonstrated by (e.g.) [14, 31, 43].
We searched impossible differential characteristics (IDCs) using Kim et al.’s
method [21], and found 64 14-round IDCs

(0,α0,0,α1,0,α2,0,α3,0,α4,0,α5,0,α6,0,α7)
14r

�→ (β0,0,β1,0,β2,0,β3,0,β4,0,β5,0,β6,0,β7,0), (1)

where all variables are 4-bit, αi �= 0, βj �= 0 for some i, j ∈ {0, . . . , 7} and
others are 0. Based on this we can attack against 23-round TWINE-80, where

TWINE: A Lightweight Block Cipher for Multiple Platforms 345

IDC of 5-th to 18-th rounds with α0 �= 0 and β4 �= 0 is used, and tries to
recover the subkeys of the first 4 rounds and last 5 rounds (144 bits in total).
These subkey bits are uniquely determined via its 80-bit subsequence. A similar
attack is possible against 24-round TWINE-128, using the IDC with α3 �= 0
and β2 �= 0.

The outline of our attack against 23-round TWINE-80 is as follows.

Data Collection. We call a set of 232 plaintexts a structure if its i-th sub-
blocks are fixed to a constant for all i = 2, 4, 5, 6, 7, 8, 9, 14 ∈ {0, . . . , 15} and the
remaining 8 sub-blocks take all 232 values. Suppose we have one structure. From
it we extract plaintext pairs having the difference

(p1, p2, 0, p3, 0̄
6, p4, p5, p6, p7, 0, p0), where pi ∈ {0, 1}4 is non-zero. (2)

We want the 4-round output pairs to be compliant with the left hand side of
Eq. (1) with α0 �= 0 and other αis being zero. Hence plaintext pairs having no
chance to do that are discarded. Here, the property of S-box shows that for any
non-zero px, F

i
j (px) is one of 7 possible values, depending on RKi

j and px. Using

this property we identify 254.56 plaintext pairs of Eq. (2) that have a chance.
Then we encrypt such plaintext pairs and search the ciphertext pairs having the
difference

(0, c1, 0, c2, c3, c4, c0, c5, c6, c7, c8, c9, c10, c11, 0, 0), (3)

where all cis are non-zero 4-bit values. We prepare 229.55 structures and obtain
268.11 ciphertext pairs of the difference Eq. (3) out of all 284.11 ciphertext pairs.

Key Elimination. For each ciphertext pair satisfying Eq. (3), we try to elimi-
nate the wrong guesses for the 80-bit (sub)key vector (K1‖K2‖K3), where |K1| =
20, |K2| = 52, |K3| = 8 and K1 = (RK1

[1,2,3,7],RK
23
0), K2 = (RK1

[0,5,6],RK
2
[2,4,6,7],

RK23
[2,4,5],RK

22
[1,3,4]) and K3 = (RK22

[0,2]) (here RKi
[a,b,c] denotes RK

i
a‖RKi

b‖RKi
c).

First, we guess K1 (which can take all possible values). After K1 is guessed, the
number of each 4-bit subkey candidates in K2 is (2 · 6 + 4)/7 ≈ 2.28 on aver-
age from the property of S-box mentioned above. Once K1 and K2 have been
fixed, each RKi

j in K3 will have (2 · 6 + 4)/15 ≈ 1.07 candidates, as we have no
restrictions on the input difference for F s relating to these subkeys. From this
observation, we expect to eliminate 220 · 2.2813 · 1.072 ≈ 235.69 candidates from
a set of 280 values for each plaintext-ciphertext pair. In other words, the wrong
subkey is eliminated with probability 2−44.31.

Consequently, we can attack 23-round TWINE-80 with the data complexity
229.55 · 232 = 261.55 blocks, the time complexity 284.56 · 22/(23 · 8) = 277.04

encryptions, and the memory complexity 280/64 = 274 blocks.
In a similar manner, we can attack 24-round TWINE-128 with the data, time

and memory complexity being 252.21 blocks, 2115.10 encryptions and 2118 blocks
respectively.

346 T. Suzaki et al.

4.3 Saturation Attack

Saturation attack [16] is also a powerful attack against GFS-based ciphers. The
attack traces the set of variables (S0, . . . , S15), where Sk denotes the saturation
status of k-th nibble which is one of the followings:

Constant (C) : ∀i, j, Xi = Xj All (A) : ∀i �= j, Xi �= Xj

Balance (B) :
⊕

i Xi = 0 Unknown (U) : Others

Let α = (α0, . . . , α15) and β = (β0, . . . , β15), αi, βi ∈ {C,A,B, U}, be the initial
and the t-round states. If we have αi = A and βj �= U for some i and j with

probability 1 (i.e. for all keys), α
tr→β is said to be an t-round saturation charac-

teristic (SC). TWINE has 15-round SC with α consisting of one C and fifteen
As and β contains 4 Bs (the remainings are U), for example;

(Ā12, C, Ā3)
15r→(Ū3, B, Ū5, B, Ū3, B, U,B), and (4)

(Ā6, C, Ā9)
15r→(U,B, Ū3, B, U,B, Ū3, B, Ū4). (5)

Suppose we use SC of Eq. (5) to break 22-round TWINE-80. We recover 108-
bit subkey. From the key schedule, the actual subkey bits needed to be guessed
are 72 bits. First we encrypt a set of 260 plaintexts (called S-structure) induced
from the left hand side of Eq. (5), and obtain a set of 260 ciphertexts. Now X i

j

has 260 variations for each i, j, and we let ⊕X i
j to denote the sum of these 260

variations. We also define F i
jout as F

i
j (X

i
j) and define ⊕F i

jout analogously. Next

we calculate ⊕X17
0 and ⊕F 16

0 out for each 108-bit subkey candidate. Here X17
0

is uniquely determined by a certain 40 subkey bits (out of 108 bits). Similarly
F 16
0 out is determined by a certain 60 subkey bits, and the intersection is 28

bits (thus we need 72-bit search). The computation of ⊕F 16
0 out requires 273.80 F

evaluations (amount to 266.34 encryptions of 22-round TWINE). For any subkey
guess if ⊕X17

0 equals to ⊕F 16
0 out the saturation status of ⊕X16

1 is B. If not, then
the guess is wrong and thus eliminated. As this elimination is expected to occur
with probability 1− 1/24, we can reduce the number of subkey candidates from
272 to 268 for one S-structure. With additional 8-bit key guess, the master key is
recovered. Summarizing, the attack with an S-structure requires 260 plaintexts
to be encrypted, and 277 (which follows from 266.34 + 276 + ρ, where ρ denotes
the computation of X17

0 , which is negligible) encryptions. We can further reduce
the time complexity by using multiple S-structures. Using 4 structures, we can
attack 22-round TWINE-80 with the data, time and memory complexity being
262 blocks, 268.43 encryptions and 267 blocks respectively.

In a similar manner (using SC of Eq, (5)), we can attack 23-round TWINE-
128 with the data, time and memory complexity being 262.81 blocks, 2106.14

encryptions and 2103 blocks respectively.

4.4 Differential / Linear Cryptanalysis

The security against differential cryptanalysis (DC) [4] and linear cryptanaly-
sis (LC) [28] are typlically evaluated by the number of differentially and linearly

TWINE: A Lightweight Block Cipher for Multiple Platforms 347

active S-boxes, denoted byASD andASL, respectively.We performed a computer-
based search for differential and linear paths, and evaluated ASD and ASL for
each round. As a result, the numbers of ASD and ASL are the same (Table
1). Since our S-box has 2−2 maximum differential and linear probabilities, the
maximum differential and linear characteristic probabilities are both 2−64 for
15 rounds. Examples of 14-round differential (Δ) and linear (Γ) characteristics
having the minimum I/O weights are as follows. Here, 1 denotes an arbitrary
non-zero difference (mask) and 0 denotes the zero difference (mask) for Δ (Γ).
They involve 30 active S-boxes, and thus the characteristic probability is 2−60.

Δ = (0̄9, 1, 0, 1, 0, 1, 0, 0)
14r→(0̄3, 1, 0̄4, 1, 0, 0, 1, 0, 0, 1, 1),

Γ = (0̄6, 1, 1, 0̄3, 1, 0, 0, 1, 1)
14r→(0̄9, 1, 0̄3, 1, 0, 1). (6)

Compared to the impossible differential attack, we naturally expect the key
recovery attacks exploiting the key schedule with these differential or linear
characteristic are less powerful, since they have larger weight (number of non-
zero variables) than that of 14-round IDC (having weight 2) and fewer weights
imply the more attackable rounds in the key guessing.

We also remark that a computer-based search for the maximum differential
probability (rather than the characteristic probability) of GFS was performed
by [29]. However, applying their algorithm to our 16-block case seems computa-
tionally infeasible.

Table 1. List of differentially and linearly active S-boxes

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ASD, ASL 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 35 36 39 41 44

4.5 Key Schedule-Based Attacks

Related-Key Differential Attacks. The related-key attack proposed by Bi-
ham [2] works when the adversary can somehow modify the key input, typically
insert a key differential. For evaluation of such attack, we implemented the search
method by Biryukov et al. [6], which counts the number of active S-boxes for
combined data processing and key schedule parts. See [6] for the algorithmic
details. We searched 4-bit truncated differential paths. As S-box has maximum
differential probability being 2−2, we needed 40 (64) active S-boxes for TWINE-
80 (TWINE-128).

The full-search was only computationally feasible for TWINE-80. As a result,
the number of active S-boxes reaches 40 for the 22-round. Table 2 shows the
search result, where ΔKS, ΔRK, ΔX and AS denote key difference, subkey
difference, data difference, and the number of active S-boxes.

Other Attacks. For the slide attack [7], the key schedule of TWINE inserts
distinct constants for each round. This is a typical way to thwart slide attacks

348 T. Suzaki et al.

Table 2. Truncated differential and its active S-box numbers

Rnd ΔKS ΔRK ΔX AS Rnd ΔKS ΔRK ΔX AS Rnd ΔKS ΔRK ΔX AS

1 4D010 A2 A255 0 9 20160 0C 4545 19 17 C0104 80 8191 38

2 D8108 E1 6931 6 10 01604 00 108C 20 18 01041 08 0824 38

3 010C3 08 9896 8 11 16040 58 D840 21 19 10410 42 4202 39

4 10C30 46 4462 9 12 60402 80 A0E2 22 20 04102 00 0081 39

5 0C302 20 2288 10 13 0402C 05 A630 27 21 41020 84 8100 41

6 C3020 94 9411 11 14 C02C0 88 8D39 30 22 10208 41 4124 41

7 30201 40 0968 14 15 02C01 10 5A2E 33

8 02016 12 1306 15 16 2C010 22 62C3 35

and hence we consider TWINE is immune to the slide attack. For Meet-In-The-
Middle (MITM) attack, we confirmed that the round keys for the first 3 (5)
rounds contain all key bits for the 80-bit (128-bit) key case. Thus, we consider
it is difficult to mount MITM attack (at least in its basic form) against the
full-round TWINE.

5 Implementation

5.1 Hardware

We implemented TWINE on ASIC using a 90nm standard cell library with logic
synthesis done by Synopsys DC Version D-2010.03-SP1-1. Following [8, 12], we
used Scan Flip-Flops (FFs). In our library, a D-FF and 2-to-1 MUX cost 5.5 GE
and 2.25 GE, and a Scan FF costs 6.75 GE. Hence this technique saves 1.0 GE
per 1-bit storage.

The result is shown by Table 3 with a comparison. Note that for some al-
gorithms other than TWINE, the synthesis was not done at 100KHz, hence
we estimated the throughput by scaling. Table 4 shows the detail of TWINE-
80 round-based implementation, where single round function is computed in a
clock. We did not perform a thorough logic minimization of the S-box circuit,
which currently costs 30 GEs. The S-box logic minimization can further reduce
the size. The figures must be taken with cares, because they depend on the type
of FF, technology, library, etc [12]. As suggested by [12], we list Gates/Memory
Bit in the table, which denotes the size (in GE) of 1-bit memory device used for
the key and states.

For serialized implementation, we employ a shared sbox architecture design
where single S-box is repeatedly used in the data processing and the key schedul-
ing. For encryption-onlyTWINE-80, it achieved 1, 011 GEs. We are still working
on it, and the details will be given in the near future.

5.2 Software

We implemented TWINE on Atmel AVR 8-bit micro-controller. The target
device is ATmega163, which has 16K bytes Flash, 512 bytes EEPROM and 1,024

TWINE: A Lightweight Block Cipher for Multiple Platforms 349

Table 3. ASIC implementation results

Algorithm Function Block Key Cycles/ Throughput Area Gates / Type

(bit) (bit) block (Kbps@100KHz) (GE†) Memory bit

TWINE Enc 64 80 36 178 1,503 6.75 round

TWINE Enc+Dec 64 80 36 178 1,799 6.75 round

TWINE Enc 64 128 36 178 1,866 6.75 round

TWINE Enc+Dec 64 128 36 178 2,285 6.75 round

TWINE Enc 64 80 393 16.2 1,011 6.75 serial

PRESENT [38] Enc 64 80 563 11.4 1,000 n/a serial

PRESENT [8] Enc 64 80 32 200 1,570 6 round

AES [30] Enc 128 128 226 57 2,400 6 serial

mCRYPTON [24] Enc 64 64 13 492.3 2,420 5 round

SEA [26] Enc+Dec 96 96 93 103 3,758 n/a round

HIGHT [20] Enc+Dec 64 128 34 188.25 3,048 n/a round

KLEIN [17] Enc 64 80 17 376.4 2,629 n/a round

KLEIN [17] Enc 64 80 271 23.6 1,478 n/a serial

DES [23] Enc 64 56 144 44.4 2,309 12.19 serial

DESL [23] Enc 64 56 144 44.4 1,848 12.19 serial

KATAN [12] Enc 64 80 254 25.1 1,054 6.25 serial

Piccolo [40] Enc 64 80 27 237 1,496¶ 6.25 round

Piccolo [40] Enc+Dec 64 80 27 237 1,634¶ 6.25 round

Piccolo [40] Enc 64 80 432 14.8 1,043¶ 6.25 serial

Piccolo [40] Enc+Dec 64 80 432 14.8 1,103¶ 6.25 serial

LED [18] Enc 64 80 1872 3.4 1,040 6/4.67� serial

PRINTcipher [22] Enc 48 80 48 12.5 503� n/a round

† Gate Equivalent : cell area/2-input NAND gate size (2.82).
¶ Includes a key register that costs 360 GEs; Piccolo can be implemented without a key
register if key signal holds while encryption.

� Mixed usage of two memory units.
� Hardwired key.

Table 4. Component sizes of TWINE-80 encryption

Data Processing (GE) Key Scheduling (GE)

Data register 432 Key register 540 S-box out XOR 16
S-box 240 Round const comp. 2 RC register 33

Round key XOR 64 Round const XOR 12 State register 6
S-box out XOR 64 S-box 60 Others/Control 34

Total 1503

bytes SRAM. We built the four versions: speed-first, ROM-first (minimizing the
consumption), and RAM-first, and the double-block, where two message blocks
are processed in parallel. Such an implementation works for parellelizable mode
of operations. All versions precompute the round keys, i.e. they do not use an
on-the-fly key schedule.

In the speed-first version, two rounds are processed in one loop. This re-
moves the block shuffle between the first and second rounds. RAM load (LD) is
faster than ROM load (LPM), hence the S-box and the constants are stored at
RAM. The data arrangement is carefully considered to avoid carry in the address
computation.

350 T. Suzaki et al.

Table 5. Software implementations on ATmega163

Algorithm Key Block Lang ROM RAM Enc Dec ETput DTput
(bit) (bit) (byte) (byte) (cyc/byte) (cyc/byte) /code† /code‡

TWINE(speed-first) 80 64 asm 1,304 414 271 271 2.14 2.14

TWINE(ROM-first) 80 64 asm 728 335 2,350 2,337 0.40 0.40

TWINE(RAM-first) 80 64 asm 792 191 2,350 2,337 0.43 0.43

TWINE(double block) 80 64 asm 2,294 386 163 163 2.29 2.29

PRESENT [33] 80 64 asm 2,398 528 1,199 1,228 0.28 0.28

DES [36] 56 64 asm 4,314 n/a 1,079 1,019 0.21 0.22

DESXL [36] 184 64 asm 3,192 n/a 1,066 995 0.29 0.31

HIGHT [36] 128 64 asm 8,836 n/a 307 307 0.36 0.36

IDEA [36] 128 64 asm 596 n/a 338 1,924 4.97 0.87

TEA [36] 128 64 asm 1,140 n/a 784 784 1.11 1.11

SEA [36] 96 96 asm 2,132 n/a 805 805 0.58 0.58

AES [9] 128 128 asm 1,912 432 125 181 3.42 2.35

† Encryption Throughput per code: (1/Enc)/(ROM + RAM) (scaled by 106).
‡ Decryption Throughput per code: (1/Dec)/(ROM + RAM) (scaled by 106).

Table 5 shows comparison of TWINE and other lightweight block ciphers.
We list the (scaled) throughput/code ratio for a performance measure (See Table
5 for the formula), following [37]. AES’s performance is still quite impressive,
however, one can also observe a good performance of TWINE.

Vector Permutation Instruction. We also implemented TWINE on CPU
equipped with a SIMD instruction performing a vector permutation, which we
call Vector Permutation Instruction (VPI). Examples of VPI are, vperm in Mo-
torola AltiVec, pshufb in Intel SSE (SSSE3), and vtbl in ARM NEON. The
power of VPI was first presented by Hamburg [19] for AES, and then the same
technique has been applied to various cryptographic functions, e.g. [1, 10, 11].
However, to the best of our knowledge VPI-based lightweight block cipher imple-
mentation is not known to date. In our VPI-based code, we transform TWINE
into an equivalent form shown by the left of Table 2. This form cyclically invokes
4 different shuffles (called half shuffle) on 8 nibbles. Here, “index of RK” denotes
the index of round key, RK, given to the round function (from left to right).

For Intel CPU with SSSE3, we use pshufb for block shuffle and S-box, and
an encryption round of TWINE is computed using only 6 instructions (see the
right of Table 2). Here, the left (right) half of input data is in xmm0, (xmm1), and
eax contains the address of round key. This implementation is not possible for
LBlock due to the use of multiple S-boxes. We remark that this code can treat
two blocks at once (which we call double-block code), since each nibble data is
stored in a byte structure and XMM registers are 128-bit.

Table 6 shows the result, where x/y denotes x encryption speed and y de-
cryption speed in cycles per byte. We also implemented VPI-based AES [19]
and (popular) T-table AES and measured their performance figures. We ob-
serve single-block TWINE is comparable to VPI-based AES, and double-block
TWINE is even faster. The key schedule for 80-bit (128-bit) key spends about
200 (290) cycles on Core i7 2600S.

TWINE: A Lightweight Block Cipher for Multiple Platforms 351

round index of RK half shuffle

4i+ 1 0, 1, 2, 3, 4, 5, 6, 7 [1, 0, 4, 5, 2, 3, 7, 6]

4i+ 2 0, 2, 6, 4, 3, 1, 5, 7 [5, 3, 7, 1, 6, 0, 4, 2]

4i+ 3 0, 6, 5, 3, 4, 2, 1, 7 [6, 7, 3, 2, 5, 4, 0, 1]

4i+ 4 0, 5, 1, 4, 3, 6, 2, 7 [2, 4, 0, 6, 1, 7, 3, 5]

movdqa xmm2,[eax] : load RK
pxor xmm2,xmm0 : ⊕ RK
movdqa xmm3,[sbox] : load S-box
pshufb xmm3,xmm2 : apply S-box
pxor xmm1,xmm3 : ⊕ S-box out
pshufb xmm0,[sh] : half shuffle

Fig. 2. (Left) 4-round structure for SIMD-based implementation. (Right) A code of
round function.

Table 6. Enc/Dec speed (in cycles/byte) of TWINE and AES on Intel CPUs

Processor (codename) TWINE(single) TWINE(double) AES(VPI) AES(T-table)

Core i5 U560 (Arrandale) 9.47 / 9.49 4.77 / 4.77 6.66 / 9.12 14.26 / 19.27

Core i7 2600S (Sandy Bridge) 11.10 / 11.11 5.55 / 5.55 7.42 / 9.44 14.04 / 21.17

Core i3 2120 (Sandy Bridge) 15.06 / 15.06 7.55 / 7.53 10.28 / 12.37 19.03 / 28.68

Xeon E5620 (Westmere-EP) 13.62 / 13.65 6.87 / 6.87 14.72 / 17.82 31.60 / 42.69

Core2Quad Q9550 (Yorkfield) 15.16 / 15.60 7.93 / 7.95 12.16 / 14.39 22.74 / 30.94

Core2Duo E6850 (Conroe) 26.85 / 26.86 14.85 / 14.86 22.04 / 25.82 22.43 / 30.76

6 Conclusions

We have presented a lightweight block cipher TWINE, which has 64-bit block
and 80 or 128-bit key. It is primary designed to fit extremely-small hardware,
yet provides a notable software performance from micro-controller to high-end
CPU. This characteristic mainly originates from the Type-2 generalized Feistel
with a highly-diffusive block shuffle. We performed a thorough security analysis,
in particular for the impossible differential and saturation attacks. Although the
result implies the sufficient security of full-round TWINE, its security naturally
needs to be studied further.

Acknowledgments. The authors would like to thank the anonymous reviewers
for many valuable comments. We thank Maki Shigeri, Etsuko Tsujihara, Teruo
Saito, Takeshi Kawabata, Hiroyasu Kubo and Daisuke Ikemura for discussions
and helping implementations.

References

1. Bernstein, D.J., Schwabe, P.: NEON crypto (2012),
http://cr.yp.to/papers.html

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

http://cr.yp.to/papers.html

352 T. Suzaki et al.

4. Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption standard.
Springer, London (1993)

5. Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)
6. Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Character-

istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

7. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

8. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

9. Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Plat-
forms. SPEED-CC – Software Performance Enhancement for Encryption and De-
cryption and Cryptographic Compilers (2009),
http://www.hyperelliptic.org/SPEED/

10. Brumley, B.B.: Secure and Fast Implementations of Two Involution Ciphers. Cryp-
tology ePrint Archive, Report 2010/152 (2010), http://eprint.iacr.org/

11. Calik, C.: An Efficient Software Implementation of Fugue. Second SHA-3 Candi-
date Conference (2010),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html

12. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, Gaj (eds.)
[15], pp. 272–288

13. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

14. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of
Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, Hawkes (eds.)
[32], pp. 16–33

15. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg
(2009)

16. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

17. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel, Takagi (eds.) [35], pp. 326–341

19. Hamburg, M.: Accelerating AES with Vector Permute Instructions. In: Clavier,
Gaj (eds.) [15], pp. 18–32

20. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

21. Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible
Differential Cryptanalysis for Block Cipher Structures. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg
(2003)

22. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, Standaert (eds.) [27], pp. 16–32

http://www.hyperelliptic.org/SPEED/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html

TWINE: A Lightweight Block Cipher for Multiple Platforms 353

23. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov (ed.) [5], pp. 196–210

24. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

25. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible Differential Attacks on Reduced-Round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

26. Mace, F., Standaert, F.X., Quisquater, J.J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. Proceedings of the Third International
Conference on RFID Security (2007),
http://www.rfidsec07.etsit.uma.es/confhome.html

27. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Hei-
delberg (2010)

28. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

29. Minematsu, K., Suzaki, T., Shigeri, M.: On Maximum Differential Probability of
Generalized Feistel. In: Parampalli, Hawkes (eds.) [32], pp. 89–105

30. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

31. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

32. Parampalli, U., Hawkes, P. (eds.): ACISP 2011. LNCS, vol. 6812. Springer, Hei-
delberg (2011)

33. Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Per-
vasive World. Cryptology ePrint Archive, Report 2009/516 (2009),
http://eprint.iacr.org/

34. Poschmann, A., Ling, S., Wang, H.: 256 Bit Standardized Crypto for 650 GE -
GOST Revisited. In: Mangard, Standaert (eds.) [27], pp. 219–233

35. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

36. Rinne, S.: Performance Analysis of Contemporary Light-Weight Cryptographic
Algorithms on a Smart Card Microcontroller. SPEED – Software Performance
Enhancement for Encryption and Decryption (2007),
http://www.hyperelliptic.org/SPEED/start07.html

37. Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary
Lightweight Block Ciphers on 8-bit Microcontrollers. SPEED-CC – Software Per-
formance Enhancement for Encryption and Decryption and Cryptographic Com-
pilers (2009), http://www.hyperelliptic.org/SPEED/

38. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementa-
tions for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Hei-
delberg (2008)

39. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

40. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, Takagi (eds.) [35], pp. 342–357

http://www.rfidsec07.etsit.uma.es/confhome.html
http://eprint.iacr.org/
http://www.hyperelliptic.org/SPEED/start07.html
http://www.hyperelliptic.org/SPEED/

354 T. Suzaki et al.

41. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockci-
pher CLEFIA (Extended Abstract). In: Biryukov (ed.) [5], pp. 181–195

42. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

43. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossi-
ble Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

44. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

45. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Key Schedule for 128-Bit Key

Algorithm A.1: TWINE.KeySchedule-128(K(128), RK(32×36))

WK0(4)‖WK1(4)‖ . . . ‖WK30(4)‖WK31(4) ← K
for r ← 1 to 35

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RKr
(32) ←WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

WK1 ←WK1 ⊕ S(WK0),WK4 ←WK4 ⊕ S(WK16),
WK23 ←WK23 ⊕ S(WK30)
WK7 ←WK7 ⊕ 0‖CON r

H ,WK19 ←WK19 ⊕ 0‖CON r
L

WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
WK0‖ · · · ‖WK31 ← Rot16(WK0‖ · · · ‖WK31)

RK36
(32) ←WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

RK(32×36) ← RK1‖RK2‖ . . . ‖RK35‖RK36

B Test Vectors (in the Hexadecimal Notation)

key length 80-bit 128-bit

key 00112233 44556677 8899 00112233 44556677 8899AABB CCDDEEFF

plaintext 01234567 89ABCDEF 01234567 89ABCDEF

ciphertext 7C1F0F80 B1DF9C28 979FF9B3 79B5A9B8

	TWINE: A Lightweight Block Cipher for Multiple Platforms
	Introduction
	Specification of TWINE
	Design Rationale
	Basic Objective
	Parameters and Components

	Security Evaluation
	Overview
	Impossible Differential Attack
	Saturation Attack
	Differential / Linear Cryptanalysis
	Key Schedule-Based Attacks

	Implementation
	Hardware
	Software

	Conclusions
	References

