
TextonBoost: Joint Appearance, Shape and

Context Modeling for Multi-Class Object

Recognition and Segmentation

J. Shotton2, J. Winn1, C. Rother1, and A. Criminisi1

1 Microsoft Research Ltd., Cambridge, UK
{jwinn,carrot,antcrim}@microsoft.com

2 Department of Engineering, University of Cambridge
jdjs2@cam.ac.uk

Abstract. This paper proposes a new approach to learning a discrimi-
native model of object classes, incorporating appearance, shape and con-
text information efficiently. The learned model is used for automatic
visual recognition and semantic segmentation of photographs. Our dis-
criminative model exploits novel features, based on textons, which jointly
model shape and texture. Unary classification and feature selection is
achieved using shared boosting to give an efficient classifier which can
be applied to a large number of classes. Accurate image segmentation is
achieved by incorporating these classifiers in a conditional random field.
Efficient training of the model on very large datasets is achieved by ex-
ploiting both random feature selection and piecewise training methods.
High classification and segmentation accuracy are demonstrated on three
different databases: i) our own 21-object class database of photographs
of real objects viewed under general lighting conditions, poses and view-
points, ii) the 7-class Corel subset and iii) the 7-class Sowerby database
used in [1]. The proposed algorithm gives competitive results both for
highly textured (e.g. grass, trees), highly structured (e.g. cars, faces,
bikes, aeroplanes) and articulated objects (e.g. body, cow).

1 Introduction

This paper investigates the problem of achieving automatic detection, recog-
nition and segmentation of object classes in photographs. Precisely, given an
image, the system should automatically partition it into semantically meaning-
ful areas each labeled with a specific object class. The challenge is to handle a
large number of both structured and unstructured object classes, while model-
ing their variabilities. Our focus is not only the accuracy of segmentation and
recognition, but also the efficiency of the algorithm, which becomes particularly
important when dealing with large image collections.

At a local level, the appearance of an image patch leads to ambiguities in
its class label. For example, a window can be part of a car, a building or an
aeroplane. To overcome these ambiguities, it is necessary to incorporate longer
range information such as the spatial configuration of the patches on an object
(the object shape) and also contextual information from the surrounding image.
To achieve this we construct a discriminative model for labeling images which
exploits all three types of information: appearance, shape and context.
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Related work. Whilst the fields of object recognition and segmentation have
been extremely active in recent years, many authors have considered these two
tasks separately. For example, recognition of particular object classes has been
achieved using the constellation models of Fergus et al. [2], the deformable shape
models of Berg et al. [3] and the texture models of Winn et al. [4]. None of
these methods leads to a pixel-wise segmentation of the image. Conversely, other
authors have considered only the segmentation task, e.g. [5, 6].

Joint detection and segmentation of a single object class has been achieved by
several authors [7–9]. Typically, these approaches exploit a global shape model
and are therefore unable to cope with arbitrary viewpoints or severe occlusion.
Additionally, only highly structured object classes are addressed.

A similar task as addressed in this paper was considered in [10] where a
classifier was used to label regions found by automatic segmentation. However
such segmentations often do not correlate with semantic objects. Our solution
to this problem is to perform segmentation and recognition in the same unified
framework rather than in two separate steps. Such a unified approach has been
presented in [11] where only text and faces are recognized and at a high compu-
tational cost. Konishi and Yuille [12] label images using a unary classifier and
hence do not achieve spatially coherent segmentations.

The most similar work to ours is that of He et al. [1] which incorporate
region and global label features to model shape and context in a Conditional
Random Field. Their work uses Gibbs sampling for both the parameter learning
and label inference and is therefore limited in the size of dataset and number of
classes which can be handled efficiently. Our focus on the speed of training and
inference allows us to use larger datasets with many more object classes. We
currently handle 21 classes (compared to the seven classes of [1]) and it would
be tractable to train our model on even larger datasets than presented here.

Our contributions in this paper are threefold. First, we present a discrimina-
tive model which is capable of fusing shape, appearance and context information
to recognize efficiently the object classes present in an image, whilst exploiting
edge information to provide an accurate segmentation. Second, we propose fea-
tures, based on textons, which are capable of modeling object shape, appearance
and context. Finally, we demonstrate how to train the model efficiently on a very
large dataset by exploiting both boosting and piecewise training methods.

The paper is structured as follows. In the next section we describe the image
database used in our experiments. Section 3 introduces the high-level model, a
Conditional Random Field, while section 4 presents our novel low-level image
features and their use in constructing a boosted classifier. Experiments, perfor-
mance evaluation and conclusions are given in the final two sections.

2 Image Databases

Our object class models are learned from a set of labeled training images. In this
paper we consider three different labeled image databases. Our own database3

is composed of 591 photographs of the following 21 object classes: building,

3 Publicly available at http://research.microsoft.com/vision/cambridge/recognition/.
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Fig. 1. The labeled image database. A selection of images in our 21-class database
and their corresponding ground-truth annotations. Colors map uniquely to object class
labels. All images are approximately 320 × 240 pixels.

grass, tree, cow, sheep, sky, aeroplane, water, face, car, bike, flower, sign, bird,
book, chair, road, cat, dog, body, boat (fig. 1). The training images were hand-
labeled with the assigned colors acting as indices into the list of object classes.
Note that we consider completely general lighting conditions, camera viewpoint,
scene geometry, object pose and articulation. Our database is split randomly
into roughly 45% training, 10% validation and 45% test sets, while ensuring
approximately proportional contributions from each class.

Note that the ground-truth labeling of the 21-class database contains pixels
labeled as ‘void’. These were included both to cope with pixels that do not belong
to a database class, and to allow for a rough and quick hand-segmentation which
does not align exactly with the object boundaries. Void pixels are ignored for
both training and testing.

For comparison with previous work we have also used the 7-class Corel data-
base subset (where images are 180×120 pixels) and the 7-class Sowerby database
(96 × 64 pixels) used in [1]. For those two databases the numbers of images in
the training and test sets are exactly as for [1].

3 A Conditional Random Field Model of Object Classes

We use a Conditional Random Field (CRF) model [13] to learn the conditional
distribution over the class labeling given an image. The use of a Conditional
Random Field allows us to incorporate shape, texture, color, location and edge
cues in a single unified model. We define the conditional probability of the class
labels c given an image x as

log P (c|x,θ) =
∑

i

shape−texture︷ ︸︸ ︷
ψi(ci,x;θψ)+

color︷ ︸︸ ︷
π(ci,xi;θπ)+

location︷ ︸︸ ︷
λ(ci, i; θλ)

+
∑

(i,j)∈E

edge︷ ︸︸ ︷
φ(ci, cj ,gij(x);θφ)− log Z(θ,x) (1)

where E is the set of edges in the 4-connected grid, Z(θ,x) is the partition
function, θ = {θψ,θπ, θλ,θφ} are the model parameters, and i and j index
nodes in the grid (corresponding to positions in the image).

Shape-texture potentials. The shape-texture potentials ψ use features se-
lected by boosting to represent the shape, texture and appearance context of
the object classes. These features and the boosting procedure used to perform
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feature selection while training a multi-class logistic classifier are described in
section 4. We use this classifier directly as a potential in the CRF, so that

ψi(ci,x; θψ) = log P̃i(ci|x) (2)

where P̃i(ci|x) is the normalized distribution given by the classifier using learned
parameters θψ.

Edge potentials. The pairwise edge potentials φ have the form of a contrast
sensitive Potts model [14],

φ(ci, cj ,gij(x);θφ) = −θ
T
φgij(x)δ(ci 6= cj). (3)

In this work, we set the edge feature gij to measure the difference in color be-
tween the neighboring pixels, as suggested by [15], gij = [exp(−β‖xi−xj‖

2), 1]T

where xi and xj are three-dimensional vectors representing the color of the ith
and jth pixels. Including the unit element allows a bias to be learned, to re-
move small, isolated regions. The quantity β is set (separately for each image)
to (2〈‖xi − xj‖2〉)−1, where 〈·〉 averages over the image.

Color potentials capture the color distribution of the instances of a class in a
particular image. This choice is motivated by the fact that, whilst the distribution
of color across an entire class of objects is broad, the color distribution across
one or a few instances of the class is typically compact. Hence the parameters
θπ are learned separately for each image (and so this learning step needs to be
carried out at test time). This aspect of the model captures the more precise
image-specific appearance that a solely class-specific recognition system cannot.

Color models are represented as mixtures of Gaussians (GMM) in color space
where the mixture coefficients depend on the class label. The conditional prob-
ability of the color of a pixel x is given by

P (x|c) =
∑

k

P (k|c)N (x | x̄k, Σk) (4)

where k is a random variable representing the component the pixel is assigned to,
and x̄k and Σk are the mixture mean and variance respectively. Notice that the
mixture components are shared between different classes and only the coefficients
depend on the class label, making the model much more efficient to learn than
a separate GMM for each class. For a particular pixel xi we compute a fixed
soft assignment to the mixture components P (k|xi).

4 Given this assignment, we
choose our color potential to have the form

π(ci, xi; θπ) = log
∑

k

θπ(ci, k)P (k|xi) (5)

where parameters θπ act as a probability lookup-table; see (8).
4 A soft assignment was seen to give a marginal improvement over a hard assignment,

at negligible extra cost.
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Location potentials capture the weak dependence of the class label on the
absolute location of the pixel in the image. The potential takes the form of a
look-up table with an entry for each class and pixel location,

λi(ci, i;θλ) = log θλ(ci, î). (6)

The index î is the normalized version of the pixel index i, where the normalization
allows for images of different sizes; e.g. if the image is mapped onto a canonical
square then î indicates the pixel position within this canonical square.

3.1 Learning the CRF Parameters

Ideally, we would learn the model parameters by maximizing the conditional
likelihood of the true class labels given the training data. This can be achieved
using gradient ascent, and computing the gradient of the likelihood with respect
to each parameter, requiring the evaluation of marginals over the class labels for
each training image. Exact computation of these marginals is intractable due to
the complexity of the partition function Z(x, θ) in (1). Instead, we approximated
the label marginals by the mode, i.e. the most probable labeling, computed as
discussed later in this section. This choice of approximation was made because
the size of our datasets limited the time available to estimate marginals. Using
this approximation, conjugate gradient ascent did converge but unfortunately
the learned parameters gave poor results (almost no improvement on unary
classification alone).

Given these problems with directly maximizing the conditional likelihood,
we decided to use a method based on piecewise training [16] instead. Piece-
wise training involves dividing the CRF model into pieces, each of which is
trained independently. As discussed in [16], this training method minimizes an
upper bound on the log partition function. However, this bound is generally
an extremely loose one and performing parameter training in this way leads to
problems with overcounting during inference in the combined model. Modifying
piecewise training to incorporate fixed powers can compensate for overcounting.
It can be shown that this leads to an approximate partition function of similar
form of that used in [16], except that it is no longer an upper bound on the
true partition function. Optimal selection of those powers is an area of active
research. In this work, we added power parameters for the location and color
potentials and optimized them discriminatively.

Each of the potential types is therefore trained separately to produce a nor-
malized model. For the shape-texture potentials, we simply use the parameters
learned during boosting. For the location potentials, we train the parameters by
maximizing the likelihood of the normalized model containing just that potential
and raising the result to a fixed power wλ (specified in section 5) to compensate
for overcounting. Hence, the location parameters are learned using

θλ(ci, î) =

(
Nc,̂i + αλ

Nî + αλ

)wλ

(7)

where Nc,̂i is the number of pixels of class c at normalized location î in the

training set, Nî is the total number of pixels at location î and αλ is a small
integer (we use αλ = 1) corresponding to a weak Dirichlet prior on θλ.
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At test time the color parameters are learned for each image in a piecewise
fashion using Iterative Conditional Modes, similar to [15]. First a class labeling
c⋆ is inferred and then the color parameters are updated using

θπ(ci, k) =

(∑
i δ(ci = c⋆

i )P (k|xi) + απ∑
i P (k|xi) + απ

)wπ

. (8)

Given this new parameter setting, a new class labeling is inferred and this pro-
cedure is iterated [15]. The Dirichlet prior parameter απ was set to 0.1, and the
power parameter is wπ. In practice, wπ = 3, fifteen color components and two
iterations of this procedure gave good results. Because we are training in pieces,
the color parameters do not need to be learned for the training set.

Learning the edge potential parameters θφ by maximum likelihood was also
attempted. Unfortunately, the lack of alignment between object edges and label
boundaries in the roughly labeled training set forced the learned parameters to
tend towards zero. Instead, the values of the only two contrast-related parameters
were manually selected to minimize the error on the validation set.

3.2 Inference in the CRF model

Given a set of parameters learned for the CRF model, we wish to find the most
probable labeling c⋆; i.e. the labeling that maximizes the conditional probability
(1). The optimal labeling is found by applying the alpha-expansion graph-cut
algorithm of [14] (note that our energy is regular). In our case the initial config-
uration is given by the mode of the unary potentials, though the MAP solution
was not in practice sensitive to this initialization.

4 Boosted Learning of Shape, Texture and Context

The most important part of the CRF energy is the unary potential, which is
based on a novel set of features which we call shape filters. These features are
capable of capturing shape, texture and appearance context jointly. We describe
shape filters next, together with the process for automatic feature selection.

Textons. Efficiency demands compact representations for the range of different
appearances of an object. For this we utilize textons [17] which have been proven
effective in categorizing materials [18] as well as generic object classes [4]. A
dictionary of textons is learned by convolving a 17-dimensional filter bank5 with
all the training images and running K-means clustering (using Mahalanobis
distance) on the filter responses. Finally, each pixel in each image is assigned to
the nearest cluster center, thus providing the texton map (see fig. 2(a,b)).

Shape filters consist of a set of NR rectangular regions whose four corners are
chosen at random within a fixed bounding box covering about half the image
area. For a particular texton t, the feature response at location i is the count of

5 The filter bank used here is identical to that in [4], consisting of scaled Gaussians,
x and y derivatives of Gaussians, and Laplacians of Gaussians. The Gaussians are
applied to all three color channels, while the remaining filters only to the luminance.
The perceptually uniform CIELab color space is used.
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Fig. 2. Shape filter responses and appearance context. (a, b) An image and
its corresponding texton map (colors map uniquely to texton indices). (c) A rectangle
mask r (white) is offset from the center (yellow cross), and paired with a texton index
t which here maps to the blue color. (d) As an example, the feature response v(i, r, t)
is calculated at three positions in the texton map (zoomed). If A is the area of r, then
in this example v(i1, r, t) ≈ A, v(i2, r, t) ≈ 0, and v(i3, r, t) ≈ A/2. For this feature
where t is a ‘grass’ texton, our algorithm learns that points i (such as i1) belonging to
‘cow’ regions tend to produce large counts v(i, r, t), and hence exploits the contextual
information that ‘cow’ pixels tend to be surrounded by ‘grass’ pixels.

instances of that texton under the offset rectangle mask (see fig. 2(c,d)). These
filter responses can be efficiently computed over a whole image with integral
images [19] (K for each image, where K is the number of textons).

Shape filters with their pairing of rectangular masks and textons can be seen
as an extension of the features used in [19]. Our features are sufficiently general
to allow us to learn automatically shape and context information, in contrast
to techniques such as Shape Context [20] which utilize a hand-picked shape
descriptor. Figure 2 illustrates how shape filters are able to model appearance-
based context. Modeling shape is demonstrated for a toy example in fig. 3.

Joint Boosting for unary classification. A multi-class classifier is learned
using an adapted version of the Joint Boosting algorithm of [21]. The algorithm
iteratively builds a strong classifier as a sum of ‘weak classifiers’, simultaneously
selecting discriminative features. Each weak classifier is a decision stump based
on a thresholded feature response, and is shared between a set of classes, allowing
a single feature to help classify several classes at once. The sharing of features
between classes allows for classification with cost sub-linear in the number of
classes, and also leads to improved generalization.

The learned ‘strong’ classifier is an additive model of the form H(ci) =∑M
m=1 hm(ci), summing the classification confidence of M weak classifiers. This

confidence value can be reinterpreted as a probability distribution over ci using

the softmax transformation P̃i(ci|x) = exp(H(ci))∑
c′

i

exp(H(c′
i
))

[22].

Each weak-learner is a decision stump of the form

h(ci) =

{
aδ(v(i, r, t) > θ) + b if ci ∈ N
kci

otherwise
(9)

with parameters (a, b, {kc}c/∈N , θ,N, r, t) and where δ(·) is a 0-1 indicator func-
tion. The r and t indices together specify the shape filter feature (rectangle mask
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Fig. 3. Capturing local shape information. This toy example illustrates how our
shape filters capture relative positions of textons. (a) Input texton map. (b) Input bi-
nary ground-truth label map (e.g. foreground=white, background=black). (c) Example
rectangle masks (r1 and r2). (d) The feature response image v(i, r1, t1) shows a pos-
itive response within the foreground region and zero in the background. An identical
response image is computed for feature (r2, t2). Boosting would pick both these features
as discriminative. (e) A test input with textons t1 and t2 in the same relative position
as that of training. (f) Illustration that the two feature responses reinforce each other.
(e’) A second test with t1 and t2 swapped. (f ’) The summed feature responses do not
reinforce, giving a weaker signal for classification. Note (f) and (f ’) are illustrative only
since boosting actually combines thresholded feature responses.

and texton respectively), with v(i, r, t) representing the corresponding feature re-
sponse at position i. For those classes that share this feature (ci ∈ N), the weak
learner gives h(ci) ∈ {a + b, b} depending on the comparison of v(i, r, t) to a
threshold θ. For each class not sharing the feature (ci /∈ N) there is a constant
kci

that ensures asymmetrical sets of positive and negative training examples do
not adversely affect the learning procedure.

The boosting algorithm iteratively minimizes an error function which unfor-
tunately requires an expensive brute-force search over the sharing set N , the
features (r and t), and the thresholds θ. Given these parameters, a closed form
solution exists for a, b and {kc}c/∈N . The set of all possible sharing sets is ex-
ponentially large, and so we employ the quadratic-cost greedy approximation of
[21]. To speed up the minimization over features we employ the random feature
selection procedure described below. Optimization over θ ∈ Θ for a discrete set
Θ can be made efficient by careful use of histograms of feature responses.

Sub-sampling and random feature selection for training efficiency. The
considerable memory and processing requirements make training on a per-pixel
basis impractical. Computational expense is reduced by calculating filter re-
sponses on a ∆ × ∆ grid (either 3 × 3 for the smaller databases or 5 × 5 for the
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Fig. 4. Effect of random feature selection on a toy example. (a) Training error
as a function of the number of rounds (axis scales are unimportant). (b) Training error
as function of time. Randomization makes learning two orders of magnitude faster here,
with very little increase in training error for the same number of rounds. The peak in
error in the first few rounds is due to an artefact of the learning algorithm.

largest database). The shape filter responses themselves are still calculated at
full resolution to enable per-pixel accurate classification at test time.

One consequence of this sub-sampling is that a small degree of shift-invariance
is learned. On its own, this would lead to inaccurate segmentation at object
boundaries. However, when applied in the context of the CRF, the edge and
color potentials come into effect to locate the object boundary accurately.

Even with sub-sampling, exhaustive searching over all features (pairs of rec-
tangle and texton) at each round of boosting is prohibitive. However, our al-
gorithm examines only a fraction τ ≪ 1 of features, randomly chosen at each
round (see [23]). All our results use τ = 0.003 so that, over several thousand
rounds, there is high probability of testing all features at least once.

To analyze the effect of random feature selection, we compared the results of
boosting on a toy data set of ten images with ten rectangle masks, 400 textons,
and τ = 0.003. The results in fig. 4 show that using random feature selection
improves the training time by several orders of magnitude whilst having only a
small impact on the training error.

5 Results and Comparisons

Boosting accuracy. Fig. 5(a) illustrates the effect of training the boosted clas-
sifier in isolation, i.e. separately from the CRF. As expected, the error decreases
(non-linearly) as the number of weak classifiers increases. Furthermore, fig. 5(b)
shows the accuracy of classification with respect to the validation set, which
after about 5000 rounds flattens out to a value of approximately 73%.

The boosting procedure takes 42 hours for 5000 rounds on the 21-class train-
ing set of 276 images on a 2.1 Ghz machine with 2GB memory. Without random
feature selection, the training time would be around 14000 hours. Note that
due to memory constraints, the training integral images had to be computed
on-the-fly which slowed the learning down by at least a factor two.

Object class recognition and segmentation. This section presents results
for the full CRF model on our 21-class database. Our unoptimized implementa-
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Fig. 5. Error plots. Training error (a) and accuracy on the validation set (b) as
function of the number of weak classifiers. While the training error decreases almost
to zero, the validation set accuracy rises to a maximum of about 73%.

tion takes approximately three minutes to segment each test image. The majority
of this time is spent evaluating all the P̃i(ci|x) involving a few thousand weak-
classifier evaluations. Evaluating those potentials on a ∆×∆ grid (with ∆ = 5)
produces almost as good results in about twenty-five seconds per test image.

Example results of simultaneous recognition and segmentation are shown
in fig. 6. The figure shows both the original photographs and the color-coded
output labeling. Note for instance that despite large occlusions, bicycles are
recognized and segmented correctly, and large variations in the appearance of
grass and road are correctly modeled. In order to better understand the behavior
of our algorithm we also present some examples which work less well, in fig. 7.
In fig. 7(a,d) despite the recognition of the central figure being incorrect, the
segmentation is still accurate. For cases like these, the algorithm of [24] could
be used to refine the class labeling. In fig. 7(e) the entire image is incorrectly
recognized due to lack of similar examples of water in the training data, a typical
drawback of discriminative learning.

Quantitative evaluation. Figure 8 shows the confusion matrix obtained by
applying our algorithm to the test image set. Accuracy values in the table are
computed as percentage of image pixels assigned to the correct class label, ignor-
ing pixels labeled as void in the ground-truth. The overall classification accuracy
is 72.2%; random chance would give 1/21 = 4.76%, and thus our results are about
15 times better than chance. For comparison, the boosted classifier alone gives an
overall accuracy of 69.6% and so the color, edge and location potentials increase
the accuracy by 2.6%. This seemingly small numerical improvement corresponds
to a large perceptual improvement (cf. fig. 10). The parameter settings, learned
against the validation set, were M = 5000 rounds, Nt = 400 textons, edge
potential parameters θφ = [45, 10]T , and location potential power wλ = 0.1.

The greatest accuracies are for classes which have low visual variability and
many training examples (e.g. grass, book, tree, road, sky and bicycle) whilst the
lowest accuracies are for classes with high visual variability and fewer training
examples (e.g. boat, chair, bird, dog). We expect more training data to boost
considerably the recognition accuracy for those difficult classes. Additionally,
using features with better lighting invariance properties would help considerably.

Let us now focus on some of the largest mistakes in the confusion matrix to
gather some intuition on how the algorithm may be improved. Structured objects
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Fig. 6. Some example results. Above, original images with corresponding color-
coded output object-class maps. Below, color-coding legend for the 21 object classes.
For clarity, textual labels have also been superimposed on the result object maps.

Accuracy Speed (Train/Test)
Sowerby Corel Sowerby Corel

This paper – Full CRF model 88.6% 74.6% 5h/10s 12h/30s
This paper – Unary classifier only 85.6% 68.4%

He et al. – mCRF model [1] 89.5% 80.0% Gibbs Gibbs
He et al. – unary classifier only 82.4% 66.9%

Table 1. Comparison of segmentation/recognition accuracy and efficiency.

such as aeroplanes, chairs, signs, boats are sometimes incorrectly classified as
buildings. Perhaps this kind of problem may be fixed by a part-based modeling
approach. For example, detecting windows and roofs should resolve many such
ambiguities. Furthermore, objects such as cows, sheep and chairs (benches) which
in training are always seen sitting on grass do get confused with grass. This latter
effect is probably due to inaccuracies in the manual ground-truth labeling where
pixels belonging to such classes are often labeled as grass near the boundary.

Comparison with existing methods. To assess how much the shape and
context modeling help with recognition we have compared the accuracy of our
system against the framework of [4], i.e. given a (manually) selected region,
assign one single class label to it and then measure classification accuracy. On
the 21-class database, our algorithm achieves 70.5% region-based recognition
accuracy beating our implementation of [4] which achieves 67.6% using 5000
textons and their Gaussian class models. Moreover, the significant advantages
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Fig. 7. Some examples where recognition works less well. Input test images with
corresponding color-coded output object-class maps. Note that even when recognition
fails segmentation may still be quite accurate.
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16.9 18.4 9.8 6.3 8.9 1.8 9.4 19.4 4.6 4.5

2.6 0.6 0.4 2.0 91.9 2.4

20.6 24.8 9.6 18.2 0.2 3.7 1.9 15.4 4.5 1.1

5.0 1.1 0.7 3.4 0.3 0.7 0.6 0.1 0.1 1.1 86.0 0.7

5.0 1.1 8.9 0.2 2.0 0.6 28.4 53.6 0.2

29.0 2.2 12.9 7.1 9.7 8.1 11.7 19.2
4.6 2.8 2.0 2.1 1.3 0.2 6.0 1.1 9.9 1.7 4.0 2.1 62.1
25.1 11.5 3.8 30.6 2.0 8.6 6.4 5.1 0.3 6.6

Fig. 8. Accuracy of segmentation for the 21-class database. Confusion matrix
with percentages row-normalized. Overall pixel-wise accuracy 72.2%.

of our proposed algorithm are that: i) no regions need to be specified manually,
ii) a pixel-wise labeling (segmentation) of the image is obtained.

We have also compared our results with those of He et al [1] on their Corel and
Sowerby databases, as shown in table 1 and fig. 9. For both models we show the
results of the unary classifier alone as well as results for the full model. For the
Sowerby database the parameters were set as M = 6500, K = 250, θφ = [10, 2]T ,
and wλ = 2. For the Corel database, all images were first automatically color and
intensity normalized and the training set was augmented by applying random
affine intensity changes to give the classifier improved invariance to illumination.
The parameters were set as M = 5000, K = 400, θφ = [20, 2]T , and wλ = 4.

Our method gives comparable or better (with unary classifier alone) results
than [1]. However, the careful choice of efficient features and learning techniques,
and the avoidance of inefficient Gibbs sampling enables our algorithm to scale
much better with the number of training images and object classes. Incorporating
semantic context information as [1] is likely to improve our performance.
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Fig. 9. Example results on the Corel and Sowerby databases. A different set
of object class labels and thus different color-coding is used here. Textual labels are
superimposed for clarity.

Fig. 10. Effect of different model potentials. The original input image (a) and the
result from the boosted classifier alone (b), with no explicit spatial coherency; brighter
pixels correspond to lower entropy of the unary potentials. (c) Results for the CRF
model without color modeling, i.e. omitting term π in (1), and (d) for the full CRF
model. Segmentation accuracy figures are given over the whole dataset. Observe the
marked improvement in perceived segmentation accuracy of the full model over the
boosted classifier alone, despite a seemingly small numerical improvement.

The effect of different model potentials. Figure 10 shows results for varia-
tions of our model with different potentials included. It is evident that imposing
spatial coherency (c) as well as an image dependent color model (d) improves the
results considerably. The percentage accuracies in fig. 10 show that each term
in our model captures essential information from the training set. Note that
the improvement given by the full model over just the unary classifiers, while
numerically small, corresponds to a significant increase in perceived accuracy
(compare fig. 10b with 10d) since the object contour is accurately delineated.

6 Conclusions
This paper has presented a new discriminative model for efficient recognition
and simultaneous semantic segmentation of objects in images. We have: i) intro-
duced new features which capture simultaneous appearance, shape and context
information, ii) trained our model efficiently by exploiting both boosting and
piecewise training techniques, iii) achieved efficient labeling by a combination of
integral image processing and feature sharing. The result is an accurate algorithm
which recognizes and locates a large number of object classes in photographs.

In the future we hope to integrate explicit semantic context information such
as in [1] to improve further the classification accuracy. We are also interested
in learning object parts (for structured objects) and their spatial arrangement.
While we currently capture shape and thereby some implicit notion of objects
‘parts’, an explicit treatment of these would better model structured objects.
Acknowledgements. The authors would like to thank Florian Schroff, Roberto Cipolla,
Andrew Blake and Andrew Zisserman for their invaluable help.



14

References
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