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Abstract

This paper makes two contributions. It provides (1) an
operational definition of textons, the putative elementary
units of texture perception, and (2) an algorithm for par-
titioning the image into disjoint regions of coherent bright-
ness and texture, where boundaries of regions are defined
by peaks in contour orientation energy and differences in
texton densities across the contour.

Julesz introduced the term texton, analogous to a
phonemein speech recognition, but did not provide an oper-
ational definition for gray-level images. Here we re-invent
textons as frequently co-occurring combinations of oriented
linear filter outputs. These can be learned using a K-means
approach. By mapping each pixel to its nearest texton, the
image can be analyzed into texton channels, each of which
isa point set where discrete techniques such as Voronoi di-
agrams become applicable.

Local histograms of texton frequencies can be used with
a x? test for significant differences to find texture bound-
aries. Natural images contain both textured and untextured
regions, so we combine this cue with that of the presence of
peaks of contour energy derived from outputs of odd- and
even-symmetric oriented Gaussian derivative filters. Each
of these cues has a domain of applicability, so to facilitate
cue combination we introduce a gating operator based on a
statistical test for isotropy of Delaunay neighbors. Having
obtained a local measure of how likely two nearby pixels
are to belong to the same region, we use the spectral graph
theoretic framework of normalized cutsto find partitions of
the image into regions of coherent texture and brightness.
Experimental results on a wide range of images are shown.

1 Introduction

This paper has twin objectives. It provides (1) an opera
tional definition of textons, the putative elementary units of
image analysis, and (2) an algorithm for partitioning theim-
age into digoint regions based on both brightness and tex-

ture. These objectives are coupled—cue integration relies
on, and thus reveals, the advantages of the texton represen-
tation.

1.1 Introducing Textons

Julesz introduced the term texton, analogous to a
phoneme in speech recognition, more than 20 years ago [9]
as the putative units of preattentive human texture per-
ception. He described them qualitatively for simple bi-
nary line segment stimuli—oriented segments, crossings
and terminators—but did not provide an operational defi-
nition for gray-level images. Subsequently, texton theory
fell into disfavor as a model of human texture discrimina-
tion as accounts based on spatial filtering with orientation
and scale-selective mechanisms which could be applied to
arbitrary gray-level images became popular.

There is a fundamental, well recognized, problem with
linear filters. Generically, they respond to any stimulus. Just
because you have a response to an oriented odd-symmetric
filter doesn’t mean thereis an edge at that location. It could
be that there is a higher contrast bar at some other location
in a different orientation which has caused this response.
Tokens such as edges or bars or corners can not be associ-
ated with the output of asingle filter. Rather it is the signa-
ture of the outputs over scales, orientations and order of the
filter that is more revealing.

Here we introduce a further step by focussing on the
outputs of these filters considered as points in a high di-
mensional space (typically on the order of 36 filters are
used). We perform vector quantization, or clustering, in this
high-dimensional space to find prototypes. Call these pro-
totypes textons—we will find empirically that these do tend
to correspond to oriented bars, terminators and so on. One
can construct a universal texton vocabulary by processing
a large number of natural images, or we could find them
adaptively in windows of images. In each case the k£-means
technique can be used. By mapping each pixel to the tex-
ton nearest to its vector of filter responses, the image can be
analyzed into texton channels, each of which isapoint set.



It is our opinion that the analysis of an image into tex-
tonswill proveuseful for awide variety of visual processing
tasks. For instance, in [13] we use the related notion of 3D
textons for recognition of textured materials. In the present
paper, our objective is to develop an algorithm for the seg-
mentation of an image into regions of coherent brightness
and texture—we will find that the texton representation will
enable usto address the key problemsin avery natural fash-
ion. Let's begin with a review of the outstanding issues in
low level image segmentation.

1.2 Challengesin image segmentation

Scale selection in textured regions continues to be a fun-
damental problem—whatever one's choice of textured de-
scriptor, it has to be computed over a local window whose
size and shape need to be determined adaptively. What
makes scale selection a challenge is that the technique must
deal with the wide range of textures—regular such as the
polka dots in Figure 8(b), stochastic in Figure 8(a), or in-
termediate cases such as the stripes of the tiger in Fig-
ure 8(c)—in a seamless way. Furthermore it would be desir-
ableif in the neighborhood of boundaries, the windows over
which texture descriptors are computed could be shaped to
lielargely on the correct side of the boundary.

The other major issue is dealing with images which have
both textured and untextured regions. Here boundaries must
be found using both contour and texture analysis. However
what we find in the literature are approaches which concen-
trate on one or the other.

Contour analysis (e.g. edge detection) may be adequate
for untextured images, but in a textured region it resultsin
a meaningless tangled web of contours. Think for instance
of what an edge detector would return on the snow region
in Figure 8(a). The traditional “solution” for this problem
in edge detection is to use a high threshold so as to mini-
mize the number of edges found in the texture area. Thisis
obviously a non-solution—such an approach means that low-
contrast extended contours will be missed aswell. Thereis
no recognition of the fact that extended contours, even weak
in contrast, are perceptually significant.

While the perils of using edge detection in textured re-
gions have been noted before (see eg. [2]), a complemen-
tary problem of contours constituting a problem for tex-
ture analysis does not seem to have been recognized before.
Typical approaches are based on measuring texture descrip-
tors over local windows, and then computing differences
between window descriptors centered at different locations.
Boundaries can then give rise to thin strip-like regions, as
in Figure 1. For specificity, assume that the texture descrip-
tor is a histogram of linear filter outputs computed over a
window. Any histogram window near the boundary of the
two regions will contain large filter responses from filters
oriented along the direction of the edge. However, on both

sides of the boundary, the histogram will indicate a feature-
less region. A segmentation algorithm based on, say, x>
distances between histograms, will inevitably partition the
boundary asagroup of itsown. Asisevident, theproblemis
not confined to the use of ahistogram of filter outputs astex-
ture descriptor. Figure 1 (b) shows the actua groups found
by an EM style algorithm using an alternative color/texture
descriptor [1].
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Wi;; werely on normalized cutsto go from these local mea-
suresto aglobally optimal partition of the image.

The algorithm begins by analyzing the image into tex-
tons (§2). In the next stage (§3), we determine for every
pixel asuitablelocal neighborhood, the appropriate window
for computing the local texture descriptor, and a measure of
the anisotropy of this neighborhood. A histogram of texton
densities is used as the texture descriptor. We use a gating
operator based on a statistical test for isotropy of Delaunay
neighbors. These computations critically rely on the spatial
analysis of individual texton channels. The fact that each
texton channel is a point set is very convenient, because it
enables one to use discrete techniques such as Voronoi dia-
grams and Delaunay triangulations.

We are now ready (§4) to specify the arc weights W;;
combining both brightness and texture information. The
texture cue is coded by making the arc weight dependent
on x?2 differences between local texton histograms; and the
brightness cue is treated in the intervening contour frame-
work of Leung and Malik [12] using peaks in contour ori-
entation energy. The anisotropy of the local descriptor win-
dow at a pixel serves to gate between these cues so as to
circumvent the problems listed in §1.2.

Results from the algorithm are presented in §5.



2 Filtersand Textons

Since the early 1980s, many approaches have been pro-
posed in the computer vision literature that employ filter-
based descriptions of images [6, 10, 14]. By the term filter-
based we mean that the fundamental representation for a
pixel in an image includes not only its brightness or color
information, but also the inner product of the neighborhood
centered on that pixel with a set of filters tuned to various
orientations and spatial frequencies. (See Figure 2 for an
example of such afilter set.)

7). The basic filter is
a difference-of-Gaussian quadrature pair with 3 : 1 elonga-
tion. Each filter is divided by its L1 norm for scale invari-
ance.

As discussed for examplein [8, 11], vectors of filter re-
sponses have many appealing properties, including rel ation-
ships to physiological findings in the primate visual sys-
tem [3] and to the basic mathematical notion of a Taylor
series expansion.

Though the representation of textures using filter re-
sponsesisextremely versatile, one might say that it isoverly
redundant (each pixel values is represented by Ny filter
responses, where N¢; is usually around 36). Moreover, it
should be noted that we are characterizing textures, enti-
ties with some spatially repeating properties by definition.
Therefore, we do not expect the filter responsesto betotally
different at each pixel over the texture. Thus, there should
be several distinct filter response vectors and all others are
noisy variations of them.

This observation leads to our proposal of clustering the
filter responses into a small set of prototype response vec-
tors. We call these prototypes textons. Algorithmicaly,
each texture is analyzed using the filter bank shownin Fig-
ure 2. There are a total of 36 filters. Each pixel is now
transformed to a Ny;; = 36 dimensional vector of filter
response These vectors are clustered using a K -means al-
gorithm. The criterion for this algorithmisto find X “cen-
ters’ such that after assigning each datavector to the nearest
center, the sum of the squared distance from the centersis
minimized. K-meansis a greedy algorithm that finds alo-
cal minimum of this criterion'. In this paper, we use the

1For more discussions and variations of the K-means agorithm, the
reader isreferred to [4, 7).

knmeans function in the NETLAB toolbox [15].

It is useful to visualize the resulting cluster centers in
terms of the origina filter kernels. To do this, recall that
each cluster center represents a set of projections of each
filter onto a particular image patch. We can solve for the
image patch corresponding to each cluster center in a least
squares sense by premultiplying the vectors representing the
cluster centers by the pseudoinverse of the filterbank [8].
The matrix representing the filterbank is formed by con-
catenating the filter kernels into columns and placing these
columns side by side. The set of synthesized image patches
for two test images are shown in Figures 3(b) and 4(b).
These are our textons. The textons represent assemblies of
filter outputs that are characteristic of the local image struc-
ture present in the image.
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means with K = 25, sorted in decreasing order by norm.
(c) Mapping of pixelsto the texton channels. The dominant
structures captured by the textons are translated versions of
the dark spots. We aso see textons corresponding to faint
oriented edge and bar elements. Notice that some channels
contain activity inside atextured region or along an oriented
contour and nowhere el se.

Looking at the polka-dot example, we find that many of
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means with K = 25, sorted in decreasing order by norm.
(c) Mapping of pixels to the texton channels. Among the
textons we see edge elements of varying orientation and
contrast along with elements of the stochastic texture in the
rocks.

the textons correspond to translated versions of dark spots?.
Also included are a number of oriented edge elements of
low contrast and two textons representing nearly uniform
brightness. The pixel-to-texton mapping is shown in Fig-
ure 3(c). Each subimage shows the pixelsin the image that
are mapped to the corresponding texton in Figure 3(b). We
refer to this collection of discrete point sets as the texton
channels. Since each pixel is mapped to exactly one texton,
the texton channels constitute a partition of the image.
Textons and texton channels are aso shown for the pen-
guin image in Figure 4. Notice in the two examples how
much the texton set can change from one image to the
next. The spatial characteristics of both the deterministic

2|t is straightforward to develop a method for merging trandated ver-
sions of the same basic texton, though we have not found it necessary.
Merging in this manner decreases the number of channels needed but ne-
cessitates the use of phase-shift information.

polka dot texture and the stochastic rocks texture are cap-
tured across several texton channels. In general, the texture
boundaries emerge as point density changes across the dif-
ferent texton channels. In some cases, atexton channel con-
tainsactivity inside aparticular textured region and nowhere
else. By comparison, vectorsof filter outputs generically re-
spond with some value at every pixel —a considerably less
clean alternative.

3 Texton Channel Analysis

Asdiscussed in the preceding section, the mapping from
pixel to texton channel provides us with a number of dis-
crete point sets where before we had continuous-val ued fil -
ter vectors. Such a representation is well suited to the ap-
plication of techniques from computational geometry and
point process statistics. With these tools, one can approach
guestions such as, “what is the neighborhood of a texture
element?’ and “how similar are two pixelsinside atextured
region?’

3.1 Defining Local Scale Selection

The texton channel representation provides us a natural
way to define texture scale. If the texture is composed of
texels, we might want to define a notion of texel neighbors
and consider the mean distance between them to be a mea-
sure of scale. Of course, many textures are stochastic and
detecting texels reliably may be hard even for regular tex-
tures.

With textons we have a “ soft” way to define neighbors.
For a given pixel in a texton channel, first consider it as
a “thickened point’— a disk centered at it. The idea is
that while textons are being associated with pixels, since
they correspond to assemblies of filter outputs, it is better
to think of them as corresponding to a small image disk de-
fined by the scale used in the Gaussian derivativefilters. Re-
call Koenderink’s aphorism about a point in image analysis
being a Gaussian blob of small o !

Now consider the Delaunay neighbors of all the pixelsin
the thickened point of a pixel ¢ which lie closer than some
outer scale.®. The statistics of Delaunay edge lengths pro-
vides a natural measure of scale. In passing, we note that
this neighborhood tends to be in the same image region as
pixel 7, since all the nodes in it belong to the same texton
channel and are proximal.

In Figure 53, the Delaunay triangulation of a zoomed-in
portion of one of the texton channels in the rocky region of
Figure 4 is shown atop a brightened version of the image.
Here the nodes represent pointsthat are similar in the image
while the edges provide proximity information.

3Thisis set to 13 pixelsin our experiments.



3.2 Characterizing | sotropy

We will find it necessary later in this paper when we ex-
amine cue integration to have a statistical test for whether a
pixel isin the interior of atextured region or on its bound-
ary. The notion of Delaunay neighborhood for a thickened
point defined previously can be used. We consider the ori-
entations of the vector from pixel i to each of these points. 4

We aobtain the local estimate of isotropy by performing
a simple statistical test for randomness on the neighbor-
hood the pixels inside each texton channel. The following
description will use Figure 5 to illustrate this by example;
here we consider two sample pixels in the penguin image,
the first on the wing boundary, the second inside the rocky
ground.

The neighborhood for a point on the wing boundary is
shown in Figure 5c; the filled circle marks pixel 4 and the
open circles mark its neighbors. For this pixel, the neigh-
borhood is clearly not isotropic. Thisis quantified by com-
puting the modified Kuiper statistic V' [5] from the angles
of the vectors connecting pixel 4 to its neighbors. Denoting
thesorted anglesby 64, .. ., 8, thetest proceeds asfollows.
Let

I :01/27(,...,.’1}”:9”/27(

and compute the statistics

. 1 2
D} =maximumof — — =z, = —zs,...,1—m,
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D, =maximumof zy,20——, 25— —,..., %, —
n n n

V, =D +D;, and V =V,(n®+0.155+0.24/n3)

Intuitively, thisis like a Kolmogorov-Smirnov test for uni-
formity where the data points are angles. Tabulated values
for this test are given in [5]; from this we find that when
V' > 2 the neighborhood fails the isotropy test at an upper
percentage point of 0.01. The value of V for the pixel on
thewing boundary is2.3; henceitislabelled “ not isotropic.”
By contrast, a pixel chosen in the rocky ground area gives
usV = 0.8, and istherefore labelled “isotropic.”

3.3 Computing windowed texton histogram

Pairwise texture similarities can be computed by com-
paring windowed texton histograms, where the windowsare
centered around the two pixels being compared. Each his-
togram has K bins, one for each texton channel. The value
of the kth histogram bin for a pixel ¢ isfound by counting
how many pixels fall inside a box® centered around pixel

4We exclude immediate 8 grid neighbors of 4 as they definitely do not
constitute samples independent from 4.

5At this stage we have not implemented scale selection and just use
boxesof size11 x 11 pixels.

in texton channel k. Thus the histogram represents texton
frequenciesin alocal neighborhood. We can write this as

hi(k) = > I[T(j) = k]

JeEW(i)

where W(i) is the set of pixelsin the box centered on i,
I[-] is the indicator function, and 7'(j) returns the texton
assigned to pixel j.

4 and the open
circles mark its neighbors. (c,d) Visualization of the com-
putation of the statistical test for isotropy. Thetest value for
(@ isV = 0.8 while that of (b) isV = 2.3. Using a sig-
nificance level of 0.01, the isotropy hypothesis is rejected
whenV > 2.

4 Cuecombination strategy

The obvious approach to cue integration (integrating in-
formation from both contours and textures) is to define
the weight between pixels ¢ and j as the product of the
contribution from texture and that from contour: W;; =
W/C x WIX. We haveto be careful to avoid the problems
listed in the Introduction (§1.2) by suitably gating the cues.
The spirit of the gating method is to make each cue “harm-
less” in the vicinity of regions where one or the other cue
should not be operating. This will manifest itself as sup-
pression of oriented energy inside regions when comput-
ing the contour weights, and suppression of textons along
boundaries when computing the texture weights.

Here is our way of defining the individual components
and combining them:



4.1 Contour

The definition of Wigo is adopted from that defined
in [12]. Contour information in an image is computed
“softly” through orientation energies (OE) from elongated
quadrature filter pairs. We introduce a slight modification
hereto allow for exact sub-pixel localization of the contour
by finding the local maxima in the orientation energy per-
pendicular to the contour orientation [16]. The confidence
of this contour is given by the orientation energy. W/ is
then defined as follows:

Wigc = exp(— max OE(x)/orc)

rEM;;

where A4;; isthe set of local maxima along the line joining
pixelsi and j. In words, two pixels will have aweak link
between them if there is a strong local maximum of orien-
tation energy along the line joining the two pixels. On the
contrary, if there is little energy, for example in a constant
brightness region, the link between the two pixels will be
strong.

4.2 Measuring Texture Similarity

Pairwise texture similarities can be computed by com-
paring windowed texton histograms computed using the
technique described previously (§3.3). A number of meth-
ods are available for comparing histograms; among them a
simple and effective choice is the x2 test, defined as

hi (k)2
2(hiy hy) Z[ (k))]

where h; and h; are the two histograms. For a comparison
of the x? test versus other texture similarity measures, the
readers are referred to [17].

WX is defined using the x* distance between texton
histograms at pixelsi and j:

WX = exp(—x*(hi, h;)/orx)
4.3 CueCombination
Cue combination is accomplished in the following steps.

1. We first compute the isotropic measure «.(i) and un-
isotropic measure §(4) at each point, ¢, in the image.
One can think of a(4) as the 1D-ness measure, while
B(i) asthe texture-ness measure. Define

alt) =
Bl) =

To simplify the computaton, a discrete version of the
sigmoid is used in our experiments. We select the
threshold V' at 2.0 at each pixel as discussed in §3.2.
Figure 6 shows one such computed o: and 8 map on a
tiger image.

sigmoid(V (i), threshold)
1 — sigmoid(V (%), threshold)

aand g
measure in a tiger image. The « and 3 values are thresh-
olded at 2.0, and masked on the original image.

2. We then compute the texture feature descriptor at each
pixel of the image, gated by the function «(7). The
main ideaisto ignore any neighboring pixelswhich are
near a region boundary in the histogram computation.
Define the gated histogram as.

Z [1 = a(HUT() = ]
JEW(Z)
where Z(i) = 3 ew(;) (1 — a(4)). This definition of

texture histogram avoids the problem of texture com-
parison near object boundaries. At intensity bound-
aries, the boundaries themselves can no longer be used
asfeatures, and therefore will not form groups on their
own. This definition of the gated histogram also has
a desirable behavior near texture boundaries: it tends
to pool information from the correct side of the region.
Figure 7 illustrates this point. From the gated texture

Region 2

Boundary
Neighborhood

Region 1

VA

Figure 7. At the texture boundary, the proposed gated his-
togram tends to pool information from the “ correct region”.
Take the point marked “A” in the boundary region between
the dashed lines as an example. By masking out all features
in the boundary neighborhood, the texture histogram com-
puted for “A” will contain only the information from region
1. This avoids the problem of having corrupted texture his-
togram information as we get closer to the region boundary.

histogram, we can compute the pair-wise texture simi-
larity, WTX (i, ) as

WTX(i,5) = exp(=x*(h{, h$) /orx)

As we move deeper into the boundary region, we have



fewer points in the neighborhood to compute the his-
togram. Inthat case, the histogram difference becomes
less reliable, and therefore should be discounted. We
define the reliability measure for each histogram mea-
sure at pixel p(i) = sigmoid(Z (i), thresholdy,). In
our experiments, thethreshold,, isset to 0.05x| W (7).

3. In parallel to the texture computation, the intervening
contour cue gated by the texture-ness can be used to
group/segment pixels. The computation is same asin
§4.1, except the filter energy is suppressed by texture-
ness measure 3(4).

w3, ) = - OE .
(4,7) = exp( e X (z)/orc)

4. Let the two pair-wise feature distance functions com-
puted in the two previous steps be W% (i, j) and
WIC(i, 5), from the texture cue and intervening con-
tour cue respectively. Since the test for isotropy is
purely alocal one, one expects the oz and 3 function
to misfire sometimes. By combining the two cues, and
applying global grouping algorithm to this data, we
hope to “smooth out” these errors in the o and 3 es-
timates. The rule we have for combining two cuesis:

W(i,j) = W (i, )P W6, 5)]

where p(Z, 5) = min(p(i), p(4)) is the significance of
the histogram comparison between pixelsi and j.

5. Applying grouping algorithm to the combined pair-
wise similarity measure to obtain the final segmenta-
tion. We used the normalized cut algorithm for this
step [18]. The global nature of the normalized cut al-
gorithm help us overcomethe errorsin the local « and
3 computation.

5 Reaults

We haverun our algorithm on avariety of natural images.
Figures 8 and 9 show typical segmentation results. In all
the cases, the regions are cleanly separated from each other
using combined texture and contour cues.

Grouping based on each of the cues aone would re-
sult in severe artifacts: In Figure 8a, the contours on the
penguin would form isolated groups using the texture cue.
Similar problems would occur at the intensity boundaries
in 8b and 8c. Grouping based on contour information alone
would result in over-fragmentation of the pebbles in 8a
and 9a, and the tiger body in 8c. On the other hand, in Fig-
ure 8b the lower arm can not be separated from the upper
arm without using contour information.
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