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We have developed Textpresso, a new text-mining system for scientific literature whose capabilities go far beyond
those of a simple keyword search engine. Textpresso’s two major elements are a collection of the full text of scientific
articles split into individual sentences, and the implementation of categories of terms for which a database of articles
and individual sentences can be searched. The categories are classes of biological concepts (e.g., gene, allele, cell or
cell group, phenotype, etc.) and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g.,
biological process, etc.). Together they form a catalog of types of objects and concepts called an ontology. After this
ontology is populated with terms, the whole corpus of articles and abstracts is marked up to identify terms of these
categories. The current ontology comprises 33 categories of terms. A search engine enables the user to search for one
or a combination of these tags and/or keywords within a sentence or document, and as the ontology allows word
meaning to be queried, it is possible to formulate semantic queries. Full text access increases recall of biological data
types from 45% to 95%. Extraction of particular biological facts, such as gene-gene interactions, can be accelerated
significantly by ontologies, with Textpresso automatically performing nearly as well as expert curators to identify
sentences; in searches for two uniquely named genes and an interaction term, the ontology confers a 3-fold increase of
search efficiency. Textpresso currently focuses on Caenorhabditis elegans literature, with 3,800 full text articles and
16,000 abstracts. The lexicon of the ontology contains 14,500 entries, each of which includes all versions of a specific
word or phrase, and it includes all categories of the Gene Ontology database. Textpresso is a useful curation tool, as
well as search engine for researchers, and can readily be extended to other organism-specific corpora of text.
Textpresso can be accessed at http://www.textpresso.org or via WormBase at http://www.wormbase.org.
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Introduction

Text-mining tools have become indispensable for the
biomedical sciences. The increasing wealth of literature in
biology and medicine makes it difficult for the researcher to
keep up to date with ongoing research. This problem is
worsened by the fact that researchers in the biomedical
sciences are turning their attention from small-scale projects
involving only a few genes or proteins to large-scale projects
including genome-wide analyses, making it necessary to
capture extended biological networks from literature. Most
information of biological discovery is stored in descriptive,
full text. Distilling this information from scientific papers
manually is expensive and slow, if the full text is available to
the researcher at all. We therefore wanted to develop a useful
text-mining tool for full-text articles that allows an individual
biologist to locate efficiently information of interest.

The natural language processing field distinguishes infor-
mation retrieval from information extraction. Information
retrieval recovers a pertinent subset of documents. Most such
retrieval systems use searches for keywords. Many Internet
search engines are of this type, such as PubMed (http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi). Information extrac-
tion is the process of obtaining pertinent information (facts)
from documents. The facts can concern any type of biological
object (entity), events, or relationships among entities. Useful
measures of the performance of retrieval and extraction
systems are recall and precision. In the case of retrieval, recall

is the number of pertinent documents returned compared to
all pertinent documents in the corpus of text. Precision is the
number of pertinent documents compared to the total
number of documents returned. A fully attentive reader
would have complete recall, but low precision, because he has
to read the whole body of text to find information. The
emphasis for most applications is on recall, and we thus
sought a system with high recall and as high precision as
possible.
Attempts to annotate gene function automatically include

statistical approaches, such as cooccurrence of biological
entities with a keyword or Medical Subject Heading term
(Stapley and Benoit 2000; Jenssen et al. 2001). These methods
have high recall and low precision, as no effort is being made
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to identify the kind of relationship as it occurs in the
literature. Another approach has involved semantic and/or
syntactic text-pattern recognition methods with a keyword
representing an interaction (Sekimizu et al. 1998; Thomas et
al. 2000; Friedman et al. 2001; Ono et al. 2001). They have
high precision but low recall, because recognition patterns
are usually too specific. Other machine learning approaches
have classified abstracts and sentences for relevant inter-
actions, but have not extracted information (Marcotte et al.
2001; Donaldson et al. 2003). For a more detailed report of
these and related projects, see reviews by Andrade and Bork
(2000), de Bruijn and Martin (2002), and Staab (2002).

The precision of a keyword search can be increased by
searching for combinations of keywords. For example, a
researcher might construct a search for ‘‘anchor cell’’ and the
gene name ‘‘lin-12’’ because he is interested in learning
whether lin-12 plays a role in the anchor cell. However, there
are many potential ways to describe the same concept or
biological entity. Also, one often wants to search for a
category of terms such as any gene or any body part. In this
case, the intended search might be of a more general nature:
If the researcher asks which genes are of interest in the
anchor cell at all, he might have a hard time typing in all the
known gene names (either one by one or concatenated with
the Boolean operator ‘‘or’’) in combination with the cell
name. We therefore sought to develop a system that uses
categories of terms such as ‘‘gene,’’ ‘‘cell,’’ or ‘‘biological
process.’’ We established these categories of terms and
organized them as an ontology, a catalog of types of objects
and concepts and their relationships. The categories impart a
semantic quality to searches, because the categories are based
on the meaning of the entries.

In many cases literature databases only contain biblio-
graphic information and abstracts. The latter suffer from the
constraint of information compression and convolution
imposed by a word limit. Access to the full text of articles is
critical for sufficient coverage of facts and knowledge in the
literature and for their retrieval (Blaschke and Valencia
2001); our results confirm these findings. We wanted to use
the Caenorhabditis elegans literature as a test case for develop-
ing a useful information extraction system. C. elegans has a
relatively small literature, so in principle we could use it to
test a complete, well-defined corpus.

We also wanted to support a new database curation effort
involving manual literature curation (Stein et al. 2001).
Literature curation consists of identifying scientific data in
literature and depositing them in an appropriate manner in a
database. One extreme curation method is to read through
the whole corpus of literature, identifying and extracting all
significant information. This approach has the advantage that
quality control of the data is done to the highest degree,
based on human expertise. However, the volume and growth
of biological literature makes it hard to keep the biological
database up to date. In addition, data in literature may be
missed by oversight, an inevitable flaw of purely human
curation. The other extreme curation method is to extract
data automatically. We therefore wanted a system that uses
the computer to assist the curators.

Our system is defined by two key components: the
introduction of an ontology and the searchability of full text.
The ontology is organized into categories that facilitate
broader searches of biological entities as illustrated above. To

be useful, it should also contain other categories that are not
composed of biological entities, but describe relationships
between entities. We sought to offer the user an opportunity
to query the literature in the framework of the ontology such
that it returns sentences for inspection by the user. We
hypothesized that searching the corpus of text with a
combination of categories of an ontology could facilitate a
query that contains the meaning of a question in a much
better way than with keywords alone. For example, if there is
a ‘‘gene’’ category containing all gene names and a
‘‘regulation’’ category that includes all terms (nouns, verbs,
adjectives, etc.) describing regulation, searching for (at least)
two instances of the category gene and one instance of the
category regulation in a sentence increases the chance that
the search engine will return a sentence describing a gene-
gene regulation. The search could then be limited by using a
particular gene name as a keyword to get a list of genes that
regulate or are regulated by that particular gene.

Results

We have developed a text processing system, Textpresso,
that splits papers into sentences, and sentences into words or
phrases. Each word or phrase is then labeled using the
eXtensible Markup Language (XML) according to the lexicon
of our ontology (described below). We then index all
sentences with respect to labels and words to allow a rapid
search for sentences that have a desired label and/or keyword.
The labels fall into 33 categories that comprise the
Textpresso ontology. We built a database of 3,800 C. elegans
papers, bibliographic information from WormBase, abstracts
of C. elegans meetings and the Worm Breeder’s Gazette, and
some additional links and WormBase entities. See Materials
and Methods for details on the database preparation.

Textpresso Ontology
Abstracts, titles, and full texts in the Textpresso system are

processed for the purpose of marking them up semantically
by the ontology we constructed. An ontology is a catalog of
types of objects and (abstract) concepts devised for the
purpose of discussing a domain of interest. An ontology helps
to clarify a domain’s semantics for everyday use, as is nicely
demonstrated by Gene Ontology (GO; The Gene Ontology
Consortium 2000). Although GO terms are not intended as a
representation of natural language prose, they are a rich
source of biologically meaningful terms and synonyms. They
are the foundations for three corresponding categories in
Textpresso, which are added to its 30 other categories. GO
terms comprise approximately 80% of the lexicon.
The first group of categories in the Textpresso ontology

consists of biological entities: It contains the categories gene,
transgene, allele, cell and cell group, cellular component,
nucleic acid, organism, entity feature, life stage, phenotype,
strain, sex, drugs and small molecules, molecular function,
mutant, and clone. We have incorporated the GO molecular
function category and proteins in the Textpresso molecular
function category. A more detailed list with definitions can be
found on the Textpresso Web site, and the most important
ones are provided in Table 1. Many of these categories have
subcategories. For example, the molecular function category
has the subcategories ‘‘source = (GojTextpresso)’’ and
‘‘protein = (yesjno).’’ As we have imported all terms from
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GO, the first subcategory makes it possible to search
specifically for GO terms. Terms added by us have the
attribute ‘‘Textpresso.’’ Similarly, not all molecular function
terms are classified as protein. The word ‘‘co-transporter,’’
for example, conveys more of a function and would be used
more in this context in the literature, even though its physical
realization may in fact be a protein. A list of all subcategories
can be found in Table 2.

The second group of categories comprises terms that
characterize a biological entity or establish a relation between
two of them. It includes physical association (in the sense of
binding) and consort (abstract association), effect, purpose,
pathway, regulation, comparison, spatial and time relation,
localization in time and space, involvement, characterization

(terms that express the characterization of something),
method, biological process, action, and descriptor (words
that describe the state or condition of an entity). These
categories, while well defined, have somewhat delicate
boundaries, and the common-sense aspects of our ontology
apply more to this group. It is likely that its categories are
going to be changed as we continue to develop the system. In
some instances terms are attributed to one category, even
though they might as well fit into another. As an example, the
term ‘‘coexpress’’ is put in the ‘‘consort’’ category to
emphasize the concurrent aspect of the process, while it
could as well be classified as a biological process. However, we
believe that in most cases the first sense of the word is used in
the literature.

Table 1. The 18 Biologically Most Relevant of the 33 Categories of the Textpresso Ontology

Category Definition Examples

Transgene An artificially constructed gene that is inserted into the germ-
line in a manner that ensures its function, replication, and
transmission as a normal gene

osm-9::GFP, syIs9

Biological process Broad biological goals, such as mitosis or purine metabolism,
that are accomplished by ordered assemblies of molecular
functions

Expression, replication,
protein translation

Molecular function The tasks performed by individual gene products DNA helicase
Gene A group of physical features on a chromosome that act to-

gether in such a way as to eventually, via transcription and
perhaps translation, result in a gene product

locus, let-60, lin-12

Cell or cell group The basic subunit of any living thing, typically containing ge-
netic material, an energy-producing system, and other com-
ponents,all surrounded by a wall and/or membrane; a cell
group is a collection of cells that show very similar, if not
identical, phenotypic characteristics

Sensory neuron, muscle, HSNa

Localization in
time or space

A position or site occupied or available for occupancy or
marked by some distinguishing feature in time or space

Before, middle, at

Method A way, technique, or process for doing something Cell ablation, immunoprecipitation
Entity feature A feature or component of a biological entity Transposon, codon, valine
Regulation The act of fixing or adjusting a quality (time, amount, degree,

or rate) of an entity upon itself (autoregulation) or on another
entity or entities (A regulates B)

Enhance, derepress, suppress

Action The exertion of energy or influence on any entity Facilitate, enter, elicit
Involvement To be present in an event or process as an active element or

member
Require, necessary, involves

Allele One of a number of different forms of a gene that occur at
the same locus but differ in base sequence

ad606

Phenotype A set of observable physical characteristics of an individual or-
ganism

Fog, dumpy, phenotype,
wild type

Pathway A (hierarchical) sequence, network, or part of it, of reactions
or processes that involve biological entities

Downstream, cascade

Cellular component Subcellular structures, locations, and macromolecular com-
plexes

SnoRNA, mitochondrion,
nucleus, telomere

Life stage The functional, morphological, or time stages through which
an organism passes

Embryo, L4, adult

Association A spatial connectivity supported by noncovalent bonds Bind
Drugs and small
molecules

Any chemical substance that affects the functioning ofliving
things directly or indirectly

Ampicillin

a HSN, hermaphrodite-specific neuron.
DOI: 10.1371/journal.pbio.0020309.t001
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The last group (auxiliary) contains categories that can be
used for more involved semantic analysis of sentences. These
categories are auxiliary (forms of the verbs ‘‘be’’ and ‘‘have’’),
bracket, determiner, conjunction (and, or, because, since,
although, etc.), conjecture (could, might, should, suggests),
negation, pronoun, preposition, and punctuation. Some of
them overlap with the syntactic categories that the part-of-
speech tagger (used in the preprocessing steps; see Materials
and Methods) assigns to terms, but are repeated here as they
also contain some semantic component. The category
‘‘conjecture’’ is introduced to distinguish statements that
convey hypotheses, speculations, or theoretical considera-
tions from sentences that are expressed with confidence, thus
representing more of a fact. The words of this category
indicate the certainty of a statement.

The Textpresso ontology is organized into a shallow
hierarchy with 33 parent categories. The parent categories
may have one or more subcategories, which are special-
izations of the parent category. For example, all of the terms
in the parent category ‘‘biological process’’ will belong to one
of its subcategories, ‘‘transcription,’’ ‘‘translation,’’ ‘‘expres-
sion,’’ ‘‘replication,’’ ‘‘other,’’ or ‘‘no biosynthesis.’’ This is
user friendly and certainly serves the current implementation
of the user interface well, which is oriented more towards
information retrieval.

The ontology is populated with 14,500 Practical Extraction
and Report Language (PERL) regular expressions, each of
which covers terms with a length from one to eight words.
These expressions are contained in a lexicon. Table 3 shows
examples of regular expressions for each category and
examples of text strings matching them. Each regular

expression can match multiple variable patterns. The multi-
ple forms of regular verbs, for example, can be conveniently
expressed as ‘‘[Ii]nteract(sjedjing)?’’ which stands for the eight
cases ‘‘interact,’’ ‘‘interacts,’’ ‘‘interacted,’’ ‘‘interacting,’’
‘‘Interact,’’ ‘‘Interacts,’’ ‘‘Interacted,’’ and ‘‘Interacting.’’ All
regularly named C. elegans genes are matched with the
expression ‘‘[A–Za–z][a–z][a–z]–ndþ’’ matching three letters
([A–Za–z][a–z][a–z]), a dash (–), and a sequence of digits (ndþ).
As this example illustrates, the expressions can be made case
sensitive. This is important as biological nomenclature
becomes more elaborate, and the ability to distinguish subtle
differences is pivotal for separating terms into the correct
categories. Many of the regular expressions are generated
automatically via scripts, taking a list of plain words as input
and transforming them as shown in this example, to account
for regular forms of verbs and nouns. The text-to-XML
converter (see Materials and Methods) marks up the whole
corpus of abstracts, full texts, and titles and produces XML
documents. Figure 1 illustrates this process with an example.
The computer identifies terms by matching them against
regular expressions (such as the one shown above) and
encloses them with XML tags. The tag ,text. serves as a
containment of terms not semantically marked up. These tags
will be used for a repeated reevaluation of the lexicon, as
these terms can be easily pulled out and analyzed. A list of the
most frequently missed terms is then produced and included
in the lexicon for the next markup.

Applications of Textpresso
The marked-up text is stored in a database and can be

queried. We built a user interface for general queries and

Table 2. The Subcategories of the Ontology

Category Subcategory

Molecular function Source: (textpresso j go)
Protein: (yes j no)

Cell or cell group Type: (name j lineage j group)
Cellular component Source: (textpresso j go)
Nucleic acid Type: (DNA j RNA j other)
Entity feature Type: (protein j DNA j RNA j other)
Sex Type: (male j female j hermaphrodite)
Drugs and small molecules Type: (antibiotic j unknown)
Biological process Source: (go j textpresso)

Type: (cellular j molecular j organismal j general)
Biosynthesis: (expression j translation j transcription j replication j other j no)

Effect Type: (positive j negative j unknown)
Consort Type: (positive j negative j unknown)
Pathway Type: (evolutionary j cellular j molecular j all)

Course: (downstream j upstream j parallel j bypass j unknown)
Regulation Type: (positive j negative j unknown)
Comparison Type: (similar j identical j different j unknown)
Spatial relation Type: (close j distant j unknown)
Time relation Type: (earlier j later j simultaneously j unknown)
Localization Type: (spatial j temporal j general j unknown)
Involvement Requirement: (yes j no)

Categories without any subcategories are omitted.
DOI: 10.1371/journal.pbio.0020309.t002
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another one for a specific type of query for WormBase
curators (gene-gene interactions; see below). Textpresso is
used in several related ways. Individual biologists use it to find
specific information. Database curators, whose job is to
extract information from papers or abstracts and to add this
to a database, use it repeatedly to find all information of a
particular type, in addition to using it for individual queries.

The current Textpresso user interface (http://www.
textpresso.org/) includes a query interface, a side menu with
links to informative pages about the ontology, a document
type definition, a user guide, and example searches, as well as
the two retrieval and customization interfaces. The Web site

offers two different types of retrieval, simple and advanced.
Options for the retrieval queries are offered: searching a
combination of categories, subcategories, and keywords in a
Boolean fashion, specifying the frequency of occurrences of
particular items, and choosing where in the article to search
(title, abstract, body). The user can also determine whether a
query is to be met in the whole publication or in a sentence.
These options make the search engine powerful; for example,
if a query is met in the whole article, the search has the
function of text categorization, while meeting it in a sentence
aims at extracting facts, which can be viewed in the context of
a paragraph. The specification of cooccurrence determines

Table 3. Categories of the Ontology with Examples of Regular Expressions and Matching Text Strings

Category Number of Regular
Expressions

Example of Regular
Expression

Example of
Matched String

Count of Tags
in Corpus

Tags per
Sentence

Gene 10 [A-Za-z][a-z][a-z]-\dþ let-60 466,239 (1.90%) 0.45
Molecular function 5,656 [cC]oreceptors? coreceptor 486,277 (1.98%) 0.47
Cell or cell group 357 [Hh]ypoderm(aljis)? hypodermal 361,260 (1.47%) 0.35
Organism 45 [Zz]ebra(-j\s)?[Ff]ish zebrafish 278,612 (1.14%) 0.27
Allele 78 n\d\d?\d?\d? n695 116,212 (0.47%) 0.11
Transgene 7 [a-z][a-z]?Is[0–9]þ kuIs14 10,285 (0.04%) 0.01
Cellular component 1,068 [sS]pliceosomes? spliceosome 97,078 (0.40%) 0.09
Nucleic acid 5 [Tt]hymines? thymines 820 (0.00%) 0.0008
Entity feature 140 [Hh]omeo-?[Bb]ox(es)? homeobox 210,917 (0.86%) 0.20
Life stage 38 [Ee]mbryos? embryo 86,032 (0.35%) 0.08
Phenotype 116 [Ww][Tt] Wt 108,726 (0.44%) 0.11
Strain 3 N2 N2 57,641 (0.23%) 0.06
Sex 5 [Mm]ales? Male 45,340 (0.18%) 0.04
Drugs and small molecules 24 ([Aa]nti-?)?[Ss]er(umja) Serum 4,312 (0.02%) 0.004
Mutants 18 [aA]bnormals? abnormal 169,727 (0.69%) 0.16
Clone 9 [Cc]osmids? cosmid 42,409 (0.17%) 0.04
Biological process 5,029 [hH]istone

[pP]hosphorylations?
histone
phosphorylation

574,764 (2.34%) 0.56

Method 307 [mM]icro-?injections? microinjection 329,533 (1.34%) 0.32
Association 36 [bB]ind(ing)?s? bind 85,872 (0.35%) 0.08
Effect 258 [mM]inimizes? minimize 285,650 (1.16%) 0.28
Consort 119 [pP]artners? partner 123,366 (0.50%) 0.12
Purpose 52 [fF]unctions? functions 184,086 (0.75%) 0.18
Pathway 80 [bB]y-?pass(ed)? bypassed 107,952 (0.44%) 0.10
Regulation 259 [sS]ex-?regulat(ejesjedjing) sex-regulated 208,689 (0.85%) 0.20
Comparison 68 [rR]esemblances? resemblance 141,130 (0.58%) 0.14
Spatial relation 54 [fF]lank(sjedjing) flanked 162,096 (0.66%) 0.16
Time relation 50 [sS]imultaneous(ly)? simultaneous 121,858 (0.50%) 0.12
Localization 194 [vV]icinit(yjies) vicinity 347,407 (1.42%) 0.34
Involvement 53 [pP]articipations? participation 117,752 (0.48%) 0.11
Characterization 106 [dD]isplay(sjedjing)? Display 151,227 (0.62%) 0.15
Action 156 [fF]acilitat(esjedjing)? facilitating 207,420 (0.85%) 0.20
Descriptor 27 [lL]arge large 99,124 (0.40%) 0.10
Preposition, punctuation,
determiner, pronoun,
number, bracket,
conjunction, conjecture,
auxiliary, and negation

119 [Ww]ith with 9,797,545 (39.92%) 9.46

Not marked up (1-grams) 8,965,008 (36.53%) 8.66

This table also contains the distribution of 24,542,376 tags in the 1,035,402 sentences of the corpus.
DOI: 10.1371/journal.pbio.0020309.t003
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the character of a search. If a combination of keywords and
categories is found in a sentence, the likelihood that a
sentence contains a fact involving the chosen categories and
keywords is quite high. If the user chooses cooccurrence
within a document, he is more interested in finding a relevant
document. The scope of a search can be confined to full text,
abstract, title, author, year, or any combination thereof, for
document searches as well as sentence searches. A typical
result page shows a list of documents with all bibliographical
information and the abstract as displayed in Figure 2. A
simplified version of the Textpresso interface is incorporated
within WormBase (http://www.wormbase.org).

The result list retrieved by a query can be customized in
such a way that the user can choose how to display the
information. This list is sorted according to the number of
occurrences of matches in the document, so the most relevant
document will be on the top of the list. A series of buttons for
the whole list as well as for each document is available,
allowing the user to view matching sentences or prepare
search results in various formats. The individual result entries
have up to six links: One can view matches for each paper

only, go to the Web site of the journal to read the online text
of the article (this only works if the user is subscribed to the
journal), view a list of related articles that is provided by
PubMed, export the bibliographical information into End-
note (two different links), or, if the user is accessing
Textpresso internally (currently at Caltech), one can down-
load the PDF of the paper.
The power of Textpresso’s search engine unfolds when

category searches are used. By searching for a category, the
researcher is targeting all keywords that populate that
category. For example, the researcher might be interested
in facts about genetic regulation of cells. Assuming that many
facts are expressed in one sentence, he would search for the
categories ‘‘gene,’’ ‘‘regulation,’’ and ‘‘cell or cell group’’ in a
sentence. He can then view the matches (and surrounding
sentences) of the search return and decide which facts are
relevant. If one is not interested in all genetic regulation
instances mentioned in the literature, it might be more useful
to combine keywords with categories. For example, the
question ‘‘What entities interact with ‘daf-16’ (a C. elegans

Figure 1. The Process of Marking up a

Sentence

The process of marking up the sentence
‘‘In par-1, par-4 and par-3 mutant four-
cell embryos, MEX-3 is present at high
levels in all cells, indicating that activity
of these par genes is required to restrict
MEX-3 to the anterior.’’ This sentence is
taken from Huang et al. (2002).
(A) The computer identifies terms that
are stored in a lexicon according to
categories of the ontology. A text-to-
XML converter marks up the terms by
enclosing them in XML brackets.
(B) The fully marked-up sentence. Some
categories have subcategories (for exam-
ple, the category ‘‘regulation’’ is subdi-
vided into ‘‘positive,’’ ‘‘negative,’’ and
‘‘unknown’’). Grammar attributes have
been omitted here for the sake of clarity,
because they are not used in the current
version of the system. Some white spaces
have been inserted in the graphics for
clarity enhancement.
DOI: 10.1371/journal.pbio.0020309.g001
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gerontogene)?’’ can be answered by typing in the keyword
‘‘daf-16’’ and choosing the category ‘‘association.’’

Advanced Retrieval and Subcategories

An extension (the advanced retrieval interface) allows the
use of the subcategories of the ontology and the specification
of Boolean operators, thereby concatenating categories and
keywords with ‘‘or’’ or ‘‘not’’ to permit alternatives or exclude
certain items. One special subdivision of terms is the
distinction between named and unnamed entities: Categories
can include both general terms and specific names of entities.
For example, the word ‘‘gene’’ would be an unnamed term of
the gene category, while ‘‘lin-11’’ is a named entity. The

general terms will likely be used for fact extraction across
several neighboring sentences, but they might also be useful
for retrieval purposes, even though the rate of false positives
might be much higher in the latter case. Lastly, the user can
determine how a keyword or category term has to be matched
numerically. The options ‘‘greater than,’’ ‘‘less than,’’ and
‘‘equal to’’ are available together with a drop-down menu for
the number of occurrences.
With these additional tools, document categorization can

be made more effective. A detailed profile of which categories
and keywords should occur a minimum, maximum, or exact
number of times for triggering a match can be established.
Similarly, searches on the sentence level acquire a semantic

Figure 2. A Typical Result Page Returned from a Simple Retrieval Query (Keyword)

A simple retrieval was performed with ‘‘let-23’’ as keyword and ‘‘regulation,’’ ‘‘cell or cell group,’’ and ‘‘molecular function’’ as categories. A total
of 245 matches were found in 113 publications.
DOI: 10.1371/journal.pbio.0020309.g002
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quality, i.e., they at least partially encompass a meaning. In
many cases, the answers to questions, phrased in the form of a
sophisticated query, can immediately be read off the result
screen. If, for example, one were to ask in which cells lin-11 is
expressed, one would search sentences for a combination of
the category ‘‘biological process’’ (subcategory ‘‘biosynthesis:
expression’’), the category ‘‘cell or cell group’’ (subcategory
‘‘type: name’’) and the exact keyword ‘‘lin-11.’’ The sub-
category ‘‘expression’’ filters out all words that relate to
expression, the subcategory ‘‘name’’ limits the search to
specific cells which have a name, such as ‘‘anchor cell,’’ ‘‘HO
neurons,’’ ‘‘IL sensillum,’’ etc. Other subcategory options
would be ‘‘group’’ (for example, ‘‘head,’’ ‘‘vulva,’’ ‘‘tail’’) and
‘‘lineage’’ (‘‘AB lineage,’’ ‘‘EMS lineage,’’ etc.). To better
understand the following results, note that the term ‘‘cell(s)’’
has the type ‘‘name,’’ to gain the correct meaning of phrases
such as ‘‘AB lineage cells.’’ The first two words of this phrase
are marked as lineage, but the last word makes the whole
phrase named cells.

The system returns sentences of different quality. Some of
them answer the question posed immediately (returned
sentences are taken from Gupta and Sternberg 2002; that
paper produced the most hits). The underlined words mark
the matched items: ‘‘An analysis of the expression pattern of
lin-11 in vulva and uterine lineage cells earlier suggested that
cellular defects arise due to a failure in the differentiation
process’’; ‘‘Our analysis of the expression of lin-11 in VPC
granddaughters (Pn.pxx stage) has revealed the following
pattern in P5.p and P7.p lineage cells (from anterior to
posterior; L, low; H, high), LLHH and HHLL , respectively.’’
Other sentences meet the truth more by accident, as the
terms are matched within a sentence, but the statement does
not really express the fact sought. The cells where lin-11 is
expressed might be inferred by the knowledgeable reader,
and not stated explicitly: ‘‘Our results demonstrate that the
tissue-specific expression of lin-11 is controlled by two
distinct regulatory elements that function as independent
modules and together specify a wild-type egg-laying system’’;
‘‘Using a temporally controlled overexpression system, we
show that lin-11 is initially required in vulval cells for
establishing the correct invagination pattern.’’ Finally, some
sentences just do not give any clue about the posed question:
‘‘lin-11 cDNA-expressing vectors under the control of lin-11-
AB (pYK452F7-3) and lin-11-C (pYK452F7-2) elements were
designed as follows.’’ Here, ‘‘AB’’ is marked up as a named
cell, but this is not the semantically correct tag in this context.
This false positive might have been prevented if specific
sections of a paper could be searched, as this statement comes
from the method section.

Evaluation of the Textpresso System
An automatic method for retrieving or extracting infor-

mation from text is only useful if it is as accurate and reliable
as human curation. We devised two tests based on two
common tasks performed by human experts who extract
biological data from journal articles. The first task was the
automatic categorization of papers according to the types of
biological data they contain. Our study used a large test set of
papers scanned by a curator to examine the effectiveness of
automatically searching for information in the full text of a
journal article compared to its abstract. The second task
focused on retrieving sentences containing a specific type of

biological data from text. Sentences from eight journal
articles were manually inspected on a sentence-by-sentence
basis and compared to the return from a Textpresso query on
the same articles. From this study we present a detailed error
analysis outlining the strengths and weaknesses of the current
Textpresso system as an automatic method for information
retrieval.
We evaluated the performance of Textpresso using the

information extraction performance metrics of precision,
which is a measure of the amount of true returned data
compared to the amount of false returned data, and recall,
which is a measure of the true data returned compared to the
total amount of true data in the corpus. These values are
formulated as recall = number of true returns / total number of true
data items and precision = number of true returns / total number of
returns.

Classification of Journal Articles: Full Text Versus Abstract
We examined the effectiveness of automatically identifying

journal articles that contain particular types of data. A test set
of 965 journal articles pertaining to C. elegans biology was
assessed by a human expert and categorized into groups
according to six different types of data (antibody data,
ablation data, expression data, mapping data, RNAi data, and
transgenes). Note that there can be more than one data type
per article.
We first measured the value of searching for keywords in

the full text of an article as opposed to searching its abstracts
(Table 4). The overall information recall when searching
abstracts is low (;44.6%) compared to the information recall
when searching full text (;94.7%). Furthermore, keywords
for some specific types of data (e.g., antibody data, mapping
data, transgene data) are very unlikely to appear in abstracts
(;10% recall) but can be found in full text (;70% recall).
However, precision of the keyword search is reduced by
almost 40% when searching full text compared to abstracts
(30.4% and 52.3%, respectively). Single keyword searches of
full text return a large number of irrelevant documents for
most searches. This higher false positive rate might reflect the
writing style found in full text, where facts can be expressed
within complex sentence structures (as compared to ab-
stracts, where authors are forced to compress information),
combined with the inability of a keyword search to capture
context.

Small-Scale Information Retrieval Study
We tested the accuracy of a search combining word

categories and keywords to retrieve sentences containing
genetic interaction data. For this experiment we broadly
defined genetic interaction as the effect of one or more genes
on the function of another gene or genes (and thus it includes
genetic interaction, regulation, and interaction of gene
products). To directly assess how Textpresso performs, a
human expert manually evaluated the text sentence by
sentence (Figure 3).
We formulated a Textpresso query that searched for the

presence of at least two genes mentioned by name and at least
one term belonging to the ‘‘regulation’’ or ‘‘association’’ word
categories (see Materials and Methods). A total of 178
sentences were matched for this query in the eight journal
articles, and the results are shown in Table 5. A human expert
assessed the returned sentences and determined that 63

PLoS Biology | www.plosbiology.org November 2004 | Volume 2 | Issue 11 | e3091991

Textpresso: Literature Search Engine



sentences contained gene-gene interaction data according to
our criterion. The same set of journal articles had been
independently manually evaluated for their description of
genetic interactions, and 73 true sentences were identified. In
both cases, information from the article title, abstract,
contents of tables, and reference section was excluded.
Sentences that described genetic interaction using the gene
product name rather than the gene were also excluded from
this study. To measure recall, we first determined the total
number of sentences that contained genetic interaction data.

For this analysis we took the union of true sentences

manually identified in the journal articles and the true
sentences returned by Textpresso. The total number of true
sentences identified by the two methods was 102. The recall of
sentences containing genetic interaction was ;62% using
Textpresso compared to ;71% for those sentences manually
identified in journal articles. One-third of the sentences
returned by Textpresso were true positives (35%).
Although the numbers of true sentences retrieved by the

automatic and manual methods were similar (63 and 73,
respectively), only 34 of these sentences overlapped. To
investigate this discrepancy, we manually extracted the
genetic interactions described in both sets of sentences and
determined the number of distinct genetic interactions found
by each method (Table 6). The sentences manually identified
from the journal articles yielded 23 more distinct genetic
interactions than those which were extracted from true
sentences retrieved by Textpresso. However, 43 interactions
derived from the Textpresso output overlapped with the
manually identified set, and Textpresso located sentences
describing seven genetic interactions that the human expert
missed. The average redundancy (how many times the same
gene-gene interaction occurred) of a distinct genetic inter-
action extracted from both the manual and automatic
methods was 3-fold.
We analyzed the gene-gene interaction sentences missed by

Textpresso. In many cases (65%) the word or phrase used to
describe the genetic interaction belonged to neither the
‘‘association’’ nor the ‘‘regulation’’ word category and so the
sentence was not returned. In some cases, the term or phrase
that determined ‘‘genetic interaction’’ belonged to some
other Textpresso word category (e.g., some terms that implied
genetic interaction and were not matched by the query were
‘‘epistatic,’’ which belongs to the ‘‘consort’’ word category,
and ‘‘alters,’’ which belongs to the ‘‘effect’’ word category).
This type of analysis is useful for revising and updating the
ontology. In other cases, due to the intricacies of natural
language prose, it was difficult to isolate an interaction term
in the sentence (e.g., ‘‘Thus ref-2 alone is insufficient to keep
P(3–6).p unfused when lin-39 is absent.’’). Approximately 8%
of true sentences were missed because the genetic interaction
information was discussed over a number of sentences. This is
a limitation of the current Textpresso system, as search
queries are matched per sentence (or per entire article).

Table 4. Comparison of a Keyword Search on Abstracts versus Full Text

Data Type Human Search Term Keyword in Abstract Keyword in Full Text

A B Recall (%) Precision (%) A B Recall (%) Precision (%)

Antibody 163 k(antibody*) 13 19 8.0 68.4 159 400 97.6 39.8
Ablation 18 k(ablat*) 9 19 50.0 47.4 17 159 94.4 10.6
Expression 327 k(express*) 221 398 67.6 55.5 327 901 100.0 36.3
Mapping 36 k(map*) 0 51 0.0 0.0 31 482 86.1 6.4
RNAi 220 k(rnai) 60 84 27.3 71.4 210 353 95.5 59.5
Transgenes 95 k(transgene*) 8 23 8.4 34.8 69 381 72.6 21.7
Total 859 311 594 44.6 52.3 813 2,676 94.7 30.4

Automatic classification of journal articles based on the biological information they contain (i) searching abstracts with keywords and (ii) searching full text with keywords.
The keywords used as search terms are indicated by k(keyword). A, the number of true articles returned; B, the total number of articles returned.
DOI: 10.1371/journal.pbio.0020309.t004

Figure 3. Schema of Small-Scale Information Retrieval Study

Sentences from eight journal articles were both queried by
Textpresso and evaluated by a human expert for sentences that
described genetic interaction (information retrieval task). In the
information extraction task, a human expert inspected the sentences
returned by each method to determine the amount of distinct gene-
gene interactions that could be extracted in order to analyze the
output of the first task.
DOI: 10.1371/journal.pbio.0020309.g003
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Our analysis of the false positive sentences returned by
Textpresso revealed that approximately 10% discussed gene-
gene interactions that did not occur (e.g., ‘‘Neither pdk-1(gf)
nor akt-1(gf) suppressed the Hyp phenotype of age-1(mg44).’’).
While we do have a ‘‘negation’’ category in our Textpresso
ontology, we chose not to exclude negation terms from the
posed query, to avoid missing true positives (in case the
negation does not apply to the interaction term in a sentence,
but to some other portion of it). Twenty-one percent of the
false positive sentences were determined by inspection to
suggest genetic interaction, but were too weakly phrased to
extract the information in confidence without the context of
the sentence. However, the majority of false positives (70%)
were due to the lack of context of the search terms in the
sentence, where they matched the query terms (underlined)
but in a context that did not mention genetic interaction:
‘‘lin-35 and lin-53, two genes that antagonize a C. elegans
pathway, encode proteins similar to Rb and its binding
protein RbAp48.’’ This example strongly supports the idea
that an information extraction method that considers

semantic context of a search query would dramatically
increase the precision of the return.

Large-Scale Information Retrieval to Expedite Information
Extraction
We performed extraction of genetic interaction informa-

tion from a corpus of 3,307 journal articles. A Textpresso
query searched for the presence of at least two uniquely
named genes and at least one term belonging to the
‘‘regulation’’ or ‘‘association’’ word categories (see Materials
and Methods for more details). A total of 17,851 sentences
were returned by this query. Due to the lack of context of
some sentences, true sentences were determined by a more
stringent definition of genetic interaction, i.e., where one or
more named genes were described as modifying the pheno-
type of another named gene or genes by suppression,
enhancement, epistasis, or some other genetic method. To
determine the frequency of true sentences, a random sample
of 200 of the sentences returned by Textpresso was evaluated
by a human expert according to this more stringent criterion

Table 5. Retrieval of Sentences Containing Gene-Gene Interaction Data from a Set of Journal Articles

Paper
(PMID) No.

True Sentences:
Manual
Retrieval

True Sentences:
Textpresso
Retrieval

Total Sentences:
Textpresso
Retrieval

Union of Trues
of Textpresso and
Manual Retrieval

Recall:
Manual
Retrieval (%)

Recall:
Textpresso
(%)

Precision:
Textpresso
(%)

11994313 0 1 5 1 0 100 20
12091304 8 7 22 13 61.5 53.9 31.8
12051826 3 6 21 8 37.5 75 28.6
12110170 13 17 55 26 50 65.4 34.6
12110172 10 6 20 10 100 60 30
12065745 7 6 10 8 87.5 75 60
12006612 12 10 27 16 75 62.5 37.1
12062054 20 8 18 23 87 34.8 44.4
Total 73 63 178 102 71 61.8 35.4

Retrieval was performed manually or automatically using Textpresso.
DOI: 10.1371/journal.pbio.0020309.t005

Table 6. Distinct Gene-Gene Interactions Retrieved from Journal Articles

Paper (PMID) No. Interactions
Retrieved
from Articles

Interactions
Retrieved from
True Textpresso
Returns

Union of Interactions:
Articles and Textpresso
Returns

Recall:
Articles,
Manual (%)

Recall:
Textpresso (%)

11994313 0 1 1 0 100
12091304 8 7 11 72.7 63.6
12051826 5 2 5 100 40
12110170 12 12 14 85.7 85.7
12110172 18 11 18 100 61.1
12065745 6 5 6 100 83.3
12006612 6 5 6 100 83.3
12062054 18 7 19 94.7 36.8
Total 73 50 80 91.3 62.5

Interaction data were either manually retrieved from journal articles or manually retrieved from sentences retrieved by Textpresso.
DOI: 10.1371/journal.pbio.0020309.t006
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(Table 7, column C). This sample was compared to 200
sentences chosen from the whole corpus at random (Table 7,
column A) and 200 sentences randomly chosen from the
whole corpus that contained two or more named genes (Table
7, column B).

A typical sentence that was determined to be true for
genetic interaction data is ‘‘Interestingly, at lower temper-
atures, the akt-2(þ) transgene can supply sufficient Akt/PKB
activity to weakly suppress the dauer arrest caused by age-
1(mg44).’’ Some of the sentences strongly suggested genetic
interaction but did not quite meet the genetic interaction
criterion. These were grouped as ‘‘possible genetic inter-
action,’’ for example, if a phenotype was not mentioned: ‘‘For
example, lin-15(lf) animals display a 54% penetrance of P11 to
P12 fate transformation, while all egl-5(lf);lin-15(lf) double
mutants show a P12 to P11 fate transformation.’’ Sometimes
it is unclear exactly which genes are participating in the
genetic interaction: ‘‘Evidently the effect of the sir-2.1
transgene alone is too subtle to trigger dauer formation
without the sensitizing daf-1 or daf-4 mutations.’’ Another
group was highlighted as discussing interaction, but fell
outside the criterion set for genetic interaction. These were
classified ‘‘non-genetic interaction.’’ Some examples of this
are sentences that specify gene regulation: ‘‘These studies
have shown that smg-3(Upf2) and smg-4(Upf3) are required for
SMG-2 to become phosphorylated.’’ Finally, sentences that
describe physical interaction were also put into the category
‘‘possible genetic interaction’’: ‘‘For example, GLD-1 re-
presses translation of tra-2, one of the sex-determination
genes, by binding to the 39-UTR or the tra-2 mRNA ( Jan et al.
1999).’’

This analysis shows that there is a 1 in 200 chance of a
sentence discussing genetic interaction (as defined above)
randomly occurring in the full text of the journal articles
analyzed. The odds increase to 7 in 100 if one looks at
sentences containing at least two named genes. The returned
matches from the Textpresso search are enriched 39-fold for
genetic interaction compared to random chance, and there is
a significant 3-fold enrichment when compared to sentences
containing at least two named genes. There is a 1 in 5 chance
that a returned Textpresso match is true. To date, 2,015 of the
17,851 returned sentences have been evaluated. Of these, 370
discuss genetic interaction, yielding 160 distinct gene-gene
interactions mined from the literature. There are 213

sentences that mention nongenetic interactions, and 419
sentences are classified as possible genetic interactions.

Large-Scale Simple Fact Extraction
We have extracted gene-allele reference associations from

the corpus of papers to populate the WormBase database by
searching for the pattern ,gene.,bracket.,allele.
,bracket.. Of the 10,286 gene-allele associations extracted,
9,230 were already known by WormBase, while 1,056
associations were new and could be added to the database.
In addition, 1,464 references could be added to the 2,504
allele reference associations in WormBase. Ninety-eight
percent of the data extracted went into the database without
any manual correction, and the last 2% were compromised
because of typographical errors in the original paper or the
inherent character of the data (i.e., gene name synonyms and
changes).

Discussion

Accomplishments
We have developed a system to retrieve information from

the full text of biological papers and applied it to the C.
elegans literature. As of March 2004, the database contains full
texts of 60% of all papers listed by the Caenorhabditis Genetics
Center (CGC; http://www.cbs.umn.edu/CGC/CGChomepage.
htm) and almost all abstracts that are information rich for
C. elegans research. The introduction of semantic categories
and subsequent marking up of the corpus of texts introduce
powerful new ways of querying the literature, leading towards
the formulation of meaningful questions that can be
answered by the computer. We have demonstrated such
queries with one example and have successfully tried many
others. A more thorough evaluation of the system revealed
that the availability of full text is crucial for building a
retrieval system that covers many biological data types with a
satisfying recall rate, and thus is truly useful for curators and
researchers. For biologists, an automated system with high
recall and even moderate precision (like the current
Textpresso) confers a great advantage over skimming text
by eye. Textpresso is already a useful system, and thus serves
not only as proof of principle for ontology-based, full-text
information retrieval, but also as motivation for further
development of this and related systems to achieve higher
precision and hence even greater time savings.
It is apparent that the number of articles available in the C.

elegans literature (currently about 6,000) can be curated with
the assistance of Textpresso, as it is much more efficient than
when done by human readers alone. The larger the corpus of
papers, the more useful Textpresso will become. We have
shown this by calculating the frequencies of genetic inter-
action data in sentences in three different cases: random
sentences, sentences that contain at least two genes, and
sentences returned from a Textpresso advanced query. The
efficiency was shown to increase dramatically (39-fold in the
best case). We have outlined the first steps of how Textpresso
helps the curation effort by extracting gene-gene interac-
tions. Overall, we have shown that Textpresso has several uses
for researchers and curators: It helps to identify relevant
papers and facts and focuses information retrieval efforts.
Indeed, Textpresso is used daily by C. elegans researchers and
WormBase curators: The server sends 530 files to requests

Table 7. The Frequency of Genetic Interaction Data Contained in
Full Text

Interaction Type A B C

Genetic interaction 1 (0.5%) 13 (6.5%) 39 (19.5%)
Possible genetic interaction 3 (1.5%) 6 (3%) 14 (7%)
Nongenetic interaction 4 (2%) 6 (3%) 12 (6%)
No interaction 192 (96%) 175 (87.5%) 135 (67.5%)

A, 200 random sentences; B, 200 sentences containing at least two genes; C, 200
sentences returned from a Textpresso query for at least two uniquely named genes
and at least one ‘‘regulation’’ or ‘‘association’’ word. See Materials and Methods for
details.
DOI: 10.1371/journal.pbio.0020309.t007
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daily via the Web, a quarter of which are to WormBase
curators.

Areas for Improvement
Textpresso is limited in two ways: the lack of complete

coverage of the C. elegans literature and the fact that the
ontology and its corresponding lexicon are still in their
infancy. The preparation of full texts has to be better and
more efficient. The conversion of PDF to plain texts was
problematic because of the different layouts of each journal.
Even with the software we developed, a layout template for
each journal needs to be written to specify where different
components of text can be found. Prior to the use of this
software, we had to forgo the use of figure and table captions.
Acquisition of processable text is a general problem for
biologists. A new release of XPDF (a PDF viewer for X; http://
www.foolabs.com/xpdf/) eases this problem considerably (see
Materials and Methods).

One of our studies on the effectiveness of the extraction of
a specific type of biological fact, in this case gene-gene
interaction, showed that the machine still cannot replace the
human expert, although it increases efficiency greatly. We
anticipate that the computer does better with a larger
number of articles because of redundancy. While roughly
9% of distinct gene-gene interactions from a corpus of eight
journal articles were missed by the human but revealed by
Textpresso, 29% of the interactions were missed by Text-
presso, primarily due to flaws in the ontology.

Advancing the Textpresso ontology will help to increase
the specificity of the retrieval system. A deeper, meaningful
structure is likely to make extraction easier and more stable.
Possible improvements are to include other biological
ontologies and language systems, such as UMLS (http://
www.nlm.nih.gov/research/umls/) and SNOMED (http://
www.snomed.org/), and to establish a more sophisticated tree
structure. Our core lexicon recognizes 5.5 tags per sentence
(out of an average of 23.7 tags per sentence) that are of
scientific interest. This density results in a term coverage of
23.2%, while the maximum that could theoretically be added
is 36.5%, assuming that all terms currently not marked up
belong to relevant categories. An average of 9.5 tags per
sentence are apparently of no interest for information
retrieval; however, this is due to the nature of human
language (and will be nonetheless useful for information
extraction purposes). Reevaluation of the corpus of text for
terms and their meanings that have been missed is necessary.
This process will result in an expansion of our ontology, thus
continually expanding the resulting lexicon, or revising the
structure of the ontology. Ontology and lexicon revision is
most efficiently done by a human, and a feasible automated
approach seems out of reach. However, we have illustrated
semiautomatic methods to help make this task easier in the
future: The containment of words that are not covered in our
lexicon with,text. tags serves several purposes. First, we are
able to extract all words (or n-grams, which are represented
as a consecutive sequence of words embedded in ,text.
tags), assemble a histogram of the most frequent terms, and
add important ones to our lexicon. Second, having identified
frequently occurring semantic patterns in the corpus, we are
able to infer likely candidates of words for specific categories.
For example, one popular pattern that indicates a gene-allele
association is ,gene.,bracket.,allele.,bracket.. If one

now searches for patterns such as ,gene.,bracket.
,text.,bracket. and extracts the word enveloped by the
,text. tags, then a frequency-sorted list of words that are
likely to be alleles can be assembled, presented to a curator
for approval, and deposited into the lexicon. The alternative,
,text.,bracket.,allele.,bracket., would give a list of
possible gene names. Many other patterns, identified by
statistical means and similarity measures, could be obtained
and used in such a fashion. These two methods will help us to
systematically and significantly reduce the number of terms
not marked up in the corpus, making it more complete. The
procedure can be repeated with every build of the Textpresso
database and has the advantage that the list of words added to
the lexicon is tailored to the literature for which it is used. In
addition, shortcomings in the general structure of the
ontology can be detected and corrected, if those issues have
not been caught in the research and development of the
information extraction aspects of the system. If the strategy
outlined above is applied continually, we will be able to close
this gap and reach saturation, even with the addition of new
papers and abstracts.
About 89% of current users take advantage primarily of

the full text and multiple keywords. Some (~11%) proceed to
keyword plus category. Only 0.3% of users use the advanced
retrieval search. It is clear that the implementation of a user
test interface improvement/education cycle will greatly help
the development of Textpresso and subsequently help users
take full advantage of this system. More generally, biologists
will become increasingly familiar with ontology-based search
engines.

Prospects
Future development of Textpresso can be undertaken at

many different levels. A synonym search could be enabled for
keyword searches: After having compiled lists of them, an
option could be given to automatically include synonyms for
a given term (e.g., genes, cells, cellular component) in a
search. Similarly, GO annotations could be used to search for
and display sentences involving genes associated with gene
ontology terms, after the latter ones have been queried first.
As already mentioned, search targeting could be made more
flexible: Papers could be subdivided into more sections (such
as introduction, methods, results, conclusion, etc.), and a
query could then be applied only to the specified sections. In
addition, the limitation of searching criteria to just one
sentence can be relaxed to a set number of neighboring
sentences. Finally, one could improve on links to other
databases of relevance besides WormBase and PubMed and
increase the wealth of links to the latter ones.
An important issue is the portability of the system to other

model organism databases. This undertaking is part of the
Generic Model Organism Database (GMOD) project (http://
www.gmod.org), and a downloadable package with software
will be made available on their Web site. For a different
model organism, parts of the lexicon, and maybe also parts of
the ontology, need to be modified. Language and jargon in
each community differ, and terms need to be systematically
collected to accommodate their specific usage in the
respective communities. However, this is not too laborious,
as we have been able to generate a yeast version in a few
weeks (E. E. Kenny, Q. Dong, R. S. Nash, and J. M. Cherry,
unpublished data).
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We believe that Textpresso can be extended to achieve
information extraction. The wealth of information buried in
semantic tag sequences of 1 million sentences asks to be
massively exploited by pattern-matching, statistical, and
machine learning algorithms. Having the whole corpus
semantically marked up provides bioinformaticians with the
opportunity to develop fact extraction algorithms that might
be quite similar to sequence alignment and gene-finding
methods, or, more generally, algorithms that have similarity
measures at their core, because sentences can now be
represented as sequences of semantic tags. Furthermore,
semantic sequences of related sentences show similar proper-
ties as related genomic sequences, such as recurring motifs,
insertions, and deletions. The relatively rigid structure of the
English language (subject-verb-object) and the comparatively
low degree of inflections and transformations certainly help.
In addition, some scientific information is stored in a
structured manner. We have already started to run simple
pattern-matching scripts to populate gene-allele associations
from the literature for WormBase, as many of them are
written in the form ‘‘gene name(allele name),’’ such as ‘‘lin-
3(n1058).’’

Materials and Methods

Sources. Textpresso builds its C. elegans database from four
sources. A collection of articles in PDF format is compiled according
to the canonical C. elegans bibliography maintained at the CGC (http://
www.cbs.umn.edu/CGC/ CGC homepage.htm). As of March 2004 we
had around 3,800 (60%) CGC papers in our database. Software
developed by us (see below) converts the PDFs to plain text. We
import additional bibliographical information from WormBase: titles
of documents and author and citation information. WormBase data
comprise additional C. elegans-related documents such as C. elegans
meeting abstracts and Worm Breeder’s Gazette articles. We also
curate certain types of data ourselves. Some C. elegans-related papers
are not found in the CGC bibliography or WormBase. We compile
lists of URLs of journal Web sites and their articles, and links to
related articles (provided by PubMed). Citations are prepared in
Endnote format for download. Finally, as Textpresso returns
scientific text to the user, we construct links to report pages of
WormBase that display detailed information about biological entities,
such as genes, cells, phenotypes, clones, and proteins. All data and
links produced by us are referred as ‘‘Textpresso’’ data in Figure 4.

Ontology. The objective of an ontology is to make the concepts of
a domain and the relationships and constraints between these
concepts computable. For an ontology to be utilized in a search
engine for biological literature, it has to include the language of
everyday use and common sense. We have therefore assigned the
most commonly used meaning to a word even though it has several
meanings in different contexts. We have consequently adopted a
strategy of devising an ontology drawing from our own knowledge.
Our ontology includes all terms of the three major ontologies of GO,
namely ‘‘cellular component,’’ ‘‘biological process,’’ and ‘‘molecular
function.’’ The current ontology is unstructured for the sake of
straightforward usability, our first priority.

A variety of approaches were utilized to construct and populate
the 33 categories of the Textpresso ontology. We first designed
individual categories for well-defined biological units or concepts
such as strain, phenotype, clone, or gene. The terms in some of these
categories (such as clone, allele, and gene) were represented by a
PERL regular expression designed to match any text that looked like
that particular biological unit. This was possible where a conserved
and unique nomenclature for that biological concept had been
established in the literature. Any exceptions to the established
nomenclature recorded in WormBase were also added to these
categories.

For other biological concepts (e.g., ‘‘method,’’ ‘‘phenotype,’’
‘‘cellular component,’’ and ‘‘drugs and small molecules’’), we
extracted information from publicly accessible biological databases,
such as WormBase, GO, and PubMed/NCBI to construct lists of terms.
We supplemented these lists through primary literature and textbook
surveys.

Next, we conceived categories of terms that would describe the
relationship between the biological categories. To structure these
‘‘relationship’’ categories, we listed words of the text of 400 C. elegans
journal articles for analysis. From this list we flagged natural prose
words that we felt had at least some defined meaning within the
context of biological literature (for example, ‘‘expressed,’’ ‘‘lineage,’’
‘‘bound,’’ ‘‘required for’’). From this list we constructed 14 new
categories designed to encapsulate the natural language used by
biologists to describe biological events and the relationship between
them (action, characterization, comparison, consort, descriptor,
effect, involvement, localization in time and space, pathway, purpose,
physical association, regulation, spatial relation, and time relation).
We made a second pass through the subset of flagged words from the
list and assigned them to one of these categories according to what
the sense of the word was in the biological literature for the majority
of the time.

Finally, a number of categories were designed to account for
syntax and grammatical construction of text, such as ‘‘preposition,’’
‘‘conjunction,’’ and ‘‘bracket.’’

Names. We have manually curated a lexicon of names because it
has proved difficult in the past to automatically recognize names of
biologically relevant entities (Fukuda et al. 1998; Proux et al. 1998;
Rindflesch et al. 2000; Blaschke and Valencia 2002; Hanisch et al.
2003). We therefore chose to curate and maintain a lexicon with
names of interest by hand. In this C. elegans-specific implementation
of Textpresso, the effort was helped by the fact that the C. elegans
community is somewhat disciplined in choosing names and Worm-
Base includes names of interest. Of course, there is the danger that
entities not listed in WormBase (and therefore in our lexicon) will be
missed in our system, and those cases are of special interest to

Figure 4. Schema of Textpresso Database Preparation

The regular hexagons indicate the sources from which Textpresso is
built. The rounded rectangles are either intermediate or final
processed parts of the corpus. The dashed-dotted rectangles signify
automatic processing units or actions.
DOI: 10.1371/journal.pbio.0020309.g004
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curators (of WormBase) and researchers, such as newly defined genes
or newly isolated alleles. Dictionaries tend to be incomplete and turn
stale rapidly, because of the issues of synonyms, lack of naming
conventions, and the rapid pace of scientific discovery. Thus, we do
not rely only on WormBase, but maintain an independent,
Textpresso-specific part of the lexicon.

Technical aspects of the system. Figure 4 shows the details of
database preparation. The regular hexagons indicate the sources
from which Textpresso is built. The PDF collection was converted to
plain text by a software package written by Robert Li at Caltech. The
development of such a software tool had become necessary, as
current PDF-to-text converters do not comply with the typesetting of
each journal, i.e., footnotes, headers, figure captions, and two-column
texts in general are dispersed and mixed up senselessly in the
converted text. The application works with templates that specify the
structure and fonts used in a particular journal and uses this
information to convert the articles correctly. A high-fidelity
conversion is crucial for any information retrieval and extraction
application. The software will be made available at the GMOD Web
site (http://www.gmod.org). While this manuscript was being written, a
new version (2.0.2) of XPDF (http://www.foolabs.com/xpdf/) was
released. This version, unlike its predecessors, does a superb job in
converting PDF into a congruent stream of plain text.

Additional bibliographic data of references for which PDFs are not
available are imported from WormBase (symbolized as ‘‘WormBase
data’’ in Figure 4). These are mainly abstracts from various meetings.
The data collected from our primary sources are treated in two
different ways. Author, year, and citation information are deposited
‘‘as is’’ into the database, while abstracts, titles, and full texts are
further processed. First, the texts are tokenized. Our tokenizer script
reads the ASCII text derived from the conversion from PDF and splits
the text into individual sentences based on the end-of-sentence
period, where words hyphenated at the end of a line are concatenated
and instances of periods within sentences (which are used mainly in
technical terms and entity names) are ignored. The script also adds an
extra space preceding any instance of punctuation within a sentence,
which is a requirement for the Brill tagger (Brill 1992), a publicly
available part-of-speech tagger, to attach 36 different grammatical
tags to each tokenized word. The tagger has been trained specifically
to handle the C. elegans literature, and additional tagging rules are
applied. For example, gene names are forced to be tagged as nouns.
The grammatical tags are not further used in the current Textpresso
system. After this preprocessing step, the corpus of titles, abstracts,
and full texts is marked up using the lexicon of the ontology (PERL
expressions), as explained in Results and exemplified in Figure 1. The
tags contain the name of the category as well as all attributes that
apply to a matched term. Terms that are not matched by any of the
14,500 PERL expressions are given the tag ,text., one token at a
time.

The corpus of searchable full texts, abstracts, and titles has
1,035,000 sentences. A total of 351,000 keywords have been indexed,
covering 19,180,000 words in the texts. The semantic mark-up yields a
total of 24,542,000 tags. Table 3 shows the distribution of tags. The
number of meaningful tags (the ones that are not just ,text.) is only
15,577,368, or 15.04 tags per sentence. An average of 5.5 tags per
sentence are of scientific interest, i.e., are either biological entities or
words that describe a relationship or characterize an entity.

When displaying sentences and paragraphs, Textpresso provides
links to report pages of several biological entities, such as proteins,
transgenes, alleles, cells, phenotypes, strains, clones, and loci. There
are a total of 165,000 different entities in WormBase to which
Textpresso links, including links to journal articles and PubMed. All
these links are produced statically and again deposited on disk for
fast retrieval, and these data are referred to as ‘‘Textpresso data’’ in
Figure 4. In this way the actual link is not made on the fly from
generic URLs, and the response time for queries remains short.

We generated an exhaustive keyword and category index for the

whole corpus. This index makes the search extremely fast, using rapid
file access algorithms. All keywords and tags in the corpus are
indexed. Also, all terms in the corpus that have a report page in
WormBase are indexed. For 2,700 full-text articles and 16,300
abstracts, the index takes up 1.7 Gb.

The interfaces for submitting queries and customizing display
options are written as CGI scripts. They are supported by simple
HTML pages that contain documentation. The Web site runs with a
RedHat Linux operating system and an Apache http server. No
special changes to the standard configuration are required. The Web
interface accesses the custom-made Textpresso database; no com-
mercial-grade database systems have been used. It takes 2–3 d to build
the complete 6.9-Gb database.

Methodology of evaluation. For the preliminary study, a query was
formulated using three category rows of the Textpresso ‘‘advanced
retrieval’’ interface to identify sentences containing gene-gene
interaction data from a test set of eight full-text journal articles
(see Table 5): the PMID:11994313 (Norman and Moerman 2002),
PMID:12091304 (Alper and Kenyon 2002), PMID:12051826 (Maduzia
et al. 2002), PMID:12110170 (Francis et al. 2002), PMID:12110172 (Bei
et al. 2002), PMID:12065745 (Scott et al. 2002), PMID:12006612
(Piekny and Mains 2002), and PMID:12062054 (Boxem and van den
Heuvel 2002). In the top row of the advanced retrieval tool the
‘‘association’’ ontology was selected in the ‘‘category or keyword’’
column. No other changes in the first row were made, which implies
that no subcategory or specification was selected, and the occur-
rences of association terms in one sentence were ‘‘greater than 0.’’ In
the second row, the Boolean operator ‘‘or’’ and the category
‘‘regulation’’ were selected, with no further specification, again
asking the machine to return sentences with at least one regulation
term. Finally, in the third row, the category ‘‘gene’’ was chosen, with a
specification of ‘‘named’’ and an occurrence of ‘‘greater than 1.’’ The
Boolean operator to connect this row with the former ones is ‘‘and.’’
All other values remained as default, resulting in no further query
specification. As the ‘‘advanced retrieval’’ search engine processes
queries sequentially from the top row to the bottom row, this query
asks to return sentences with at least one association or regulation
term in conjunction with at least two genes mentioned by name.

For the semiautomatic information extraction from text, the same
query was utilized as above. In addition, sentences that did not
mention at least two uniquely named genes were eliminated.
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