

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript

The version presented in WRAP is the author’s accepted manuscript and may differ from the

published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/132746

How to cite:

Please refer to published version for the most recent bibliographic citation information.

If a published version is known of, the repository item page linked to above, will contain

details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the

University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the

individual author(s) and/or other copyright owners. To the extent reasonable and

practicable the material made available in WRAP has been checked for eligibility before

being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit

purposes without prior permission or charge. Provided that the authors, title and full

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata

page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/132746
mailto:wrap@warwick.ac.uk

1

LoPub: High-Dimensional Crowdsourced Data
Publication with Local Differential Privacy

Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A. McCann, and Philip S. Yu

Abstract—High-dimensional crowdsourced data collected from numerous users produces rich knowledge for our society. However, it
also brings unprecedented privacy threats to the participants. Local privacy, a variant of differential privacy, is proposed to eliminate
privacy concerns. Unfortunately, achieving local privacy on high-dimensional crowdsourced data raises great challenges in terms of
both computational efficiency and effectiveness. To this end, based on Expectation Maximization (EM) algorithm and Lasso regression,
we first propose efficient multi-dimensional joint distribution estimation algorithms that maintain local privacy. Then, we develop a
Locally privacy-preserving high-dimensional data Publication algorithm, LoPub, by taking advantage of our distribution estimation
techniques. In particular, both correlations and joint distributions among multiple attributes are identified to reduce the dimensionality of
crowdsourced data, thus achieving both efficiency and effectiveness in high-dimensional data publication. To the best of our knowledge,
this is the first work addressing high-dimensional crowdsourced data publication with local privacy. Extensive experiments on real-
world datasets demonstrate that our multivariate distribution estimation scheme significantly outperforms existing estimation schemes
in terms of both communication overhead and estimation speed, and confirm that our LoPub scheme can keep average 80% and 60%
accuracy over the published approximate datasets in terms of SVM and random forest classification, respectively.

Index Terms—Local privacy, high-dimensional data, crowdsourced data, data publication

✦

1 INTRODUCTION

With the development of various integrated sensors and
crowd sensing systems [19], crowdsourced information
from all aspects can be collected and analyzed to better
produce rich knowledge about the group, which can
benefit everyone in the crowdsourced system [20]. Partic-
ularly, with multi-dimensional crowdsourced data (data
with multiple attributes), a lot of potential information
and patterns behind the data can be mined or extracted
to provide accurate dynamics and reliable prediction for
both group and individuals.

However, the participants’ privacy can still be easily
inferred or identified due to the publication of crowd-
sourced data [15], [33], especially high-dimensional data,
even though some existing privacy-preserving schemes
and end-to-end encryption are used. The reasons for
privacy leaks are two-fold:

• Non-local Privacy. Most existing solutions for privacy
protection focus on centralized datasets under the
assumption that the server is trusted. However,
despite the privacy protection against difference
and inference attacks from aggregate queries, an
individual’s data may still suffer from privacy leak-
age before aggregation because of the lack of local
privacy [17], [7] on the user side.

• Curse of High-dimensionality. With the increase of
data dimensions, some existing privacy-preserving
techniques like differential privacy [8], if straight-
forwardly applied to multiple attributes with high
correlations, will become vulnerable [25], [35], there-
by increasing the success ratio of many reference
attacks like cross-checking. Even worse, according

• X. Ren, S. Yang, and X. Yang are with Xi’an Jiaotong University.
E-mails: {xb.ren@stu, shusenyang@mail, yxyphd@mail}.xjtu.edu.cn

• C.M. Yu is with National Chung Hsing University.
E-mail: chimayu@gmail.com

• W. Yu is with Imperial College London and Aston University.
E-mails:weiren.yu@imperial.ac.uk, w.yu3@aston.ac.uk

• J. McCann is with Imperial College London.
E-mail: j.mccann@imperial.ac.uk

• P. Yu is with University of Illinoise at Chicago.
E-mail: psyu@uic.edu

to the composition theorem [26], differential privacy
degrades exponentially when multiple correlated
queries are processed.

In addition to privacy vulnerability, the large scale
of various data records collected from many distribut-
ed users can exaserbate the inefficiency of data pro-
cessing. Especially in IoT applications, the ubiquitous
but resource-constrained sensors require extremely high
efficiency and low overhead. For example, privacy-
preserving real-time pricing mechanisms require not on-
ly effective privacy guarantees for individuals’ electricity
usage but also fast response to the dynamical changes
of demands and supply in the smart grid [24]. Thus,
it is important to provide an efficient privacy-preserving
method to publish crowdsourced high-dimensional data.

Contributions. To address the above concerns, this
paper makes the following contributions.

• We are the first to address the problem of high-
dimensional crowdsourced data publication with
local privacy to the best of our knowledge.

• We propose a locally privacy-preserving scheme for
crowdsensing systems to collect and build high-
dimensional data from distributed users. Particu-
larly, differential privacy is directly achieved for
each distributed user. Then, based on EM and Lasso
regression, we propose efficient algorithms for mul-
tivariate joint distribution estimation.

• By taking advantage of specific marginal distribu-
tions from the locally privacy-preserved data after
dimensionality and sparsity reduction, we propose
LoPub solution that can generate an approximation
of the original crowdsourced data with the guaran-
tee of local privacy.

• We implemented and evaluated our schemes on
real-world datasets. Experimental results confirm
the efficiency and effectiveness of our proposed dis-
tribution estimation and data release mechanisms.

Due to the page limit, some detailed examples and
explanations that are not presented in this paper can be
found in our full length preprint technical report [28].

2

A1 A2 A3 A4

U1

U2

U3

Un

A1 A2 A3 A4

U1

U2

U3

Un

A1 A2 A3 A4

A1

A2

A3

A4

A1 A3 A4 A2

U1

U2

U3

Un

A1 A3 A4

 A2

A1 A3 A4 A1 A2 A3 A4

 A2

A1 A2 A3 A4

A1

A2

A3

A4

Privacy Budget �1 Privacy Budget �2

Fig. 1: Main procedures of high-dimensional data pub-
lishing with non-local ǫ = ǫ1 + ǫ2 privacy

2 RELATED WORK

2.1 Privacy in Centralized Setting

Differential privacy [8] forms a mathematical foundation
for privacy protection by imposing proper randomness
on statistical query results. Examples of the use of d-
ifferential privacy include privacy-preserving data ag-
gregation, where differential privacy of individuals can
be guaranteed by injecting carefully-calibrated Laplacian
noise [5], [13], [18], [22], [35]. For privacy-preserving low-
dimensional data publication, to show crowd statistics
and draw the correlations between attributes, both the
differentially privacy-preserving histogram (univariate
distribution) [3] and contingency table [27] are widely
investigated.

However, the techniques for non-interactive differen-
tial privacy [9], [10] in these works suffer from the ”curse
of dimensionality” [35], [5]. Particularly, the composition
theorems [26] have pointed out that the privacy levels
degrade when multiple related queries are processed.To
deal with the correlations in high-dimensional data, dif-
ferent schemes (e.g., approximations via low dimension-
al data clusters) have been proposed [5], [6], [18], [21],
[32], [35]. Among them, the state-of-art scheme [5] pro-
posed to reduce the dimension by using junction tree to
model the correlations. Moreover, Su et al. [31] proposed
a multi-party setting to publish synthetic dataset from
multiple data curators. However, their multi-party com-
putation can only protect privacy between data servers
and individual’s local privacy cannot be guaranteed.
Due to the lack of local privacy guarantee, these works,
as summarized in Figure 1, may be exposed to some
insider attackers, thus being unable to directly apply to
crowdsourced systems.

2.2 Privacy in Distributed Setting

The schemes mentioned above mainly deal with cen-
tralized datasets. Nonetheless, there could be scenarios,
where distributed users contribute to the aggregate s-
tatistics. Despite the privacy protection against differ-
ence and inference attacks from aggregate queries, an
individual’s data may also suffer from privacy leakage
before aggregation [11]. Hence, local privacy [7], [16], [17]
has been proposed to provide local privacy guarantees
for distributed users. In addition, local privacy from
the end user can ensure the consistency of the privacy
guarantees when there are multiple accesses to users’
data, in contrast to non-local privacy schemes that has
to properly split and assign privacy budgets to differ-
ent steps [5], [21], [35]. In existing work [15][12][14],
local privacy is implemented with randomized response
technique [34]. However, the correlations and sparsi-
ty in high-dimensional data are not well considered,
which will cause low scalability and utility for high-
dimensional data [25], [35].

Data Collection

User End Server

Data Publication

High Dimensional Dataset

Internet

Data Analysis

Data Aggregation

High-Dimensinal

Record

Fig. 2: An architecture of distributed high dimensional
private data collection and publication

Different from these work, we propose a novel mech-
anism to publish high-dimensional crowdsourced data
with local privacy for individuals. We compare our work
with three similar existing solutions described in the
Table 1. More specifically, our method has lower commu-
nication costs, time and storage complexity, compared to
state-of-the-art approaches.

TABLE 1: Comparison of LoPub with existing methods

Comparison LoPub (Our method) RAPPOR [12] EM [14] JTree [5]
Local privacy Y Y Y N

High Dimension Y N N Y
Communication O(

∑
j |Ωj|) O(

∏
j |Ωj |) O(

∑
j |Ωj|) -

Time Complexity Low Large Large -
Space Complexity Low Large Large -

⋆ |Ωj | is the domain size of the j-th dimension.

3 SYSTEM MODEL

Our system model is depicted in Figure 2, where a
number of users and a central server constitute a crowd-
sourcing system. The users generate multi-dimensional
data records, and then send these data to the central
server. The server gathers all the data and estimates
high-dimensional crowdsourced data distribution with
local privacy, aiming to release a privacy-preserving
dataset to third-parties for conducting data analysis. In
this paper, we mainly focus on data privacy, and thus
the detailed network model is omitted.

Problem Statement. Given a collection of data records
with d attributes from different users, our goal is to help
the central server publish a synthetic dataset that has
the approximate joint distribution of d attributes with
local privacy. Formally, let N be the total number of
users (i.e., data records1) and sufficiently large. Let X =
{X1, X2, . . . , XN} be the crowdsourced dataset, where
X i denotes the data record from the ith user. We assume
that there are d attributes A = {A1, A2, . . . , Ad} in X .
Then each data record X i can be represented as X i =
{xi

1, x
i
2, . . . , x

i
d}, where xi

j denotes the jth element of the
ith user record. For each attribute Aj (j = 1, 2, . . . , d),

we denote Ωj = {ω1
j , ω

2
j , . . . , ω

|Ωj |
j } as the domain of Aj ,

where ωi
j is the ith possible attribute value of Ωj and

|Ωj | is the cardinality of Ωj .
With the above notations, our problem can be formu-

lated as follows. Given a dataset X with local privacy,
we aim to release an approximate dataset X⋆ with the
same attributes A and N users’ record in X such that

PX⋆(A1 . . . Ad) ≈ PX(A1 . . . Ad), (1)

1. For brevity, we assume that each user sends only one data record
to the central server.

3

where PX(A1 . . . Ad) , PX(xi
1 = ω1, . . . , x

i
d = ωd), i =

1, . . . , N , ω1, . . . , ωd ∈ Ωd and PX(xi
1 = ω1, . . . , x

i
d = ωd)

is defined as the d-dimensional joint distribution on X .
To focus our research on data privacy, we assume that

the central server and users are all honest-but-curious in
the sense that they will honestly follow the protocols
in the system without maliciously manipulating their
received data. However, they may be curious about
others’ data and even collide to infer others’ data. In
addition, the central server and users share the same
public information, such as the privacy-preserving pro-
tocols (including the hash functions used).

4 PRELIMINARIES

4.1 Differential Privacy

Differential privacy is the de-facto standard for provid-
ing privacy guarantees [8]. It limits the adversary’s abil-
ity of inferring the participation or absence of any user
in a data set via adding carefully calibrated noise (e.g.,
Laplacian noise [8]) to query results. The algorithm M
is ǫ-differentially private if for all neighboring datasets
D1 and D2 that differ on a single element (e.g., the data
of one person), and all subsets S of the image of M,

Pr[M(D1) ∈ S] ≤ eǫ × Pr[M(D2) ∈ S], (2)

where ǫ is the privacy budget to specify the level of
privacy protection and smaller ǫ means better privacy.
According to the composition theorem [29], an extra
privacy budget will be required when multiple related
queries are sequentially applied to differential privacy
mechanisms.

4.2 Local Differential Privacy

Generally, differential privacy research focuses on cen-
tralized databases and implicitly assumes a trusted serv-
er. Aiming to eliminate this assumption, local differential
privacy (or simply local privacy) is proposed for crowd-
sourced systems to provide a stringent privacy guarantee
that data contributors trust no one [7], [17]. In particular,
for any user i, a mechanism M satisfies ǫ-local privacy
if for any two data records X i, Y i ∈ Ω1 × · · · × Ωd,
and for any possible privacy-preserving outputs X̃ i ∈
Range(M),

Pr[M(X i) = X̃ i] ≤ eǫ × Pr[M(Y i) = X̃ i], (3)

where the probability is taken over M′s randomness and
ǫ has a similar impact on privacy as in the ordinary
differential privacy (Equation (2)).

The simplest form of local privacy is the randomized
response [34], which has been widely used in the survey
of people’s “yes or no” opinions about a private issue.
Participants of the survey are required to give their true
answers with a certain probability or random answers
with the remaining probability. Due to the randomness,
the surveyor cannot determine the individuals’ true
answers (i.e., local privacy is guaranteed) but still can
predict the true proportions of alternative answers.

Recently, RAPPOR has been proposed for statistics
aggregation [12]. The basic idea of RAPPOR is the ex-
tension of the randomized response technique via long
binary strings to uniquely represent arbitrary domain.
However, it is not directly applicable to multiple di-
mensional data with large domain size since the binary
strings will have exponential length increments in terms

of the number of dimensions. To address this problem,
Fanti et al. [14] propose an association learning scheme,
which extends the 1-dimensional RAPPOR to estimate
the 2-dimensional joint distribution. However, the spar-
sity in the multi-dimensional domain and the way it
iteratively scans RAPPOR strings means that it will incur
considerable computational complexity.

5 LOPUB: HIGH-DIMENSIONAL DATA PUBLI-
CATION WITH LOCAL PRIVACY

We propose LoPub, a novel solution to achieve high-
dimensional crowdsourced data publication with local
privacy. In this section, we first introduce the basic
idea behind LoPub and then elaborate the algorithmic
procedures in more detail.

5.1 Basic idea

Privacy-preserving high-dimensional crowdsourced data
publication aims at releasing an approximate dataset
with similar statistical information (i.e., in terms of s-
tatistical distribution as defined in Equation (1)) to the
source data while guaranteeing the local privacy. This
problem can be considered in four stages:

First, to achieve local privacy, some local transfor-
mation should be designed to the user side to cloak
individuals’ original data records. Then, the central serv-
er needs to obtain the statistical information, a.k.a, the
distribution of original data. There are two plausible
solutions. One is to obtain the 1-dimensional distribution
on each attribute independently. Unfortunately, the lack
of consideration of correlations between dimensions will
lose the utility of original dataset. Another is to consider
all attributes as one and compute the d-dimensional
joint distribution. However, due to combinations, the
possible domain will increase exponentially with the
number of dimensions, thus leading to both low scala-
bility and signal-noise-ratio problems [35]. Therefore, the
next crucial problem is to find a solution for reducing the
dimensionality while keeping the necessary correlations.
Finally, with the statistical distribution information on
low-dimensional data, how to synthesize a new dataset
is the remaining problem.

To this end, we present LoPub, a locally privacy-
preserving data publication scheme for high-
dimensional crowdsourced data. Figure 3 shows
the overview of LoPub, which mainly consists of four
mechanisms: local privacy protection, multi-dimensional
distribution estimation, dimensionality reduction, and
data synthesizing.

1) Local Privacy Protection. We first propose the lo-
cal transformation process that adopts randomized
response technique to cloak the original multi-
dimensional data records on distributed users
to provide local privacy for all individuals in
the crowdsourced system. Particularly, we locally
transform each attribute value to a random bit
string. Then, the local privacy-preserved data is
sent to and aggregated at the central server.

2) Multi-dimensional Distribution Estimation. We
then propose multi-dimensional joint distribu-
tion estimation schemes to obtain both the joint
and marginal probability distribution on multi-
dimensional data. Inspired by [14], we first ex-
tend the EM-based approach for high-dimensional

4

Original High-

dimensional data

Multi-dimensional

Distribution

Estimation

(Section 5.3)

Local

Transformation

(Section 5.2)

Dimensionality

Reduction

(Section 5.4)

Data Synthesizing

(Section 5.5)

dimensional

Privacy-preserving

High-dimensional

Data

Fig. 3: An overview of LoPub

distribution estimation. However, such a straight-
forward extension does not consider the sparsity
in high-dimensional data, which will lead to high
complexity for distribution estimation. To guaran-
tee fast estimation, we then present a Lasso-based
approach with the cost of slight accuracy degrada-
tion. Finally, we propose a hybrid approach striking
the balance between the accuracy and efficiency.

3) Dimensionality Reduction. Based on the multi-
dimensional distribution information, we then pro-
pose to reduce the dimensionality by identifying
mutual-correlated attributes among all dimension-
s and split the high-dimensional attributes into
several compact low-dimensional attribute cluster-
s. In this paper, considering the heterogeneous
attributes, we adopt mutual information and an
undirected dependency graph to measure and
model the correlations of attributes, respectively.
Then, we propose to split the attributes according
to the junction tree built from the dependency
graph. In addition, we also propose a heuristic
pruning scheme to further boost the process of
correlation identification.

4) Synthesizing the New Dataset. Finally, we pro-
pose to sample each low-dimensional dataset ac-
cording to the connectivity of attribute clusters
and the estimated joint or conditional distribution
on each attribute cluster, thus synthesizing a new
privacy-preserving dataset.

5.2 Local Transformation for High-dimensional Data
Record

5.2.1 Design Rationale
A common framework of locally private distribution
estimation is that each individual user applies a local
transformation on the data for privacy protection and
then sends the transformed data to the server. The
server estimates the joint distribution according to the
transformed data. Local transformation in our design
includes two key steps: one is mapping to Bloom fil-
ters and the other is adding randomness. Particularly,
Bloom filters over attribute domain Ω with multiple
hash functions can hash all the variables in the domain

TABLE 2: Notation
N number of users (data records) in the system
X entire crowdsourced dataset on the server side
Xi data record from the ith user
xi
j jth element of Xi

d number of attributes in X
R set of all attribute clusters
Aj : jth attribute of X
Ωj domain of Aj

ωj candidate attribute value in Ωj

Hj(x) hash functions for Aj that map x into a Bloom
filter

sij Bloom filter of xi
j (Si

j = Hj(xi
j))

sij [b] bth bit of sij
ŝij randomized Bloom filter of sij
ŝij [b] bth bit of ŝij
mj length of sij
f probability of flipping a bit of a Bloom filter

into a pre-defined space. Thus, the unique bit strings
are the representative features of the original report.
Then, after privacy protection by randomized responses,
a large number of samples with various levels of noise
are generated by individual users. After aggregation, the
central server obtains a large sample space with random
noise. As a result, one may estimate the distribution from
the noised sample space by taking advantage of machine
learning techniques such as EM algorithm and regression
analysis.

Under the above framework, a key observation can be
made: if features are mutually independent, the combi-
nations of features from different candidate sets are also
mutually independent. Therefore, when Bloom filters of
each attribute are mutually independent (i.e., no colli-
sions for all bits), then the Cartesian product of Bloom
filters of different attributes are mutually independent.
In this sense, with mutually independent features of
Bloom filters, existing machine learning techniques like
EM and Lasso regression are effective for the multivari-
ate distribution estimation. Some notations used in this
paper are listed in Table 2.

5.2.2 Algorithmic Procedures of Local Transformation
Before describing the distribution estimation, we present
that details about the local transformation for high-
dimensional crowdsourced data. In essence, local trans-
formation consists of three steps:

1) For the ith user, we have an original data record
X i = {xi

1, x
i
2, . . . , x

i
d} with d attributes. For each

attribute Aj (j = 1, . . . , d), we employ h hash func-
tions Hj(·) to map xi

j to a length-mj bit string sij
(called a Bloom filter); we calculate sij = Hj(x

i
j), j =

1, . . . , d.
2) Each bit sij [b] (b = 1, 2, . . . ,mj) in sij is randomly

flipped into 0 or 1 according to the following rule:

ŝij [b] =

sij [b], with probability of 1− f

1, with probability of f/2
0, with probability of f/2

(4)

where f ∈ [0, 1] is a user-controlled flipping prob-
ability that quantifies the level of randomness for
local privacy.

3) After deriving randomized Bloom filter ŝij (j =
1, . . . , d), we concatenates ŝi1, . . . , ŝ

i
d to obtain a

stochastic (
∑d

j=1 mj)-bit vector,
[

ŝi1[1], . . . , ŝ
i
1[m1] . . . ŝid[1], . . . , ŝ

i
d[md]

]

(5)

5

and send it to the server.
Detailed examples illustrating the above procedures

can be referred to [28].
Parameter Setup: According to the characteristics of

Bloom filter [30], given the false positive probability p
and the number |Ωi| of elements to be inserted, the
optimal length mj of Bloom filter can be calculated as

mj =
ln(1/p)

(ln 2)2
|Ωj |. (6)

Furthermore, the optimal number hj of hash functions
in the Bloom filter is

hj =
mj

|Ωj |
ln 2 =

ln(1/p)

(ln 2)
. (7)

So, the optimal h = ln(1/p)
(ln 2) is used for all dimensions.

Privacy Analysis: Because local transformation is per-
formed by the individual user, no one can obtain the
original record X i, local privacy can be easily achieved
and we only have to analyze the privacy guarantee on
the user side. In addition, since both hash operations and
randomized response on all attributes are independent,
the local transformation on data consumes no extra pri-
vacy budget with the increase of number of dimensions
d, as pointed by the composition theorem [26].

According to the conclusion in [12], differential priva-
cy obtained on the user side is

ǫ = 2h ln

(

2− f

f

)

, (8)

where h is the number of hash functions in the Bloom
filter and f is the probability that a bit vector was
flipped. Overall, since the same transformation is done
by all users independently, this ǫ-local privacy guarantee
is equivalent for all distributed users.

Communication Overhead:
Theorem 1: The minimal communication cost CLoPub

after the local transformation

CLoPub ∝

d
∑

j=1

mj =
ln(1/p)

(ln 2)2

d
∑

j=1

|Ωj |. (9)

Proof If we assume that the domain of each attribute
is publicly known by both users and the server, then
the communication cost of non-private collection is ba-

sically
∑d

j=1 ln |Ωj |, which is related to the domain size.
Nevertheless, in our method, due to local privacy, the

communication cost is
∑d

j=1 mj , which is related to
the length of the Bloom filters because only randomly
flipped bit strings (not the original data) are sent. �

For comparison, under the same condition, when
RAPPOR [12] is directly applied to the k-dimensional
data, all Ω1 × · · · × Ωk candidate value will be regarded
as 1-dimensional data, then the cost is

CRAPPOR ∝
ln(1/p)

(ln 2)2

k
∏

j=1

|Ωj |, (10)

where
∏k

j=1 |Ωj | is due to the size of the candidate set
Ω1 × · · · × Ωk. Difference between Equation 9 and 10
is because our LoPub, compared with straightforward
RAPPOR, considers the mutual independency between
multiple attributes.

5.3 Multivariate Distribution Estimation with Local
Privacy

After receiving randomized bit strings, the central server
can aggregate them and estimate their joint distribution.
For example, an EM-based estimation algorithm [14] was
proposed to estimate 2-dimensional joint distribution.
However, due to high complexity and overheads, it is
only preferable to low dimensions with small domain,
which is impractical to many real-world datasets with
high dimensions. Therefore, we then propose a Lasso
regression based algorithm with high efficiency and
also a hybrid algorithm to achieve a balance between
efficiency and accuracy.

5.3.1 EM-based Distribution Estimation

Here, we first extend EM-based estimation [14] to k-
dimensional dataset (2 ≤ k ≤ d) and then elaborate
its computational complexity to show its inefficiency in
high-dimensional crowdsourced data.

Before illustrating the algorithm, we first introduce
the following notations. Without loss of generality, we
consider k specified attributes as A1, A2, . . . , Ak and their
index collection C = {1, 2, ..., k}. For simplicity, the event
Aj = ωj or xj = ωj is abbreviated as ωj . For example,
the prior probability P (x1 = ω1, x2 = ω2, . . . , xk = ωk)
can be simplified into P (ω1ω2 . . . ωk) or P (ωC).

Algorithm 1 depicts the extended EM-based approach
for estimating k-dimensional joint distribution. More
specifically, it consists of the following five main steps.

Algorithm 1 EM-based k-dimensional Joint Distribution
(EM JD)

Require: C : attribute indexes cluster, i.e., C = {1, 2, ..., k}
Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
δ : convergence accuracy.

Ensure: P (AC): joint distribution of k attributes specified by C.
1: initialize P0(ωC) = 1/(

∏

j∈C
|Ωj |).

2: for each i = 1, . . . , N do
3: for each j ∈ C do

4: compute P (ŝij |ωj) =
∏mj

b=1(
f
2
)ŝ

i
j [b](1− f

2
)1−ŝij [b].

5: end for
6: compute P (ŝiC |ωC) =

∏

j∈C
P (ŝij |ωj).

7: end for
8: initialize t = 0 /* number of iterations */
9: repeat

10: for each i = 1, . . . , N do
11: for each (ωC) ∈ Ω1 ×Ω2 × · · · × Ωk do

12: compute Pt(ωC |ŝ
i
C) =

Pt(ωC)·P (ŝiC|ωC)
∑

ωC

Pt(ωC)P (ŝi
C
|ωC)

13: end for
14: end for
15: set Pt+1(ωC) =

1
N

∑N
i=1 Pt(ωC |ŝ

i
C)

16: update t = t+ 1
17: until max

ωC
Pt(ωC)−max

ωC
Pt−1(ωC) ≤ δ.

18: return P (AC) = Pt(ωC)

1) Before executing EM procedures, we set an uniform

distribution P (ω1ω2 . . . ωk) = 1/(
k
∏

j=1

|Ωj |) as the

initial prior probability.
2) According to Equation (4), each bit sij [b] will be

flipped with probability f
2 . Thus, by comparing the

6

bits Hj(ωj) with the randomized bits, the condi-
tional probability P (ŝij |ωj) can be computed (see
line 4 of Algorithm 1).

3) Due to the independence between attributes (and
their Bloom filters), the joint conditional probability
can be easily calculated by combining each individ-
ual attribute; i.e., P (ŝiC |ωC) =

∏

j∈C

P (ŝij |ωj).

4) Given all the conditional distributions of one par-
ticular combination of bit strings, their correspond-
ing posterior probability can be computed by the
Bayes’ Theorem,

Pt(ωC |ŝ
i
C) =

Pt(ωC) · P (ŝiC |ωC)
∑

ωC

Pt(ωC)P (ŝiC |ωC)
. (11)

where Pt(ωC)=Pt(ω1ω2 . . . ωk) is the k−dimensional
joint probability at the tth iteration.

5) After identifying posterior probability for each us-
er, we calculate the mean of the posterior probabili-
ty from a large number of users to update the prior
probability. The prior probability is used in another
iteration to compute the posterior probability in
the next iteration. The above EM-like procedures
are executed iteratively until convergence, i.e., the
maximum difference between two estimations is
smaller than the specified threshold.

The above algorithm can converge to a good estima-
tion when the initial value is well chosen. EM-based k-
dimensional joint distribution estimation will also fail
when converging to local optimum. Especially when k
increases, there will be many local optimum to prevent
good convergence because sample space of all combina-
tions in Ωj1 × Ωj2 × · · · × Ωjk explodes exponentially.

Complexity: Before the analysis of complexity, we
should note that number of user records N needs to
be sufficiently large according to the analysis in [12],
i.e., N ≫ vk, where v denotes the average size of |Ωj |,
otherwise it is difficult to estimate reliably from a small
sample space with low signal-noise-ratio.

Theorem 2: Suppose that the average length of mj is
m and the average |Ωj | is v. Then, the time complexity
of Algorithm 1 is

O
(

Nkmvk + tNv2k
)

. (12)

Proof EM-based estimation will scan all N users’ bit
strings with the length of km one by one to compute
the conditional probability for vk different combination-
s, the time complexity basically can be estimated as
O(N(km)(vk)). Also, in the tth iteration, computing the
posterior probability of each combination when observ-
ing each bit string will incur the time complexity of
O(tN(vk)2). As a consequence, the overall time complex-
ity is O

(

tNv2k +Nkmvk
)

. �
Theorem 3: The space complexity of Algorithm 1 is

O
(

Nkm+ 2Nvk
)

. (13)

Proof In Algorithm 1, the necessary storage includes
N users’ bit strings with the length of km, so it is
O(Nkm). The prior probabilities on k dimensions is
O(vk). The conditional probabilities and posterior prob-
abilities on vk candidates for all bit strings is O(2Nvk).
So, the overall complexity is O

(

Nkm + 2Nvk + vk
)

=
O
(

Nkm+ 2Nvk
)

since N is the dominant variable. �

According to Theorem 2, the space overhead could
be daunting when either N or k is large. This makes
the performance of EM-based k-dimensional distribution
estimation degrade dramatically and not applicable to
high dimensional data.

5.3.2 Lasso-based Distribution Estimation
To improve the efficiency of the k-dimensional joint
distribution estimation, we present a Lasso regression-
based algorithm here. As mentioned in Section 5.2.1, the
bit strings are the representative features of the original
report. After randomized responses and flipping, a large
number of noisy samples will be generated by individual
users. More precisely, one may consider that the central
server receives a large number of samples from specific
distribution, however, with random noise. In this sense,
one may estimate the distribution from the noisy sample
space by taking advantage of linear regression ~y = Mβ,
where M is predictor variables and ~y is response vari-
able, and β is the regression coefficient vector. The use
of Bloom filter can guarantee that the features (predictor
variables M) re-extracted at the server are the same as
ones extracted by the user. Moreover, response variable
~y can be estimated from the randomized bit strings ac-
cording to the statistic characters of known f . Therefore,
the only problem is to find a good solution to the linear
regression ~y = Mβ. Obviously, k-dimensional data may
incur a output domain Ω1 × ... × Ωk with the size of
|Ω1| × ... × |Ωk|, which increases exponentially with k.
With fixed N entries in the dataset X , the frequencies
of many combination ω1ω2...ωk ∈ Ω1 × ... × Ωk are
rather small or even zero. So, M is sparse and only
part of the sparse but effective predictor variables need
to be chosen. Otherwise, the general linear regression
techniques will lead to overfitting problem. Here, we
resort to Lasso regression, effectively solving the sparse
linear regression by choosing predictor variables.

Algorithm 2 Lasso-based k-dimensional Joint Distribu-
tion (Lasso JD)

Require: C : attribute indexes cluster i.e., {1, 2, ..., k},
Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability.

Ensure:
P (AC): joint distribution of k attributes specified by C .

1: for each j ∈ C do
2: for each b = 1, 2, . . . ,mj do

3: compute ŷj [b] =
∑N

i=1 ŝ
i
j [b]

4: compute yj [b] = (ŷj [b]− fN/2)/(1 − f)
5: end for
6: set Hj(Ωj) = {Hj(ω) ∀ω ∈ Ωj}
7: end for
8: set ~y =

[

y1[1], . . . , y1[m1] y2[1], . . . , y2[m2] . . . yk[1], . . . , yk[mk]
]

9: set M =
[

H1(Ω1)×H2(Ω2)× · · · × Hk(Ωk)
]

10: compute ~β = Lasso regression(M, ~y)

11: return P (AC) = ~β/N

Our Lasso-based estimation is described in Algorithm
2 and consists of the following four major steps.

1) After receiving all randomized Bloom filters, for
each bit b in each attribute j, the server counts the
number of 1′s as ŷj[b] =

∑N
i=1 ŝ

i
j [b].

2) The true count sum of each bit yj[b] can be esti-
mated as yj [b] = (ŷj[b]−fN/2)/(1−f) according to
the randomized response applied to the true count.

7

Fig. 4: Illustration of Lasso JD

These count sums of all bits form a vector ~y with
the length of

∑k
j=1 mj .

3) To construct the features of the overall candidate
set of attribute ω1 . . . ωk, the Bloom filters on each
dimension Ωj is re-implemented by the server with
the same hash functions Hj(). Suppose all distinct
Bloom filters on Ωj are Hj(Ωj) = {Hj(ω) ∀ω ∈
Ωj}, where they are orthogonal with each other.
The candidate set of Bloom filters is then M =
[

H1(Ω1)×H2(Ω2)×· · ·×Hk(Ωk)
]

and the members
in M are still mutual orthogonal.

4) Fit a Lasso regression model to the counter vector
~y and the candidate matrix M, and then choose
the non-zero coefficients as the corresponding fre-
quencies of each candidate string. By reshaping the
coefficient vector into a k-dimensional matrix by
natural order and dividing with N , we can de-
rive the k-dimensional joint distribution estimation
P (A1A2 . . . Ak). For example, in Figure. 4, we fit a
linear regression to y12 and the candidate matrix
M to estimate the joint distribution PA1A2 .

Generally, the regression operation, the core of the
estimation, will lose accuracy only when there are many
collisions between Bloom filter strings. However, as men-
tioned in Section 5.2.1, if there is no collision in the bit
strings of each single dimension, then there is no colli-
sion in conjuncted bit strings of different dimensions. In
fact, the probability of collision in conjuncted bit strings
will not increase with dimensions. For example, suppose
the collision rate of Bloom filter in one dimension is
p, then the collision rate will decrease to pk when we
connect bit strings of k dimensions together. Therefore,
we only need to choose proper m and h according to
Equation (6) and (7) to lower the collision probability
for each dimension and then we are guaranteed to have
a proper estimation for multiple dimensions.

Complexity: Compared with Algorithm 1, our Lasso-
based estimation can effectively reduce the time and
space complexity.

Theorem 4: The time complexity of Algorithm 2 is

O
(

v3k + kmv2k +Nkm
)

. (14)

Proof Algorithm 2 involves two parts: to compute the
bit counter vector, N bit strings with each length of km
will be summed up and this operation at most incurs

the complexity of O(Nkm); and Lasso regression with
vk candidates (total domain size) and km samples (the
length of the bit counter vector is km) has the complexity
of O

(

(vk)3 + (vk)2(km)
)

. �
Based on the general assumption that N dominates

Equation (14), then we can see the complexity in Equa-
tion (14) is much less than Equation (12) in Theorem 2.

Theorem 5: The space complexity of Algorithm 2 is

O
(

Nkm+ vkkm
)

. (15)

Proof In Algorithm 2, the storage overhead consists
of three parts: users’ bit strings O(Nkm), a count vector
with size O(km), and the candidate bit matrix M with
size O(kmvk). Therefore, the overall space complexity
of our proposed Lasso based estimation algorithm is
O
(

Nkm + km + vkkm
)

= O
(

Nkm + vkkm
)

, which is
also smaller than Equation (13) as N is dominant. �

The empirical results are shown in Section 6. The
efficiency comes from the fact that the N bit strings of
length m will be scanned to count sum only once and
then one-time Lasso regression is fitted to estimate the
distribution. In addition, Lasso regression could extract
the important (i.e., frequent) features with high probabil-
ity, which fits well with the sparsity of high-dimensional
data.

5.3.3 Hybrid Algorithm
Recall that, with sufficient samples, EM-based estima-
tion can demonstrate good convergence but also high
complexity. On the other hand, Lasso-based estimation
can be very efficient with a slight accuracy deviation
compared with the EM-based algorithm.

The high complexity of the EM-based algorithm stems
from two parts: first, it iteratively scans users’ reports
and builds a prior distribution table, which has the size
of O(Nvk).For each record of table, one has to compare
∑

mj bits. However, when the dimension is high, the
combination of Ωj will be very sparse and has lots of
zero items. Second, the initial value of the uniformly
random assignment will lead to slow convergence.

To achieve a balance between the EM-based estima-
tion and Lasso-based estimation, we propose a hybrid
algorithm, Lasso+EM JD (Algorithm 3), which first e-
liminates the redundant candidates and estimates the
initial value with Lasso-based algorithm and then refines
the convergence using EM-based algorithm. The hybrid
algorithm has two advantages:

1) The sparse candidates will be selected by the Lasso-
based estimation algorithm. So, the EM-based al-
gorithm can just compute the conditional prob-
ability on these sparse candidates instead of all
candidates, which can greatly reduce both time and
space complexity.

2) The lasso-based algorithm can give a good initial
estimation of the joint distribution. Compared with
using initial values with random assignments, us-
ing the initial value estimated with the Lasso-based
algorithm can further boost the convergence of the
EM algorithm, which is sensitive to the initial value
especially when the candidate space is sparse.

Theorem 6: The time complexity of Algorithm 3 is

O
(

(v3k + kmv2k +Nkm) + (tN(v′)2 +Nkm(v′))
)

, (16)

where v′ is the average size of sparse items in Ω1×...×Ωk,
and v′ < vk.

8

Algorithm 3 Lasso+EM k-dimensional Joint Distribution
(Lasso+EM JD)

Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability.

Ensure: P (A1A2 . . . Ak): k-dimensional joint distribution.
1: compute P0(ω1ω2 . . . ωk) = Lasso JD(Aj ,Ωj , {ŝij}

N
i=1, f)

2: set C′ = {x|x ∈ C, P0(x) = 0}.
3: for each i = 1, ...,N do
4: for each j = 1, ..., k do

5: compute P (ŝij |ωj) =
∏mj

b=1(
f
2
)ŝ

i
j [b](1− f

2
)1−ŝij [b].

6: end for
7: if ω1ω2 . . . ωk ∈ C′ then
8: P (ŝi1ŝ

i
2 . . . ŝ

i
k
|ω1ω2 . . . ωk) = 0

9: else
10: compute P (ŝi1ŝ

i
2 . . . ŝ

i
k
|ω1ω2 . . . ωk) =

∏k
j=1 P (ŝij |ωj).

11: end if
12: end for
13: initialize t = 0 /* number of iterations */
14: repeat
15:
16: /* (similar to Algorithm 1) */
17:
18: until Pt(ω1ω2 . . . ωk) converges.
19: return P (A1A2 . . . Ak) = Pt(ω1ω2 . . . ωk)

Proof See Theorem 2 and Theorem 4, the only differ-
ence is that after the Lasso based estimation, only sparse
items in Ω1 × ...× Ωk are selected. �

Theorem 7: The space complexity of Algorithm 3 is

O
(

Nkm+ vkkm+ 2Nv′
)

. (17)

Proof See Theorem 3 and Theorem 5. �

5.4 Dimension Reduction with Local Privacy

5.4.1 Dimension Reduction via 2-dimensional Joint Dis-
tribution Estimation
The key to reducing dimensionality in a high-
dimensional dataset is to find the compact clusters, with-
in which all attributes are tightly correlated to or depen-
dent on each other. Inspired by [35], [5] but without extra
privacy budget on dimension reduction, our dimension
reduction based on locally once-for-all privacy-preserved
data records consists of the following three steps:

1) Pairwise Correlation Computation. We use mu-
tual information to measure pairwise correlations
between attributes. The mutual information is cal-
culated as

Im,n =
∑

i∈Ωm

∑

j∈Ωn

pij ln
pij

pi·p·j
(18)

where, Ωm and Ωn are the domains of attributes
Am and An, respectively. pi· and p·j represent the
probability that Am is the ith value in Ωm and
the probability that An is the jth value in Ωn,
respectively. Then, pij is their joint probability.
Particulary, pij can then be efficiently obtained with
our proposed multi-dimensional joint distribution
estimation algorithms in Section 5.3, i.e, the hybrid
estimation Algorithm 3. Without loss of generality,
the term “JD” refers to the multi-dimensional joint
distribution estimation algorithms. As the corre-
sponding marginal distribution, both pi· and p·j
then can be learned from pij or estimated with the
2-dimensional joint distribution of Ai (or Aj) and
itself Ai (or Aj).

2) Dependency Graph Construction. Dependency
graph can be used to depict the correlations among
attributes. Assume each attribute Aj is a node in
the dependency graph and an edge between two
nodes Am and An represents that attribute Am and
An are correlated. Based on mutual information,
the dependency graph of attributes can be con-
structed as follows. First, an adjacent matrix Gd×d

(dependency graph of all d attributes) is initialized
with all 0’s. Then, all the attribute pairs (Am, An)
are chosen to compare their mutual information
with an threshold τm,n, which is defined as

τm,n = min(|Ωm| − 1, |Ωn| − 1)× φ2/2, (19)

where φ (0 ≤ φ ≤ 1) is a flexible parameter
determining the desired correlation level. Normally
φ = 0.2 represent the basic correlation. Gm,n and
Gn,m are both set to be 1 if and only if Im,n > τm,n.

3) Compact Clusters Building. By triangulation, the
dependency graph Gd×d can be transformed to a
junction tree, in which each node represents an
attribute Aj . Then, based on the junction tree algo-
rithm, several clusters C1, C2, . . . , Cl can be obtained
as the compact clusters of attributes, in which at-
tributes are mutually correlated. Hence, the whole
attributes set can be divided into several compact
attribute clusters and the number of dimensions
can be effectively reduced.

Detailed examples can be referred to [28].

Algorithm 4 Dimension reduction with local privacy

Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
φ : dependency degree

Ensure: C1, C2, ...,Cl : attribute indexes clusters
1: initialize Gd×d = 0.
2: for each j = 1, 2, . . . , d do
3: estimate P (Aj) by JD (i.e., Lasso+EM JD Algorithm 3)
4: end for
5: for each attribute m = 1, 2, . . . , d− 1 do
6: for each attribute n = m + 1, m+ 2, . . . , d do
7: estimate P (AmAn) by JD

8: compute Im,n =
∑

i∈Ωm

∑

i∈Ωn
pij ln

pij
pi·p·j

9: compute τm,n = min(|Ωm| − 1, |Ωn| − 1) ∗ φ2/2
10: if I(m,n) ≥ τmn then
11: set Gm,n = Gn,m = 1
12: end if
13: end for
14: end for
15: build dependency graph with Gd×d
16: triangulate the dependency graph into a junction tree
17: split the junction tree into several cliques C1, C2, ..., Cl with elimi-

nation algorithm.
18: return C = {C1, C2, ...,Cl}

Theorem 8: The time complexity of Algorithm 4 is

O(d2(v6 + 2mv4 + 2Nm+ tN(v′)2 + 2Nm(v′))). (20)

Proof The core of the dimension reduction process
is the

(

d
2

)

times of 2-dimensional joint distribution esti-
mation. The complexity of each 2-dimensional joint dis-
tribution estimation can be derived from Equation (16)
when adopting the hybrid algorithm (Algorithm 3). The
complexity of building junction tree on d×d dependency
graph is negligible when compared with the joint distri-
bution estimation. �

9

Theorem 9: The space complexity of Algorithm 4 is

O(2Nm+ 2v2m+ 2Nv′). (21)

Proof When we compute the mutual correlations
between any pairs, a 2-dimensional joint distribution
estimation algorithm will be triggered with the space
complexity of O(2Nm + 2mv2 + 2Nv′), since k = 2
is substituted into Equation (17). This maximum com-
plexity dominates Algorithm 4. The space complexity
of building junction tree on d × d dependency graph
is negligible when compared with the joint distribution
estimation. �

5.4.2 Entropy based Pruning Scheme
In existing work [18], [32] on homogeneous data, corre-
lations can be simply captured by distance or similarity
metrics [36]. However, in our work, mutual information
is used to measure general correlations since heteroge-
nous attributes (a.k.a., attributes with different domains)
are also considered.

As shown in Equation (18), to calculate the mutual
information of variables X and Y , the joint probabil-
ity on the joint combination is inevitable, thus mak-
ing the pairwise computation of dependency necessary.
Although mutual information is already simpler than
Kendall rank coefficients in the similar work [21], here,
we also propose a pruning-based heuristic to boost this
pairwise correlation learning process.

Intuitively, there are different situations in Algorith-
m 4: 1. When φ = 0 or φ = 1, all attributes will be
considered mutually correlated or independent. Thus,
there is no need to compute pairwise correlation. 2. With
the increase of φ (0 < φ < 1), less dependencies will
be included in the adjacent matrix Gd×d of dependen-
cy graph, which will become sparser. This also means
that we may selectively neglect some pairs. Inspired
by the relationship between mutual information and
information entropy2, we first heuristically filter out
some portion of attributes Ax with least relative infor-
mation entropy RH(Ax) = H(Ax)/|Ωx|, and then verify
the mutual information among the remaining attributes,
thus reducing the pairwise computations.

Furthermore, the adjacent matrix Gd×d of dependen-
cy graph varies in different datasets. For example, the
adjacent matrix Gd×d is rarely sparse in binary datasets
but very sparse in non-binary datasets. Based on this
observation, we can further simplify the calculation by
finding the independency in binary datasets or finding
the dependency in non-binary datasets. For example, we
first set all entries of Gd×d for a binary datasets as 1’s and
start from the attributes with least relative information
entropy RH(Ax) = H(Ax)/|Ωx| to find the uncorrelated
attributes. While for non-binary datasets, we first set
Gd×d as 0’s and then start from the attributes with
largest average entropy to find the correlated attributes.

5.5 Synthesizing New Dataset

For brevity, we first define AC = {Aj|j ∈ C} and
X̂C = {xj |j ∈ C}. Then the process of synthesizing
the new dataset via sampling is shown in the following
Algorithm 6.

2. The relationship between mutual information and information
entropy can be represented as I(X; Y) = H(X) + H(Y) − H(X, Y),
where H(X) and H(X, Y) denote the information entropy of variable
X and their joint entropy of X and Y , respectively.

Algorithm 5 Entropy based Pruning Scheme

Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
φ : dependency degree

Ensure: Gd×d: adjacent matrix Gd×d of dependency graph of
attributes Aj (j = 1, 2, ..., d)

1: initialize Gd×d = 0
2: for each j = 1, 2, . . . , k do
3: compute P (Aj) = JD(Aj ,Ωj , {ŝ

i
j}

N
i=1, f)

4: compute RH(Aj) = − 1
|Ωj |

∑

p∈P (Aj)

p log p

5: end for
6: sort listA = {A1, A2, ..., Aj} according to entropy H(Aj)
7: pick up the previous ⌊length(listA) × (1 − φ)⌋ items from listA

as a new list listA′

8: ...
9: compute pairwise mutual information among listA′ and set de-

pendency graph Gd×d as in Algorithm 4.
10: return Gd×d

Algorithm 6 New Dataset Synthesizing

Require: C : a collection of attribute index clusters C1, ...Cl,
Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,

Ensure: X̂ : Synthetic Dataset of X
1: initialize R = ∅

2: repeat
3: randomly choose an attribute index cluster C ∈ C

4: estimate joint distribution P (AC) by JD

5: sample X̂C according to P (AC)
6: C = C− C, R = R ∪C, D = {D ∈ C|D ∩ R 6= ∅}
7: for each D ∈ D do
8: estimate joint distribution P (AD) by JD
9: obtain conditional distribution P (AD−R|AD∩R) from

P (AD)
10: sample X̂D−R according to P (AD−R|AD∩R) and X̂D∩R

11: C = C−D, R = R ∪D, D = {D ∈ C|D ∩ R 6= ∅}
12: end for
13: until C = ∅

14: return X̂

We first initialize a set R to keep the sampled attribute
indexes. Then, we randomly choose an attribute index
cluster C to estimate the joint distribution and sample
new data X̂ in the attributes Aj , ∀j ∈ C. Next, we
remove C from the cluster collection C into R, and
find the connected component D of C. In the connected
component, each cluster D is traversed and sampled
as follows. first estimate the joint distribution on the
attributes AD by our proposed distribution estimations
and obtain the conditional distribution P (AD−R|AD∩R).
Then, sample X̂D−R according to this conditional distri-
bution and the sampled data X̂D∩R. After the traverse
of D, the attributes in the first connected components are
sampled. Then randomly choose cluster in the remaining
C to sample the attributes in the second connected
components, until all clusters are sampled. Finally, a
new synthetic dataset X̂ is generated according to the
estimated correlations and distributions in origin dataset
X .

Theorem 10: The time complexity of Algorithm 6 is

O(l(v3k + kmv2k +Nkm+ tN(v′)2 +Nkm(v′))), (22)

where l is the number of clusters after dimension reduc-
tion and k here refers to average number of dimensions
in these clusters.

10

A1 A2 A3 A4
A1 A3 A4 A1 A3 A4 A2

U1

U2

U3

Un

A1 A2 A3 A4

A1

A2

A3

A4

A1 A2 A3 A4

A1 A2 A3 A4

U1

U2

U3

Un

A1 A2 A3 A4

U1

U2

U3

Un

U1

U2

U3

Un

A2

Once-for-all Privacy Budget �

Fig. 5: Main procedures of high-dimensional data pub-
lishing with ǫ local privacy

Proof The core of the dataset synthesizing is actually
multiple (l times) k-dimensional joint distribution esti-
mation. �

Theorem 11: The space complexity of Algorithm 6 is

O(Nkm+ vkkm+ 2Nv′ +Nd). (23)

Proof Every time, a k-dimensional joint distribu-
tion estimation algorithm (with space complexity of
O(Nkm + vkkm + 2Nv′)) is processed to draw a new
dataset. A new dataset with the size O(Nd) is maintained
while synthesizing. �

The overall process of LoPub can be summarized in
Figure 5. Clearly, all the processed are conducted on
the locally privacy-preserved data. Therefore, compared
with existing non-local privacy schemes in Figure 1,
LoPub can provide consistency local privacy guarantee
on all crowdsourced users, thus avoiding insider attacks
and multiple assignment of privacy budget.

6 EVALUATION

In this section, we conducted extensive experiments
on real datasets to demonstrate the efficiency of our
algorithms in terms of computation time and accuracy.

We used three real-world datasets: Retail [1], Adult [4],
and TPC-E [2]. Retail is part of a retail market basket
dataset. Each record contains distinct items purchased
in a shopping visit. Adult is extracted from the 1994 US
Census. This dataset contains personal information, such
as gender, salary, and education level. TPC-E contains
trade records of “Trade type”, “Security”, “Security sta-
tus” tables in the TPC-E benchmark. It should be noted
that some continuous domain were binned in the pre-
process for simplicity.

Datasets Type #. Records (N) #. Attributes (d) Domain Size

Retail Binary 27,522 16 216

Adult Integer 45,222 15 252

TPC-E Mixed 40,000 24 277

All the experiments were run on a machine with Intel
Core i5-5200U CPU 2.20GHz and 8GB RAM, using Win-
dows 7. We simulated the crowdsourced environment
as follows. First, users read each data record individu-
ally and locally transform it into privacy-preserving bit
strings. Then, the crowdsourced bit strings are gathered
by the central server for synthesizing and publishing the
high-dimensional dataset.

LoPub can be realized by combining distribution es-
timations and data synthesizing techniques. Thus, we
implemented different LoPub realizations using Python
2.7 with the following three strategies.

1) EM JD, the generalized EM-based multivariate
joint distribution estimation algorithm.

2) Lasso JD, our proposed Lasso-based multivariate
joint distribution estimation algorithm.

3) Lasso+EM JD, our proposed hybrid estimation
algorithm that uses the Lasso JD to filter out

some candidates to reduce the complexity and
replace the initial value to boost the convergence
of EM JD.

It is worth mentioning that we compared only the
above algorithms since our algorithm adopts a novel
local privacy paradigm on high-dimensional data. Other
competitors are either for non-local privacy [5], [35], [21]
or on low-dimension data [12], [14], [16] and therefore
not comparable.

For fair comparison, we randomly chose 100 com-
binations of k attributes from d dimensional data. For
simplicity, we sampled3 50% data from dataset Retail
and 10% data from datasets Adult and TPC-E, respec-
tively. The efficiency of our algorithms is measured by
computation time and accuracy. The computation time
includes CPU time and IO cost. Each set of experiments
is run 100 times, and the average running time is report-
ed. To measure accuracy, we used the distance metrics
AVD (average variant distance) on the three datasets,
as suggested in [5], to quantify the closeness between
the estimated joint distribution P (ω) and the origin joint
distribution Q(ω). The AVD error is defined as

DistAVD(P,Q) =
1

2

∑

ω∈Ω

|P (ω)−Q(ω)|. (24)

The default parameters are described as follows. In the
binary dataset Retail, the maximum number of bits and
the number of hash functions used in the bloom filter
are m = 32 and h = 4, respectively. In the non-binary
datasets Adult and TPC-E, the maximum number of bits
and the number of hash functions used in bloom filter
are m = 128 and h = 4, respectively. The convergence
gap is set as 0.001 for fast convergence.

6.1 Multivariate Distribution Estimation

Here, we show the performance of our proposed dis-
tribution estimations in terms of both efficiency and
effectiveness. The efficiency is measured by computation
time, and the effectiveness is measured by estimation
accuracy.

6.1.1 Computation Time
We first evaluate the computation time of EM JD, Las-
so JD, and Lasso+EM JD for the k-dimensional joint
distribution estimation on three real datasets.

Figures 6 and 7 compare the computation time on the
binary dataset Retail with both k = 3 and k = 5. It can
be noticed that, for each dimension k, Lasso JD is con-
sistently much faster than EM JD and Lasso+EM JD,
especially when k is large. This is because EM JD has
to repeatedly scan each user’s bit string. Particularly, the
time consumption of EM JD increases with f because
there will be more iterations for the fixed convergence
gap. In contrast, Lasso JD uses the regression to es-
timate the joint distribution more efficiently. Further-
more, the complexity of Lasso+EM JD is much less
than EM JD as the initial estimation of Lasso JD can
greatly reduce the candidate attribute space and the
number of iterations needed. When k is growing, the
computation time of Lasso JD increases slowly, unlike
EM JD that has a dramatic increase. This is because the

3. It should be noted that, with sampled data, the differential privacy
level can be further enhanced [23]. But sampling used here is for
simplicity.

11

time complexity of Lasso JD is mainly subject to the
number of users.

Figures 8, 9, 10, and 11 depict the computation time on
non-binary datasets (Adult and TPC-E) when k = 2 and
k = 3. As we can see, EM JD runs with acceptable com-
plexity on low dimension k = 2. When k = 3, the time
complexity of EM JD increases sharply by several times.
When k further increases, it does not return any result
within an unacceptable time during our experiment.
However, Lasso JD takes less than a few seconds. This
discrepancy is consistent with our complexity analysis,
where we envision that the exponential growth of the
candidate set will have a significant impact on EM JD.
So, with the initial estimation of Lasso JD, the combined
estimation Lasso+EM JD can run relatively faster than
EM JD with limited candidate set. The computation
time of EM JD and Lasso JD on TPC-E dataset with
different k = 2 and k = 3 exhibits a similar tendency, as
shown in Figures 10 and 11. We omitted the detailed
report here due to the space constraint. It should be
noted that the general time complexity on TPC-E is
larger than Adult since the average candidate domain of
TPC-E is larger.

6.1.2 Accuracy
Next, we compare the estimation accuracy of
EM JD,Lasso JD, and Lasso+EM JD on real datasets.

Figures 12 and 13 report the AVD error of
EM JD,Lasso JD, and Lasso+EM JD on binary dataset
Retail with different dimensions k = 3 and k = 5.
The AVD error of EM JD is very small when f is
small, but when f grows, it will sharply increase to
as high as 0.28. In contrast, Lasso JD retains the error
around 0.1 even when f = 0.9. However, in practice,
when f is small, i.e., f = 0.5, the differential privacy
an individual can achieve is ǫ = 8.79 according to
Equation (8), which is insufficient in general. So, when
f is large, the AVD error of Lasso JD is comparable
to or even better than that of EM JD. This is because
Lasso regression is insensitive to f when estimating
the coefficients from the aggregated bit sum vectors.
Nonetheless, EM JD is sensitive to f and prone to
some local optimal value because it scans each record
of bit strings. In comparison, Lasso+EM JD achieves
a better tradeoff between Lasso JD and EM JD. For
example, it has less AVD error than Lasso JD when
f is small and outperforms EM JD when f is large.
We can also see that, the AVD error of all estimation
algorithms increases with k, since the average frequency
on k−dimensional combined attributes is N/vk and its
statistical significance decreases with k exponentially.

Figures 14, 15, 16 and 17 also compare the AVD
error of EM JD,Lasso JD, and Lasso+EM JD on the
non-binary datasets Adult and TPC-E with k = 2 and
k = 3. As can be seen, when k = 2, the AVD error
of Lasso JD does not change with f as the aggregated
bit sum vector is insensitive to small f . While EM JD
increases with f gradually due to the scan of each
individual bit string. Similar to the conclusion in the
binary dataset, when f is large, the trend of Lasso JD
is very close to EM JD. Besides, Lasso+EM JD shows
very similar performance to EM JD and incurs relatively
small bias. Therefore, Lasso+EM JD achieves a good
balance between utility and efficiency as it runs much
faster than the baseline EM JD. In addition, when k
increases (k = 3), the estimation error increases as well.

However, Lasso+EM D can further balance between
Lasso JD and EM JD because the candidate set is much
more sparse when k is larger and Lasso+EM JD can
effectively reduce the redundant of candidate set and
iterations. Similar conclusion can be made from the
dataset TPC-E. Nonetheless, because of larger candidate
domain, the AVD error on TPC-E is generally larger than
that on Adult.

6.2 Correlation Identification

In this section, we present correlations between the mul-
tiple attributes that we can learn from locally privacy-
preserved user data. Particularly, we evaluated loss ratio
of dependency relationship of attributes in three dataset-
s. The parameters used in the simulation are set as
follows. The dependency threshold 0.25 for Retail, and
0.4 for Adult and TPC-E. The number of bits and the
number of hash functions in the bloom filter are 32 and
4 for Retail, and 128 and 4 for Adult and TPC-E. The
sample rate is 1 for Retail and 0.1 for Adult and TPC-E.

6.2.1 Accuracy
Figures 18, 19, and 20 show both the ratio of correc-
t identification (accuracy), added (false positive) and
lost (true negative) correlated pairs after estimation,
respectively. From these figures, we can see all these
estimation algorithms can have a relatively accurate
identification among the attributes, especially EM JD
and Lasso+EM JD algorithms. Nevertheless, generally,
the accurate rate decreases with f (i.e., privacy level). In
Figure 18, the general accuracy identified rate is about
85% when the privacy is small (f is less than 0.9). While
in Figures 19 and 20, the accuracy rate is as high as
95% because the dependency threshold is relatively loose
as 0.4. High accurate identification guarantees the basic
correlations among attributes.

However, the incorrect identification is considered
separately with false positive rate and true negative,
which reflect the efficiency and effectiveness of dimen-
sion reduction. Since false positive identification just
adds the correlations that were not exists, this kind of
misidentification only incurs no errors but redundan-
t correlations and extra distribution learning. Instead,
true negative identification implies the loss of some
correlations among attributes, thus causing information
loss in our dimension reduction. For false positive i-
dentification, we can see that EM JD algorithm and
Lasso+EM JD are less than Lasso. That is because Lasso
estimation will choose the sparse probabilities and the
mutual information estimated is generally high due to
the concentrated probability distribution. Especially in
non-binary datasets Adult and TPC-E, the sparsity is
much higher, so the estimated probability distribution is
more concentrated and the false positive identification
rate is high.

The true negative identification in both Adult and TPC-
E is small because the true correlations are not very
high itself because all attributes have a large domain.
Instead, the true correlations in Retail are high and
almost any two attributes are dependent. Therefore, the
true negative identification is comparatively higher.

6.2.2 Effectiveness of Pruning Scheme
We also validated the pruning scheme proposed in Sec-
tion 5.4.2 with simulations on the three datasets. We first

12

0 0.5 1

 f

0

2

4

6

8

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
) EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 6: Estimation Time
(Retail, k = 3)

0 0.5 1

 f

0

10

20

30

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
) EM_JD (k=5)

Lasso_JD (k=5)

Lasso+EM_JD (k=5)

Fig. 7: Estimation Time
(Retail, k = 5)

0 0.5 1

 f

0

20

40

60

80

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
) EM_JD (k=2)

Lasso_JD (k=2)

Lasso+EM_JD (k=2)

Fig. 8: Estimation Time
(Adult, k = 2)

0 0.5 1

 f

0

20

40

60

80

100

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
) EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 9: Estimation Time
(Adult, k = 3)

0 0.5 1

 f

0

20

40

60

80

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
) EM_JD (k=2)

Lasso_JD (k=2)

Lasso+EM_JD (k=2)

Fig. 10: Estimation Time
(TPC-E, k = 2)

0 0.5 1

 f

0

50

100

150

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
) EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 11: Estimation Time
(TPC-E, k = 3)

0 0.5 1

 f

0

0.1

0.2

0.3

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 12: Estimation Accura-
cy (Retail, k = 3)

0 0.5 1

 f

0

0.1

0.2

0.3

0.4

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=5)

Lasso_JD (k=5)

Lasso+EM_JD (k=5)

Fig. 13: Estimation Accura-
cy (Retail, k = 5)

0 0.5 1

 f

0

0.1

0.2

0.3

0.4

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=2)

Lasso_JD (k=2)

Lasso+EM_JD (k=2)

Fig. 14: Estimation Accura-
cy (Adult, k = 2)

0 0.5 1

 f

0

0.2

0.4

0.6

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 15: Estimation Accura-
cy (Adult, k = 3)

0 0.5 1

 f

0

0.1

0.2

0.3

0.4

0.5

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=2)

Lasso_JD (k=2)

Lasso+EM_JD (k=2)

Fig. 16: Estimation Accura-
cy (TPC-E, k = 2)

0 0.5 1

 f

0

0.2

0.4

0.6

0.8

A
v
e

ra
g

e
 v

a
ri
a

ti
o

n
 d

is
ta

n
c
e

EM_JD (k=3)

Lasso_JD (k=3)

Lasso+EM_JD (k=3)

Fig. 17: Estimation Accura-
cy (TPC-E, k = 3)

TABLE 3: Dependency Loss Ratio and Complexity Re-
duction Ratio (Adult)

φ 0.1 0.2 0.3 0.4 0.5
#. Dep (Pruning) 88 38 22 12 6

#. Dep 102 42 24 14 8
Loss Ratio 0.137 0.095 0.083 0.143 0.250

#. Pairs (Pruning) 91 66 55 36 28
#. Pairs 105 105 105 105 105

Reduction Ratio 0.133 0.371 0.476 0.657 0.733

TABLE 4: Dependency Loss Ratio and Complexity Re-
duction Ratio (TPC-E)

φ 0.1 0.2 0.3 0.4 0.5
#. Dep (Pruning) 44 16 16 8 8

#. Dep 46 24 20 10 10
Loss Ratio 0.043 0.333 0.200 0.200 0.200

#. Pairs (Pruning) 231 171 136 66 45
#. Pairs 276 276 276 276 276

Reduction Ratio 0.163 0.380 0.507 0.761 0.837

defined the dependency loss ratio as the ratio between
the dependency loss after pruning with the original
number of dependencies in the adjacent matrix Gd×d

of dependency graph. The complexity reduction ratio is
defined as the ratio of reduced pairwise comparisons.

Tables 3, 4, and 5 illustrate the effectiveness of our pro-
posed heuristic pruning scheme. Particularly, as shown
in Tables 3 and 4, with the increase of φ, which shows
the strength of correlations, the number of original de-

TABLE 5: Dependency Loss Ratio and Complexity Re-
duction Ratio (Retail)

φ 0.1 0.15 0.2 0.25 0.3
#. Dep (Pruning) 256 256 256 250 244

#. Dep 240 240 238 220 200
Loss Ratio −0.067 −0.067 −0.076 −0.136 −0.220

#. Pairs (Pruning) 91 91 78 66 55
#. Pairs 120 120 120 120 120

Reduction Ratio 0.242 0.242 0.350 0.450 0.512

pendencies in dataset Adult decreases dramatically. Also,
the dependencies after the heuristic pruning decrease
accordingly and their number is quite close to the origi-
nal. However, when φ increases, the number of pairwise
comparison becomes less compared to the full pairwise
comparison. So, it shows that the heuristic pruning
scheme can effectively reduce the complexity with fairly
small sacrifice of dependency accuracy. Similar conclu-
sion can be found in Table 4 on non-binary dataset TPC-
E. On the binary dataset Retail, due to the prior knowl-
edge that binary datasets normally have strong mutual
dependency, we changed the pruning scheme a little.
Particularly, we assume all the attributes are dependent
with each other and our pruning scheme aims at finding
the non-dependency from those attributes Aj with less
entropy H(Aj). According to Table 5, the number of
dependencies after pruning decreases slowly and the
minus symbol in the dependency loss ratio means that
there is no loss of dependencies but there are redundant

13

dependencies that should not exist in original datasets.
It should be noted that redundant dependencies cover
all the original dependencies. Therefore, the redundancy
will not degrade data utility since more correlations
are kept. However, efficiency in terms of dimensionality
reduction, which should cut off as many unnecessary
correlations as possible, is hindered. So, according to
Table 5, we can also say that the heuristic pruning
scheme can achieve up to 50% complexity reduction
without loss of dependencies.

6.3 SVM and Random Forest Classifications

To show the overall performance of LoPub, we evaluated
both the SVM and random forest classification error rate
in the new datasets synthesized by different versions of
LoPub. We first sampled from the three original datasets
Retail, Adult, and TPC-E to get both the training sets and
test sets. Then, we generated the privacy-preserving syn-
thetic datasets from the training data. Next, we trained
three different SVM classifiers and three random forest
classifiers on the synthetic datasets. Lastly, we evaluated
the classification rate on the original sampled test sets.
Particularly, the average random forest classification rate
is computed on all the original attributes and the average
SVM classification rate is computed on all the original
binary-state attributes in each dataset, for example, all
attributes in binary dataset Retail, the 10th (gender)
and 15th (marital) attribute in Adult, and the 2nd, 10th,
23rd, and 24th attribute in TPC-E. For comparison, we
also trained the corresponding SVM and random forest
classifiers on each sampled training set and measured
their classification rate each time.

Figures 21, 22, and 23 show the average accurate SVM
classification rate on three datasets Retail, Adult and
TPC-E. In all figures, the average SVM classification rate
decreases with f , which reflects the privacy level. Gener-
ally, when f is small f < 0.9, the classification rate drops
slowly. Nevertheless, when f = 0.9, there will be a large
gap. This is because the differential privacy level changes
as shown in Equation (8). For SVM, the classification
rate is relatively close to the that of non-privacy case.
This is because SVM classification only considers binary-
state attributes and the distribution estimation on binary-
state attributes can be more accurate than non-binary
attributes, which have sparser distribution. In all figures,
we can see that Lasso based estimation has generally
smaller classification rate because its biased estimation.
EM-based estimation generally outperforms others but
still showed performance degradation when f is large,
while Lasso+EM JD could find a better balance between
alternative methods.

However, in Figures 24, 25, and 26, due to the high
sparsity in the distribution of non-binary attributes, the
joint distribution estimation on non-binary attributes
may be biased and that is why the random forest clas-
sification on our synthetic datasets is not as good as
SVM classification. Nonetheless, the synthetic data still
keeps sufficient information of original crowdsourced
datasets. For example, the worst random forest classi-
fication rate in the three datasets is 67%, 42%, and 26%,
which are much larger than the average random guess
rate of 50%, 15%, and 13%, respectively. In detail, EM-
based estimation worked relatively well to generate the
synthetic datasets and Lasso estimation caused larger
bias in the random forest classification. However, with

the initial estimation of Lasso estimation, Lasso+EM JD
works also well and degrades slowly with f .

For reference, the overall computational time for syn-
thesizing new datasets are also presented in Figures 27,
28, and 29. Despite the worst utility, Lasso-based al-
gorithm is the most efficient solution, which achieves
approximately three orders of magnitudes faster than the
EM-based method. As mentioned before, that is because
it can estimate the joint distribution regardless of the
number of bit strings. With the initial estimation of
Lasso JD, the EM JD can then be effectively simplified
from two aspects: the sparse candidates can be limited
and the initial value is well set. Instead, the baseline
EM JD not only needs to build prior probability distri-
bution for all candidates but also begins the convergence
with a randomness value.

7 CONCLUSION

In this paper, we propose a novel solution, LoPub,
to achieve the high-dimensional data publication with
local privacy in crowdsourced data publication system-
s. Specifically, LoPub learns from the distributed da-
ta records to build the correlations and joint distribu-
tion of attributes, synthesizing an approximate dataset
for privacy protection. To realise the efficient multi-
variate distribution estimation, we proposed Lasso re-
gression based multi-variate joint distribution estimation
algorithms. The experimental results using real-world
datasets show that LoPub is an efficient and effective
mechanism to release a high-dimensional dataset while
providing sufficient local privacy guarantees for crowd-
sourced data providers.

REFERENCES

[1] Frequent itemset mining dataset. http://fimi.ua.ac.be/data/.
[2] Trans. processing performance council. http://www.tpc.org/.
[3] G. Acs, C. Castelluccia, and R. Chen. Differentially private

histogram publishing through lossy compression. In Proc. of IEEE
ICDM, pages 1–10, 2012.

[4] K. Bache and M. Lichman. Uci machine learning repository. https:
//archive.ics.uci.edu/ml/datasets.html/, 2013.

[5] R. Chen, Q. Xiao, Y. Zhang, and J. Xu. Differentially private high-
dimensional data publication via sampling-based inference. In
Proc. of ACM KDD, pages 129–138, 2015.

[6] W. Day and N. Li. Differentially private publishing of high-
dimensional data using sensitivity control. In Proc. of the ASI-
ACCS, pages 451–462. ACM, 2015.

[7] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In Proc. of IEEE FOCS, pages 429–438,
2013.

[8] C. Dwork. Differential privacy. In Proc. of ICALP, pages 1–12.
2006.

[9] C. Dwork. Differential privacy: A survey of results. In Proc.
Springer TAMC, pages 1–19. 2008.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. Proc. of TCC, pages
265–284, 2006.

[11] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations & Trendsrin Theoretical Computer Science, 9(3),
2013.

[12] U. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In Proc. of ACM
CCS, 2014.

[13] L. Fan and L. Xiong. An adaptive approach to real-time aggregate
monitoring with differential privacy. IEEE Trans. Knowl. Data Eng.,
26(9):2094 – 2106, 2014.

[14] G. Fanti, V. Pihur, and Ú. Erlingsson. Building a rappor with
the unknown: Privacy-preserving learning of associations and
data dictionaries. Proceedings on Privacy Enhancing Technologies,
2016(3):41–61, 2016.

[15] M. M. Groat, B. Edwards, J. Horey, W. He, and S. Forrest.
Enhancing privacy in participatory sensing applications with
multidimensional data. In Proc. of IEEE PerCom, pages 144–152.
IEEE, 2012.

14

0.1 0.3 0.5 0.7 0.9

 f

0

0.2

0.4

0.6

0.8

1

1.2

C
o
rr

e
la

ti
o
n
 I
d
e
n
ti
fi
c
a
ti
o
n

Accuracy

False Positive

True Negative

EM Lasso+EMLasso

Fig. 18: Correlation Identi-
fication Rate (Retail)

0.1 0.3 0.5 0.7 0.9

 f

0

0.2

0.4

0.6

0.8

1

1.2

C
o
rr

e
la

ti
o
n
 I
d
e
n
ti
fi
c
a
ti
o
n

Accuracy

False Positive

True Negative

Lasso EM Lasso+EM

Fig. 19: Correlation Identi-
fication Rate(Adult)

0.1 0.3 0.5 0.7 0.9

 f

0

0.2

0.4

0.6

0.8

1

1.2

C
o
rr

e
la

ti
o
n
 I
d
e
n
ti
fi
c
a
ti
o
n

Accuracy

False Positive

True Negative

Lasso EM Lasso+EM

Fig. 20: Correlation Identi-
fication Rate (TPC-E)

0 0.2 0.4 0.6 0.8 1

 f

0.65

0.7

0.75

0.8

0.85

S
V

M
 C

la
s
s
if
ic

a
ti
o
n

Non Privacy

Lasso

EM

Lasso+EM

Fig. 21: SVM Classification
Rate (Retail)

0 0.2 0.4 0.6 0.8 1

 f

0.6

0.65

0.7

0.75

0.8

S
V

M
 C

la
s
s
if
ic

a
ti
o
n

Non Privacy

Lasso

EM

Lasso+EM

Fig. 22: SVM Classification
Rate (Adult)

0 0.2 0.4 0.6 0.8 1

 f

0.62

0.64

0.66

0.68

0.7

0.72

0.74

S
V

M
 C

la
s
s
if
ic

a
ti
o
n

Non Privacy

Lasso

EM

Lasso+EM

Fig. 23: SVM Classification
Rate (TPC-E)

0 0.2 0.4 0.6 0.8 1

 f

0.7

0.75

0.8

R
F

 C
la

s
s
if
ic

a
ti
o
n

Non Privacy

Lasso

EM

Lasso+EM

Fig. 24: Random Forest
Classification Rate (Retail)

0 0.2 0.4 0.6 0.8 1

 f

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
F

 C
la

s
s
if
ic

a
ti
o
n Non Privacy

Lasso

EM

Lasso+EM

Fig. 25: Random Forest
Classification Rate (Adult)

0 0.2 0.4 0.6 0.8 1

 f

0.25

0.3

0.35

0.4

0.45

0.5

R
F

 C
la

s
s
if
ic

a
ti
o
n

Non Privacy

Lasso

EM

Lasso+EM

Fig. 26: Random Forest
Classification Rate (TPC-
E)

0 0.2 0.4 0.6 0.8 1

 f

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

EM_JD

Lasso_JD

Lasso+EM_JD

Fig. 27: Overall Time of
LoPub (Retail)

0 0.2 0.4 0.6 0.8 1

 f

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

EM_JD

Lasso_JD

Lasso+EM_JD

Fig. 28: Overall Time of
LoPub (Adult)

0 0.2 0.4 0.6 0.8 1

 f

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

EM_JD

Lasso_JD

Lasso+EM_JD

Fig. 29: Overall Time of
LoPub (TPC-E)

[16] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution
estimation under local privacy. arXiv preprint: 1602.07387, 2016.

[17] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for
local differential privacy. In Proc. of NIPS, pages 2879–2887, 2014.

[18] G. Kellaris and S. Papadopoulos. Practical differential privacy via
grouping and smoothing. VLDB, 6(5):301–312, 2013.

[19] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad. Mobile
phone sensing systems: A survey. IEEE Commun. Surveys Tuts.,
15(1):402–427, 2013.

[20] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data
management: A survey. IEEE Trans. Knowl. Data Eng., 28(9):2296–
2319, 2016.

[21] H. Li, L. Xiong, and X. Jiang. Differentially private synthesization
of multi-dimensional data using copula functions. In Advances
in database technology: proceedings. International Conference on Ex-
tending Database Technology, volume 2014, page 475. NIH Public
Access, 2014.

[22] H. Li, L. Xiong, X. Jiang, and J. Liu. Differentially private
histogram publication for dynamic datasets: an adaptive sampling
approach. In Proc. of ACM CIKM, pages 1001–1010. ACM, 2015.

[23] N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy or, k-anonymization meets differential
privacy. In Proc. of ACM ASIACCS, pages 32–33, 2012.

[24] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen. Udp: Usage-based
dynamic pricing with privacy preservation for smart grid. IEEE
Trans. Smart Grid, 4(1):141–150, 2013.

[25] C. Liu, S. Chakraborty, and P. Mittal. Dependence makes you
vulnerable: Differential privacy under dependent tuples. In Proc.
of NDSS, 2016.

[26] F. D. McSherry. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In Proc. of ACM SIGMOD,
2009.

[27] W. Qardaji, W. Yang, and N. Li. Priview: practical differentially

private release of marginal contingency tables. In Proc. of ACM
SIGMOD, pages 1435–1446, 2014.

[28] X. Ren, C.-M. Yu, W. Yu, S. Yang, X. Yang, J. McCann, and P. Yu.
Lopub: High-dimensional crowdsourced data publication with
local differential privacy. arXiv preprint arXiv:1612.04350, 2016.

[29] R. Sarathy and K. Muralidhar. Evaluating laplace noise addition
to satisfy differential privacy for numeric data. Transactions on
Data Privacy, 4(1):1–17, 2011.

[30] D. Starobinski, A. Trachtenberg, and S. Agarwal. Efficient pda
synchronization. IEEE Trans. Mobile Comput., 2(1):40–51, 2003.

[31] S. Su, P. Tang, X. Cheng, R. Chen, and Z. Wu. Differentially private
multi-party high-dimensional data publishing. In Proc. of IEEE
ICDE, pages 205–216, 2016.

[32] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren. Rescuedp:
Real-time spatio-temporal crowd-sourced data publishing with
differential privacy. In Proc. of IEEE INFOCOM, pages 1–9, 2016.

[33] W. Wang and Q. Zhang. Privacy-preserving collaborative spec-
trum sensing with multiple service providers. IEEE Trans. Wireless
Commun., 14(2):1011–1019, 2015.

[34] S. L. Warner. Randomized Response: A Survey Technique for
Eliminating Evasive Answer Bias. J. Am. Stat. Assoc., 60:63–69,
1965.

[35] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and
X. Xiao. Privbayes: Private data release via bayesian networks.
In Proc. of ACM SIGMOD, pages 1423–1434, 2014.

[36] T. Zhu, P. Xiong, G. Li, and W. Zhou. Correlated differential
privacy: Hiding information in non-iid data set. IEEE Trans. Inf.
Forensics Security, 10(2):229–242, 2015.

