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ABSTRACT

Motivation: Textual data compression, and the associated
techniques coming from information theory, are often perceived as
being of interest for data communication and storage. However, they
are also deeply related to classification and data mining and analysis.
In recent years, a substantial effort has been made for the application
of textual data compression techniques to various computational
biology tasks, ranging from storage and indexing of large datasets
to comparison and reverse engineering of biological networks.
Results: The main focus of this review is on a systematic
presentation of the key areas of bioinformatics and computational
biology where compression has been used. When possible, a
unifying organization of the main ideas and techniques is also
provided.

Availability: It goes without saying that most of the research
results reviewed here offer software prototypes to the bioinformatics
community. The Supplementary Material provides pointers to
software and benchmark datasets for a range of applications of
broad interest. In addition to provide reference to software, the
Supplementary Material also gives a brief presentation of some
fundamental results and techniques related to this paper. It is at:
http://www.math.unipa.it/~raffaele/suppMaterial/compReview/
Contact: raffaele@math.unipa.it

1 INTRODUCTION

Shannon information theory and biology have a long and, at times,
controversial relationship (Adami, 2004; Gatlin, 1972; Quastler,
1953). As well presented by Godfrey-Smith and Sterelny (2008),
that seems to be mostly due to the expectation one has about
the word ‘information’ in a biological system as opposed to in
a signal transmitting one. For many years, the most successful
use of information theory methods has been for sequence analysis
and, in particular, to measure the ‘deviation from randomness’ of
nucleotide and amino acid sequences (Konopka, 2005). As Konopka
points out, information theory does not seem to be essential for
that task, because it could be performed by other means. Yet,
given the actual deluge of data and the shift towards system-
wide views of biology, it is argued that information theory may
offer some advantages for data analysis over traditional statistical
methods (Rissanen et al., 2007). While those issues are being
debated, it is worth recalling that textual data compression, one
of the quintessential contributions of information theory to science
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and technology, has been found to be fundamentally connected to
classification, statistics and various notions of sequence complexity
(e.g. Allison and Yee, 1990; Allison et al., 1992; Barron et al., 1998;
Bolshoy, 2003; Cover and Thomas, 1991; Lempel and Ziv, 1976;
Li and Vitanyi, 1997; Rissanen and Yu, 2000; Ziv, 1988), all crucial
for bioinformatics. Despite those connections, the applicability of
data compression to tasks in the computational biology sciences has
been somewhat underestimated, probably due to the dispersion of
results over conferences and journals catering to different scientific
communities. One of the major conclusions stemming from this
effort is the pervasiveness of data compression in computational
biology and the ubiquitousness of the associated techniques. In fact,
we identify 10 areas of relevance for computational biology, in which
data compression techniques have either resulted in the development
of top-ranking methods or have been the fulcrum for major theoretic
break-throughs, which need to be duly followed by additional
work to result in valuable tools. Accordingly, the remainder of this
review is organized as follows. Sections 2 and 3 report research in
two of the most canonical areas of data compression: storage and
entropy estimation. Sections 4-8 highlight contributions to areas
of bioinformatics that are perceived as being of a fundamental
nature and of broad interest and applicability, ranging from efficient
support of pattern matching primitives to speed-ups of well-known
dynamic programming algorithms. All of those results have their
roots in ground-breaking theoretic advances with an initial fallout
in terms of valuable tools for bioinformatics, although additional
research is required to bring those areas to their full potential. The
following three sections offer additional areas of bioinformatics
where data compression and some related information-theoretic
techniques have been used. They all deal with the ‘discovery or
inference of structure’ in biological data, including networks. In the
final section, some conclusions are drawn about the use of data
compression for biological investigation.

2 COMPRESSION FOR STORAGE OF
BIOLOGICAL SEQUENCES

Griimbach and Tahi (1993, 1994), in their seminal papers about the
challenges of compression of DNA sequences, propose the following
two scenarios for the problem:

* Horizontal mode: one is given a biological sequence, which
is compressed by making use of information contained only
in the sequence, typically by making reference only to its
substrings. Evaluation of compression methods is usually
performed in this mode.
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o Vertical mode: one is given a set of biological sequences and
each sequence is compressed by making use of information
contained in the entire set, typically the substrings of the set.

The horizontal mode finds its motivation both in theory and
in practice. In theory, it is of interest in order to shed light on
the statistical and structural properties of biological sequences, as
outlined in Sections 3, 9 and 10. In practice, it is of interest for the
reduction of storage and transmission costs. The vertical mode finds
the same practical motivation as the horizontal one, but it has a rather
different theoretic root. In fact, one can observe, pragmatically, that,
although each biological sequence may be difficult to compress, a
group of related sequences, i.e. similar in function and as sequences,
may compress well together. For later use, we refer to such a
pragmatic observation as relative compressibility (RC) which, as
will be discussed in Section 6, turns out to be a fundamental notion
for classification.

2.1 Substitutional-Statistical methods

This class of methods combines the two most well-known
and successful compression techniques: substitutional (Storer and
Szymanski, 1982), and statistical (Cover and Thomas, 1991). An
outline of those two paradigms is given in the Supplementary
Material. Basically, the sequence to be compressed is partitioned into
substrings, some of which are compressed well via substitutional
methods, while the remaining ones are compressed well via
statistical methods. A suitably defined gain function is used to
establish the division of the substrings in the two groups. This
paradigm has been initiated by Biocompress 1 and 2 (Griimbach
and Tahi, 1993, 1994) and offers a wide variety of methods
with a range of appealing choices in terms of the trade-offs
between compression and speed, e.g, Cfact (Rivals er al., 1996b),
OFF-Line (Apostolico and Lonardi, 1998), GenCompress (Chen
et al., 2000) and its improved version DNACompress (Chen et al.,
2002), CTW-LZ (Matsumoto et al., 2000), CASTORE (Benci et al.,
2004), DNAC (Manzini and Rastero, 2005), LUT (Bao et al., 2005),
DNAPack (Behzadi and Fessant, 2005), NMLComp (Tabus et al.,
2003) and the closely related methods ProtComp (Hategan and
Tabus, 2004) and GeNML (Korodi and Tabus, 2005). Most of
those methods use the peculiar nature of redundancy in biological
sequences that presents itself under the form of reverse complement
matches and approximate repeats.

To the best of our knowledge, XM (Cao et al., 2007), is the
first pure statistical compression method for biological sequences.
Following that general scheme, XM compresses each symbol in
a sequence using arithmetic coding (Witten et al., 1999) and an
adaptive model for symbol probability distribution. This distribution
is computed and updated via a combination of ‘expert’ models,
where each model specializes for a particular type of statistical
information in the sequence and has been carefully designed on
a sound biological hypothesis. To date, based on experiments
on benchmark datasets (see Supplementary Material), XM seems
to be the compression method of choice, both on DNA and
proteins, guaranteeing improvements in both compression and
running time. For instance, on a DNA corpus of sequences, the
average compression ratio (bits per symbol) is 1.6940 as opposed to
1.7148 achieved by DNAPack, the best performing of the methods
against which XM has been compared. Moreover, its performance
compares favorably with the highly specialized method ProtComp

for protein sequences, i.e. 3.9434 bits per symbol. In addition to
its versatility in compressing biological sequences, XM offers the
advantage of computing the information content of a sequence per
base. In turn, that can be used to identify areas of interest, e.g.
repeated subsequences or low complexity regions, as the authors
demonstrate on the HUMHBB human gene. We anticipate that
the identification of repetitions, ‘unusual’ subsequences and low
complexity regions are recurring themes in the application of data
compression techniques to the analysis of biological sequences.
Although Sections 3.3 and 10 are specifically dedicated to those
aspects of sequence analysis, most of the methods presented in this
survey are relevant for those problems.

2.2 Transformational methods

The Burrows—Wheeler transform (Burrows and Wheeler, 1994) is
the most well-known example in this class (see Supplementary
Material), where the sequence is subject to transformations before
the actual compression takes place. Based on that transform, there
are only two methods, variants of each other, that specialize in
biological sequences (Adjeroh and Nan, 2006; Adjeroh et al., 2002).
The latest of the two has been a big step forward in protein
sequence compression, yielding, also, novel insights into protein
sequence structure on a genomic scale. In fact, applying their
technique to several proteomes, Adjeroh and Nan (2006) provide
experimental evidence that redundancy in protein sequences is in
the form of repeated subsequences that are separated by thousands
of symbols, e.g. 350000 in one case for Homo Sapiens. This scale
of redundancy has not been observed before, even with the use of
computational methods. Although multiple gene copies and repeated
histone clusters are known to be present in most eukaryotic genomes,
their number and their sizes do not seem to be enough to explain
such ‘long range’ correlations in protein sequences. Probably, lack
of knowledge about sequence structure is the reason for the apparent
incompressibility of protein sequences. On this topic, see also
Nevill-Manning and Witten (1999), Hategan and Tabus (2004) and
Section 3.1.

2.3 Grammar-based methods

In this class of methods, a text string x is compressed by inferring
or using a context-free grammar G(x) to generate it. Then, the string
is encoded by a proper encoding of the relevant production rules
(see Supplementary Material and references therein). For biological
sequences, there are three methods in this class. DNASequitur
(Cherniavsky and Ladner, 2004) is a straightforward extension
of the Sequitur method (Nevill-Manning and Witten, 1997),
where the only addition is the use of reverse complements as a
source of duplication. RNACompress (Liu et al., 2008) is specific
for RNA, with two main goals in mind: (i) RNA structural data
compression; (ii) design of a model to represent RNA secondary
structure as well as to derive its informational complexity, i.e.
Kolmogorov complexity (see Section 6). For (i), experiments show
that RNACompress yields an improvement in compression ratio,
ranging from 5% to 50%, with respect to the reference method
GenCompress, with a gain in compression/decompression speed
of two orders of magnitude. As for (ii), the authors contribute a sound
and general definition of information content of RNA secondary
structure, giving a substantial methodological and experimental
contribution to a research line initiated by Carothers ez al. (2004) in
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an attempt to establish a connection between ‘information content’ in
sequences and their biological/biochemical function/activity. Those
latter authors define the information complexity of RNA secondary
structure in a somewhat ad hoc fashion, with use of Shannon
entropy. They also show, quite remarkably, that their measure of
complexity is able to identify the binding activity of 11 GTP-binding
RNAs (aptamers), giving support to the hypothesis that the more
complex an RNA structure is, the greater the GTP-binding or ligase
activity is. Liu er al. (2008) define the informational complexity
of an RNA secondary structure as its Kolmogorov complexity and
then they heuristically approximate it via data compression (see
also Section 6). They show, experimentally, that this new general
definition of informational complexity yields a correlation between
complexity and biochemical activity equal to that obtained by the ad
hoc measure of Carothers et al. (2004). The third method in this class
(Korodi and Tabus, 2007) is specifically designed for compressing
GenBank files, including annotations. Experiments on GenBank files
show that this method achieves gains from 60% to over 100% in
compression ratio when compared with generic compressors, like
Bzip2 and rar.

2.4 Table compression

Table compression, introduced by Buchsbaum er al. (2000), is
a unique application of compression to massive storage and
transmission of data and it is another incarnation of RC, just like
the vertical mode of compression for biological sequences. Its
goals are to be fast, online and effective: eventual compression
ratios of 100:1 or better are desirable. It has been applied with
very brilliant results to different types of tabular data, including
multiple alignments from the PFAM database (Buchsbaum et al.,
2003; Vo and Vo, 2004, 2007), where, on a selected number of
alignments, the best performing table compression method yields
a gain in compression ratio ranging from 80% to over 150% with
respect to generic compression programs, with essentially the same
compression/decompression speed.

Apostolico et al. (2008) have recently shown that table
compression methods can be successfully used for classification,
shedding a new and important methodological light on table
compression as a tool for biological investigations. The experiment
has been conducted, with very encouraging preliminary results,
on a table of 1000 specimens collected over the years at InBio
for biodiversity studies. A more indepth study is under way to
better assess the ability of table compression to mine biologically
meaningful correlations in data.

3 ENTROPY ESTIMATORS

In information theory, entropy is a measure that allows for the
evaluation of the level of ‘randomness’ in a string of symbols.
Because of the duality of randomness/structure, it seems important
to estimate the information content of biological sequences in
order to acquire information on the ‘model’ generating them
that may, in turn, shed light on structure and function, e.g.
characterization/identification of coding regions, exons, introns and
so on. In fact, starting with pioneering work by Schneider et al.
(1986) and Gutell er al. (1992), the last decade has seen the
appearance of many methods that estimate the entropy of biological
sequences. They use three pillars of information theory (Cover and

Thomas, 1991): (A) the asymptotic equipartition property (AEP),
discussed in Section 3.1; (B) universality theorems, discussed in
Section 3.2 and (C) Rényi entropy, discussed in Section 3.3.

3.1 Methods based on the AEP

Let ¥ be an alphabet of symbols, let p;(n) be the probability of the
i-th string in " in lexicographic order and let H(S) be the entropy
of the information source S (see Supplementary Material).

The AEP (see Supplementary Material) reduces the problem of
estimating the entropy of a source to that of estimating p;(n), for large
enough n. However, a direct estimate of p;(n) would suffer from the
“finite sample effect’: as the value of n grows, only a small fraction
of the possible | X"| strings will appear in the sample, resulting in a
poor approximation of the joint probability distribution and therefore
of the entropy.

Methods in this class that overcome the mentioned problem are
reported in Li6 er al. (1996), Schmidt and Herzel (1997), Weiss
and Herzel (1998), Crochemore and Vérin (1999), Loewenstern and
Yianilos (1999), Weiss et al. (2000) and Benedetto et al. (2007).
Most of those studies have been directed at investigating the level
of randomness in biological sequences, yielding a wealth of results
about their informational structure. Among those, we limit ourselves
to mention only a few results. It has been shown that protein
sequences seem to be fairly random, although medium-and long-
range correlations among amino acids are present and responsible
for some redundancy. This is consistent with analogous findings
obtained in studying the compressibility of protein sequences,
mentioned in Section 2.2. As for DNA sequences, experiments
conducted on the Epstein Barr virus show that, when compared with
other textual information carriers, e.g. text or computer code, they
have greater freedom in combining alphabet symbols; that is, they
look like random sequences. Moreover, studies conducted on whole
chromosomes of Saccharomyces cerevisiae and large parts of the
Escherichia coli genome show that there is a bulk of homogeneity at
the chromosomal or genomic level, although the statistical properties
of DNA are largely locally inhomogeneous. It seems that biases in
mutational pressure and recombination processes are responsible for
the homogenization process.

3.2 Methods based on universality theorems

A universality theorem for a given data compression algorithm C is
a very powerful mathematical statement about C, with remarkable
practical implications (see Supplementary Material). Informally,
it states that, given a long enough string, the compression ratio
achieved by C tends to H(S). All that is without any knowledge
of the statistical properties of the source, which are ‘learned’ by
the algorithm. So, any universal data compressor can be seen as
an entropy estimator. It is unfortunate that many of the methods
presented in Section 2 are of little use as entropy estimators of
biological sequences: the convergence of the compression rate to
the entropy of the source is too slow.

Two methods are known to overcome this ‘slow convergence’
problem. The one by Farach ef al. (1995) is a non-trivial variation
of the Ziv and Lempel (1977, 1978) compression algorithms. With
its use, two tests have been performed in order to assess how the
entropy of exons compares with that of introns in human sequences,
i.e. whether the difference between the two entropies is statistically
significant. The results support the hypothesis that the entropy

1577

220z ¥snBny |z uo 3senb AQ 285561/ G L/E | /SZ/OIPIHE/SONBULIONUIONG/WOO"dNO-0ILSPED.//:SARY WOl PSPEOjUMOQ



R.Giancarlo et al.

of exons is higher than that of introns, a somewhat surprising
result because introns are presumed to be the mechanism by which
many random changes can accumulate without being subjected to
restorative survival forces. The method by Lanctot et al. (2000)
is strongly related to grammar-based compression methods, with
a few major variations. It is a very fast method, giving excellent
entropy estimates: on benchmark data (see Supplementary Material),
this method gives an average estimate of 1.66 bits per symbol as
opposed to the one of 1.71 obtained by the reference algorithm of
Loewenstern and Yianilos (1999). It has been used to measure the
entropy of coding and non-coding regions in E.coli and it has been
found that non-coding regions have a lower entropy than coding
regions, which agrees with results by Farach et al. (1995). Moreover,
the method has also been used to measure the difference in entropy
between highly expressed essential genes and ‘normal’ genes in
order to test the hypothesis that random mutations in ‘normal’ genes
are less likely to be deleterious than in highly expressed essential
genes. It turned out that highly expressed genes have a lower entropy
estimate than ‘normal’ genes and that, using statistical tests, the
mentioned hypothesis is supported with over 99% confidence.

3.3 Methods based on Rényi entropy

Rényi entropy (Rényi, 1961) is a generalization of continuous
functions of Shannon entropy (see Supplementary Material). It has
been used, primarily, for pattern and motif discovery in biological
sequences, with particular attention to the identification of binding
sites and other regulatory regions (see also Section 10) . Schneider
et al. (1986) developed a method that uses Shannon entropy function
for the identification of binding sites. It was validates experimentally
on E.coli. That method is based on the finding that redundancy is
close to zero in subsequences ‘surrounding’ a binding site and it
is substantially greater than zero for the subsequence ‘containing’
the binding site. That is, binding sites have more structure with
respect to subsequences ‘around’ them. Such a change in redundancy
values highlights good binding sites. Following that line of research,
Krishnamachari et al. (2004) proposed the use of the discrete
version of Rényi entropy for the same problem, showing that
the latter is better than the former, in particular with respect to
range identification, i.e. the length of the binding site. Moreover,
a particular incarnation of the Rényi continuous entropy function
has been proposed by Vinga and Almeida (2004) for the estimation
of the complexity of biological sequences and later applied (Vinga
and Almeida, 2007) to compute entropic profiles, e.g. graphs of
information content per base, of DNA sequences with the aim of
finding ‘unusual’ regions that may also turn out to be biologically
relevant. The authors have applied their entropic profiling method to
both E.coli and Haemophilus influenzae genomes, reporting that it
correctly identified known regulatory components and motifs, both
in regard to position and scale (length) of conserved segments.

4 SPACE-TIME-EFFICIENT, GENOME-WIDE,
STRING MATCHING PRIMITIVES

Suffix trees and arrays have come of age in bioinformatics (Gusfield,
2002) where, thanks to their ability to support, efficiently, a variety
of exact string matching and word counting operations (Apostolico,
1985), they now make a difference in a wide range of bioinformatics
applications. While this process took place, the computer science

literature witnessed a major breakthrough: the remarkable discovery
of self-indexes, i.e. data structures analogous to suffix trees and
arrays, but with space requirements theoretically close to the entropy
of the sequences to be indexed, with no substantial slow-down in
search time, and able to reconstruct any portion of the sequences
on demand (with the implication that the sequences no longer need
to be stored separately). The state of the art is well presented in
Navarro and Mikinen (2007) and Ferragina et al. (2008).

Since high memory demand is a major bottleneck for the
application of suffix trees and arrays on a genomic scale, the use of
self-indexes in bioinformatics has been immediately investigated,
initially by Sadakane and Shibyya (2001). The first convincing
use of compressed suffix arrays (CSAs) for genomic research was
given by Healy et al. (2003) that, motivated by oligonucleotide
probe design, implemented a version of the CSA able to store the
(forward) sequence of the human genome in 1G of main memory.
They also demonstrated how efficiently one can process simple
string matching queries. For instance, annotating with counts all
overlapping words of length 24 in the human genome could be
done at a speed of 1 min/MB on a PC. The study also showed
that, with the use of CSAs, one can perform string matching tasks
on a genomic scale, e.g. the identification of large repeats, that
could not be possible with the use of other string matching data
structures. A major drawback of this approach is that the workspace
required for the construction of the CSA was still large. In fact,
it was built with the use of a cluster of 16 processors. Lippert
et al. (2005) have contributed to that ground-breaking work with
the design and implementation of a CSA that could be built, on the
human genome, on a workstation in <2G of workspace, removing the
‘big-memory’ computation step from large genome exact matching
problems. Moreover, Lippert (2005) (see also errata at the author’s
home page) showed how to use the new version of the CSA for
space-efficient whole-genome sequence comparison. In particular,
he showed that all 20mers in common between the human and the
mouse genomes could be computed in a couple of days on a PC,
while the best implementations of suffix trees and arrays would take
at least twice that time. Another demonstration of the genome-wide
possible use of self-indexes is given by Viliméki ez al. (2007), where
a human genome browser, based on an efficient implementation of
the CSA, due to V. Mikinen and R. Gonzilez, is mentioned. A list
of the basic operations supported by self-indexes is provided in the
Supplementary Material.

5 PROBABILISTIC SUFFIX TREES AS OPTIMAL
CLASSIFICATION DEVICES

Probabilistic Suffix Trees (PST) (Ron and Singer, 1996) are a class of
variable-length Markov chains (VLMC) that extend the well-known
Markov chains and that, as opposed to hidden Markov models
(HMMs), are easy to learn from training data. Their use for the
classification of protein sequences has been investigated by Bejerano
and Yona (2001), with results so surprisingly good to gain the status
of a reference technique in that area. Efficient algorithms for their
construction have been proposed in Apostolico and Bejerano (2000)
and Schulz et al. (2008). The implementation of the latter algorithm
is shown to be orders of magnitude faster than existing code for the
same task. Yet, the optimality of PSTs rests on the assumption that
the source generating the data is indeed VLMC, an assumption that
may not always hold for biological sequences. Very recently, Ziv
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(2008) has shown that PSTs are optimal classifiers for individual
sequences, i.e. one is given a single training sequence and limited
storage resources. Such an optimality result assumes that no a priori
statistical information is available about the training sequence or the
source generating it. Although the result may seem only of great
theoretic interest, it also provides a sound theoretic ground to the
excellent empirical performance of PSTs reported in Bejerano and
Yona (2001).

6 TOWARDS PARAMETER-FREE
CLASSIFICATION AND DATA MINING IN
BIOLOGICAL SEQUENCES

The notion of similarity and distance between sequences has a
central role in many areas of science (Kruskal and Sankoff, 1983),
and in particular for computational molecular biology (Gusfield,
1997; Waterman, 1995). Classically, those notions hinge on
sequence alignment, which will be discussed in the next subsection.
However, now that entire genomes are available, sequence alignment
is no longer perceived as adequate (Vinga and Almeida, 2003)
and novel way to establish similarity among sequences that are
being pursued. Most of those alignment-free distances make either
implicit or explicit use of word statistics within a sequence and,
as such, they are strongly related to various notions of sequence
complexity, some of which have been mentioned in Section 1. The
most prominent of them insist on two basic approaches: the paradigm
initiated by Lempel and Ziv (1976) to define the complexity of finite
sequences and the universal similarity metric (USM) by Li et al
(2003). The first approach is based on an appropriate parsing of
a sequence in terms of the dictionary of subsequences of another
sequence. The second is based on Kolmogorov complexity K (x) (Li
and Vitdnyi, 1997) and relative Kolmogorov complexity K(x|y)
(see Supplementary Material). We limit ourselves outlining USM
because, in their practical application, both approaches resort to RC.
However, once again, their theoretic foundations are quite different.

The intuition behind the USM is as follows. Let K (x) be the length
of the shortest description of x, given no knowledge. Analogously, let
K (x|y) be the length of the shortest description of x, given knowledge
of y. If K(x|y) < K(x), i.e. if it is easier to describe x with knowledge
of y, then the two strings must be related. Unfortunately, since
Kolmogorov complexities are non-computable in the Turing sense,
USM must be approximated, usually approximating K (x) and K (x|y)
via a data compression program C.

There are three known approximations to USM (Ferragina et al.,
2007), namely UCD, NCD and CD (see Supplementary Material).
The intuition behind all three approximations is that if x and
y compress better together than separately, then they must be
related and vice versa. Therefore, a similarity of sequences can
be established via RC, which also supports the vertical mode of
compression of biological sequences and table compression, as
already discussed. However, its best use seems to be for classification
and data mining. In fact, Keogh er al. (2004) have proposed
compression-based similarity and distance functions as a base for a
powerful, parameter-free, data mining paradigm.

The performance of RC-based similarity and distance measures
depends critically on which statistics are collected about strings
or on which data compressors are used. For instance, all three
approximations of USM depend, critically, on C. Therefore, RC
and USM are methodologies used to compute similarity between

sequences, rather than being formulae or procedures returning a
numeric value. Before addressing performance issues, we present
two domains of computational biology where the methodologies
have been applied or their potential profitable application has been
discussed.

Phylogeny (Apostolico et al., 2006; Cilibrasi and Vitdnyi, 2005;
Ferragina et al., 2007; Li et al., 2001, 2003; Otu and Sayood, 2003b;
Rivals et al., 1996a; Ulitsky et al., 2006): Those studies use RC
and USM in order to build phylogenies from entire genomes and
proteomes.

Classification of Proteins (Ferragina et al., 2007; Gilbert et al., 2007,
Kocsor et al., 2005; Krasnogor and Pelta, 2004; Liu and Wang, 2008;
Pelta er al., 2005; Rocha et al., 2006): Those studies apply RC,
USM and related techniques to obtain structural and evolutionary
classifications of proteins, using different representations such as
FASTA format files and TOPS strings.

All of those studies clearly indicate that RC and USM are worth
using, even on datasets of size small enough to be processed
by standard methods, including the ones based on alignments.
Of particular relevance are the following facts: (i) synergies
between compression-based methods and alignment methods result
in superior protein classification performance with respect to HMMs
(Kocsor et al., 2005); (ii) among the three approximations of USM,
UCD or its equivalent NCD, is worth using, since the third one is
lagging behind (Ferragina et al., 2007); (iii) PPMd (Shkarin, 2002)
and Genecompress are the best performers with UCD, among a
broad range of compression programs used in the experimentation
of Ferragina et al. (2007); (iv) reliable phylogenetic trees can be
built using entire genomes and proteomes (Ulitsky et al., 2006).

We also report that Galas et al. (2008) have proposed a class of
measures to quantify the contextual nature of information in sets of
objects, in order to obtain a useful mathematical characterization of
‘biological information’. Once again, Kolmogorov complexity is at
the heart of the theoretic foundation of those new measures. Their
approximation is also investigated via NCD and data compression.
Initial experiments, performed on deciphering gene interactions,
show that the new measures may be of great value in biology.

Additional results as well as domains of application in biology,
related to the topic of this section, can be found in Loewenstern et al.
(1995), Varré et al. (1999) and Otu and Sayood (2003a).

7 CLUSTERING AND INDEXING OF
MICROARRAYS

Classification and clustering of microarray data is one of the
fundamental areas of bioinformatics (Handl ez al., 2005). Although
the use of information theoretic concepts, such as mutual
information, is not new in the design of clustering algorithms,
there start to appear contributions to this area specifically designed
for clustering of microarray data. Nykter et al. (2005) provide a
fairly immediate extension of the similarity functions described in
the previous section to microarrays. They are then applied within
clustering algorithms, with some success on microarray data. Zhou
et al. (2004) devise novel correlation functions among genes that
are based on mutual information. Then, clustering is formulated as
an optimization problem in which a suitably defined cost function
is to be minimized. Particular attention is given to the methods
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that evaluate the mutual information between genes. The resulting
algorithm is validated on both synthetic and real microarray data.
The experiments show that it substantially outperforms many classic
methods. The problem of feature selection via mutual information
is addressed in Long and Ding (2005) and Zhou ez al. (2007). It also
worth of mention that Wang,H. ef al. (2002) have devised a suffix-
tree-based method for similarity searching in microarray databases,
again with encouraging initial results.

8 SPEED-UPS OF DYNAMIC PROGRAMMING
RECURRENCES: ALIGNMENTS AND HMMS

Due to their ubiquitous nature, HMMs (Durbin et al., 1999)
and sequence alignment algorithms (see again, Gusfield, 1997;
Kruskal and Sankoff, 1983; Waterman, 1995) play a central role
in computational molecular biology. Most of the basic algorithms
used by both alignment methods and HMMs are based on dynamic
programming and require a superlinear running time in the input
parameters, in the worst case. Therefore, they are perceived as
inadequate for the analysis of long sequences where one usually
resorts to heuristic algorithms. For instance, when one can relax
accuracy requirements, the time-honored Smith—Waterman local
alignment method (Smith and Waterman, 1981) is used after a full-
fledged BLAST (Altshul et al., 1990) search has been done, in order
to have a fast screening of interesting ‘similarities’. Analogously,
the well-known Viterbi algorithm for HMMs (Viterbi, 1967) is
rarely used on large HMMs and one resorts to various heuristic
approximations in order to speed-up the computation (Buchsbaum
and Giancarlo, 1997). It is quite surprising, and of great theoretic
relevance and potential practical impact, that the fundamental
dynamic programming recurrences for alignments and for HMMs,
e.g. Forward—-Backward and Viterbi, can speed-up with the use
of compression techniques. The speed-up for alignments is due
to Crochemore et al. (2003), and despite the theoretic interest,
its practicality has not been investigated. The speed-up for the
HMMs recurrences is due to Mozes et al. (2007) and Lifshits
et al. (2008), and to the best of our knowledge, it is the first
asymptotic speed-up for this class of recurrences. Moreover, a proof
of principle has been given that it is indeed practical by applying it
to the CpG island identification problem (Bird, 1987), where time
improvements of at least a factor of five were reported with respect to
the straightforward implementation of the Viterbi algorithm. Another
potential advantage of those new methods is their high degree of
parallelization, as opposed to the original algorithms. Unfortunately,
no systematic investigation about the algorithm engineering of this
new class of methods, both on parallel and conventional computers,
has been done.

9 SEGMENTATION OF BIOLOGICAL SEQUENCES

It is well known that, although DNA is very heterogeneous, there are
highly homogenous regions, e.g. regions with high concentrations
of G or C bases, CpG islands, ALU, LINE, low complexity repeats,
etc. In order to capture important functional information, it is
desirable to partition a DNA sequence into homogenous segments.
Depending on the type of data and the biological information
being sought, one obtains different mathematical formulations
of the problem, characterizing the partition of interest via a
definition of ‘homogeneity’. We briefly present two application

domains where partitioning techniques have been designed, based
on methodologies of interest for this review. It also worth pointing
out that segmentation of sequences is a problem of broad interest and
with deep connection to combinatorial optimization. The interested
reader can find additional material in Hyvonen et al. (2007).
Moreover, many of those approaches are based on a well-studied
dynamic programming recurrence that lends itself to very efficient
algorithmic solutions (Giancarlo, 1997).

9.1 Single nucleotide polymorphism and identification
of haplotype blocks

Common genetic variations in human DNA sequences explain
almost the entire observed differences in the phenotype of the
human population, including predisposition for specific diseases.
Particularly important are single nucleotide polymorphisms (SNPs)
and the division of sets of haplotypes into blocks (Gabriel et al.,
2002; Patil et al., 2001). A haplotype is a sequence of SNPs on
chromosome that are statistically associated. A block is characterized
by SNPs in close proximity, highly correlated and not easily
separated by recombination. In formal terms, the identification
of haplotype blocks requires the partition of a set of sequences
into blocks, where the homogeneity within a block is measured
by appropriate cost functions. The many computational methods
available for this problem can be classified into two broad categories.
In the first category, haplotype blocks are identified (via their
boundaries) on the basis of the decay of Linkage-Disequilibrium
(Daly et al., 2001). Methods on the second category identify blocks
on the basis of some haplotype diversity measure within the blocks.
Following the ground-breaking results of Zhang et al. (2002), they
all have in common a dynamic programming formulation of the
problem. In order to obtain such a formulation and the relevant
features of it, such as the cost function assessing the homogeneity
of a block, the methods by Greenspan and Geiger (2003), Koivisto
(2003) and Bockhorst and Jojic (2007) make essential use of the
minimum description length principle (MDL) (Barron et al., 1998).

The method by Anderson and Novembre (2003) (AN) is much
more sophisticated than the ones we have mentioned because
it combines both classes by making use of information on
both Linkage-Disequilibrium decay between blocks and haplotype
diversity within blocks. Again, the MDL principle plays a
fundamental role in the development of the method, with
experiments showing that it has an excellent performance with
respect to other existing methods, both on real and simulated data.
When applied to the data studied by Daly et al. (2001), AN finds
more block boundaries in agreement with those found by Daly et al.
(2001) than do three other reference methods, i.e. Patil ez al. (2001),
Wang,N. et al. (2002) and Zhang et al. (2002). When applied to
data simulated from the coalescent with recombination hotspots, it
reliably places block boundaries at the hotspots and rarely at sites
with background levels of recombination. The other three mentioned
methods, on the same dataset, are either insensitive to recombination
hotspots or they are not able to discriminate between background
sites of recombination and hotspots. Moreover, a dataset of 822
biallelic sites in 86 complete human mtDNA sequences were used as
‘negative control’: since there is very little evidence for widespread
recombination in human mtDNA, few blocks are expected to be
present in the data. Again, AN found only four blocks in the data,
as opposed to a considerably larger number found by the other two
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methods. No comparison seems to be available among the methods
based on the MDL.

The mentioned studies make clear that the MDL approach is
well suited to the problem of identifying haplotype blocks. Those
automatic tools are likely to be very useful in improving the
feasibility of large-scale gene-mapping studies and in exploring the
population and genome-level processes that give rise to observations
of haplotype block structure.

9.2 Change point analysis of DNA sequences and
coding regions identifications

Change point analysis (also known as DNA segmentation) consists
of identifying points in a DNA sequence where there is a change in
homogeneity. The use of entropy and compression is not novel to this
problem (e.g. Bernaola-Galvan et al., 1996, 1999, 2000), although
with many limitations. Szpankowski er al. (2003) have proposed
a novel strategy that takes care of many of those limitations and
offers a rigorous mathematical treatment of the problem with the
added value of providing a clear-cut stopping rule for the algorithm
that must identify the change points. In particular, the discriminant
function for testing for homogeneity and block lengths has been
designed using rigorous methods of information theory, i.e. universal
data compression and empirically observed statistics (Ziv, 1988), in
addition to the MDL. The discriminative power of the method has
been assessed with the use of subsequences of human chromosomes
9 and 20. They have been chosen on the base of already available
information about the starting positions of genes, coding and non-
coding regions and CpG islands. The experimental evaluation has
given excellent results: the identified change points are in close
proximity of known boundaries between coding and non-coding
regions and the start of known CpG islands.

The identification of coding/non-coding regions in DNA can
be seen as a very specific segmentation task. Again, machine
learning methods and HMMs are widely applied in this area
(Menconi and Marangoni, 2006). However, one of their major
drawbacks is the need to estimate a large number of parameters
before they can actually be used. Based on CASTORE, Menconi
and Marangoni (2006) proposed a new parameter-free method,
which also uses a novel measure of the information content in a
sequence. Again, the input sequence is divided into blocks and
changes in the information content of each contiguous block are
identified. Particularly important are blocks where the information
content grows sublinearly with block length, indicating the presence
of regularities in the input sequence. That information, in turn,
is used to discern between coding and non-coding regions. An
added benefit of the method is the acquisition of a dictionary of
words that collects potentially useful biological information about
the sequence. Experimental results by the authors, conducted on
prokaryotic genomes, indicate that the method is quite promising.
It was compared against three reference, highly tuned, methods:
GLIMMER, GeneMark and ZCURVE. The performance of those
methods was in a range of 96-99% in prediction accuracy of
annotated genes in the prokaryotic genomes used for the test.
The method by Menconi and Marangoni (2006) was in the range
of 88-96.6% in prediction accuracy, although it was not subject
to particular optimizations and it is totally parameter-free. We
also mention that a closely related approach has been used by
Menconi (2004) in a prior study directed at identifying atypical

regions in DNA sequences. The method was used to study 12
complete genomes of some Archaea, Bacteria and Eukaryotes,
together with chromosomes 2 and 4 of Arabidopsis thaliana. Among
the many areas of potential biological interest that the method
highlighted in those genomes, we limit ourselves mentioning that
four putative genes were identified on chromosome 2 of A.thaliana.
An independent cross-validation analysis conducted with the use of
FGENESH (a HMM-based program) confirmed this finding, with
the additional use of information about known positions of genes in
A.thaliana.

9.3 Comparison of segmentations

There are many algorithms that find segmentations in sequences,
each based on a particular set of features deemed ‘relevant’. In this
context, itis essential to have techniques that compare segmentations
in order to establish their relative merits. Haiminen et al. (2007)
have designed one such technique that cleverly reduces the ‘quality
evaluation process’ of a segmentation to its statistical significance
with respect to a background segmentation. Essential for this
reduction to work is the introduction of a similarity measure between
two segmentations that is based on Shannon entropy.

10 PATTERN DISCOVERY

The quest for automatic tools capable of identifying biologically
relevant patterns in biosequences has resulted in the birth of a new
area: pattern discovery in bioinformatics (Parida, 2007). The aim
of this section is to show how data compression techniques and the
associated MDL principle are used in order to discover potentially
meaningful biological patterns. It is worth pointing out that other
techniques presented in this review also deal with the problem of
‘discovering’ biological structure, e.g. Section 3, and in fact there
is a non-trivial overlap of fundamental ideas between the methods
presented here and in other sections.

10.1 Evaluating the statistical significance of patterns

The relative abundance or scarcity of occurrences of a particular
subsequence in a DNA sequence seems to be a good indication
of its involvement in important biological processes, such as gene
regulation and DNA repair. An excellent review on this topic is
provided by Reinert et al. (2005). Therefore, many research efforts
have been dedicated to the assessment of the statistical significance
of the occurrence of a pattern sequence in a (longer) text sequence.
This scenario gives rise to two main types of problems, which we
will discuss next.

The first type of problem asks for the identification of
subsequences in a sequence that are statistically relevant, as
established by a given measure. In this setting, Milosavljevic and
Jurka (1993) and Milosavljevic (1995) have contributed ground-
breaking work with the introduction of the notion of algorithmic
significance in sequences, that has been further enhanced by Powell
et al. (1998).

More recently, Aktulga et al. (2007) have also introduced a
measure of statistical significance between sequences that can be
thought of as being a variant of mutual information. The practicality
and generality of this method has been assessed in two different
studies, that we briefly describe. The first study was performed on
the maize zm- SRp32 gene. This gene belongs to a group of genes
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that are functionally homologous to the human ASF/SF2 alternative
splicing factor. Interestingly, these genes encode alternative splicing
factors in maize and yet themselves are also alternatively spliced.
In order to discover the amount of correlation between different
parts of this gene, the mutual information was computed between
all of its functional elements including exons, introns and the 5'-
untranslated region. Significant dependencies were found between
the 5'-untranslated region in zm-SRp32 and its alternatively spliced
exons, indicating the presence of as yet unknown alternative splicing
mechanisms or structural scaffolds. The second study tested the
ability of the method to identify short tandem repeats in genetic
profiling. Experiments conducted on the FBI’s combined index
system (CODIS) show that the new method is very well suited to
the task, offering good precision and a linear running time—at least
definite theoretical-advantage over extant methods. On this topic,
see also next the section.

The second type of problem is concerned with the extraction of
significant motifs, usually represented by regular expressions, from
a set of sequences. In their survey of the area, Ferreira and Azevedo
(2007) suggest a division of those methods into three classes.
The one termed Theoretic-Information is of relevance for this
review. Brazma et al. (1996) are the first to propose a significance
measure for motifs that is based on the MDL and they apply it to
the Pratt pattern discovery algorithm (Jonassen, 1997). Nevill-
Manning et al. (1997) propose a measure that is based both on
statistics and the MDL to rank, by statistical relevance, PROSITE-
like motifs. That measure is the ranking function for motifs in
EMOTIFS, a pattern discovery tool also proposed by the authors.
The predictive performance of EMOTIF was evaluated against a
large corpus of manually derived PROSITE motifs, using a test set
of sequences discovered after the PROSITE motifs were formed.
In these tests, EMOTIF demonstrates vastly increased accuracy
with only a comparatively small decrease in sensitivity. More
recently, Ma and Wang (2000) have proposed yet another MDL-
based statistical ranking function for motifs, but this time specific
to the pattern discovery tool Sdiscover (Wang et al., 1994).
Unfortunately, no assessment of the method is reported.

10.2 Approximate and tandem repeats

Molecular duplication mechanisms, e.g. retrotransposition, copying
of genes, tandem duplication events, etc., are responsible for the
presence of duplicated sequences in DNA, e.g. retrotransposons,
microsatellites, tandem repeats, etc. The duplicated structures that
those mechanisms produce perform important functions at both the
regulatory and the evolutionary level. Moreover, some of them
are also involved in human disease, (e.g. Madsen et al., 2008).
Therefore, the identification of repeated subsequences in DNA is
important and, fortunately, it is also a branch of combinatorics and
algorithmics with a wealth of results (Gusfield, 1997).

Data compression algorithms are natural candidates for the task
of identifying repetitive areas of DNA because they exploit the
presence of repeated subsequences in a sequence. Rivals et al.
(1997a, b) have initiated this type of research and have investigated
various aspects relating compression to the identification of repeated
structures in biosequences. ARM, developed at Monash University
(Allison et al., 1998; Dix et al., 2007), is a particularly sophisticated
system, where algorithm engineering is complemented by a graphic
‘navigation system’ that allows for close scrutiny of the results.

The techniques supporting ARM have been successfully applied
to identifying both long and short repeated patterns in genomic
DNA of Plasmodium Falciparum (Stern et al., 2001), leading to
the hypothesis that those regions may be related to large-scale
chromosomal organization and the control of gene expression.
Moreover, precursors of those techniques have been applied to
establishing a method for the computation of the ‘complexity’ of
DNA sequences (Allison et al., 1992).

10.3 MicroRNA target detection

MicroRNAs (miRNAs) are involved in many important biological
processes, e.g. gene expression regulation and silencing. Therefore,
a substantial part of biomedical research is dedicated to their study
(Nature-Review, 2008) and, in particular, to the identification of
their target sites.

As discussed in Evans et al. (2007), current computational
methods for miRNA target site detection seem to have limitations
in their specificity, returning a large number of candidate miRNA
target sites. They propose a method, based on data compression
and the MDL principle, that initial studies indicate is capable of
identifying motif sequences, some of which turn out to be miRNA
target sites involved in breast cancer. In terms of data compression
techniques, the method is based on grammar inference. It can be
seen as a combination of DNAsequitur and OFF-Line as well
as highly engineered improvement of both.

11 COMPARISON AND INFERENCE OF
BIOLOGICAL NETWORKS

The comparison of existing biological networks (Sharan and Ideker,
2006; Zhang et al., 2008) and ‘reverse engineering’ of biological
networks from data on a genomic scale, i.e. gene regulatory networks
from expression data (Margolin et al., 2006a), are fundamental tasks
for systems biology. In fact, several research efforts are under way
to tackle the computational problems associated with those tasks,
although only a handful of methods are currently available. Even
at such an initial stage, data compression and information-theoretic
approaches are playing a fundamental role.

The network inference algorithms of relevance for this review
are the ones based on mutual information, which have been used
mainly for regulatory network inference, although they may also
work in other contexts. We mention RELNET (Butte and Kohane,
1999, 2000), CLR (Butte et al., 2000), ARACNE (Margolin et al.,
2004, 2006a), and MRNET (Meyer et al.,2007). The basic idea is very
simple and common to all of them. Given a set of elements (nodes),
one builds a complete, edge-weighted graph on those nodes, where
the weight on each edge gives the amount of relatedness of the two
nodes, as measured by their mutual information. Then, edges with
zero or low weight are removed to obtain the ‘reverse engineered’
network. Key issues for the successful application of this basic idea
are (i) the accurate evaluation of the mutual information between
items, which must be inferred from empirical data; (ii) filtering out
false positives, in particular false direct interactions: if x interacts
with y and z, while there is no direct interaction between y and z,
mutual information may falsely indicate a direct interaction between
y and z. Thanks to the care with which those two points have been
dealt, and based on the extensive experimental studies conducted for
its validation (Basso et al., 2003; Hartemink, 2005; Margolin et al.,
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2006a), ARACNE is found to be a very versatile and reliable method
and therefore an entire protocol for its use in reverse engineering of
cellular networks has been proposed (Margolin et al., 2006b).

As for network comparison, we are witnessing a development
analogous to the one for sequence comparison. The vast majority
of methods are based on notions of similarity related to extensions
of alignments to graphs (Sharan and Ideker, 2006). One method,
however, can rightfully be called the first to be alignment free in
this novel category of algorithms (Chor and Tuller, 2007). The
main ideas supporting the definition of similarity in that method,
are strongly related to the ones of Section 6, but are formalized via
an ad hoc use of the MDL. In fact, the proposed measure of similarity
between two graphs is based on the length of the description of one
graph, once the other is known. The method has been extensively
tested. A first set of experiments has been conducted on the metabolic
networks in the KEGG database and, based on them, phylogenetic
trees for two sets of species have been built and compared with
the NCBI taxonomy, showing a very good level of agreement.
It is worth pointing out that the new similarity function between
graphs gives rise to the only known method capable of building
phylogenetic trees from network data. A second set of experiments
was conducted on protein interaction networks, namely those of
Drosophila melanogaster and S.cerevisiae, in order to find conserved
parts. An indepth analysis of the conserved networks found by the
method, via knowledge already available, indicates that it is suitable
for the analysis of protein interaction networks.

12 CONCLUSIONS

Data compression, and the related information-theoretic techniques,
find a wide use for investigation in computational biology. Such
a pervasive use has grounds in some outstanding notions that
deeply characterizes data compression, in particular universality and
quantification of statistical dependence via information measures.
Those notions give raise to methods that need very few assumptions
on the data models and, as a consequence, very minor parameter
estimations for the application of those tools. That seems to be
a major advantage for computational biology applications, where
the statistical modeling of the data is a highly non-trivial task.
In addition, the low-computational demand of those tools allows
them to scale well with dataset size, even on a genomic scale. In
conclusion, versatility, ‘parameter-free’ data and association mining,
and speed are the main advantages for the use of data compression
in biological investigations. However, a non-trivial organizational
effort is required in order for this area to collect, in a homogenous
way, the set of ideas and tools that would constitute the critical mass
required to be recognized as one of the pillars in Bioinformatics.
Moreover, the connection of data compression to machine learning
is also receiving attention (Sculley and Brodley, 2006) and hopefully
it will result in further unifying principles and methodologies, with
impact on many disciplines, including the ones connected to the Life
Sciences.
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