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Abstract

Background: To investigate the potential of semiquantitative time-intensity curve parameters compared to textural

radiomic features on arterial phase images by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)

for early prediction of breast cancer neoadjuvant therapy response.

Methods: A retrospective study of 45 patients subjected to DCE-MRI by public datasets containing examination

performed prior to the start of treatment and after the treatment first cycle (‘QIN Breast DCE-MRI’ and ‘QIN-Breast’)

was performed. In total, 11 semiquantitative parameters and 50 texture features were extracted. Non-parametric

test, receiver operating characteristic analysis with area under the curve (ROC-AUC), Spearman correlation

coefficient, and Kruskal-Wallis test with Bonferroni correction were applied.

Results: Fifteen patients with pathological complete response (pCR) and 30 patients with non-pCR were

analysed. Significant differences in median values between pCR patients and non-pCR patients were found for

entropy, long-run emphasis, and busyness among the textural features, for maximum signal difference, washout slope,

washin slope, and standardised index of shape among the dynamic semiquantitative parameters. The standardised

index of shape had the best results with a ROC-AUC of 0.93 to differentiate pCR versus non-pCR patients.

Conclusions: The standardised index of shape could become a clinical tool to differentiate, in the early stages of

treatment, responding to non-responding patients.
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Key points

� Significant differences between pathological

complete response (pCR) and non-pCR patients

were found for texture parameters.

� Standardised Index of shape (SIS) showed the

highest accuracy to differentiate pCR patients from

non-pCR patients.

� SIS could become a clinical tool to differentiate early

responders by non-responders.

Background
Breast cancer is the most common cancer diagnosed in

the USA [1]. Neoadjuvant therapy (NAT) has been rec-

ommended in locally advanced disease [2, 3] to deter-

mine a downstaging for a following resection to increase

tumour control likelihood and breast-conserving surgery

rate [4]. Pathologic complete response (pCR) after NAT

has been found to be related with long-term clinical

benefit, such as disease-free and overall survival [5, 6].
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Dynamic contrast-enhanced magnetic resonance im-

aging (DCE-MRI), being a non-invasive imaging method

to measure tissue microvascular perfusion and perme-

ability, is used in clinical trials and research settings to

assess NAT response [7]. In clinical settings, changes in

tumour size are usually used to assess breast cancer re-

sponse to NAT. However, changes in tumour size often

were found to manifest later compared with changes in

vascular tumour functions [8]. There is extensive litera-

ture showing that semiquantitative [9] or quantitative

pharmacokinetic analysis [10] of DCE-MRI data can

provide better prediction, also in early phase, of breast

cancer pathologic response to NAT than tumour size

changes.

Previous studies have investigated functional parame-

ters derived from DCE-MRI to assess neoadjuvant treat-

ment such as the standardised index of shape (SIS)

proposed by Petrillo et al. [11–15] as a simple semiquan-

titative feature capable to predict pathological significant

response and pathological complete response (pCR) after

chemo-radiation therapy or after short course radiother-

apy. Petrillo et al. demonstrated the ability of SIS to pre-

dict pRC and pathological significant response after

preoperative chemo-radiotherapy in locally advanced

rectal cancer [11–15]. Moreover, texture analysis from

breast DCE-MRI has been shown to be effective in appli-

cations such as automatic lesion segmentation [16, 17]

and cancer diagnosis [18, 19].

Here, we conducted a radiomic analysis of statistical

texture features extracted by arterial phase of DCE-MRI

and semiquantitative dynamic parameters for early pre-

diction of breast cancer response to NAT. We report

our preliminary findings on the performance of these

two kinds of data.

Methods
Dataset characteristics

Two public dataset were used: ‘QIN Breast DCE-MRI’

and ‘QIN-Breast’.

The public dataset ‘QIN Breast DCE-MRI’ from The

Cancer Imaging Archive (TCIA) collection [20, 21] is

composed of ten patients subjected to DCE-MRI using a

Siemens 3-T TIM Trio system with the body coil and a

four-channel bilateral phased-array breast coil. Axial bi-

lateral DCE-MRI images with fat saturation and full

breast coverage were acquired with a three-dimensional

gradient echo-based time-resolved angiography with

stochastic trajectories sequence. DCE-MRI acquisition

parameters included echo time 2.9 ms and repetition

time 6.2 ms; field of view 30–34 cm, in-plane matrix size

320 × 320; and slice thickness 1.4 mm. The total acquisi-

tion time was about 10 min for 32–34 image volume sets

of 112–120 slices each, with a temporal resolution of

18–20 s. The contrast agent was Gd-HP-DO3A,

gadoteridol (Bracco Imaging, Milan, Italy), intravenously

injected (0.1mmol/kg at 2mL/s) by a programmable

power injector timed to commence after acquisition of

two baseline image volumes, followed by a 20-mL saline

flush. The public data set can be downloaded at https://

wiki.cancerimagingarchive.net/display/Public/QIN+

Breast+DCE-MRI.

The public dataset ‘QIN-Breast’ from The Cancer

Imaging Archive (TCIA) collection [21, 22] is composed

of 35 patients subjected to DCE-MRI using a 3-T Philips

Achieva system using a dedicated 16-channel bilateral

breast coil. Axial bilateral DCE-MRI images with fat sat-

uration and full breast coverage were acquired with a ra-

diofrequency spoiled three-dimensional gradient echo

sequence. Acquisition parameters included echo time

7.9 and repetition time 4.6 ms, field of view 22 cm2, in-

plane matrix size 192 × 192, and slice thickness 5 mm.

For the DCE study, each 20-slice set was collected in 16

s at 25 time points for just under 7 min of dynamic

scanning. The contrast agent was Gd-DTPA and gado-

pentetate dimeglumine (Bayer Health Care Pharmaceuti-

cals, Wayne, NJ, USA) was intravenously injected (0.1

mmol/kg at 2 mL/s) by a programmable power injector

timed to commence after acquisition of two baseline

image volumes, followed by a 20-mL saline flush. The

public data set can be downloaded at https://wiki.cancer

imagingarchive.net/display/Public/QIN-Breast.

The NAT protocol administered to these patients was

left to the discretion of the treating oncologist based on

patient factors such as menopausal status and age as well

as tumour characteristics, including size, grade, nodal

status and receptor status and was reported by Li et al.

in [22]. Both these collections of breast DCE-MRI data

contain images from two studies to assess NAT re-

sponse. Images were acquired at two time points: before

and after the first cycle of treatment.

Data analysis

Manual segmentation was performed by an expert breast

radiologist (with a 25-year experience) on the post-

contrast arterial phase images, drawing manually each

slice to obtain the delineating of the whole tumour con-

tours (volume of interest).

Textural features

We considered 50 textural features, including both first-

order features (mean, mode, median, standard deviation

[SD], median absolute deviation, range (absolute differ-

ence between maximum and minimum values), kurtosis,

skewness, and interquartile range) and second-order

features. Calculations were performed using the ‘Tex-

tureToolbox’ of MATLAB R2007a (MathWorks, Natick,

MA, USA) that performs texture analysis from an input

by region or volume of interest. In particular, this
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texture analysis package allows for wavelet band-pass

filtering, isotropic resampling, discretisation length cor-

rections and different quantitation tools. A detailed de-

scription has been provided by Vallières et al. [23]. The

toolbox can be downloaded at https://it.mathworks.com/

matlabcentral/fileexchange/51948-radiomics. The defin-

ition of significant textural features reported in the “Re-

sults” section is provided in Additional file 1.

Semiquantitative dynamic parameters

A time-intensity curve can be subdivided into three

regions. The first one represents the contrast medium

time needed to reach the lesion, and the signal inten-

sity is equal to the basal level before contrast agent

injection; the second one shows the increase in signal

intensity because of contrast medium absorption

(washin) according to the tumour biology; the third

one mainly represents the backflow of the contrast

medium into the plasma (washout). To estimate shape

descriptors, a piecewise linear fitting was made and

ten semiquantitative dynamic features described in

the literature [24–26] were extracted using the ap-

proach reported in a previous publication from our

group [25], maximum signal difference (MSD), time

to peak between washin and washout segments,

washin slope (WIS), washout slope (WOS), washin

intercept, washout intercept, area under the curve of

washin, area under the curve of washout, and area

under the curve of washin and washout. The last

semiquantitative dynamic feature was the SIS obtained

combining linearly the percentage change of MSD

and WOS. Therefore, for SIS calculation, the percent-

age change of MSD [ΔMSD = (MSD1 - MSD2)/

MSD1 × 100], and of WOS [ΔWOS = (WOS1 -

WOS2)/WOS1 × 100] and their combination as previ-

ously described [11] was evaluated. Standardised SIS

was given by the following linear combination:

0.7780*ΔMSD + 0.6157*ΔWOS. In order to evaluate

the SIS, an OsiriX (Pixmeo SARL, Geneva,

Switzerland) plugin has been developed by the

authors.

Reference standard and pathological methods

The reference standard was the pathology from surgi-

cal specimen. Fifteen pCR patients and 30 non-pCR

patients were included in this retrospective study. The

pCR was classified according to Miller-Payne grade:

grade 1 for no reduction, grade 2 for minor loss (≤

30%), grade 3 for loss from 30 to 90%, grade 4 for

marked loss (> 90%), and grade 5 for no residual in-

vasive cancer. Patients with grades 1, 2, 3, or 4 were

scored as non-pCR.

Statistical analysis

Median, SD, and range were calculated as representative

values of segmented volumes of interest. Percentage change

of median values of parameters obtained before and after

the first cycle of treatment was calculated. Receiver operat-

ing characteristic analysis was used for obtaining the area

under the curve (ROC-AUC). Sensitivity, specificity, posi-

tive predictive value (PPV), negative predictive value (NPV),

and accuracy were obtained considering the optimal cutoff

values identified maximising the Youden index.

For two-group comparisons, we used the non-

parametric Kruskal-Wallis test for continuous variables.

A p value < 0.05 was considered as significant for uni-

variate analysis. Bonferroni correction was applied for

multiple comparisons.

Calculations were performed using the Statistics and

Machine Learning Toolbox of MATLAB R2007a (Math-

Works, Natick, USA).

Results
Table 1 reports the median, SD, and range of the percent-

age change for the significant features in the differenti-

ation pCR from non-pCR patients. Significant differences

in median values between pCR patients and non-pCR pa-

tients using the Kruskal-Wallis test were found for en-

tropy, long-run emphasis (LRE), and busyness among the

textural features and for MSD, WOS, WIS and SIS among

the dynamic parameters.

Table 2 reports accuracy for the significant features: en-

tropy (accuracy 71%), LRE (accuracy 71%), busyness (ac-

curacy 76%), MSD (accuracy 78%), WIS (accuracy 78%),

WOS (accuracy 82%), and SIS (accuracy 89%). The SIS

showed the best performance with a ROC-AUC of 0.93, a

sensitivity of 93%, a specificity of 87%, a PPV of 78%, and

a NPV of the 96%, using an optimal cutoff value of 56.47%

to differentiate pCR from non-pCR patients. The SIS in-

creased the accuracy of 13% respect to the better param-

eter among texture features, of 11% compared to MSD

and WIS and of 7% respect to WOS.

In Fig. 1, boxplots for the significant textural features

(entropy, LRE, busyness) and dynamic features (WIS,

WOS, MSD, and SIS) to separate pCR from non-pCR pa-

tients are reported. Moreover, Fig. 1 shows ROC-AUC

curves for all significant parameters (entropy, LRE,

busyness, WIS, WOS, MSD, SIS). In Fig. 2, a case of non-

pCR is shown: morphological images did not show a sig-

nificant change in tumour size while there was a signifi-

cant modification in time-intensity curve before and after

the first cycle of treatment while the SIS value was 72.3%.

Discussion
Recent advances in biomedical image analysis have

emphasised that MRI contrast kinetic parameters and
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texture analysis, as quantitative metrics, can offer a re-

fined local tumour description of complexity, heterogen-

eity and kinetic behaviour [27–29].

Teruel et al. [30] presented the findings on 16 textural

statistical features extracted by DCE-MRI that are capable to

predict early NAT tumour response. Golden et al. [27] used

similar texture features to predict pCR, residual lymph node

metastases and residual tumour in patients with triple-

negative breast cancer. Moreover, Thibault et al. [28] re-

ported that breast tumour microvasculature heterogeneity

as a texture feature could be a useful biomarker for early

prediction of NAT response. However, these studies used

statistical texture description without taking advantage of in-

formation provided by the T1-weighted DCE-MRI curve.

Martincich et al. [29] showed that a reduction in the

tumour volume > 65% and a reduction in the early en-

hancement ratio after two cycles of preoperative therapy

were associated with a major histopathological response.

Combining tumour volume and early enhancement ratio

reduction after two cycles of therapy reached a 93%

diagnostic accuracy to identify pCR.

We have extracted multiple statistical texture features

on arterial phase of DCE-MRI and semi-quantitative

kinetic parameters before and after one cycle of NAT in

order to assess early pathological response using two

public dataset acquired with 3T MR scanner. Our mono-

variate analysis shows statistically positive results for en-

tropy (71% of accuracy), LRE (71% of accuracy),

busyness among texture features (76% of accuracy) and

for MSD (78% of accuracy), WIS (78% of accuracy),

WOS (82% of accuracy), and SIS (89% of accuracy)

among semi-quantitative kinetic metrics. Textural fea-

ture results for entropy, LRE and busyness confirmed

the results presented by Thibault et al. [28], suggesting

changes in the spatial heterogeneity of the tumour

microenvironment as one of the initial NAT effects.

Moreover, our perfusion and permeability as semi-

quantitative dynamic parameters, measured by contrast

Table 2 Diagnostic accuracy for significant features differentiating patients with pathologic complete response (pCR) versus non-pCR

patients

p value* ROC-AUC Sensitivity Specificity PPV NPV Accuracy Cutoff

Textural features Δ Entropy 0.024 0.71 0.67 0.73 0.56 0.81 0.71 3.78

Δ LRE 0.021 0.71 0.73 0.70 0.55 0.84 0.71 0.57

Δ Busyness 0.020 0.72 0.67 0.80 0.63 0.83 0.76 34.38

Dynamic features Δ MSD 0.013 0.74 0.67 0.83 0.67 0.83 0.78 27.74

Δ WIS < 0.001 0.73 0.60 0.87 0.69 0.81 0.78 73.62

Δ WOS 0.012 0.86 0.87 0.80 0.68 0.92 0.82 24.42

SIS < 0.001 0.93 0.93 0.87 0.78 0.96 0.89 56.47

LRE Long-run emphasis, MSD Maximum signal difference, NPV Negative predictive value, PPV Positive predictive value, ROC-AUC Receiver operating characteristic

area under the curve, SIS Standardised index of shape, WIS Washin, WOS Washout slope

*Kruskal-Wallis test

Table 1 Median, standard deviation and range of the percentage change for significant features differentiating patients with

pathologic complete response (pCR) from non-pCR patients

Δ Entropy (%) Δ LRE (%) Δ Busyness (%) Δ MSD (%) ΔWIS [%] ΔWOS [%] SIS (%)

Non-pCR patients Median 0.28 0.29 23.79 12.49 38.52 -11.43 9.59

SD 7.30 2.28 75.93 38.94 50.21 95.11 63.80

Range 30.57 12.60 298.18 234.22 210.05 420.02 320.65

pCR patients Median 5.03 1.30 38.83 68.89 87.35 143.67 125.17

SD 11.69 1.84 37.75 45.30 47.37 129.24 251.58

Range 43.82 7.52 134.56 142.17 155.66 492.36 779.98

Total Median 2.16 0.52 27.67 17.00 50.54 20.74 27.96

SD 9.57 2.21 68.69 43.92 51.28 130.15 183.57

Range 43.82 12.60 307.92 250.40 224.91 641.45 993.42

p value* 0.021 0.024 0.023 0.014 0.012 < 0.001 < 0.001

Range represents the absolute difference between maximum and minimum values

LRE Long-run emphasis, MSD Maximum signal difference, SD Standard deviation, SIS Standardised index of shape, WIS Washin slope, WOS Washout slope

*Kruskal-Wallis test
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kinetics, have reported good results, especially WOS and

SIS, indicating that changes in DCE-MRI are important

markers for identifying early pCR [11, 24, 29].

However, SIS analysis reached the best results in terms

of sensitivity, specificity, PPV, and NPV, reporting the

highest ROC-AUC value (0.93) for predicting pCR. With

the optimal cutoff value, SIS increases the accuracy of

13% compared to the better parameter among texture

features, of 11% compared to MSD and WIS and of 7%

compared to WOS.

This study has several limitations. First of all, this pool

of patients derives from two different public datasets

created in two different hospitals with two different MR

machines using two different sequence tools. Second,

the small cohort of studied patients represents an initial

finding to validate increasing sample size of the study in

the future. Third, NAT regimen is not available for each

patient because the analysed MR images were obtained

by public dataset. Finally, this analysis did not consider

tumour histological differences. In fact, the potential in-

tegration of texture, morphological and dynamic metrics

combined with histopathology results may provide other

important prognostic information for the assessment

and the prediction of therapy response.

Fig. 1 Boxplots for those metrics significantly separating patients with pathologic complete response (pCR) from non-pCR patients. Textural

features: (a) entropy, (b) long-run emphasis (LRE) and (c) busyness. Dynamic parameters: (d) washin slope (WIS), (e) washout slope (WOS), (f)

maximum signal difference (MSD), (g) standardised index of shape (SIS). h Receiver operating characteristic area under the curve for all these

significant metrics
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In conclusion, although validation in larger patient

populations is needed, feature extraction approach and

SIS can become important clinical tools to identify and

differentiate, in the early stages of NAT treatment,

responding and non-responding patients for alternative

personalised therapy regimens.
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1186/s41747-019-0141-2.
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