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Abstract

In this paper we present how to exploit the textural information to improve scribble-based image colorization.

Although many methods have been already proposed for coloring grayscale images based on a set of color

scribbles inserted by a user, very few of them take into account textural properties. We demonstrate that the

textural information can be extremely helpful for this purpose and it may greatly simplify the colorization process.

First, based on a scribbled image we determine the most discriminative textural features using linear discriminant

analysis. This makes it possible to boost the initial scribbles by adjoining the regions having similar textural

properties. After that, we determine the color propagation paths and compute chrominance of every pixel in the

image. For the propagation process we used two competing path cost metrics which are dynamically selected for

every scribble. Using these metrics it is possible to efficiently propagate chrominance both over smooth and rough

image regions. Texture-based scribble boosting followed by competitive color propagation is the main

contribution of the work reported here. Extensive experimental validation documented in this paper demonstrates

that image colorization can be substantially improved using the proposed technique.

Keywords: image colorization, textural properties, distance transform, linear discriminant analysis

1 Introduction
Color images are usually perceived as definitely more

attractive and appealing than their grayscale versions.

Therefore, a lot of efforts are often engaged into image

colorization, which is a process of adding colors to

monochromatic images or videos. First attempts in

1920s were fully manual, performed for every individual

shot on the film print. The colorization process was

computerized in 1970s by Wilson Markle and Christian

Portilla. Its most famous application was colorization of

the Apollo mission footage. The first well-known mono-

chrome film colorization was that of Casablanca in

1980s. Although it was widely criticized at that time,

colorization of old movies appeared desired in the mass

culture world and many films have been converted into

color versions since then. Apart from enhancing visual

attractiveness of monochrome photographs or videos

whose color versions are not available, image coloriza-

tion has found many other applications like marking

regions of interest in medical images, interior design, or

make-up simulators.

Using the recent methods an image can be colorized

based on color scribbles which are propagated over the

whole image surface. Although the existing techniques

work well for colorizing plain areas, they fail for rough,

textured regions. This is because the color is propagated

from the scribbles following an assumption that pixels

of similar luminance should have similar chrominance.

This explains why the existing algorithms and available

commercial solutions occur to be inefficient when a

highly textured regions are to be colorized. In some

cases, even large image regions expected to have uni-

form chrominance should be precisely annotated with

the scribbles to avoid artifacts. The final colorization

result often depends on the scribbles’ shape and exact

position. Hence, although the image is automatically

colorized after adding the scribbles, drawing them is

often a tedious task itself.

In the work reported here we have focused on how to

reduce density and precision of the scribbles, in order to

simplify the colorization process. More specifically, we

have investigated how the textural information can be

exploited to achieve this goal. As a result, based on our

earlier works [1,2] we propose a double-level method,

consisting of scribble boosting followed by surface-speci-

fic competitive color propagation. A very important

property of the method is that at both levels it is
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adapted to the textures which appear in the image and

are marked by the scribbles.

The first-level works by extracting the discriminative

textural features (DTF) which make distinction between

the textures covered by different scribbles [1]. DTF are

obtained using linear discriminant analysis (LDA) per-

formed over simple image statistics computed locally.

After that, the scribbles are boosted by adjoining the

regions which have similar textural features. DTF are

determined independently for every image to maximize

the discriminative power between the textures covered

by different scribbles. This makes the method adaptive

to every scribbled image.

At the second level, the boosted scribbles serve as the

source for the color propagation. The propagation paths

are obtained using Dijkstra algorithm by minimizing

local pixel distance integrated along the path. In con-

ventional techniques [3] the local pixel distance is pro-

portional to a luminance difference. This works

correctly for colorization of plain areas, but fails for tex-

tured surface. Therefore, we adapt the distance to the

textural properties of the region where the scribble is

placed. Our experiments indicated that this double-level

approach make it possible to limit the necessary human

assistance and facilitates the colorization process.

The paper is organized as follows. In Section 2, a gen-

eral literature overview is presented. Then, in Section 3,

the baseline techniques used in the proposed method

are outlined. The main contribution of the reported

work is presented in the following two sections. In Sec-

tion 4, competitive color propagation is described, and

in Section 5, we present the texture-based scribble

boosting technique. Finally, the obtained colorization

results are shown and discussed in Section 6, and the

conclusions are presented in Section 7.

2 Related work
The first method of adding colors to the image was pro-

posed by Gonzalez and Woods [4] in a form of lumi-

nance keying. It operates based on a function which

maps every luminance level into color space. Obviously,

the whole color space cannot be covered in this way

without increasing manual input from the user. Welsh

et al. [5] proposed a method of color transfer which col-

orizes a grayscale image based on a given reference

color image. This method matches pixels based on their

luminance and standard deviation in 5 × 5 neighbor-

hood, which serves as a basic textural feature. Every

pixel in the colorized image is assigned the best match-

ing pixel from the source image and its chrominance is

transferred. The matching process can be performed

automatically, but it gives better results with user assis-

tance. This method was improved by Lipowezky [6],

who proposed to extend the textural features.

Sykora et al. [7] proposed an unsupervised method for

image colorization by example, which at first matches

similar image feature points to predict their color. After

that, the color is spread all over the image by probabilis-

tic relaxation. Horiuchi [8] proposed an iterative prob-

abilistic relaxation, in which a user defines colors for

selected grayscale values, based on which the image is

colorized. Furthermore, Horiuchi [9] proposed a method

for texture colorization which defines pixel similarity

based on their Euclidean distance and difference in

luminance values. Hence, even if two neighboring pixels

differ much in luminance, which is often observed for

textured regions, their similarity will be high due to low

Euclidean distance. This approach works better for col-

orizing textures than the earlier methods, but it does

not perform any analysis of textural features.

Many methods are focused on using prior information

delivered by a user in a form of manually added color

scribbles. Levin et al. [10] formulated an optimization

problem based on an assumption that neighboring pixels

of similar intensity should have similar color values

under the limitation that the colors indicated in the

scribbles remain the same. Yatziv and Sapiro [3] pro-

posed a method for determining propagation paths in the

image by minimizing geodesic distances from every scrib-

ble. Based on the distances from each scribble, pixel color

is obtained by blending scribble chrominances. In other

works, the color is also propagated from scribbles with

probabilistic distance transform [11], using cellular auto-

maton [12] or by random walks with restart [13].

During our earlier research, we also exploited scribble-

based image colorization. First, we proposed modified

color propagation paths and we improved the chromi-

nance blending procedure [2]. This method was suitable

for colorizing the details having strong gradients, but still

required high scribble coverage. Later, we proposed to

use textural features as a domain for color propagation

[1], which made it possible to colorize larger areas using

small scribble coverage. However, the main drawback of

that approach lies in the precision. At the boundaries of

regions having different texture, the pixels were often

misclassified which resulted in observing unnatural arti-

facts. In the work reported here, we have modified the

procedure for obtaining the textural features and pro-

posed the scribble boosting technique, which eliminates

the main drawbacks of these earlier algorithms.

3 Color propagation paths and chrominance
blending
In order to colorize a monochromatic image Y based on

a set of n initial scribbles {Si}, i = 1,..., n, frst it is neces-

sary to determine the propagation paths from each

scribble to every pixel in the image. A path from a pixel

x to another pixel y is defined as a discrete function p
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(t): [0, l] ® Z2, which maps a position t in the path to

the pixel coordinate. The position is an integer ranging

from 0 for the path beginning (p(0) = x) to l for its end

(p(l) = y). Also, if p(i) = a and p(i+1) = b, then a and b

are neighboring pixels. The paths should be determined,

so as to minimize a number of expected chrominance

changes along the path. Hence, in the image they should

follow the objects having uniform chrominance. Also,

any two pixels inside a region that is supposed to have

uniform chrominance are expected to be connected

with a path which should not leave this region.

3.1 Propagation paths optimization

The propagation paths from a scribble to every pixel are

determined by minimizing a total path cost:

C(p) =

l−1
∑

i=0

ρ{p(i), p(i + 1)}, (1)

where r is a local dissimilarity measure between two

neighboring pixels and l is the path length. The minimi-

zation is performed using Dijkstra algorithm [14] in the

following way:

1. A priority queue Q is initialized with all scribbled

pixels.

2. Distance array D which covers all image pixels is

created. Every pixel q Î Q is assigned a zero dis-

tance (D(q Î Q) = 0) and all remaining pixels are

initialized with an infinite distance.

3. A pixel q, for which the distance D(q) is minimal

in Q, is popped from Q and for each of its 7 neigh-

bors Ni(q) (excluding the source) two actions are

performed:

(a) Local distance r(q, s) between q and its

neighbor s is calculated to find a total cost of ps,

i.e., C(ps) = C(q) + r(q, s).

(b) If C(ps) <D(s), the distance D(s) is updated, s

is enqueued in Q, and the pixel s is associated

with a new path ps.

4. If the queue is empty, the algorithm terminates.

Otherwise, step (3) is repeated.

The path route depends mainly on how the local costs

are computed. Following the conventional approach [3],

the local cost is obtained by projecting the luminance

gradient onto a line, tangent to the path direction. This

means that the cost is proportional to the difference in

luminance between the neighboring pixels.

3.2 Chrominance blending

Chrominance of each pixel is determined based on the

propagation paths from every scribble. Its value is com-

puted as a weighted mean of scribbles’ colors with the

weights obtained as a function of the total path cost.

Usually two or three strongest components are taken

into account, which provides a good visual effect of

smooth color transitions. The final color value v(x) of a

pixel x is obtained as

v(x) = Y(x)

∑

i viwi(x)
∑

i wi(x)
(2)

where vi is the chrominance of an ith scribble and wi

(x) is its weight in pixel x. We use YCrCb color space

and calculate color values separately for Cr and Cb chan-

nels. The weights are obtained as

wi(x) = (Ci(x) + 1)−2, (3)

where Ci(x) is the total path cost from ith scribble to

pixel x. In our earlier work [2], we justify that it is bene-

ficial to use modified cost Cb
i (x) for the blending

instead of the original path cost, computed as

Cb
i (x) =

l

σi
Ci(x) + αl, (4)

where si is ith scribble strength normalized from 0 to

1, a is a topological penalty, and r indicates the original

path cost. By default the topological penalty was set to

a = 0.02 and the scribble strength si = 1; this parameter

gives the user possibility to indicate how far the scribble

is supposed to propagate. This is particularly important

when an image is intended to be colorized using few

scribbles. In such a case the scribble strength should be

decreased for the scribbles which indicate tiny details

and therefore should not propagate much.

4 Competitive propagation paths
Yatziv [3] in his method determines the path by mini-

mizing integrated luminance gradient in the path direc-

tion. This is an interesting approach, appropriate to

determine paths supposed to cross easily plain areas

without strong edges. It is suitable if luminance differ-

ence is proportional to probability of chrominance

change. This approach is similar to a traveler who

intends to cross an island with beaches along the coast

and mountains in its interior part. He would choose a

longer way along the coast rather than a shorter one

across the mountains. However, if he wants to move

between two mountains, he may prefer to head for the

coast, follow the beach to get as close the second moun-

tain as possible, and then walk inside again. This is rea-

sonable, but for the colorization purposes we would

prefer not to leave the rough area as long as it is

expected to have uniform chrominance. Here, the

roughness would mean a texture with many edges

which would generate a very high cost of crossing it
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using the conventional methods. In practice, this means

that the scribbles would not propagate well in such a

region, and as a result it must be annotated with many

scribbles.

When a scribble is placed in rough area, it is better to

follow high gradients without much cost. It is similar to

the intelligent scissors [15] for interactive image seg-

mentation. This algorithm joins a starting point and a

mouse pointer with a path, which is sticky to the stron-

gest gradient. Local cost between two neighboring pixels

depends on the Laplacian zero-crossings, gradient mag-

nitude and direction. Basically, the cost is lower if the

path follows the gradient direction and the gradient

magnitude of the path pixels is high.

4.1 Local distance metrics

Following the presented analysis, we identified two ways

of calculating the local distances which are individually

appropriate for homogenous and highly textured

regions. We called them respectively: plain distance and

gradient-sticky distance.

Plain distance is similar to those used in other well-

established methods. Its aim is to minimize intensity

changes along the path and it is calculated as:

ρp(x, y) = 1 − exp(−|Y(x) − Y(y)|/hp), (5)

where hp is a normalization factor, set experimentally

to 30. This distance is suitable for determining paths in

uniform regions whose texture is not characterized by

strong gradients.

However, for objects whose texture is not smooth, the

paths cannot be found correctly in this way.

Furthermore, the distance grows rapidly when high gra-

dients are crossed, which affects the result of chromi-

nance blending. Therefore, in such cases the distance

should be inversely proportional to the gradient

strength, so that the path is sticky to high gradients.

Hence, we take into account the propagation direction

to decrease the cost if the path follows an edge. We

defne a gradient-sticky distance as:

ρg(x, y) = 1 − exp

[

−1

hg|∇Y(y)|(cos β + 1)

]

, (6)

where b is an angle between the gradient vector in y

and propagation direction from x to y. Factor hg was set

to 0.5.

Propagation paths obtained by minimizing these two

distances integrated along the path, as well as the con-

ventional distance metric defined by Yatziv [3], are pre-

sented in Figures 1 and 2. Figure 1 shows the paths

propagated from scribbles placed over highly textured

regions (hair and tree). In the background, a gradient

magnitude image is presented for the upper row and

original image for the tree in the bottom row. It may be

noticed that in (c) the paths are sticky to the gradient

directions, while in (a, b) they prefer smooth areas.

Moreover, in the bottom row (a, b) the left part of the

tree is accessed by the paths which first leave the tree

region, go round the tree through the sky region, and

enter the tree region again from the opposite side. This

is a good illustration of the traveler’s problem described

at the beginning of this section. As a result, the left

region of the tree would be influenced by scribbles

annotated over the sky.

a) b) c)

Figure 1 Propagation paths determined using distance defined by Yatziv [3](a), plain distance (b), and gradient-sticky distance (c).
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Figure 2 presents propagation paths to a selected pixel

of a human hair, reached from two different scribbles

added to hair and skin region. The total path cost is

depicted in this figure. The path leading from the hair

scribble should not leave the hair region which is

obtained only using the gradient-sticky distance (c).

However, the path leading from the skin scribble is cor-

rect only for plain distances (a, b). In case of the gradi-

ent-sticky distance, the path crosses an eye which is

definitely incorrect.

This example clearly shows that the distance type used

for determining a path should depend on the properties

of a texture which is to be colorized. This choice may

be left to a user who adds the scribbles. However, in

our method we intend to decrease the time-consuming

interaction, so we provide automatic selection following

a competitive approach. For every scribble we start the

propagation algorithm with both types of paths and for

each pixel we select that kind of a path, for which the

distance is smaller. Hence, for harsh surfaces the gradi-

ent paths usually prevail, while on smooth areas the

plain paths propagate better. This selection can be done

either separately for every starting pixel or for a whole

scribble. In our experiments, we found the latter

approach performing better.

Competitive propagation can be effective only if the

competing metrics are well balanced. Otherwise, one

would dominate the other. Exponential distance defini-

tion in (5) and (6) normalizes plain and gradient-sticky

distances. A proper balance between them is achieved

using appropriate values of the normalization factors hg
and hp. It is worth observing that the propagation is

performed for small values of the local distances, where

the dependence is close to linear.

5 Texture-based image colorization
Competitive propagation paths presented in Section 4

allow for efficient colorization despite of strong

gradients that are often observed in textured regions.

This makes it possible to colorize such image areas

using just a few scribbles, similarly as in case of smooth

regions. However, this technique does not extract the

underlying textural features, so the propagation paths

can easily cross boundaries between different textures. It

is worth noting that regions of uniform texture quite

often have similar chrominance, and chrominance

boundaries may be determined based on the textural

features. Unfortunately, this is neglected by many exist-

ing techniques, which assume that the chrominance

boundaries are correlated exclusively with the luminance

changes. Following this assumption, the raw pixel values

in luminance channel are used as the color propagation

domain [3,16].

In this section, we focus on how to exploit the tex-

tural features for image colorization. At first, we deter-

mine which textural features are most discriminating

between the scribbles to obtain appropriate color propa-

gation domain, adapted to the specific conditions. Sub-

sequently, we allow the scribbles to conquer the regions

of similar texture, without defining the exact color

boundaries (the precision at the boundaries is unsatis-

factory). After this procedure, which we call scribble

boosting, we perform the competitive propagation as

described earlier in this paper.

5.1 Discriminative textural features

Various methods have been reported on texture-based

image segmentation [17], including Haralick features

[18], local binary patterns [19], wavelets [20], or filter

banks [21]. It is worth noting that the considered case is

not identical to the widely investigated segmentation

task. Here, the aim is to define a suitable domain for

color propagation. Among the existing colorization

methods, textural features have been exploited for color

transfer [5,6]. However, only simple texture descriptors

are used there, which may be helpful in some cases, but

a) b) c)

C(p) = 0.35 C(p) = 4.6 C(p) = 1.14

C(p) = 0.16 C(p) = 1.38 C(p) = 1.53

Figure 2 A single point reached by paths obtained with distance defined by Yatziv [3](a), plain distance (b), and gradient-sticky

distance (c).
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does not guarantee the distinctiveness between the

regions marked with different scribbles.

The color propagation domain should induce low

costs between pixels belonging to a single scribble. On

the other hand, the cost should be high, when the path

crosses a boundary between areas marked with different

scribbles. It is therefore important to find such image

properties that would be uniform within a single scrib-

ble and different between the scribbles. In the work

reported here, we select the distinctive properties for

every scribbled image using LDA. It is performed over a

set of simple image features extracted from pixels which

belong to the scribbles. In this way we obtain the color

propagation domain which is dynamically conformed to

every specific case.

5.1.1 Linear discriminant analysis

Linear discriminant analysis [22] is a supervised statisti-

cal feature extraction method frequently used in

machine learning. It finds a subspace defined by the

most discriminative directions within a given training

set of M-dimensional vectors classified into K classes.

The analysis is performed first by computing two covar-

iance matrices: within-class scatter matrix

SW =
∑K

i=1

∑

uk∈Ki
(uk − µi)(uk − µi)

T , and between-

class scatter matrix SB =
∑K

i=1 (µi − µ)(µi − µ)T , where

μ is a mean vector of the training set and μi is a mean

vector of the ith class (termed Ki). Subsequently, the

matrix S = S−1
W SB is subjected to the eigen decomposi-

tion S = FΛFT, where Λ = diag(l1,..., lM) is the matrix

with the ordered eigenvalues along the diagonal and F

= [u1|... |uM] is the matrix with the correspondingly

ordered eigenvectors as columns. The eigenvectors form

the orthogonal basis of the feature space. Originally, the

feature space has M dimensions, but only those asso-

ciated with the highest eigenvalues have strong discrimi-

native power, while the remaining can be rejected. In

this way the dimensionality is reduced from M to m,

where m <M.

After having built the m-dimensional feature space,

the feature vectors are obtained by projecting the origi-

nal vectors u onto the feature space: ν = FT u. The

similarity between the feature vectors is computed based

on their Euclidean distance in the feature space.

5.1.2 LDA for texture analysis

In order to determine the discriminative features, first

we calculate basic image features from every pixel. They

are composed of: (a) luminance, (b) gradient intensity,

(c) local binary pattern, (d) mean value and (e) standard

deviation computed in many kernels of different size, (f)

the difference between maximum and minimum values

in the kernels, and (g) the pixel value in the median fil-

tered image. The basic features (d)-(g) were obtained for

five kernel sizes ranging from 3 × 3 to 11 × 11. Hence,

every pixel x is described by an M-dimensional basic

feature vector ux (M = 23 in the presented case). The

feature vectors of the scribble pixels are subsequently

subject to LDA. Every scribble forms a separate class, so

the analysis determines the most discriminative features

between the scribbles for a given image. The feature

vectors (v) obtained using LDA are further termed dis-

criminative textural features (DTF). The distance

between any two feature vectors v1 and v2 in the DTF

space is computed as:

dDTF =

m
∑

i=1

(v1i − v2i)
2. (7)

During our experiments, we observed that for the

majority of analyzed cases it is sufficient to reduce the

dimensionality of DTF vectors to m = 2. Also, we limit

the number of the input vectors in each class to 100 so

as to reduce the LDA training time. If a scribble con-

tains more pixels, 100 of them are randomly selected.

We have not observed any noticeable difference in the

outcome compared to using all the scribble pixels, while

the training time is definitely shorter.

5.2 DTF-based color propagation domain

After training, a projection matrix F is obtained and

every pixel in the image is projected onto m-dimen-

sional DTF space. Examples of three scribbled images

and their projection onto three leading LDA compo-

nents are shown in Figure 3. They represent the most

discriminative textural features and the eigenvalues asso-

ciated with them are given underneath. It may be

observed that these projections differentiate well

between the areas marked with the scribbles. Also, 10

highest eigenvalues obtained for every image are plotted

in the figure (rightmost column). The values on the ver-

tical axis are given in relation to the highest eigenvalue.

Figure 4 shows four images annotated with scribbles.

The luminance of the pixels scaled from 0 to 100 is

shown in (b) on the horizontal axis, while the vertical

axis was added only to differentiate between the scrib-

bles. Different colors (red, blue, and green) indicate pix-

els from particular scribbles. The scribble pixels

projected onto 2D DTF subspace are shown in (c). For

the image in the first row, the “forest” pixels (F–blue)

are generally darker than the “sky” pixels (S–red), but

the luminance alone is not a discriminative feature here.

However, two classes are well separated after projecting

onto the DTF subspace, and the same observation con-

cerns the flower image. Two subsequent images were

annotated with scribbles of three various colors, each of

them being a separate class. “Sky” (S–green) and “grass”
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Figure 3 Projections of scribbled images onto the leading LDA components, and 10 highest eigenvalues.
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(G–red) scribbles in the tree image are overlapping each

other even in the DTF subspace, but they both are well

separated from the tree class. Although the achieved

result is not perfect, it appeared sufficient to colorize

the image properly as presented later in this section. For

the last image, the three classes, i.e., “skin” (S–blue),

“background” (B–green), and “hair” (H–red) are well

separated.

For every scribble, a mean DTF feature vector is

obtained and its DTF-distance dDTF (7) to every pixel in

the image is computed in the DTF space. In this way, a

DTF-distance map di is obtained for every ith scribble.

Examples of the DTF-distance maps generated for two

images are presented in Figure 5. Darker shade indicates

smaller distance, i.e., greater similarity to the source

scribble. It is clear from the Figure that the DTF-dis-

tance maps better differentiate between the scribbled

regions than the original images themselves.

Potentially, the distance maps could be used directly

for chrominance blending. In such a case, to obtain an

ith weight for a pixel x, the distance in DTF space di(x)

could be used instead of the total path cost Ci(x) in (3).

However, such approach does not beneft from pixels

location and their geometrical distance from the scrib-

bles. Also, continuity of the regions would not be guar-

anteed in this way. The DTF-distance maps can be used

directly for some other applications, e.g., color transfer

or video colorization, but here we found it better to

treat them as a domain for color propagation. The local

cost r from pixel x to y equals the y pixel value in the

DTF-distance map (r(x, y) = di(y)). For example, it can

be concluded from Figure 5 (grass) that the upper-right

sky region is texturally similar to the grass. This results

from the overlapping in the DTF subspace observed ear-

lier in Figure 4. Fortunately, these regions are located far

from each other, which can be utilized using the propa-

gation strategy. In this way these regions can be prop-

erly colorized, which would not be achieved using the

distance maps directly for blending.

The propagation paths are determined so that they

follow the texture similar to that covered by the source

scribble. This is contrary to FIVC approach, with which

the path is determined to minimize the luminance

changes. An example of a difference between these two

alternative approaches is given in Figure 6. It shows the

propagation paths leading from a scribble to a selected

pixel obtained using two methods. The paths deter-

mined using our method (b) do not leave the striped

area, which makes it possible to colorize the image cor-

rectly (c). The paths obtained using a conventional

method (d) show that the textural information is not

taken into account during the propagation. This results

in wrong colorization outcomes (e).

5.3 Scribble boosting

The method presented earlier in this section makes it

possible to implement a complete colorization system;

however, it has a serious drawback concerned with the

precision. Although the regions having different texture

are properly classified and separated in the DTF sub-

space, pixels lying at the region boundaries may be mis-

classified. The size of such misclassified areas depends

on the kernel dimensions used for obtaining the basic

textural features. This results in observing small halos at

the region boundaries, which decreases the reality of the

colorized images. Examples of these artifacts are pre-

sented in Figure 7.

If an image is densely annotated with scribbles, such

effects are usually not observed using conventional

methods. Following this observation, we decided to use

Scribbled image DTF-distance from the scribbles marked over:
(sky) (volcano) (ground)

(grass) (tree) (sky)

Figure 5 Examples of DTF-distance maps obtained for scribbled images.
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the DTF-based propagation to significantly enlarge

(boost) the original scribbles, so that they cover the

inner parts of the regions having similar texture without

defining their boundaries. After that, the image with

boosted scribbles is subject to the competitive propaga-

tion procedure presented in Section 4.

A flowchart of the proposed colorization method is

given in Figure 8, and examples of resulting images

obtained at subsequent steps of the procedure are

demonstrated in Figure 9. The process consists of the

following steps:

1. Basic textural features are extracted from every

pixel in the original image as explained in Section

5.1.2. This operation creates an M-channel basic fea-

tures image.

2. Each scribble forms an individual class of the

basic feature vectors, extracted from the pixels cov-

ered by that scribble. This establishes a classified

train set for LDA, which generates the projection

matrix during training.

3. Based on the LDA projection matrix, the basic

feature image is transformed into a DTF-features

image.

4. A distance map in the DTF domain is obtained

for every scribble as described in Section 5.2, using

Equation (7).

5. Optimal paths from each scribble to every pixel in

the image are determined using the DTF-distance

maps. Here, we found it better to compute the total

path cost as a maximal DTF-distance encountered

on the path. Hence, the total path cost is obtained

as Cboost(p) = max
i=0...(l−1)

{d(p(i))} . In this way the

image is divided into mutually exclusive DTF

regions, in which the individual scribbles win.

6. Every DTF region conquered by an individual

scribble is shrunk using distance transform from the

region’s boundary. The shrinking margin size is

determined based on an average length of the paths

leading from the scribble to the boundary (l̄b) . Dur-

ing our experiments we set it to 0.75 0.75l̄b , and we

additionally provide that the original scribbles

remain untouched after the shrinking. The shrunk

regions are treated as the boosted scribbles for com-

petitive propagation.

7. Competitive colorization is performed from the

boosted scribbles (as outlined in Section 4). This

operation generates the final colorized image.

Texture-based scribble boosting greatly facilitates the

colorization of large image regions of uniform texture

which are expected to obtain common chrominance.

However, tiny image details are usually annotated with

scribbles of specific colors which should not propagate

far. Moreover, taking them into account for DTF com-

putation may affect the discrimination power of the

obtained feature space. Therefore, we allow the user to

decide which scribbles are supposed to propagate only

in their close neighborhood. We do not consider them

for scribble boosting, and we also apply decreased scrib-

ble strength for them (e.g., si = 0.1). Although it may be

a) b) c) d) e)

Figure 6 Scribbled images (a), propagation paths and colorized image obtained using our (b, c) and Yatziv’s approach (d, e).

Figure 7 Examples of the halo efect observed for DTF-based colorization.
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Original image

Basic-features
image

User-defined
scribbles

LDA
projection
matrix

DTF-features
image

DTF-distance
maps from

each scribble

DTF regions Boosted
scribbles

Colorized
image

Figure 8 Flowchart of the proposed scribble boosting method.

Scribbled images

DTF-distance maps from every scribble

DTF regions before shrinking

Boosted scribbles

Result obtained after competitive colorization from boosted scribbles

Figure 9 Examples of results obtained at selected steps of the colorization procedure.
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argued that this increases the user interaction, the over-

all gain attributed to the proposed technique is definitely

beneficial.

6 Experimental validation
Experimental validation of the proposed colorization fra-

mework was focused on two main aspects. First, we

investigated how sensitive the method is to amount and

density of the scribbles. Then, we evaluated the obtained

colorization result for a group of images, on the basis of

mean opinion score (MOS). We compared the proposed

method with two well-established colorization techni-

ques: (1) Colorization using optimization (CUO) pro-

posed by Levin [10] and (2) Fast image and video

colorization (FIVC) proposed by Yatziv [3]. The first

one is published in the form of MATLAB code and for

the latter we used our implementation.

In Figures 10 and 11, we present two images colorized

based on three scribble sets of different coverage (i.e.,

area covered by the scribbles expressed as percentage of

the whole image area). The images were colorized using

three methods, namely: (1) FIVC [3], (2) competitive

image colorization [2], and (3) the proposed method. To

provide fair comparison, we applied the blending

weights to the FIVC method as well, as it is outlined in

Section 3.2. The similarity measures between the

obtained images are documented in Tables 1 and 2.

Here, the images colorized using the highest scribble

coverage (9 and 5.8%, accordingly) are compared with

all the other images. We measured the similarity using

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

Index (SSIM) [23], Normalized Color Distance (NCD)

[24], and Universal Image Quality Index (UIQI) [25].

It may be observed that for large scribble coverage,

three investigated methods deliver very similar outcome

(top row in the Figures), and the differences are hardly

visible, which is confirmed by the quantitative results.

However, for smaller coverage, the images obtained

using these methods differ significantly. It may be seen

that both visually and quantitatively FIVC method is the

most sensitive to the scribble coverage and it fails to

colorize the images correctly for fewer scribbles. Com-

petitive image colorization has higher stability, making it

possible to colorize the image based on medium scribble

coverage. However, it is only the proposed boosting

technique which is very little dependent on the density

and precision of the scribbles. Here, the colorized

images are almost identical regardless of the scribble

coverage, as it can be seen in the rightmost column in

the Figures. Also, the similarity scores (highlighted in

the tables) are very high between these images. It may

be therefore concluded that using the proposed scribble

boosting technique, it is possible to colorize images

even from sparse scribble sets.

We have demonstrated that the scribble boosting does

not depend much on the scribble coverage, making it

possible to colorize images using small amount of scrib-

bles. Furthermore, we have also investigated whether the

location of scribbles may affect the colorization result.

Figure 12 presents two images colorized from two

a) Scribbled image b) FIVC method c) Competitive d) Boosting

9.0 % coverage

3.0 % coverage

0.7 % coverage

Figure 10 Facial image colorized using diferent methods based on three levels of scribble coverage.
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alternative sparse scribble sets. Although the scribbles

supposed to colorize larger areas of uniform texture

were positioned in different locations (upper row), it is

hardly possible to spot any visual differences in the

obtained results (bottom row). This is also indicated by

high similarity scores presented in the Figure. Basically,

it can be concluded that the scribble boosting is insensi-

tive to changes in scribble location.

It is worth noting that the aim of image colorization is

to achieve plausible visual impression on a human

observer, and it is the visual effect which should deter-

mine how good an algorithm is. As it is difficult to

measure visual attractiveness, we presented a group of

34 images to 38 observers. They were asked to rate the

quality and naturalness of the images (scaled from 1 to

10). Thus, we obtained mean opinion scores (MOS)

which are demonstrated in Table 3. Some examples of

the images presented during this survey, as well as the

scribbled grayscale images, are shown in Figure 13. All

images used for the survey can be viewed at http://sun.

aei.polsl.pl/~mkawulok/boosting/survey.pdf. The rest of

images colorized using the proposed technique are

shown in Figure 14. For the majority of cases the origi-

nal color versions were available, and they were also

a) Scribbled image b) FIVC method c) Competitive d) Boosting

5.8 % coverage

1.8 % coverage

0.8 % coverage

Figure 11 Landscape image colorized using diferent methods based on three levels of scribble coverage.

Table 1 Similarity scores between the images presented in Figure 10

↓ Method ® FIVC Competitive Boosting

Coverage ® 9% 3% 0.7% 9% 3% 0.7% 9% 3% 0.7%

FIVC (9%) PSNR - 27.29 21.42 34.03 29.64 22.93 34.02 33.24 32.5

SSIM - 0.973 0.905 0.994 0.982 0.930 0.994 0.992 0.991

NCD - 0.067 0.207 0.024 0.053 0.164 0.026 0.032 0.036

UIQI - 0.802 0.699 0.746 0.677 0.726 0.775 0.781 0.741

Comp. (9%) PSNR 34.03 26.41 21.29 - 31.19 23.04 37.27 34.22 33.06

SSIM 0.994 0.969 0.903 - 0.987 0.931 0.997 0.994 0.992

NCD 0.024 0.075 0.21 - 0.46 0.16 0.018 0.03 0.034

UIQI 0.746 0.765 0.709 - 0.569 0.687 0.795 0.781 0.78

Boost. (9%) PSNR 34.02 26.53 21.2 37.27 30.63 22.89 - 37.46 35.49

SSIM 0.994 0.97 0.901 0.997 0.985 0.93 - 0.997 0.995

NCD 0.026 0.075 0.212 0.018 0.051 0.164 - 0.017 0.021

UIQI 0.775 0.877 0.822 0.795 0.704 0.691 - 0.935 0.947

Bold values indicate the best score.
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presented to the observers in order to establish the

reference level. It may be noticed that the colorized

images differ much from the originals. This is because

the scribbles do not indicate all the details, and in some

cases the chrominance assigned to a scribble is different

from the chrominance in the original image. Moreover,

the chrominance variance is much higher in the origi-

nals, while the colorized images inherit only a mixture

of the chrominance values assigned to the scribbles.

This disadvantage may be overcome by assigning a color

palette to every scribble instead of a single chrominance,

analogously to the luminance keying [4]. Despite of that,

the colorized images scores were quite close to those

obtained by the originals, and even higher in some

cases. This was mainly due to the fact that the area con-

quered by the individual scribbles appears correct and

natural using the proposed scribble boosting. Although

these rates are lower than for the originals, they are

definitely better than those obtained for the alternative

conventional techniques.

7 Conclusions and future work
This paper presents a new method for image coloriza-

tion which utilizes local textural features. We have

demonstrated that texture is a powerful source of infor-

mation that supports the colorization process. The pro-

posed scribble boosting technique increases the original

scribbles on the basis of discriminant textural features.

This facilitates interactive image colorization, and

decreases the required density and precision of the

scribbles. DTF are determined for every individual

image using linear discriminant analysis, which makes

the method adaptive to local conditions.

The method can be further extended and used for

color transfer and video colorization. Once the DTF

space is created for a given image, it may be applied to

0.7 % coverage 0.64 % coverage 0.84 % coverage 0.67 % coverage

︸ ︷︷ ︸ ︸ ︷︷ ︸

PSNR=38.69, SSIM=0.9978 PSNR=54.71, SSIM=0.9999
NCD=0.0121, UIQI=0.9891 NCD=0.0005, UIQI=0.9994

Figure 12 Images colorized using two alternative scribble locations (for small scribble coverage).

Table 2 Similarity scores between the images presented in Figure 11

↓ Method ® FIVC Competitive Boosting

Coverage ® 5.8% 1.8% 0.8% 5.8% 1.8% 0.8% 5.8% 1.8% 0.8%

FIVC (5.8%) PSNR - 27.55 25.07 30.26 30.46 28.45 37.6 36.51 36.51

SSIM - 0.942 0.919 0.966 0.963 0.949 0.987 0.985 0.985

NCD - 0.069 0.102 0.03 0.035 0.054 0.013 0.022 0.022

UIQI - 0.891 0.874 0.92 0.917 0.901 0.937 0.938 0.937

Comp. (5.8%) PSNR 30.26 28.86 25.73 - 37.45 31.01 30.45 30.78 30.79

SSIM 0.966 0.965 0.941 - 0.992 0.975 0.975 0.976 0.976

NCD 0.03 0.053 0.086 - 0.014 0.034 0.022 0.03 0.03

UIQI 0.92 0.927 0.9 - 0.961 0.941 0.954 0.953 0.953

Boost. (5.8%) PSNR 37.6 27.12 24.74 30.45 30.81 28.41 - 40.00 39.97

SSIM 0.987 0.944 0.919 0.975 0.971 0.954 - 0.996 0.996

NCD 0.013 0.068 0.101 0.022 0.028 0.049 - 0.015 0.015

UIQI 0.937 0.91 0.885 0.954 0.948 0.926 - 0.975 0.975

Bold values indicate the best score.
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any other image having similar contents. This extension

will be explored during our future works.
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