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Abstract: To make visual data a part of quantitative assessment for infrastructure maintenance 

management, it is important to develop computer aided methods that demonstrate efficient 

performance in the presence of variability in damage forms, lighting conditions, viewing angles and 

image resolutions taking into account the luminous and chromatic complexities of visual data. This 

paper presents a semi-automatic, enhanced texture segmentation approach to detect and classify 

surface damage on infrastructure elements and successfully applies them to a range of images of 

surface damage. The approach involves statistical analysis of spatially neighbouring pixels in various 

colour spaces by defining a feature vector that includes measures related to pixel intensity values over 

a specified colour range and statistics derived from the Grey Level Co-occurrence Matrix calculated 

on a quantized grey-level scale. Parameter optimised non-linear Support Vector Machines are used to 

classify the feature vector. A Custom-Weighted Iterative model and a 4-Dimensional Feature Space 

model are introduced. Receiver Operating Characteristics are employed to assess and enhance the 

detection efficiency under various damage conditions.  

 

 

 

Keywords: Texture Segmentation, Statistical Analysis, Grey Level Co-occurrence Matrix (GLCM), 
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1.0 Introduction 
The deteriorating condition of infrastructure worldwide and the excessive costs required for 

reparatory work necessitate the invention of efficient and effective detection techniques. Recent 

estimates suggest that $1.6 trillion dollars will be needed for rehabilitation, replacement and 

maintenance of current infrastructure systems with the next 20 years for the US alone (Adeli et al., 

2009). With this in mind, it is vital that a comprehensive strategy for the periodic inspection and 

monitoring of structures (Schoefs et al, 2011; Lajnef et al, 2011; Gangone et al, 2011) is developed 

beginning from the construction phase. This is even more relevant given the increased loads and ever 

challenging environmental conditions that structures are faced with (Cusson et al., 2011; Xia et al., 

2011). Non-Destructive Testing (NDT) techniques are frequently used for the inspection process as 

they often offer the only practical means for detecting the presence of damage and quantifying its 

severity. The information obtained from NDT techniques may be used to better understand damage 

mechanisms such as initiation and propagation. Identifying these factors allows for improved 

estimates of the remaining service life which leads to a more reliable Infrastructure Management 

System (IMS) (Rong-Yau et al., 2010). A reliable IMS can help the decision makers to optimise 

intervention strategies and enable them to make informed decisions regarding the future course of 

action that would maximise the potential of their investments. This aspect has attracted a growing 

interest in recent years as the importance of life cycle optimisation and the related financial benefits 

continue to be recognised (Sarma et al., 1998; Sirca Jr et al., 2005). For a well calibrated IMS, it is 

important that the input information from an NDT technique is accurate and comprehensive. The 

measure of the onsite performance of a NDT tool remains a pertinent question in the majority of cases 

(Schoefs et al, 2012a). The most suitable NDT for a given application will largely depend on the 

damage to be detected and will require an in-depth knowledge of the advantages and limitations 

associated with each option. 

 There exists a broad range of NDT techniques to choose from. NDT techniques may be 

partitioned into two categories: non-visual and visual based techniques. Amongst the non-visual NDT 

techniques are ultrasonic scanning (Iyer et al., 2005), surface wave simulation (Kim et al., 2008), 

acoustic emission techniques (Sohn et al., 2008; Li et al., 2011a), ground penetrating radar (Belli et 

al., 2008), eddy current testing (Yusa et al., 2006),  as well as a lot of recent interest in vibration 

based techniques (Cruz et al., 2009; Adewuyi et al., 2011; Jafarkhani et al., 2011; Li et al., 2011b; 

Talebinejad et al., 2011). There are several specialist visual techniques such as remote visual 

inspection (Nugent et al., 1991) and laser based scanners (Mei et al., 2004; Park et al., 2007) etc., yet 

the most common visual based approach is standard visual inspections carried out by trained 

engineers. 

 Visual inspections performed by trained engineers involve significant qualitative and some 

limited quantitative assessments. The quality of the assessment largely depends on the ability of the 

inspectors to observe and objectively record details of defects. However, this approach is prone to 

considerations such as operator boredom, lapses in concentration, subjectivity, and fatigue. These 

aspects contribute to the variability and reduced accuracy of visual inspections (Agin, 1980; 

Komorowski et al., 2000). Furthermore, there is no agreed protocol of collection and subsequent 

interpretation of visual information despite playing a central role in any infrastructure maintenance 

management framework. One feature of visual inspections that does remain constant is that the 

inspections are almost always accompanied with the creation of an image archive. However, there 

exist very few techniques that fully exploit these images in either a qualitative or quantitative fashion. 

Employing an image processing based approach in conjunction with traditional visual inspection 
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techniques seems like a natural partnership given that photographing damaged regions is already a 

widely embraced practice for visual inspections. The primary advantages associated with image 

processing offset some of the limitations of visual inspections. Image processing based detection of 

damages offers a far greater reproducible and measurable performance over visual inspection 

techniques (Gallwey et al., 1986). Additionally, it enables a quantitative assessment of the current 

extent of damage, as well as offering an accurate assessment of degradation over time by analysing 

archived images.  

 Some examples of application of image processing algorithm in visual detection of 

damages have been developed by researchers in the field of pipe engineering  (Iyer et al., 2006; Tsai 

et al., 2010), concrete crack detection (Nishikawa et al., 2012) and road materials (Cord et al., 2011). 

However, the image based segmentation techniques are far from being fully exploited in the field of 

NDT. This paper presents a semi-automatic image based technique for detection and classification of 

damaged regions in images of infrastructural elements using texture as the basis for segmentation. The 

image segmentation algorithm is unique in including information derived from Grey Level Co-

occurrence Matrix (GLCM) matrix based on a quantised grey-level scale along with statistical and 

energy information from the pixel intensity values based on a predefined range [0,255] to form a 

feature vector representing the texture characteristics of the image and consequent classification of 

such feature vectors from all parts of the image to identify damaged region through non-linear 

Support Vector Machines (SVM) models. 

 Texture is an innate property of surfaces (Haralick et al., 1973) which can be utilised to 

identify damaged regions on infrastructural elements which typically have a differing textures 

compared to the undamaged surfaces. For human observers, texture may be qualified by terms such as 

fine, coarse, smooth, rippled, molled, irregular, or lineated (Haralick et al., 1973). From a 

computational perspective, quantifying the perceived texture in an image is significantly more 

challenging. There are numerous texture based techniques which attempt to characterise texture; 

wavelet analysis (Lu et al., 1997), Laws’ texture energy (Choi et al., 2011), First Order Statistics 

(FOS) (Gill, 1999) and GLCM (Gadelmawla, 2004). This paper adopts a GLCM approach in 

conjunction with FOS. The use of GLCM statistics in conjunction with first order descriptive statistics 

has been employed before by (Abbiramy et al., 2011) in the field of medical imaging to detect 

abnormalities in human spermatozoa. Their approach entailed a pre-processing stage involving noise 

reduction, followed by the calculation of 15 GLCM statistics coupled with 4 first order descriptive 

statistics from converted grey-scale images. GLCM and FOS statistics formed part of a larger feature 

vector that was also populated with 9 additional morphological features. The authors used a single 

feature vector assigned to the overall image which was later classified through a neural network 

structure. The proposed technique in this paper extends this image classification study to a colour 

image segmentation algorithm incorporating a number of original aspects that are particularly 

advantageous to the chosen application. 

 The proposed technique involves a unique set of texture measures that are calculated at 

every pixel in an image using a sliding window approach. Four GLCM statistics are calculated based 

on a quantised grey-level scale with 8 levels. These are; Angular Second Moment (ASM), 

Homogeneity, Contrast and Correlation. Six FOS and energy information features are calculated 

directly from the pixel intensity values which are based on a predefined range [0,255]. These are; 

Shannon entropy, mean, variance, range, skewness and kurtosis. The quantized range adopted for the 

GLCM statistics avoids formation of sparse matrices during computation, leading to a faster detection. 
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The wider range adopted for the FOS and Shannon entropy offers more sensitivity allowing for more 

accurate and representative features to be extracted.  

 Non-linear SVM models are used to classify pixels as either damaged or undamaged based 

on the feature vector. While GLCM had been used previously in conjunction with SVM classification 

(Ben Salem et al., 2010; Xian, 2010), the approach in this paper introduces two new SVM 

classification models; a Custom-Weighted Iterative (CWI) model and a 4-Dimensional Input Space 

(4DIS) model in which the feature vectors were mapped to a four dimensional input space. This paper 

also presents a Receiver Operating Characteristics (ROC) based framework for parameter 

optimisation. The parameter optimisation procedure involved measuring the performance of an SVM 

classifier for a given pair of parameters using the α-δ method (Schoefs et al, 2012b.) and adjusting the 

parameters accordingly until suitably optimised. The proposed technique was evaluated in various 

colour spaces (Red-Green-Blue (RGB), Hue-Saturation-Value (HSV) and L*a*b*) in order to 

determine the best segmentation space. 

 The following section details the methodology of the proposed technique. The proposed 

methodology is evaluated through the identification of six disparate damage types from six different 

images of ageing infrastructural elements under different lighting and environmental conditions. 

Section 3 evaluates the performance of the SVM classification models applied to each image in each 

colour space. Section 4 concludes the paper. 

2.0 Methodology 
An image based damage detection algorithm has been proposed in this paper. The algorithm involves 

two steps; the first step is to develop a texture characteristics map of a colour image. The map has 

been developed using feature vector for each pixel following the method described in section 2.1. The 

second step is to classify the damaged regions in the image using SVMs as described in section 2.2. 

The methodology is illustrated in the following flowchart (Figure 1): 
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Fig.1.Methodology Flow Chart. 
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2.1 Texture Characteristics Map 

A texture characteristics feature vector {vf}a,b,c  has to be generated for each pixel within the original 

image, I, for each colour channel, c, where f indicates the index of the vector element and (a,b) 

indicates the spatial coordinates of the pixel. The first four elements of {vf}a,b,c are obtained by 

computing statistics derived from a GLCM. These statistics are Angular Second Moment (ASM), 

homogeneity, contrast, and correlation. The GLCM is primarily calculated for grey images yet may be 

readily extended to individual colour channels. The remaining six first order texture features are 

based on measures calculated from the original pixel values mapped over a range of [0,255]. These 

features are Shannon entropy, mean, variance, range, skewness and kurtosis.  

 The feature vector for each pixel is calculated separately for each colour channel and can 

be combined together to form a 4 dimensional array. The feature vector is generated for each pixel 

using a sliding window, SW, that moves throughout the image and provides the basis for the GLCM 

statistics and the distributions used for calculating descriptive statistics and Shannon entropy. The 

window started at the top left-hand corner of the image and horizontally moved in steps of one pixel 

until it reached the end of a row, at which point it progressed onto the leftmost point in the next row. 

The centre is indicated as (a,b) and the size of the window (N-pixel x N-pixel) is optimised for best 

performance. A trial and error approach is used to determine the optimal size. The optimal size of SW 

is not necessarily the one which most effectively describes the textural composition of one region, but 

the one which provides the best differentiation between damaged and undamaged zones which have 

distinct textures. This optimisation step may be worthwhile if large batches of images featuring 

similar damaged surfaces are being processed. It was experimentally found, however, that the 

classification accuracy of the technique was not overly sensitive to the window size. Similarly, the 

computational time of the technique was not significantly affected by the size of SW. An increase in 

the size of SW was accompanied by a marginal increase in the overall computational time. In this 

paper, a nominal window size of 10 x 10 square pixels was used. 

2.1.1 GLCM Features 

The process in which the GLCM is created is illustrated in Figure 2.  
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Fig.2.Overview of the GLCM process. 

 The GLCM is a matrix of frequency values of paired combinations of pixel intensities as 

they appear in certain specific spatial arrangements within an image or sub-image. The GLCM for 

each pixel is generated through a sub-image that is a sliding window, SW, centred on the pixel. 

Combinations of various pixel pairs within SW were counted and the resulting total was assigned to 

the  gij, in the GLCM which corresponds to the  spatial arrangement of the pixel pairs being summated 

The spatial indices i and j of the GLCM match the grey level in the reference pixel and the destination 

pixel respectively. . The spatial arrangement of the reference pixel and destination pixel in relation to 

each other in SW are governed by two parameters; the interpixel distance, d, and the angle of offset, 

θ. The grey levels are defined using integer values between 1 and G. In this paper, the grey levels are 

defined on a scale of 1 – 8 (G =8) instead of a larger scale such as [0,255]. Quantizing in this manner 

increases computational parsimony at the expense of making the GLCM less sensitive to minute 

fluctuations in pixel intensity values within the sliding window. Despite this reduced sensitivity, the 

discrimination capabilities of the GLCM remain largely unperturbed as perceivable changes in 

intensity values between neighbouring pixels continue to be taken into account, thus creating 

condensed yet still descriptive matrices. . An illustrated example of the creation process for a GLCM 

is presented in Figure 2. In this example, the number of occurrences of pixels with a quantized grey 

level of 4 and 5 appearing horizontally alongside each other in the sliding window (d = 1 and θ = 0°) 

are computed. The number of occurrences of this pair is then assigned to the (4,5) element in the 

GLCM corresponding to the chosen value of d and θ. It was experimentally found that paired 

combinations of intensity values of pixels that are spatially neighbouring tend to be more relevant 

than combinations that involve spatially distant pixels. Accordingly, a value of 1 was chosen for d to 

ensure a certain level of spatial proximity. The angle along which the interpixel distance was counted, 
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was defined as the angles of offset and the four angles for the offset that were chosen are, θ = 0°, θ = 

45°, θ = 90°, θ = 135°. So, this generated a set of 4 GLCMs (d =1; θ = 0°, 45°, 90°, 135°) for each 

colour channel at each pixel. 

The GLCM for each pixel is populated as:  

( )
,

,
1 1

1 if    and 
where 

0 otherwise

dN N
uz uz

ij d
u z

s i s j
g A A



 = =

 = == = 


         (1) 

where suz is the pixel intensity expressed in quantised grey levels for the reference pixel located at row 

u and column z within the sliding window; ,d

uz
s

 , is the pixel intensity expressed in quantised grey 

levels for the destination pixel located at an interpixel distance d along an angle θ from the reference 

pixel. The GLCMs are normalised as:  

( )
,

,( , )
( 1)

ij d
d

g
p i j

N N


 =

−
            (2) 

The following four texture features are determined from the GLCM: 

Angular Second Moment (ASM) represents the uniformity of distribution of grey level in the image. 

 2

1 , ,

1 1

( ) ( , )
G G

f d d

i j

v p i j =
= =

=              (3) 

 

v1 ranges from 1/G2 to 1. A value of 1 indicates a uniform image. 

 

Homogeneity gives a measure of the similarity of grey levels in the image.

 
2 , ,

1 1

( ) ( , ) where  
G G

f d d
i j

v m p i j m i - j =
= =

=  = 
         

(4)  

v2 ranges from 0 to G-1. A value of 0 indicates a strong similarity of grey levels in the image. 

 

Contrast is a measure of the local variations present in an image. If there is a high amount of variation 

the contrast will be high. 

1
2

3 , ,
0 1 1

( ) ( , )
G G G

f d d
m i j
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−

=
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v3 ranges from 0 to (G-1)2. A value of 0 indicates a uniform image. 

Correlation is a measure of the grey level linear-dependencies in an image. Correlation will be 

high if an image contains a considerable amount of linear structure. 

 , 1 2
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1 1 1 2
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f d
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v
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where 1 , 2 , 1 and 2 are the means and standard deviations of the marginal probability matrices, 

P1 and P2, obtained by summing the rows and columns of p(i,j)d,θ respectively. v4 ranges from -1 to 1. 

A value of 1 indicates a perfectly positively correlated image. An undefined value is returned in the 

case of a uniform image. 

2.1.2 Descriptive Statistics and Shannon Entropy 

 The feature vector was further populated by considering five descriptive statistics of the 

pixel intensity values, along with Shannon entropy. These six features were derived for each pixel 

using the same sliding window approach employed to calculate the GLCM features. Unlike the 

GLCM approach, the intensity values used in the distribution adopted the scale [0,255] for several 

reasons. Firstly, the nature of the statistics generated directly from the intensity values differed from 

that of the GLCM statistics as it was the magnitude of the intensity values that was considered and not 

their frequency of occurrence. As such, it was more important for the intensity values to contain as 

much information as possible which required them to be accurately and precisely defined. Having a 

bigger sample space provided more sensitive information for characterising texture. Conversely, the 

GLCM statistics produced more meaningful results by having similar intensity values grouped 

together as separately counting perceptually close values may understate their prominence in the 

sliding window. Secondly, the number of grey-levels employed in the GLCM generation stage 

directly affected the size of the GLCM, which in turn affected the computational time of the 

algorithm. The intermediate GLCM generation stage already accounted for a significant portion of the 

algorithm time so for this reason it was desirable to keep the size of the GLCM to a minimum. 

Employing quantized intensity values for the descriptive statistics and Shannon entropy on the other 

hand resulted in no benefits in terms of increased computational efficiency. 

 A key point to note is that the range of intensity values differed for various colour 

channels. To ensure equality and compatibility, a standardisation procedure was employed which 

linearly scaled the original pixel intensity value Ia,b,c in each plane to a new pixel intensity, I'a,b,c, such 

that it was in the range [0, 255] as per: 

, , , ,
, ,

, , , ,

min( )
255

max( ) min( )

a b c a b c
a b c

a b c a b c

I I
I

I I

−
 = 

−
 

(7) 

This standardisation procedure was necessary as the customary range of values in some colour 

channels would be less conducive to statistical analysis. For instance, the typical range for the a* and 

b* channels in the L*a*b* colour space is [-128, 128]. Proceeding with this range would lead to the 

Shannon entropy producing meaningless and undefined results for all distributions that had values in 

the bottom half of the range, [-128,0]. Using scaled pixel intensity values in the sliding window,  

denoted by uzs , avoids this problem. 

 As with the GLCM based statistics, each of the FOS in the feature vector describes some 

aspect of the textural composition in a sliding window. The meaning and contribution of each statistic 

is discussed. Shannon entropy, v5, is a statistical measure of the uncertainty associated with a random 

variable. 

5 2
1 1

( ) log
N N

f uz uz
u z

v s s=
= =

= − 
           (8) 

v5 ranges from -(N2.max( uzs ).log2(max( uzs )))to infinite, which for a pixel intensity range of [0,255] 

becomes [-2039.N2,∞]. 
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Mean gives the arithmetic average of the intensity values in a window. 

6 2
1 1

1
( )

N N

f uz
u z

v s
N

=
= =

=  
            (9) 

v6 can range from the minimum value of uzs , 0, to maximum value of uzs
, 
255. 

Variance is a measure of how far a set of numbers is spread out from the mean. 

2
7 62

1 1

1
( ) ( )

N N

f uz
u z

v s v
N

=
= =

= − 
         (10) 

v7 ranges from 0 to 
( ) ( )( )2

max   min

4

uz uzs s−
, which equates to 1.625x104 for the [0,255] range. 

Range gives the difference between the maximum and minimum intensity values in the distribution:  

8( ) max( ) min( ) ( , )f uz uzv s s u z= = − 
          

(11) 

Skewness is a measure of the asymmetry of the data around the sample mean.  

An estimate for the skewness is: 

3
9 63

2 1 1
7

1
( ) ( )

N N

f uz
u z

v s v

v
=

= =
= − 

         
(12) 

v9 ranges from -∞ to ∞. 

Kurtosis is a measure of the peakedness of a distribution. A positive value for kurtosis indicates 

that the distribution has a greater peakedness than that predicted by a normal distribution, while a 

negative value indicates that the distribution is less peaked than predicted by a normal distribution. 

An estimate for the kurtosis is given by: 

4
10 62

1 17

1
( ) ( ) 3

N N

f uz
u z

v s v
v

=
= =

= − − 
        (13) 

v10 ranges from 2−  to ∞. 
 

 As with the GLCM statistics, undefined values, or infinite values, can result for certain 

descriptive statistics such as skewness and kurtosis when the intensity values in the window are 

perfectly uniform, i.e. when the standard deviation is equal to zero. The value of entropy may also be 

undefined in the case of pixel intensities having a value of zero in a given distribution. These 

undefined values are ignored by the SVM classifier. Their influence on the classification accuracy is 

negligible however as not only do the undefined values tend to appear infrequently, but by having a 

large feature vector containing a greater number of correctly defined texture measures, their effect is 

vastly diminished. Moreover, since the sensitivity of each texture measure varies according to the 

surface type and damage form, having a large feature vector is useful as it ensures that the influence 

of any texture measures that is ineffective at differentiating between damaged and undamaged regions 

is offset by other texture features that have a higher sensitivity to regions of contrasting texture. 

 

2.2 Non-Linear SVM Classification 



12 

 SVM are used to classify pixels as being either damaged or undamaged, based on the 

texture feature vector assigned to each pixel. SVM is a supervised learning classifier based on 

statistical learning theory. The linear SVM is used for linearly separable data using a (k-1) 

dimensional hyperplane in k dimensional feature space (Vapnik, 1996). This hyperplane is called a 

maximum-margin hyperplane which ensures maximized distance from the hyper-plane to the nearest 

data points on either side in a transformed space. For linearly non-separable data a non-linear SVM is 

used which relies on kernel function and maximum-margin hyperplane. The kernel function is 

adopted for non-linear classification instead of the dot product between the data points and the normal 

vector to the hyper-plane as used for the linear classification. The kernel function concept is used to 

simplify the identification of the hyperplane by transforming the feature space into a high dimensional 

space (Boser et al., 1992; Cortes et al., 1995; Cristianini et al., 2000). The hyperplane found in the 

high dimensional feature space corresponds to a non-linear decision boundary in the input space. 

 In SVM the classifier hyperplane is generated based on training datasets. Given a training 

dataset of l points in the form  
1

( , )
l

h h h
x y

=
where h denotes the hth vector in the dataset, xh is a k-

dimensional input vector ( )n

h
x R and yh is an instance label vector  ( 1, 1 )

l

h
y  − ; for this study, a 

value of +1 indicates presence of damage and -1 indicated absence of damage. To identify the 

maximum-margin hyperplane in the feature space, the SVM requires the solution of the following 

optimization problem: 

 
, , 1

1
, arg min ; 0

2

subject to ( ( ) ) 1 ; 0

l
T

h
w e h

T
h h h h

w e w w C C

y w x e




  

=

 
= +  

 

+  − 


 

(14) 

The function φ maps the training vectors hx  into a higher dimensional space. The vector w is the 

weight vector which is normal to the hyperplane, e is the bias,   is the misclassification error and C is 

the cost or penalty parameter related to .The solution to the problem is given by: 


== =

−
l

1h

hqhq

l

1h

h

l

1q

qh )x,x(Kyy
2

1 
α

min

 

(15) 

With Constraints: 

1

0

0 , 1,...,

l

h h
h

h

y

C h l




=

=

  =


 

(16) 

where K is the kernel function,  is the Lagrange multiplier, q is the index of the input point xq. The 

Radial Basis Function (RBF) kernel has been used here,  

K(xh, xq ) = exp - g xh - xq
2( ),g> 0

 

(17) 
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where γ is a kernel parameter. There are two preselected parameter values for the SVM; C and γ. To 

estimate the optimum parameter values, a novel ROC curve based optimisation framework was 

employed.  In this paper, the training dataset was obtained using texture features from both damaged 

and undamaged regions in an analysed image. 

2.3 SVM Models 

Two models were explored in order to determine the most accurate and efficient approach. The first 

stage was common to both models and involved training of the SVM with a training set of data. 

However, the dimensions of the input vectors in the training datasets were different for each model. 

Also, different implementation methods were carried out in the SVM classification stage. The 

performance and computational time of each approach was noted.  

2.3.1 Custom-Weighted Iterative (CWI) Model  

The input vector of each pixel comprises of 30 elements: the ten features stacked together for 3 colour 

channels. A single binary output was achieved by introducing a weighting system which gave a 

greater prominence to texture measures relating to greater difference between damaged and 

undamaged regions. The damaged and undamaged zones were identified from the training data. The 

equation for the weight, W, is as follows:

  

, ,

,
f

f damaged f undamaged

v

f total

v v
W

v

−
=

         

(18) 

 

where ,f damagedv and ,f undamagedv are the averages for the fth texture descriptor in the feature vector for 

the damaged and undamaged regions in the training data respectively. The average of the overall 

training data is totalfv , .

 

The normalised weight, ωvf
, is then assigned to each texture feature, vf. 

f

f

f

f

v

v
v

v

W

W
 =


           (19)

 A fundamental issue with the CWI model was that it required 30 separate applications of 

SVM classifier, one for each of the 10 texture features in each of the three colour channels. This does 

not represent the most effective approach in terms of computational time. However, the weighting 

system was found to be quite successful in terms of classification accuracy. 

2.3.2 Four-Dimensional Input Space (4DIS) Model  

The other model considered a 4D input space where the feature vector and the colour channels create 

two dimensions along with image coordinates for the remaining two dimensions. The SVM is applied 

once to separate the 4D input space into damaged and undamaged segments using a cubical space. It 

was found that this approach offered the fastest classification time with comparable classification 

accuracy to the CWI model. 

2.4 Performance indicators 
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The performance of the texture analysis based detection in conjunction with each of the SVM models 

is evaluated by plotting performance points as a coordinate in the Receiver Operating Characteristic 

(ROC) space where the Detection Rate (DR) and the Misclassification Rate (MCR)are the vertical and 

horizontal coordinates respectively (Rouhan et al. 2003, Schoefs et al. 2009).. The DR and MCR are 

represented as a percentage between 0% and 100%. The DR and MCR are defined as: 

c

Card(Q)
DR

n
   with   1kQ = g ; y =                    (20) 

Card(T)
MCR

n
  with   1kT = g ; y = −                    (21) 

where Card(.) indicates the cardinality of a particular set,  1, ...= ,n , nc denotes the number of 

corroded pixels, and T gathers situations of incorrectly detected pixels and undetected corroded pixels 

while Q gathers the correctly detected ones. The ROC space provides a common and convenient tool 

for graphically characterising the performance of NDT techniques and its usage has been extended to 

image detection (Pakrashi et al., 2010).  A box counting approach (O'Byrne et al., 2011) was 

employed to calculate nc for each image in each colour space. The DR and the MCR values formed 

the basis of selecting the performance point in the ROC space employing the α-δ method (Baroth et 

al., 2011; Schoefs et al, 2012b.). This method relies on calculating the angle, α, and the Euclidean 

distance, δ, between the best performance point and the considered point to give a measure of the 

performance of the NDT associated with the point under consideration. The best performance point is 

defined as an ideal NDT with 100% detection and 0% misclassification rates and represented in the 

ROC space with coordinates (0,100). For the current paper the δ parameter alone may be used for 

comparison. A low value for δ is indicative of a strong performing technique. 

3.0 Evaluation of Proposed Segmentation Technique 
The proposed segmentation technique was applied on six images of various forms of damage on the 

surface of infrastructural elements. In order to assess the robustness of the technique, the six images 

were chosen to reflect a broad range of surfaces, damage forms, viewing angles, lighting conditions 

and image resolutions as shown in Figure 3. The sample images in the figure depict, (a) pitting 

corrosion on metal sheet piling in marine conditions, (b) corroded metal sheeting in coastal regions, 

(c) corrosion at a half joint on bridge span, (d) staining through bridge deck shown from underneath, 

(e) marine growth on the surface of underwater steel pile wharf and (f) exposed concrete bridge deck 

through wear of pavement surfacing; all in RGB colour space. The sample images are shown in HSV 

and L*a*b*in Figure 4 and Figure 5 respectively. The technique was performed on the images in all 

three colour spaces (RGB, HSV and L*a*b*) so as to determine whether a particular colour space 

offered a superior level of performance.  
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Fig.3. Sample images in the RGB colour space:(a) pitting corrosion on metal sheet piling, (b) 

corroded metal sheeting, (c) corrosion at a half joint, (d) staining through bridge deck, (e) marine 

growth on underwater steel surface, (f) exposed bridge deck through pavement 

 

Fig.4. Sample images in the HSV colour space. 
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Fig.5. Sample images in the L*a*b* colour space. 

3.1 Results  

 The following subsections present the results obtained from the CWI and 4DIS models for 

each colour space. The final subsection details the procedure for selecting the SVM parameters: the 

penalty parameter of the error term, C, and the kernel parameter,  so as to optimise the classification 

accuracy. 

 

3.1.1 The Custom-Weighted Iterative (CWI) Model 

 The detected regions using the CWI model are shown for each colour space in Figures 6-8. 

The detection and misclassification rates are summarized in Table 1. The CWI model performed well 

in terms of identifying the locations of the damaged regions in the sample images. However, these 

regions were often poorly defined in many instances, resulting in reduced DR. An example of this is 

Figure 6(c), where the damaged regions in the RGB space have been located, but the identified 

damage is not homogeneous and the outer boundaries of the damaged areas are inadequately 

identified. This problem is also observed in the other colour spaces. 

 The classification accuracy was found to be dependent on colour space. The δ values in 

Table 1 provide a quantitative measure of the variation in classification accuracy among colour 

spaces. HSV colour space achieved a high level of performance on a consistent basis while the RGB 

and L*a*b* colour spaces were prone to more varied performance levels. The DR values for the 

sample images in L*a*b* space were generally high but were accompanied with a high MCR as well. 

The images in RGB colour space on the other hand showed moderate DR and high MCR values. 

 While the HSV colour space generally outperformed the RGB and L*a*b* colour spaces, a 

notable exception to this was in the case of Image (f) which produced the best result in the L*a*b* 

colour space. The L*, or lightness, plane in L*a*b* is essentially the original image with the colour 
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data reduced to a certain shades of grey only.  The L* plane typically responded well to feature 

extraction by means of statistical analysis. Conversely, extracting textural features through statistical 

analysis in the a* and b* planes in L*a*b* generally yielded quite poor results as it was found that 

these planes were relatively non-descript and offered little distinction between damaged and 

undamaged regions in terms of texture. As a consequence, the CWI model had to rely 

disproportionately on the texture descriptors in the L* plane in order to obtain a reasonable result. 

However, this issue was largely offset in the case of Image (f) as the dominant colours in the image 

were varying shades of grey resulting in the L* plane containing a high proportion of the original 

image data. As a result, this image was largely unaffected by the poor performances of the statistical 

analysis in the a* and b* planes. 

 The explanation for the poor performance in the RGB colour space may be attributed to the 

high correlation between its Red, Green, and Blue components (Cheng et al., 2001). The pixel 

intensities from the Red, Green, and Blue colour channels are all correlated as they contain the same 

light and contrast information as received by the scene. Hence, the image descriptions in terms of 

these components make discriminating damaged and undamaged regions difficult. Descriptions in 

terms of hue-saturation-brightness are often more distinct and therefore more relevant for detection 

purposes, a point reinforced by the good results attained from the six sample images in the HSV 

colour space. 

 

Fig.6. Detected regions using the CWI model for the RGB colour space. 
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Fig.7.Detected regions using the CWI model for the HSV colour space. 

 

Fig.8. Detected regions using the CWI model for the L*a*b* colour space. 

 

Table 1 

Performance for the six images in each colour space using the CWI model 

Sample Image 

Colour Space 

RGB  HSV  L*a*b* 

DR MCR δ  DR MCR δ  DR MCR Δ 
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(a) Pitting Corrosion 83.96% 30.89% 0.35  84.30% 7.20% 0.17  85.50% 34.64% 0.38 

(b) Corroded Metal 96.31% 19.69% 0.20  98.00% 20.10% 0.20  94.05% 25.99% 0.27 

(c)Half-Joint Damage 70.82% 10.77% 0.31  94.65% 11.98% 0.13  99.96% 23.23% 0.23 

(d) Stained Deck 83.57% 36.44% 0.40  79.49% 23.50% 0.31  80.58% 26.10% 0.33 

(e) Marine Growth 70.16% 40.48% 0.50  43.80% 20.93% 0.60  43.25% 20.12% 0.60 

(f) Exposed Deck 66.61% 29.05% 0.44  54.38% 6.06% 0.46  73.85% 9.09% 0.28 

 

3.1.2 The Four Dimensional Input Space (4DIS) Models 

The detected regions for the 4DIS are shown for each colour space in Figures 9-11. The detection and 

misclassification rates are summarized in Table 2. The 4DIS model succeeded at defining the 

damaged regions to a better extent than the CWI model. In the majority of the cases, there were only a 

few spurious regions that were misclassified as being damaged. However there were occasional cases 

where comparatively large portions of undamaged regions in the images were misclassified such as in 

Figure 10(f) and Figure 11(a). As with the CWI model, the performance levels varied significantly 

between the colour spaces. The HSV colour space was deemed as the best option. The slightly worse 

performances in the RGB and L*a*b* colour spaces may be attributed to the same reasons as outlined 

for the CWI model.  

 

Fig.9.Detected regions using the 4DIS model for the RGB colour space. 
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Fig.10.Detected regions using the 4DIS model for the HSV colour space. 

 

Fig.11. Detected regions using the 4DIS model for the L*a*b* colour space. 

 

 

 

Table 2 

Performance for the six images in each colour space using the 4DIS model 
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Sample Image 

Colour Space 

RGB  HSV  L*a*b* 

DR MCR δ  DR MCR δ  DR MCR δ 

(a) Pitting Corrosion 77.78% 32.04% 0.39  88.66% 10.47% 0.15  89.92% 30.22% 0.32 

(b) Corroded Metal 95.92% 24.14% 0.24  80.25% 9.95% 0.22  86.10% 14.69% 0.2 

(c) Half Joint Damage 94.69% 25.91% 0.26  92.45% 8.02% 0.11  83.22% 10.96% 0.2 

(d) Stained Deck 71.43% 19.35% 0.35  67.19% 22.96% 0.4  53.27% 16.05% 0.49 

(e) Marine Growth 64.11% 28.96% 0.46  67.89% 22.45% 0.39  43.49% 15.98% 0.59 

(f) Exposed Deck 52.06% 10.11% 0.49  86.47% 23.72% 0.27  96.70% 36.21% 0.36 

 

3.2 Comparison of Model Performances 

A graphical comparison of the models for each image and colour space is provided in Figure 12, in 

which the performance points corresponding to each model – colour space combination are plotted in 

the ROC space.  
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Fig.12. Performance points in the ROC space showing the performance of the classification models in 

each colour space for Images a-f. 

To ensure comparability between the CWI and 4DIS model, the same training data were used for each 

model and colour space. Of the six images tested in each colour space, the 4DIS model outperformed 

the CWI model in 61% of cases. However, the performance of the models varied from image to 

image, with some images responding better to classification via CWI while the other images attained 

comparatively better results with 4DIS model (Figure 12). 

 Both the models performed consistently in different colour spaces and the HSV colour 

space typically provided the best results. It is evident in Figure 12, where the performance points 

corresponding to the HSV colour space for both the CWI and 4DIS models are far closer to the best 

performance point as compared to the other points in the ROC space. The RGB colour space used in 

conjunction with the 4DIS model and the L*a*b* colour space used with both the CWI and 4DIS 

models achieved similar performance levels, reflected by the δ values for a given image in these 

colour space – model combinations. The images in the RGB colour space analysed using the CWI 

model showed the poorest performance accuracy while the images in the HSV colour space analysed 

using 4DIS model achieved the best performance accuracy. 

 

3.3 Computation Times of Models 

Whilst both models produced apparently comparable classification accuracy, their respective 

computational times provide a conclusive source of differentiation, with the 4DIS model being the 

superior option. The computation times for all sample images in RGB space for both models are 

presented in Table 3 for illustrative purposes. The other colour spaces demonstrate similar results. The 

different computation times for the sample images can be attributed to the image size. 

 A significant portion of the time in the CWI model may be attributed to its weighting 

system, which is required to calculate the dissimilarity between texture features  in the damaged and 

undamaged zones, along with the inefficient application of  the SVM classifier which is required to be 

iteratively performed for 30 times.  

Table 3 

Classification times for the 4DISand CWI models 

Image 

 Time Taken (seconds) 

Image Size       

(sq pixels) 4DIS Model CWI Model 

(a) Pitting Corrosion 1056x1408 46.5 893.6 

(b) Corroded Metal 635x846 12.6 322.3 

(c) Half Joint Damage 436x648 6.5 130.6 

(d) Stained Deck 441x427 3.0 97.6 
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(e) Marine Growth 1056x1408 51.5 875.2 

(f) Exposed Bridge Deck 255x391 2.5 47.0 

 

3.4 Parameters of the SVM classifier 

 SVM classification requires a penalty parameter of the error term, C, and the kernel 

parameter,  , which define the decision boundary. The parameters should be chosen carefully in order 

to produce an effective classifier. An ROC based optimization framework was adopted through which 

the two components were independently optimised (Schoefs et al, 2012a). Whilst theoretically it 

would be preferable to search for the optimum ),C(  pairing, it was found experimentally that this 

exhaustive and computationally intensive approach was largely unnecessary as the C and   values 

were largely independent of each other. For illustrative purposes, the performances of various C and 

  values for Figure 3(a), analysed through the 4DIS model, are presented in Tables 4 and 5 

respectively. The corresponding ROC curves are displayed in Figures 13a and 13b respectively.  

Table 4 

Performance of SVM for various C values (γ kept constant at 1) 

C-value DR MCR δ 

0.001 57.00% 11.88% 0.45 

0.25 67.90% 17.65% 0.37 

0.5 70.20% 20.20% 0.36 

0.75 74.90% 26.92% 0.37 

1 77.80% 31.90% 0.39 

10000 77.61% 33.13% 0.40 

 

Table 5 

Performance of SVM for various γ values (C kept constant at 0.5) 

γ-value DR MCR δ 

0.25 39.72% 6.24% 0.61 

0.5 57.24% 10.65% 0.44 

0.66 62.45% 13.72% 0.40 

0.75 64.44% 15.44% 0.39 
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0.8 66.14% 16.74% 0.38 

1 70.28% 20.22% 0.36 

1.33 77.74% 31.45% 0.39 

2 86.79% 53.83% 0.55 

 

 

Fig.13a. ROC curve for varying values of C (γ kept 

constant at 1). 

 

Fig.14. ROC curve for varying values of Gamma (C 

kept constant at 0.5). 

 

The δ values attained for the set of parameter values trialled indicate that the optimum values for C 

and γ were 0.5 and 1 respectively. It was found that combining these independently optimised 

parameters provided satisfactory results, with negligible differences from that of the jointly optimised 

(C , γ ) pair. Moreover, the classifier demonstrated a low sensitivity to deviations from the optimal 

pairing suggesting that a highly optimised pairing was not integral to the classifier performance. This 

was especially true for the penalty parameter, C, which returned similar performance levels across a 

range spanning multiple orders of magnitude.  
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4.0 Conclusion 
This paper presents a semi-automatic texture analysis based technique for the detection and 

classification of damaged regions on the surface of infrastructural elements. The technique involves 

generating a texture feature vector for each pixel in the image including information derived from 

GLCM matrix based on a quantised grey-level scale along with statistical and energy information 

from the pixel intensity values. The pixels are consequently classified through non-linear Support 

Vector Machines (SVM) models. 

The proposed technique has a number of favourable aspects: 

• Each pixel is qualified through a large feature vector containing ten texture related measures 

representing both grey-levels and pixel intensities in appropriate scales providing a well-

rounded description of the image in terms of the textural characterising. This aspect also 

increases the robustness of the technique as some measures may be good at differentiating 

regions in one image and may not necessarily be particularly useful in another image. This 

robustness is showcased by the ability of the technique to perform effectively when applied 

to images featuring a broad range of surfaces and damage forms, exposed to various lighting 

conditions, viewing angles and resolutions.  

• The technique is more immune to variations in lighting conditions than colour based 

techniques, where only the pixel intensity values are considered as opposed to texture based 

segmentation techniques in which the relationship between adjacent pixel intensity values are 

considered. This relationship is often maintained to a significant extent even when inherent 

chromatic and luminous complexities are introduced to the scene.  

• The technique requires only three parameters to be optimised: the size of the sliding window 

and two SVM parameters. A ROC curve based optimisation framework has been presented 

which shows a simple means of attaining suitable values for the SVM parameters. The size of 

window can be independently chosen through trial-and-error. 

 Two SVM classification models have been explored; a CWI model and a 4DIS model. The 

CWI model employed a weighting scheme based on the relative differences of textural descriptors in 

the damaged and undamaged training data. The SVM was applied iteratively to each texture measure 

in each colour channel. The 4DIS model offered a more efficient approach, requiring only one 

application of the SVM. The 4DIS model had the fastest computational time and, overall, achieved 

slightly better classification accuracy over the CWI model. 

 The proposed technique was performed in RGB, HSV and L*a*b*colour spaces. The HSV 

colour space, in conjunction with the 4DIS model, offered a consistently high level of performance in 

a time efficient manner, and is thus concluded to be the best combination.  
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