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Texture Analysis for Classification of Cervix Lesions
Qiang Ji*, Member, IEEE, John Engel, and Eric Craine

Abstract—This paper presents a generalized statistical texture
analysis technique for characterizing and recognizing typical, di-
agnostically most important, vascular patterns relating to cervical
lesions from colposcopic images. The contributions of the research
include: 1) the introduction of a generalized texture analysis tech-
nique based on the combination of the conventional statistical and
structural textural analysis approaches by using a statistical de-
scription of geometric primitives; 2) the introduction of a set of tex-
tural measures that capture the specific characteristics of cervical
textures as perceived by human. Experimental study with real im-
ages demonstrated the feasibility and promising of the proposed
approach in discriminating between cervical texture patterns in-
dicative of different stages of cervical lesions.

Index Terms—Cervix lesion classification, colposcopic images,
pattern recognition, texture analysis.

I. INTRODUCTION

T HE incidence of cervical cancer mortality has been dra-
matically reduced since the introduction of the Papanico-

laou (Pap) smear test. However, the Pap test is unable to accu-
rately and consistently identify premalignant and malignant dis-
ease of cervix. The incidence of both false-negative and false-
positive test have become shockingly high [1]. These have mo-
tivated the use of colposcopy as a standard screening proce-
dure for precancer examination [1] and for performing accurate
punch biopsies for histological analysis. One of the major fac-
tors hindering the full utilization of colposcopy is the difficulty
in training physicians in the recognition of pathology. Colpo-
scopic images contain complex and confusing lesion patterns.
Correctly analyzing and classifying different types of tissues re-
quire substantial training. It is, therefore, necessary to simplify
the use of colposcopy and to enhance its capability so that av-
erage physicians can correctly recognize various tissue patterns
in a consistent and uniform fashion. For this reason, we devel-
oped an image analysis system to help physicians better inter-
pret various patterns on colposcopic images.

A careful examination of various cervical images reveals reg-
ular and repeatable vascular patterns, indicating different stages
of dysplasia. In fact, vascular pattern is the most important diag-
nostic criteria used by colposcopists for recognizing pathology
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[2]. For example, two basic types of vascular patterns observable
in normal or benign lesions are hairpin and network capillaries.
On the other hand, different versions of punctation and mosaic
vascular patterns may be observed in areas of dysplasia and car-
cinoma in situ. Fig. 1 pictorially shows typical vascular patterns
encountered in cervical lesions.

We propose to recognize different vascular patterns of cer-
vical lesions via a textural analysis. Various texture analysis
methods have been developed to analyze and classify various
tissue patterns including liver lesions [3], [4], prostrate can-
cerous lesions [5], brain tissue [6], clonic mucosa [7], mammo-
graphic tissue [8], and for segmentation of cardiac images [9].
However,the use of texture analysis techniques (or other image
processing approaches) for recognizing and classifying cervix
lesions has not been reported in the literature to the best of our
knowledge.

Further examination of the textural patterns relating to cer-
vical lesions revealed the following. First, texture patterns for
cervical lesions are primarily due to the vascular patterns. The
nonvascular structures in the cervical images contribute very
little to the formation of texture patterns in cervical lesions. Fur-
thermore, the vascular structures are mainly characterized by the
geometric shape and spatial distribution of capillaries. The gray
levels and thickness of capillaries are irrelevant to vascular pat-
terns. Thus, cervix texture patterns cannot be characterized by
the spatial intensity distribution of capillaries. Second, texture
patterns for cervical lesions do not exhibit regular repetitive or
periodic structures.

Based on the above observations, we proposed a novel gen-
eralized statistical method to characterize textural patterns of
cervical lesions. Recognizing the fact that cervical textures are
primarily represented by the vascular structures, we assume that
a significant proportion of the texture information in cervix le-
sion is contained in the vascular structures. Our approach first
extracts the vascular structures from the original cervical lesion
images, followed by vectorizing the extracted vascular structure
using line segments. Statistical distributions of the line segments
(in terms of length and orientation) are then constructed. First-
and second-order statistics derived from the joint and/or mar-
ginal distributions are used as textural measures for cervical le-
sions classification. The beauty of such a texture characteriza-
tion is that while it takes full advantage of the traditional statis-
tical textural analysis approach [10], it also inherents the power
of the structural textural analysis by emphasizing the shape as-
pects of textures.

The rest of this paper is arranged as follows. In Section II,
we discuss the propsoed algorithm. The results of experimental
evaluation of the proposed algorithm are presented in Sec-
tion III. The paper ends in Section IV with a summary.
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II. A LGORITHM DEVELOPMENT

In this section, we detail our texture analysis technique for an-
alyzing the textural patterns relating to cervical lesions. We dis-
cuss three aspects of the algorithm, namely, texture primitives
extraction, statistical description of textural primitives, and tex-
tural metrics formulation and computation.

A. Texture Primitive Extraction

The proposed approach captures the cervical textural infor-
mation by approximating the vascular structures using a set of
connecting line segments. Texture primitive extraction is there-
fore concerned with extracting the line segments that approx-
imate the vascular structures. This includes three steps: image
preprocessing, skeletonization, and vectorization as discussed
below.

Vascular structures often coexist with other irrelevant artifacts
on the surface of a cervix. Furthermore, the presence of fluids
and/or other discharges on cervix surface causes nonuniform
luminance and contrast to the underlying vascular structures.
Fig. 2(a) shows a colposcopic image of a portion of a cervix con-
taining mosaic vascular pattern. The primary purpose of prepro-
cessing is to digitally remove artifacts present on the surface of a
cervix and to compensate the uneven luminance. Artifacts on the
surface of a cervix image are identified and separated from the
underlying vascular structures based on the morphological dif-
ferences between artifacts and capillaries. The capillaries usu-
ally are much more tortuous than artifacts. Artifacts, on the other
hand, are usually short and straight segments or small dots. The
differences in morphology were exploited in separating them
based on the theory of mathematical morphology. The technique
of morphological opening with a rotating structure creates an
image containing primarily artifacts, which are then subtracted
from the original images, yielding images containing predom-
inantly vascular structures. The rotating structure elements are
necessary due to random orientations of the artifacts. Detailed
description of this algorithm may be found in [11]. Non-uniform
illumination is removed through background subtraction using
the morphological rolling ball algorithm [12]. Fig. 2(b) shows
an example of a morphologically enhanced image. The radius of
the rolling ball varies depending on the vascular patterns being
studied and image scales. For the examples shown in Fig. 2, a
radius of three pixels was chosen.

Separating vascular structures from the image background is
accomplished with an adaptive thresholding operation [13], re-
sulting in a binary image as shown in Fig. 2(c) containing pri-
marily vascular structures. Adaptive thresholding is chosen due
to variations in local contrasts as shown in Fig. 2(b).

The binary images of vascular structures are subsequently
skeletonized since we observed that vascular structures can be
fully captured by their skeletons. We employed the thinning
algorithm provided by Zhang [14]. With this algorithm, each
capillary is thinned to a skeleton of unitary thickness. Fig. 3(a)
shows the skeletonized image of the image in Fig. 2(c). The final
step in primitive extraction involves vectorization to approxi-
mate the thinned vascular structures with connecting line seg-
ments via a variant of Hough transform (HT) we developed. Our
HT differs from the standard in that it can detect line segments.

Fig. 1. Typical vascular patterns encountered in cervical lesions. (a) network
capillaries in original squamous epithelium; (b) hairpin capillaries in original
squamous epithelium; (c) and (d) punctation vessels in dysplasia and carcinoma
in situ; and (e) and (f) mosaic vessels as seen in dysplasia and carcinomain situ.

Fig. 2. (a) Original image containing mosaic patterns. (b) Morphologically
enhanced image. (c) Binary image of (a) after adaptive thresholding of (b).

It consists of two steps: line segments detection and merging of
short line segments. After merging, line segments shorter than
a prespecified threshold are discarded. Fig. 3(b) shows the vec-
torized image of the image shown in Fig. 3(a).

B. Statistical Description of Textural Primitives

With texture primitives extracted, we have available a list of
primitives (line segments) that model the vascular structures of
the original image data. We need to proceed to the next phase
of texture characterization–texture primitive attributes compu-
tation and their statistical distributions construction.

1) Statistical Distributions Construction:Since a line seg-
ment can be fully described by its length and orientation, line
segment length and orientation are the natural choice of their
properties. The properties of line segments can be treated as
random variables and follow certain statistical distributions. We
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Fig. 3. (a) the skeletonized image of the image in Fig. 2(c); (b) the vectorized
image of the image in (a). In (b), (a) is approximated by connecting line
segments.

can construct statistical distributions for each vascular pattern.
Since line segment length and orientation are of real values, dis-
cretization becomes necessary to study the statistical distribu-
tions of line segments. Discretization groups line segments into
bins, based on their original values. Specifically, the orientations
of line segments are uniformly discretized into 180 bins ranging
from 0 to 179 . The line segment length is discretized in a sim-
ilar fashion into bins, where was empirically selected as 50.
After discretization, the length of each line segment is referred
to by the number of the bin it belongs to rather than by its actual
length.

With the attributes of line segments discretized, we can pro-
ceed to construct the density functions (histograms) of the line
segments in terms of length and orientation. A total of three dis-
tributions were constructed for each pattern: one joint distribu-
tion and two marginal distributions. The joint distribution char-
acterizes the line segment distribution by its length and orien-
tation. Each point in the joint distribution represents the proba-
bility of a line segment with a particular length and orientation.
The marginal distributions represent the line segment distribu-
tion with respect to length/orientation. Each point in a marginal
distribution represents the probability of the line segment of a
particular length (or orientation). Since line segments are of dif-
ferent lengths, the orientation distribution of line segments is
therefore weighted by their lengths. This results in a more re-
alistic orientation distribution. Fig. 4 shows the two marginal
distributions of line segment length and orientation for the vec-
torized mosaic pattern shown in Fig. 3(b).

2) Distribution normalization: Since texture features are
subsequently extracted from the above distributions, we need
to ensure the invariance of the above distributions to affine
image transformations, i.e., rotation, translation, and scale
invariant. The normalization approach we followed needs to
achieve only rotation invariance for orientation distribution
since it is invariant to translation and scale. Similarly, for
length distribution, only scale normalization is needed since it
is invariant to translation and rotation.

The length distribution is normalized via discretization as dis-
cussed before. Since fixed discretization level (50) is used to dis-
cretize line segment length, scale only affects the discretization
intervals. Given the fact that the lengths of the discretized line

Fig. 4. Marginal probability density functions for orientation (a) and length
(b) of the line segments in the vectorized mosaic pattern shown in Fig. 3(b).

segments are referred to by their bin numbers rather than by their
actual lengths, the discretization makes the distribution indepen-
dent of scale. For orientation distribution, a rotation (which is
equivalent to adding or subtracting an angle to each line) may
not only cause a linear shift for the interior bins (which may
not affect the shape of the distribution) but also cause a circular
shift for the boundary bins (bins close to 0 or 179) as shown in
Fig. 5(a), where the local peak at 0results from a circular shift
of the corresponding local peak at about 140in Fig. 4(a). This
will alter the shape of original distribution, rendering incorrect
feature values. Therefore, it must be normalized. The normal-
ization is carried out as follows. Identify the peak of each dis-
tribution and shift the peak to the 90bin and perform the same
amount of shift for other angles. The choice of peak for normal-
ization rather than other distribution marks like valley is because
peak is less sensitive to noises. Fig. 5 shows the orientation dis-
tributions image with mosaics at two different orientations be-
fore and after normalization.

C. Texture Features Extraction

Most characteristic measurements characterizing the cervical
lesion patterns are derived from the statistical distributions of
the extracted line segments. They characterize the shapes of line
segments distributions. Additional features are derived directly
from the vectorized images to describe the spatial complexity
and density (vascular concentration) of the texture patterns.

Efforts were made during feature extraction to select features
that can relate to the specific textural characteristics of the cer-
vical texture patterns. For example, some features relate to such
textural characteristics as randomness, contrast, correlation etc.,
while others characterize the spatial complexity of the texture
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patterns. We suggest a set of nine features which can be ex-
tracted from each of the two marginal distributions, four fea-
tures from the joint distribution, and two features directly from
the vectorized images, yielding a total of 24 features (29 4

2). For illustrative purpose, we will define four of the 24 fea-
tures in this section and explain their significance in relating to
the specific characteristics of the cervical textures as perceived
by human.

• Peak density ( ): measures the strength of the local dom-
inant peak in a marginal distribution, i.e., length or orien-
tation distribution. for ,
where is the probability of the th bin and is the
discretization level.

• Entropy ( ): measures the randomness or homogeneity
of a distribution with respect to length or orientation.

• Ratio of the number of intersection points to the number
of endpoints( ): measures the spatial complexity of the
textures

• Density ( ): measures the coarseness (or fineness) of a
texture in terms of amount of edgels per unit area. The
average number of edgels per unit area for all pixels is
used as a measure of the density.

During feature design process, every effort was made to de-
vise features that represent the specific characteristics of the
cervical textures as perceived by human. Here, we will analyze
some of the textural features we proposed and try to relate them
to certain textural characteristics.

Peak density ( ) measures the strength of the dominant
length (or orientation) of line segment distribution with respect
to a particular attribute. Take the orientation for example,
hairpin texture pattern, with most line segments oriented in
one direction as shown in Fig. 1, should have the highest
(0.9) values among all cervical textural patterns while mosaics,
with line segment directions scattering in all directions as
shown in Fig. 1, should have the lowest (0.3). Similarly, for
length distribution, hairpin texture pattern also has the highest
peak density (0.8). Therefore, this feature can discriminate the
mosaic and hairpin patterns.

Entropy ( ) measures the randomness or homogeneity of a
distribution with respect to length or orientation. Entropy takes a
higher value for more random distribution. Take the orientation
for example, Mosaics takes the highest value (1.2) while hairpin
takes the lowest (0.5) value for the same reason as explained be-
fore. Therefore, this feature can discriminate the hairpin pattern
from other patterns.

, the ratio of number of intersection points to the number
of endpoints ( ) measures the spatial complexity of a texture.
It takes a large value if capillaries interweave each other. For ex-
ample, mosaics has the highest value (1.3) while punctation
takes the lowest (0.1). Furthermore, network pattern also has
much higher value (0.8) than those of hairpin (0.3) and punc-
tation. Therefore, this feature can discriminate mosaic and net-
work patterns from others.

Density ( ) measures the coarseness (or fineness) of tex-
ture in terms of amount of edgels per unit area. Coarse tex-
tures have a small number of edges per unit area while fine
texture have a high number of edges per unit area. It measures
the capillary concentration. For example, network pattern has

Fig. 5. The angle distributions of the mosaic image shown in Fig. 3(b) with
and without normalization. (a) The angle distribution of the mosaic image with
a 45-degree rotation (without normalization). (b) The angle distribution of (a)
after normalization (its shape is very similar to that of Fig. 4(a)).

TABLE I
A SUBSET OF 13 OPTIMAL

FEATURES

the highest density (0.8) while punctation has the lowest den-
sity (0.2). Therefore, this feature can discriminate the network
from punctation patterns.

Other features used to describe the distributions include con-
trast, skewness, kurtosis, mean, median, correlation, and energy.
A detailed definition of each feature may be found in [1].

D. Feature Analysis and Selection

An analysis of the extracted 24 features was conducted to
study the effectiveness of each feature and to remove redundant
features. One type of redundant features is features that are lin-
early correlated with each other. The linearly correlated features
can be identified by computing the liner correlation coefficients
between any two features. The identified correlated features are
subsequently removed via feature pruning. Criterion used for
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TABLE II
CLASSIFICATION RESULTS

feature pruning include consistency, invariance, and discrimina-
tory power. Consistency is measured by the within group vari-
ance, invariance measures features invariance to transformation,
and discriminatory power determines a feature’s discriminatory
capability. Feature ranking rates the discriminatory power of
each feature based on its capability in discriminating all classes.
The ratio of between-class variance to the within group variance
was used as a criterion. Analysis of the interclass and intraclass
variance revealed some of the features to be ineffective, yielding
a feature vector of reduced dimensionality.

III. EXPERIMENTAL EVALUATION

In this section, we present the preliminary results of our
studies on the usefulness of the proposed texture features for
categorizing a series of typical vascular patterns as shown in
Fig. 1.

A. Image Acquisition and Feature Extraction

The experiment started with cervical image acquisition and
preparation. The images to be prepared should contain the
typical vascular pattern classes characterizing different stages
of dysplasia. Typical vascular patterns to be recognized in this
project include six vascular pattern classes as shown in Fig. 1.

To characterize each vascular pattern class accurately, 50 im-
ages were collected for each vascular pattern class, resulting in
a total of 300 images. These images represent six classes. For
each acquired image, we identified and marked a rectangular re-
gion corresponding to a known vascular pattern. The identified
regions of interest were preprocessed. The preprocessed images
were subsequently skeletonized and vectorized. The statistical
distributions of line segments were then constructed, followed
by the extraction of the 24 texture features. To perform feature
selection, five images were randomly selected for each pattern
class from the 300 images. Feature selection and analysis on the
selected images yields 13 optimal features as shown in Table I.

B. Classification and Results

For classification, we employed the minimum-distance clas-
sifier. To train the classifier, we divided the remaining images
(270) into two sets: one for testing and one for training. Due to
the large feature vector dimension (24) and relatively smaller
number of images (45 for each class pattern), cross-validation
method was used for classification design and evaluation.

Specifically, for each training and testing session, 240 (40 for
each class ) sample images were used as the training data and

the 30 (five for each class) left-out were used as the testing data.
This process iterated nine times so that every sample image had
the chance to be the left out and to be in the training set. The
total number of correct classification over the nine iterations
was used to evaluate the classification performance. For each
testing, the minimum distance decision rule was used to classify
the left-out image into one of six vascular pattern classes.

Two experiments were conducted. First, classification was
performed using all 24 features. Second, the 13 optimal features
defined in Table I were computed and used for classification.
The performance of the classifier was recorded in the confusion
matrix as shown in Table II.

The left most column of Table II is labeled with the actual
classes, the top row shows the classified classes. The classifi-
cation results using all 24 features are represented by the num-
bers outside parentheses while the numbers enclosed in paren-
theses represent the resultant output, using the optimal 13 fea-
tures. In summary, we obtained the best discrimination perfor-
mance (87.03%) by using all 24 features as shown in Table II.
However, by using only the 13 optimal features resulting from
feature ranking, our technique experiences a loss in classifica-
tion accuracy (80.36%). The loss in accuracy seems to be min-
imal compared to the computational saving (almost 40%). Fur-
ther experiments are needed to validate this.

IV. CONCLUSION

This paper describes a texture image analysis technique for
characterizing and recognizing typical, diagnostically most
important, vascular patterns relating to cervical lesions. We
propose a generalized texture analysis technique based on com-
bining the conventional statistical and structural approaches
using a statistical description of geometric textural primitives.
Preliminary experimental study demonstrated the feasibility
of the proposed technique in discriminating between cervical
texture patterns indicative of different stages of cervical lesions.

ACKNOWLEDGMENT

The authors would like to acknowledge the suggestions of the
anonymous reviewers.

REFERENCES

[1] B. L. Craine, E. R. Craine, J. R. Engel, and N. T. Wemple, “A clinical
system for digital imaging colposcopy,” inProc. SPIE Medical Imaging
II , 1988, pp. 505–511.

[2] P. Kolstad and A. Stafl,Atlas of Colposcopy. Baltimore, MD: Univer-
sity Park, 1977.



JI et al.: TEXTURE ANALYSIS FOR CLASSIFICATION OF CERVIX LESIONS 1149

[3] C. M. Wu and Y.-C. Chen, “Multi-threshold dimension vector for tex-
ture analysis and its application to liver tissue classification,”Pattern
Recogn., vol. 26, no. 1, pp. 137–144, 1993.

[4] H. Sujana, S. Swarnamani, and S. Suresh, “Artificial neural networks
for the classification of liver lesions by image texture parameters,”Ul-
trasound Med. Biol., vol. 22, no. 9, pp. 1177–1181, 1996.

[5] A. G. Houston and S. B. Premkumar, “Statistical interpretation of tex-
ture for medical applications,” presented at the Proc. Biomedical Image
Processing and Three Dimensional Microscopy, San Jose, 1991.

[6] F. Lachmann and C. Barillot, “Brain tissue classification from mri data
by means of texture analysis,” presented at the Proceedings of Medical
Imaging VI: Image Processing, Newport Beach, CA, 1992.

[7] A. N. Esgiar, R. N. G. Naguib, B. S. Sharif, M. K. Bennett, and A.
Murray, “Microscopic image analysis for quantitative measurement and
feature identification of normal and cancerous colonic mucosa,”IEEE
Trans. Inform. Technol. Biomed., vol. 2, pp. 197–203, Mar. 1998.

[8] C. Enderwick and E. Micheli-Tzanakou, “Classification of mammo-
graphic tissue using shape and texture features,” inProc. 1997 19th
Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society,
1997, pp. 810–813.

[9] C. Fortin and W. Ohley, “Automatic segmentation of cardiac images:
Texture mapping,” inProc. IEEE 17th Annu. Northeast Bioengineering
Conf., Hartford, CT, 1991.

[10] R. M. Haralick, “Statistical and structural approaches to texture,” inPro-
ceedings of Proc. IEEE, 1979.

[11] B. D. Thackray and A. C. Nelson, “Semi-automatic segmentation of vas-
cular network images using a rotating structuring element (rose) with
mathematical morphology and dual feature thresholding,”IEEE Trans.
Med. Imag., vol. 12, pp. 385–392, June 1993.

[12] S. Sternberg, “Biomedical image processing,”IEEE Comput. Mag., pp.
22–33, 1973.

[13] T. Kanade and K. C. Chow, “Boundary detection of radiographic images
by a threshold method,”Frontiers Pattern Recogn., pp. 61–82, 1982.

[14] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,”Commun. ACM, vol. 27, no. 3, pp. 236–239, 1984.


