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ABSTRACT

We discuss the use of adaptive biorthogonal wavelet packet bases

in a probabilistic approach to texture analysis, thus combining the

advantages of biorthogonal wavelets (FIR, linear phase) with those

of a coherent texture model. The computation of the probability

uses both the primal and dual coefficients of the adapted biorthog-

onal wavelet packet basis. The computation of the biorthogonal

wavelet packet coefficients is done using a lifting scheme, which

is very efficient. The model is applied to the classification of mo-

saics of Brodatz textures, the results showing improvement over

the performance of the corresponding orthogonal wavelets.

1. INTRODUCTION

The segmentation and classification of images based on tex-

ture analysis plays a major role in image understanding ap-

plications. Over the years, texture analysis has received

considerable attention in terms of both methodology and ap-

plication. The commonly used methods are based on statis-

tical, model-based, and signal processing features.

In the signal processing approaches for texture analy-

sis, feature extraction mainly includes two steps: the signal

decorrelation step which usually consists of a signal trans-

form and the computation of the feature metric, which is

either an energy or a probability measure. The frequency

domain energy distributions produced by the signal trans-

forms are used to extract texture features. The commonly

used transforms for texture analysis include Gabor trans-

forms [1], ring and wedge transforms, wavelet transforms

as wavelet packet decompositions [2, 3, 4] or wavelet frame

decomposition [5]. For a comparative study on above tech-

niques, see [6].

Most of the work on wavelet-based texture analysis has

concentrated on orthogonal wavelets, which have the draw-

back that their design constraints do not allow the wavelet

filter to be both FIR and linear phase, i.e. both real and sym-

metric. This can, however, be achieved for biorthogonal

wavelets, where the analysis (primal) wavelet and the syn-

thesis (dual) wavelet differ in length. It is well known that

biorthogonal wavelets outperform orthogonal wavelets in

The work of Dr. Abhayaratne was funded by the ERCIM postdoctoral

fellowship programme.

image coding. In this paper, we modify the approach to tex-

ture analysis presented in [4] to use biorthogonal wavelets,

and then demonstrate their performance in texture classifi-

cation experiments using Brodatz textures.

In section 2, we describe the adaptive probabilistic tex-

ture model using biorthogonal wavelets. Section 3 outlines

the basics of biorthogonal wavelets, their lifting realization,

and the mother wavelets used in the experiments. Section 4

shows the results of parameter estimation, and the classifi-

cation of mosaics using Brodatz [7] textures. We conclude

in section 5.

2. TEXTURE MODEL

The purpose of this section is to review the model described

in [4] and to adapt it to use biorthogonal wavelets.

The model in [4] starts from a general translation invari-

ant Gaussian distribution. The marginalized Gaussian dis-

tribution on an image region is then derived, and shown to

be tractable if the original covariance lies in a certain class

of operators. This class consists of those operators that are

diagonal in at least one wavelet packet basis. The model is

thus parameterized by a dyadic partition of the Fourier do-

main, which in conjunction with a mother wavelet defines a

wavelet packet basis, and a function that assigns to each ele-

ment of the partition (i.e. each subband), its variance. In [4],

it is shown that exact MAP estimates of these parameters

can be learned from samples of a texture using an efficient

depth-first search algorithm on the space of dyadic parti-

tions. The result is a model in which the basis adapts to the

structure inherent in the texture according to a criterion de-

rived from the texture model itself, rather than introduced

on an ad hoc basis.

The Gaussian assumption might appear to go against the

fact that the subband histograms of standard wavelet coef-

ficients take on a leptokurtotic form more closely modelled

by, for example, a generalized Gaussian with shape factor

less than unity. However, most of these studies were con-

cerned with ‘natural’ images. The statistics were thus com-

prised of mixtures of many components corresponding to

different entities in the scene. There is no reason to suppose



that these statistics will be preserved for the images in a co-

herent texture class. Second, products of generalized Gaus-

sians do not preserve their form under a change of basis, so

that in a basis adapted to the texture class under consider-

ation, again there is no reason to suppose that the statistics

will necessarily assume the standard form. In the absence

of more specific information, a Gaussian distribution is used

as a maximum entropy choice: it supposes only that the en-

ergy in each of the adaptive subbands will be approximately

preserved from texture sample to texture sample.

Following the line of argument used in [4], we can de-

rive the expression for the model in terms of biorthogonal

wavelets. The model is still characterized by a dyadic parti-

tion T and a function f on the partition, but now the proba-

bility distribution is given by:

Pr(I|f, T ) =
∏

α∈T

[

(

fα

π

)

Nα
2

e−fα

∑
i∈α waα,i

wsα,i

]

(1)

where I is the image; α indexes the subbands of T; fα is the

value of f on subband α; i indexes the wavelets within each

subband; wai,α
and wsi,α

are the (α, i) coefficients using

the primal and dual wavelet bases Ba and Bs, respectively;

and Nα is the number of pixels in the subband α.

MAP estimates of the parameters for a given texture are

found by examining the probability of the parameters given

a set of images d = {In} of the texture:

Pr(f, T |d) ∝ Pr(d|f, T )Pr(f |T )Pr(T ) (2)

We choose Pr(f |T ) to be Jeffrey’s ignorance prior. We

choose the probability of a given partition T to be Pr(T ) =

Z−1(β)e−β
∑

t∈Q(T ) Nt where Q(T ) is the quadtree natu-

rally related to the partition, t is a vertex in this tree, and

Nt ∝ 4−l(t), where l(t) is the depth of vertex t in the tree,

is the size of the region of the Fourier domain correspond-

ing to vertex t. The parameter β controls how severely the

distribution penalizes large decompositions. Differentiating

(1) with respect to fα gives us the maximum a posteriori

(MAP) estimate of f for a fixed T :

f̂α =
Nα

2
∑

i∈α |wai,α
wsi,α

| (3)

A depth-first search through the space of dyadic decom-

positions allows us to find the MAP estimate for T effi-

ciently.

2.1. Classification

In order to classify pixels, we use an undecimated wavelet

decomposition, and consider the following approximation

to the exact probability distribution for the texture on a re-

gion R:

Pr(IR|f, T ) =
∏

α∈T

∏

x∈R

[

(

fα

π

)
1

2Mα

e−
fα
Mα

∑
i∈α waα,x wsα,x

]

(4)

where Mα = 4l(α) is the redundancy factor for subband α
in the undecimated transform. The class of a pixel, λ(x), is

then estimated as:

λ̂(x) = arg max
l∈L

Pr(IV (x)|λV (x) = l) (5)

where V (x) is a set of neighbours of pixel x.

3. BIORTHOGONAL WAVELETS

For orthogonal wavelets, the synthesis mother wavelet fil-

ters are obtained by order flipping the analysis mother wavelet

filters. Thus both analysis and synthesis mother wavelets

are the same. For biorthogonal wavelets [8], different mother

wavelet filters satisfying perfect reconstruction conditions

can be chosen in the analysis and synthesis filter banks. The

lifting scheme [9] is often used in designing and implement-

ing biorthogonal wavelets. In this paper, we use a two-step

lifting scheme to compute the biorthogonal wavelet packet

coefficients, as described in the following sections.

3.1. The Lifting Scheme

The lifting scheme, first introduced as a method for wavelet

design without using frequency domain techniques, forms

a natural parameterization of the corresponding filter banks

for spatial domain design and implementation. In addition,

lifting yields in-place computation of the wavelet coeffi-

cients, thus enabling fast and memory efficient computa-

tions.

The basic idea of lifting is the factorization of the poly-

phase matrix of the filter bank for a given wavelet trans-

form into alternating upper and lower triangular matrices

with unit diagonals. The general structure of a 1d lifting

scheme consists of at least 4 steps: split, prediction lifting

(P), update lifting (U), and normalization. The splitting for

an input signal x0 is:

Split: xi = x0
2i; yi = x0

2i+1 (6)

The prediction and update steps result in high-pass and

low-pass channels respectively in the corresponding filter

bank. Their order can be interchanged according to the

scheme, as discussed in the following section.

3.2. Biorthogonal wavelets using lifting

We will use a class of biorthogonal wavelets known as in-

terpolating wavelets [9], which can be realized using only



M M̃ la ls

(2,2) 2 2 3 5

(2,4) 2 4 3 9

(4,2) 4 2 7 9

(4,4) 4 4 7 13

Haar 1 1 2 2

D4 2 2 4 4

D8 4 4 8 8

Table 1. Details of the wavelets.

one prediction-update step. For such wavelets, the primal

wavelet |a〉 is obtained using P+U lifting:

P : y′
i = yi−

∑⌊M/2⌋

j=1−⌈M/2⌉
pjxj+i (7)

U : x′
i = xi+

1

2

∑⌈M̃/2⌉−1

j=−⌊M̃/2⌋ ujy
′
j+i (8)

Normalize : x′′
i =

√
2x′

i; y′′
i = y′

i/
√

2 (9)

where M and M̃ are the number of vanishing moments in

p and u respectively. Similarly, the dual wavelet |s〉 is ob-

tained using U+P lifting:

U : x′
i = xi+

∑⌊M/2⌋

j=1−⌈M/2⌉
pjxj+i (10)

P : y′
i = yi−

1

2

∑⌈M̃/2⌉−1

j=−⌊M̃/2⌋ ujy
′
j+i (11)

Normalize : x′′
i = x′

i/
√

2; y′′
i =

√
2y′

i (12)

In both cases
∑

j pj =
∑

j uj = 1. Such wavelet pairs are

usually denoted as (M, M̃), where M (M̃ ) is the number of

vanishing moments in the |a〉 (|s〉) mother wavelet.

Interpolating wavelets use interpolation filters for p and

u. For example, two vanishing moments with coefficients

( 1
2 , 1

2 ) yields linear interpolation, while four vanishing mo-

ments with coefficients (− 1
16 , 9

16 , 9
16 ,− 1

16 ) yields cubic in-

terpolation.

4. SIMULATION RESULTS

We present the performance of biorthogonal wavelets with

vanishing moments (2,2), (4,2), (4,4), and (2,4), and com-

pare them with orthogonal wavelets Haar, D4, and D8, which

are the compact support wavelets with 1, 2, and 4 vanishing

moments respectively. Table 1 summarizes the details of the

wavelets used in these simulations, where : la is the length

of the primal mother wavelet and ls the length of the dual

mother wavelet.

The model we derived in section 2 reduces to that for

orthogonal wavelets when the primal and dual bases are the

same; thus we can use the model for orthogonal wavelets

too.

Fig. 1. Parameter estimation. Row 1: textures Raffia, Her-

ring, and Wool; row 2: their power spectra; rows 3-4: their

estimated parameters using (2,2) and (4,2) wavelets.

4.1. Parameter Estimation

The parameters T and f are estimated as described earlier.

They are shown graphically in figure 1 for three textures:

Raffia, Herring, and Wool; and two wavelets: (2,2) and

(4,2). The brightness of each subband is proportional to

1/fα.

4.2. Classification

We present the classification performance of the biorthogo-

nal wavelet model using three synthetic mosaics of Brodatz

textures. In figure 2, we show the test mosaics, M1, M2 and

M3, the corresponding ground truth maps, and the misclas-

sification maps, where the misclassified pixels are shown

in black, for two different biorthogonal wavelets: (2,2) and

(4,2).

The percentages of misclassified pixels are listed in ta-

ble 2. It is evident from these results that for both orthogo-

nal and biorthogonal wavelets, shorter mother wavelets with

a smaller number of vanishing moments outperform longer

mother wavelets with a larger number of vanishing moments.

Moreover, we can compare the performance of the biorthog-

onal wavelet (2,2) with that of the orthogonal wavelet D4,

since they have the same number of vanishing moments in

both primal and dual wavelets (2 each), and they are the



Fig. 2. Classification results. Row 1: mosaics M1, M2 and

M3; row 2: ground truth; rows 3-4: misclassified pixels (in

black) for classifications using (2,2) and (4,2) wavelets.

compact support wavelets for that vanishing moment pair

in orthogonal and biorthogonal wavelets, respectively. As

can be seen in table 2, the (2,2) wavelet outperforms the

D4 wavelet for the mosaics: M1 and M3, and on average

for the three mosaics. Similar performance can be seen for

the biorthogonal and orthogonal wavelets with 4 vanishing

moments, (4,4) and D8.

5. CONCLUSIONS

In this paper, we have presented an adaptive probabilistic

texture model based on biorthogonal wavelets, and used it

for texture classification and analysis. In this model, both

the primal and the dual wavelets associated with a specific

biorthogonal wavelet transform are used in the energy com-

putation, in parameter estimation, and for classification. For

both orthogonal and biorthogonal wavelets, shorter wavelets

with fewer vanishing moments classify better than longer

wavelets with more vanishing moments. The biorthogo-

nal wavelets (2,2) and (4,4) resulted in better classifications

compared to the corresponding compactly supported orthog-

onal wavelets with the same number of vanishing moments,

D4 and D8. The use of the lifting scheme in this model

provides very fast computation, in both training and clas-

sification, and also a parameterization of the wavelet filters

M1 M2 M3 Average

(2,2) 2.637 3.333 6.736 4.235

(2,4) 2.675 4.720 6.783 4.726

(4,2) 2.829 5.770 6.058 4.886

(4,4) 2.827 7.598 6.073 5.499

Haar 2.178 2.533 6.163 3.625

D4 6.575 2.181 29.343 12.700

D8 4.631 3.384 22.031 10.015

Table 2. Percentages of misclassified pixels.

that we plan to use in future work to optimize the mother

wavelet for a given texture, in addition to frequency domain

decomposition.
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