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TEXTURE AND MAGNETIC PROPERTIES

H. J. BUNGE

Inst. f. Metallkunde, Grosset Bruch 23, D-3392 Clausthal-Zellerfeld, Germany

The magnetic properties of ferromagnetic materials are closely related to the crystallographic texture,
i.e. the orientation distribution of the crystallites, they are, however, not uniquely determined by the
texture. Higher order "textural quantities" such as, for instance, orientation correlation functions are
additionally needed for a more complete description.
The properties in saturation are uniquely determined by the texture. They can be expressed by a

fourth--or sixth---order approximation of the texture function which can be obtained by "low
resolution" texture measurements.
On the other hand, magnetic anisotropy measurements can only provide a low-resolution

approximation to the texture function and not the complete function.
The distribution of magnetization directions can be described by a "magnetic texture" which can be

calculated from pole figures measured by neutron diffraction using the method of superposed pole
figures.

KEY WORDS Crystallographic texture, magnetic texture, magnetization energy, magnetostriction,
induced anisotropy, neutron diffraction.

When we speak about magnetic materials, we usually mean ferromagnetic
materials and within these, hard and soft materials are being distinguished.
Furthermore, nearly all technologically used materials have a polycrystalline
structure. Properties of polycrystalline materials, in general, depend on the
properties of the individual crystallites and on the structural parameters of the
polycrystal, i.e. the sizes, shapes, arrangements, and crystallographic orientations
of the constitutive crystallites, and the crystals, in turn, may also contain lattice
defects which may drastically change their properties compared with the
properties of ideal crystals.
The basis of ferromagnetism is the spontaneous magnetization which is

accompanied by a deformation of the crystal lattice, the magnetostriction. Both
effects are strongly anisotropic i.e. they depend on the crystallographic direction
in which they are being considered. The properties of a polycrystalline material
will thus depend on the distribution of crystallographic orientations i.e. on the
texture of the material.
The texture is defined by the orientation distribution function of the crystallites

irrespective of their sizes, shapes and arrangements. If we consider the total
magnetic energy of a big ideal single crystal, it is seen that this energy does not
only depend on the crystallographic directions of the spontaneous magnetization
directions but also on the size and shape of the crystal and the magnetic field
distribution in the environment of the crystal. Hence, the texture is only one of
several structural parameters which have an influence on the magnetic properties
of a polycrystalline material. The sizes and shapes of the crystallites are two
further parameters which have to be taken into account, and the environments of
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the crystallites can be taken into account, in a first approximation, by the
orientation correlation function which describes the orientation differences of
neighbouring crystallites.

In this paper we shall restrict ourselves mainly to consider the influence of
texture on the magnetic properties of a material.

THE CRYSTALLOGRAPHIC TEXTURE

In order to define the crystallographic orientation of a crystallite in a polycry-
stalline sample, we need two different coordinate systems, i.e. the crystal
coordinate system Kn which consists of a triple of selected crystallographic
directions e.g. [100], [010], [001] and the sample coordinate system Ka consisting
of three sample directions e.g. rolling direction (RD), transverse direction (TD),
and normal direction (ND) of a sheet. The crystal orientation is then defined by
the rotation g which transforms the coordinate system KA into Kn as shown in
Figure 1

K=g.KA (1)
The rotation g can be specified in several ways e.g. by a transformation matrix
gik, by the rotation axis r and the rotation angle to, or by the Euler angles tpl, ,
tp2

g [g,] {row, o } { q9, (I,, qoz} (2)
The texture of a polycrystal can then be defined by the volume fraction of crystals
having the orientation g within the angular limits dg

dV/V
f(g) (3)dg

The texture function must be invariant with respect to the crystal symmetry
rotations g and it can be invariant with respect to certain sample symmetries gS.
Hence, it is

f(g g g) =f(g) (4)
In the case of cubic symmetry there are 24 rotations gC and in the case of
orthorhombic sheet symmetry there are 4 rotations gS, i.e. 96 symmetry
operations.

Besides this basic distribution function, the ODF, two other deduced distribu-
tion functions are often considered, i.e. the pole distribution functions or pole
figures and the axis distribution functions or inverse pole figures. If y (re, fl} is
a specific sample direction and h (19, y} is a specific crystal direction then these

KA g

Figure 1 The orientation of a crystallite in a polycry-
stalline material is defined by the rotation g which
transforms the sample coordinate system KA into the
crystal coordinate system KB.
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functions are defined by the volume fractions of crystals for which h is parallel
to y dV(g)/V Pole figurePh(Y)

dy h const (5)

R,(h) dV(h)/V inverse pole figure
dh y const (6)

These functions are integrals over the ODF

1 h f(g) d (7)Ph(Y) gy(h)
y

Thereby the integral is to be taken over all those crystal orientations for which
the sample direction y is parallel to the crystal direction h. The two directions are
related to each other by the crystal orientation g

y g. h Yi gik hk (8)
Usually, the pole figures are considered for crystal directions h perpendicular to
low index lattice planes (hkl). These pole figures can be measured by X-ray,
neutron, or electron diffraction. They are thus the primary data of most of all
experimental texture investigations. The texture function f(g) is then obtained by
solving Eq. (7). This procedure, shown schematically in Figure 2 is called pole

)",,,o, ),,

Figure 2 The orientation distribution function can be calculated from a sufficient number of
experimentally measured pole figures.
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figure inversion. It requires a certain number of measured pole figures which
depends on the crystal symmetry and on the required angular resolving power in
f(g). The inverse pole figures, on the other hand, describe the distribution of
crystal directions in a given sample direction y. They are thus closely related to
mean values of physical properties in the considered sample direction. (For
further details see e.g. Bunge, 1982; Bunge and Esling, 1986; Bunge, 1987).

GENERALIZATION OF THE CONCEPT OF TEXTURE

The environment of a crystal in the polycrystalline structure can, to a certain
extend, be taken into account by the misorientation distribution function and the
orientation correlation function. If two neighbouring crystals have the orienta-
tions gl and g2 then the orientation "difference" or misorientation across their
boundary is given by

Ag g2" g71 (9)
The misorientation distribution function MODF can be defined by the area
fraction of boundaries across which the orientation difference Ag exists

dA(Ag)/A
F(Ag)

d Ag (10)

If the positions of the crystals of the orientations g and g2 are statistically
uncorrelated, then the area fraction dA(Ag)/A of grainboundaries Ag depends
only on the relative frequency of gl- and g2" grains i.e. on the texture. In this case
the uncorrelated MODF is given by

F(Ag) f(Ag g) f(g) dg (11)

This situation may arise, for instance, during primary recrystallization when
independently formed nuclei grow until they impinge upon each other. If there is,
however, a preference of certain orientation differences Ag, then an orientation
correlation function may be defined by

(Ag)
tp(Ag) (12)

The correlation function is one of a larger number of "generalized textural
quantities" which are, in principle, independent of the texture.
The MODF and the correlation function must be invariant with respect to the

crystal symmetries of both crystals. Hence it must be

F(g Ag g)= F(Ag) (13)
tp(gc, Ag. gO2) q0(Ag) (14)

In the case of cubic crystal symmetry, these are 24.24 576 symmetry operations
(see e.g. Bunge and Weiland, 1988).
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THE MAGNETIC TEXTURE

The definitions of the "crystallographic" texture can also be applied to describe
the magnetic state of a polycrystalline, ferromagnetic material. If the crystal
anisotropy is not too low, then the spontaneous magnetization M (without an
external field) is parallel to one of several symmetrically equivalent crystal
directions hg shown in Figure 3a. If we include the actual magnetization direction
in the crystal symmetry considerations, then the symmetry of a spontaneously
magnetized crystal is lower than that of the non-magnetized crystal. In this case
we may choose another crystal coordinate system K in each domaine for
example in such a way that the magnetization direction h becomes the
x3-direction as is shown in Figure 3b. The magnetic orientation can then be
defined by rt= g. ra (15)
and the magnetic texture is given by the distribution function

(e, )
dV(g)/V

(16)dg

In the case of cubic symmetry, for instance, the spontaneous magnetization may
be in [001] direction which reduces the cubic symmetry to tetragonal. The so
defined magnetic texture has the symmetries

fM(gM g) =fM(g) (17)
where gM are, for instance, the tetragonal symmetry rotations. The magnetic
texture will generally not obey the sample symmetry gS defined in Eq. (4). The
magnetic texture is related to the crystallographic texture by the condition

f(g) .,f(gC g) (18)
gC

and in the demagnetized state, the magnetic texture fou is identical with the
crystallographic texture

fo(g) =f(g) (19)

o)

10101

, :
k’ignre 3

b)

8

Definition of the magnetic texture.
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Figure 4 The distribution of magnetization directions
with respect to the sample coordinate system KA
defines the magnetic pole figure.

Indeed, Eq. (19) may be considered as the definition of the demagnetized state.
(This is a stronger condition than requiring only M 0 at H 0). The distribution
of magnetization directions is given by the xa-pole figure of the magnetic texture
f(g), Figure 4,

M dV(y)/V
(20)P3(Y) dy

which is related to the magnetic texture function ft(g) by the relationship
equivalent to Eq. (7)

1 f f(g) dV (21)P(Y) " 3,,y

It should be mentioned that this function is not random in the demagnetized state
of a textured material. Rather it is identical with the ho-pole figure of the
crystallographic texture

P(Y)o Pho(Y) (22)
It should also be mentioned that the pole figure of the crystallographic, as well as
of the magnetic texture, Eq. (7), and Eq. (21), are generally not centrosymmetric

Ph(--Y) :# Ph(+y) (23)
This applies, of course, particularly to the distribution of magnetization directions

P(-y) 4: P,(+y) (24)
The eornponent of the magnetization in the sample direction z is given by

M(z) e(y), cos (y, z). dy (25)

as is shown schematically in Figure 5. This function is zero in the demagnetized
state for any direction z.
The definition of the magnetic texture, Eq. (16), can also be applied in the case

of weak external magnetic fields as long as the fields does not rotate the
spontaneous magnetization out of the preferred crystallographic directions h. In
this case the magnetic texture function fU(g, H) describes the magnetization state
in the corresponding parts of the hysteresis loop, especially the initial magnetiza-
tion and the remanence.
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Figure 5 The component of the total magnetization
vector in the sample direction z is given by an integral
over the magnetic pole figure.

In higher external fields, the spontaneous magnetization will no longer be in
the initial directions h. Then the definition of Eq. (16) can no longer be used. In
this case, two other distribution functions may, however, be useful, i.e. the
distribution of magnetization directions with respect to the sample coordinate
system KA and to the crystallographic coordinate system Kn as is shown in
Figure 6

pM(y) =dV(y)/V (26)dy
dV(h)/V

(27)gM(h)
dh

These functions are the magnetic pole figure and inverse pole figures respectively.
The component of the total magnetization in the sample direction z is still given

by Eq. (25) with pM(y) replacing MP.3(Y). Under the assumptions made above, it
is for low magnetic fields

pM(y) p(y); iHl__.> 0 (28)
whereas in the vicinity of saturation the magnetization direction is parallel to the
field direction H. Then RM(h) is given by the inverse pole figure of the
crystallographic texture defined in Eq. (6)

RM(h) RH(h); IHI---> oo (29)
In this approximation, the high-field state is completely determined by the
crystallographic texture whereas the low-field state is, in general, not.

Figure 6 In higher magnetic fields the magnetization
is rotated out of the directions h of easiest mag-
netization. The distribution of magnetization direc-
tions can be considered in the sample coordinate
system K, (magnetic pole figure) or in the crystal
coordinate system (inverse pole figure).
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THE MAGNETIZATION ENERGY

The total magnetization energy of a polycrystalline ferromagnetic material
contains the crystal energy, stress energy, magnetization interaction energies and
the field energy (see e.g. Chikazami, 1964). As far as the influence of texture is
concerned, the crystal energy and the field energy can easily be considered
whereas the stress energy and the interaction energy depend on other structural
parameters, too, e.g. the correlation function defined in Eq. (12).
The crystal energy depends on the crystallographic direction of the magnetiza-

tion Er(h) whereas the field energy is given by the cosine between magnetization
and field direction. Hence, the total of these two energies is given by

E(g, h) EK(h) + IHl" cos <H, g- h > min (30)
Thereby h is the crystallographic direction and g. h the sample direction of the
spontaneous magnetization. The actual magnetization direction h minimizes Eq.
(30). In zero field H 0 Eq. (30) has several crystallography equivalent solutions

h =hg; H=0 (31)
In high magnetic fields, sufficient to saturation, the magnetization direction
y =g. h is parallel to the external field H. In low magnetic fields Eq. (30) will
generally have several (cryst.allographically non-equivalent) relative minima
which shift continuously into h with H-- 0.

hi= hi(g, H) (32)
In high fields, in the vicinity of saturation, only one of these directions will be
left, i.e. that one which is nearest to the field direction

hr hr(g, H) (33)
With H--, 0, this direction h becomes one of the directions hg. This corresponds
to the remanent state

h h (34)
If the material is at first magnetized to saturation and then the field is being
relaxed then the magnetization directions will be the ones given in Eq. (33). In
this case the magnetization direction is uniquely determined by the crystal
orientation g and the field H. Hence, in a polycrystal, the magnetization curve
from saturation to remanence is mainly determined by the crystallographic
texture (Figure 7).
The total magnetization energy of the textured polycrystal is given by the

integral

E(g, H). f(g). dg (35)(H)

with h h according to Eq. (33). The distribution of magnetization directions is
given by

P(y, H)= - f(g) d

y =g. h,(g, H)
(36)
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Figure 7 The hysteresis loop (schematical). The part between saturation and remanence is uniquely
related to the crystallographic texture.

Hence, in the validity range of this approximation, the magnetization energy
/(H) and the distribution of magnetization directions pM(y, H) are completely
determined by the crystallographic texture. In the saturation region, the
magnetization is in the sample direction y which is parallel to the direction of the
magnetic field H. Then Eq. (35) takes on the simpler form

(y) EK(h) gy(h), dh (37)

In other pa.rts of the hysteresis loop, the magnetization may assume different
directions h’ according to Eq. (32). The population of these directions will then
mainly be determined by other contributions to the total magnetization energy
not considered in Eq. (30), e.g. by the stress energy or energies due to
inhomogeneities. If these contributions to the total energy are strong enough,
then even the directions themselves will be changed. Stresses and structural
inhomogeneities are closely related to crystal orientation but they are not
uniquely determined by the orientation. Hence, in these cases it is quite difficult
to separate the influence of texture from other structural variables. Thus, a
general theory of the texture dependence for these parts of the hysteresis loop
cannot be given. Nevertheless, also these parts of the hysteresis loop are strongly
texture dependent.
The magnetization energy can be determined from torque curve measurements.

Thereby the absolute value of the external field IHI is being kept constant. The
sample is oriented such that the field direction H is parallel to the sample
direction y (, fl). The sample usually has the form of a circular disc with its
axis fixed perpendicular to the field direction (t 90) then the torque with
respect to the angle fl can be measured

M(fl) (38)
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MAGNETOSTRICTION

When a ferromagnetic crystal undergoes the magnetic ordering, i.e. the spon-
taneous magnetization is being developed in the crystal direction h then the
crystal lattice deforms according to the strain tensor e (see e.g. Chikazumi, 1964).
This magnetization effect can be described by a fourth-rank tensor

eij Zkl" hk hi (39)
where l’kl are the components of the magnetorestriction tensor referred to the
crystal coordinate system KB. In a polycrystalline material, the macroscopic mean
value of the strains is to be considered. Strictly speaking, this cannot be done
without taking elastic interactions into account. Nevertheless in a first approxima-
tion, which is often used, the simple orientation mean value of Eq. (39) can be
taken. For this purpose Eq. (39) must be referred to the common sample
coordinate system KA

eli ’iikl(g) Yk Y, (40)
Thereby the sample direction y of the spontaneous magnetization may depend
non-uniquely on g and H as described by Eq. (32). A unique situation exists in
the saturated state where the direction of the spontaneous magnetization is the
same sample direction y in all crystals. The orientation mean value of Eq. (40)
may then be written

ij ’iikt" Yk Yl (41)
with

Zijkl Zijkl(g) f(g) dg (42)

(This is equivalent to the Reuss-averaging of elastic strains).
Hence, saturation magnetostriction depends only on the crystallographic

texture. Furthermore, the tensor components Zikl(g) can be expressed by the
Zm,,op referred to the crystal coordinate system Kn and thecomponents 0

components of the transformation matrix

’ilk,(g)" 0 (43))mnop" gim gn gko glp

with gi] according to Eq. (2). Hence, Eq. (42) can be written

iik o q.m,,op (44)mnop *ijkl

where the quantities ’ depend only on the texture

Tmnop
ijkl gim "gin gko glp f(g) dg

and 0Zm,,op are the single crystal constants (Morris, 1969).

(45)

INDUCED ANISOTROPY

If the ferromagnetic material is a two-component solid solution the pair
interaction energy between A-B-pairs may depend on the angle between the



TEXTURE AND MAGNETIC PROPERTIES 85

magnetization direction h and the pair direction hp

EAB K-cos2 (h, hp) (46)
Hence, the total energy depends on the number n of A-B-pairs in the
crystallographically equivalent directions hp (see e.g. Chikazumi, 1964)

E(h) K, n cos2 (h, h) (47)

If the A and B-atoms have the possibility to change their positions during
magnetic annealing then the quantities n’ may assume different values which is
called directional ordering. If the magnetization direction during magnetic
annealing is the crystal direction k then ni(k) minimize Eq. (47)

E(k) r ni(k) cos2 (k, hp) min (48)

with these values of n i, Eq. (47) takes on the form

E(h, k)= K ni(k) cos2 (h, h) (49)

which can be written in the form

E(h, k)= Pk," hi "hi. kk kl (50)
Thereby Pkl are the components of a fourth-rank tensor referred to the crystal
coordinate system. In order to consider the orientation mean value of Eq. (50)
this tensor has to be referred to the sample coordinate system

E(y, z)= Pok,(g) Y, "Yi" Zk Zl (511
where y and z are the sample directions of the magnetization during measurement
and magnetic annealing respectively. Eq. (51) can then be averaged

(y, z) Pijkl Yi Y Zk Z1 (52)
with

Pijkl 0 ,mnop (53)emnop ijkl

The texture coefficients 2 are the same as in Eq. (44) i.e. they are defined by
Eq. (45).

SERIES REPRESENTATION OF THE TEXTURE

The texture function f(g) defined in Eq. (3) can be represented by a series of
harmonic functions which obey the crystal and sample symmetry according to Eq.
(4) (Bunge, 1982)

L M(X) N(,)

f(g) Z Z Z C". "(g) (54t
X=0 u=l v=l

Thereby (-) represents the sample symmetry and (’) the crystal symmetry and M
depends on the crystal symmetry and N on the sample symmetry. The degree L
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of the series is, in principle, to be extended to infinity. In practice, however, a
finite degree is sufficient e.g. L 22, or 34 are often used.

Similarly the functions P and R defined in Eq. (5,6) can be written
L

Ph(Y)

_ , F(h). (y) (55)
.----0 v=l

L M(.)

Ry(h) , ., H(y). ((h) (56)
Z=0 /=1

with the coefficients

4a (x)

F.(h) 2, +"---’ " C" K’r’(h) (57)

4
H(y)

2A + 1 C’" g’(Y) (58)

Thereby/(h) are spherical harmonics of crystal symmetry and/I(y) those of
sample symmetry.
The magnetic texture defined in Eq. (16) can be developed into a series similar

to Eq. (54) with the lower magnetic symmetry replacing crystal symmetry and the
sample symmetry being tridinic in the most general case. The relationship, Eq.
(18), between magnetic and crystallographic texture can then be expressed in
terms of the coefficients of the two series.

If we use the most general representation (without symmetries) for the
magnetic texture

f/P/(g) E E E 2P/(nno /n(g) (59)
.=0 m=--, n=--.

then Eq. (18) takes on the form

+X M(X)

_
mC’"E T’(g) E E C". A"" A (60)

m=--3, gC /=1 v---1

whereby the quantities A are symmetry coefficients of the crystal and sample
symmetry respectively as defined by Bunge (1982). The series expansion is an
optimal representation for the calculation of orientation mean values Eq.
(35, 37, 45). For this purpose, the energy E(g, H) in Eq. (35) must also be written
as series expansion

Lo M(,) N(.)

E(g, H)= , E , e"(H) "(g) (61)
=0 /=1 v=l

The degree Lo may be different from L used in Eq. (54). The integral Eq. (35)
can then be expressed in terms of the respective coefficients

[L, Lol M(X) N(.) e". C’/(H)= (62)
x=o ,= ,= 2,

where [L, Lo] is the lowest one of the two values L and Lo. The mean value
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Eq. (37) can be obtained by expressing EK(h) by a seres similar to Eq. (56)
Lo M(,)

EK(h) E E e. ((h)
.=0 /=1

(63)

Eq. (37) can then be written

(y) R(y)
X=O v=l -/=1 23,
[,ol

Z=O
(64)

The magnetization energy Er(h) is satisfactorily represented by Lo 6 and often
even Lo=4 is considered sufficient. Hence, Eq. (64) contains only very few
terms. Especially, it is seen that only the texture coefficients C up to 3. Lo
enter the mean value expression. The higher order texture coefficients with
> Lo have no influence. Hence, if only mean values of magnetic properties are

considered an abbreviated method of texture determination may be sufficient.
The texture coefficients ’ defined in Eq. (45) are needed to average all kinds of
fourth-rank tensor properties of textured materials. It can be shown that the
product of the four factors gi/in Eq. (45) can be expressed in the form of a finite
series terminated at 3, 4

4 ) N(.)

gim g/n gko glp E E tv( mnpxijkl] TV(g)"
,=0 /=1 v=l

(65)

Then Eq. (45) takes on the form

M(X) N(X) v[mnop
m,,o, ,, kl) C

ijkl E (66)
1=0 /*=1 v=l 2 + 1

where t are numerical coefficients which have been tabulated by Morris (1969)
for crystal symmetries higher than orthorhombic.
Most of the technologically used magnetic materials belong to the cubic or

hexagonal crystal symmetry whereby most of the magnetically soft materials are
cubic and the important hard materials are hexagonal. Usually, the magnetization
energy EK(h) is written in the cubic case

EK(h) K4" q94(h) + K6. tp6(h) (67)
with

tp4(h) (h2. h22 + h. ha2 + h23 h2) (68)
q06(h) h2 h. h (69)

Hence, the coefficients e in Eq. (63) have the form (see e.g. Bunge 1982 p.
316ff)

el 0.3094- K4 + -- (70)e 0.012038- K6
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In the case of hexagonal symmetry, magnetic energy is often expressed in the
form

E(tb) K2. sin2 tb + K,-sin4 (71)

where is the angle between the crystal direction h and the c-axis. In this case
the coefficients e take the form (e.g. Bunge 1982 p. 316 if)

16e -1.5853. [K2 + IK4]
e4 0.2701. K4

(72)

If we further assume the material to have the form of a sheet i.e. orthorhombic
sample symmetry then Eq. (64) contains the coefficients

in the cubic case and

.= Xe4 C"; v=0,2,4
=_L . (73)

13e6 C61V; v 0, 2, 4, 6

’=e2 C; v=0,2. (74)
=e4 C14V; V=0, 2, 4

in the hexagonal case. Hence, only seven or five texture coefficients enter the
mean value expression Eq. (64).

Texture determination is usually carried out by pole figure inversion, i.e. the
solution of Eq. (7), whereby the texture function f(g) may be expressed in terms
of the series expansion coefficients Eq. (54). With the usual degree of expansion
( 22) and cubic orthorhombic symmetry the series consists of 185 terms, of
which, however, only seven are needed according to Eq. (64) and Eq. (73). These
latter coefficients can also be obtained by much simpler measuring procedures
using, for instance, a fixed angle texture analyzer as described by Kopineck
(1986) (compare also Bunge, Kopineck and Wagner, this volume).

EXPERIMENTAL EXAMPLES

The approximation of the magnetization energy given in Eq. (67) and its texture
average given by Eq. (64) with the coefficients of Eq. (73) applies quite well to
the state of saturation. This was shown, for instance, by Szpunar and Ojanen
(1975) using torque curve measurements in textured Fe-Si transformer steels. An
example of their results is shown in Figure 8 which compares the measured and
calculated values.
Although the fourth order approximation of the magnetization energy strictly

applies only to the state of saturation, it also provides a quite satisfactory fit to
the total hysteresis losses and even to the total core losses as was shown, for
instance, by Hutchinson and Swift (1973). In this case, the single crystal
parameters K4 and K6, contained in Eq. (67), are to be determined empirically
by fitting the core loss curves for strips taken under different angles to the rolling
direction from magnetic transformer steel as is shown in Figure 9.
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Fitre $ Torque curve of an iron silicon sheet calculated from the texture and measured
experimentally. After Szpunar and Ojanen.

MAGNETIC TEXTURE MEASUREMENT

Magnetic anisotropy measurements have often been used as a simple and
economic method for texture inspection (see e.g. Wassermann, 1962). It is,
however, obvious that this does not provide an alternative to complete X-ray
texture analysis. Using Eq. (64) with magnetic energy measurements in different
sample directions y, the coefficients with -< 6 can be obtained at the best.
These coefficients are related to the texture coefficients C according to Eq. (73).
Hence, only seven of the total of say 185 texture coefficients can be determined
by magnetic methods. With these coefficients substituted in Eq. (54), only a low
resolution approximation to the complete texture functions is obtained (see also
Bunge, 1982 p. 340 ff and Bunge (to be published)).

Ao 1.02

Hz

A, 9"g7

---’’30 H , 15" 10

Neosured values
-Calculated from texture data

1,,,

00 10’ 20’ 300 /,0’ 50* t50’ 70* B0* g0*

Angle to rolling clrection

Figure 9 Power losses in Fe-Si transformer steel as a
function to rolling direction. After Hutchinson and
Swift.
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DETERMINATION OF THE MAGNETIC TEXTURE

The crystallographic texture defined in Eq. (3) can be determined from several of
its pole figures defined in Eq. (5), which are related to the texture function by Eq.
(7). The texture function is thus obtained from pole figures by solving a system of
equations (Eq. (7)). This is called "pole figure inversion".
The same procedure can also be applied to the magnetic texture defined in Eq.

(16), provided that the lower symmetry (e.g. tetragonal) of the magnetized state
can somehow be distinguished from the higher crystallographic symmetric (e.g.
the cubic symmetry). This is the case, if neutron diffraction is being used. The
neutron scattering factor contains a nuclear and a magnetic part. The first one
reveals the crystallographic, the latter one of the magnetic symmetry. The
intensity of unpolarized neutrons reflected from the lattice plane (hkl) perpen-
dicular to the crystal direction h can be expressed in terms of the relative intensity
factor

A 1 + b sin2 ;t (75)
where b is the ratio of magnetic versus nuclear scattering (see e.g. Bacon 1975).
This ratio depends on the value of sin O/, and X is the angle between the normal
direction h to the reflecting lattice plane (hkl) and the magnetization direction.

Pole figures of lattice planes having the same Bragg-angle cannot be measured
separately. If we exclude here "occasional" superpositions, then these are the
pole figures which are equivalent according to the crystallographic symmetry.
Hence, the pole figures measured by neutron diffraction can be expressed in the
form

N1 E [1 + bh sin2 Zoo. hi -Mg- (76)l"o,.hly )Phtr(Y) nno
where o are the crystal symmetry operations including those with inversional
character, N is the order of the crystal symmetry group and nh is a normalization
factor defined by

N

n [1 + bh. sin2 Xo. h] (77)

Because of Eq. (18) the first part of the term in brackets in Eq. (76)
corresponds to the crystallographic texture. Hence, Eq. (76) can be written

pfftr(y) N. fhCryt(y)
h

bh N
DMagn/" \ (78)+ sinE Xo. h "aoC. h ,Y)

nh

In the case of the completely demagnetized state, the magnetic texture is identical
with the crystallographic texture, Eq. (19). Hence, in this case it is

-k phCryst(y) (79)
nh

The first term in brackets is the part due to nuclear scattering, the second one is
that due to magnetic scattering.
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In the most general case Eq. (76) can be written

oMagn/" ,, (80)phetr(y) qi "h,

where the index stands for directions which are symmetrically equivalent
according to the crystal symmetry o but not equivalent according to the magnetic
symmetry o. The supeosition factors q have the form

[1 + bh" sin2 Xo-hiq Eo [1 + bh" sin2 Xo,. h] (81)
with , q, 1 (82)

Hence, in order to determine the magnetic texture from neutron diffraction pole
figures, the pole figure inversion problem has to be solved for the case of
superposed pole figures as was considered theoretically by Bunge (1982). The
problem can be solved easily using an iterative method as described by Dahms
and Bunge (1988).

If the crystallographic texture is already known, e.g. from X-ray diffraction,
then Eq. (80) is to be solved under the conditions Eq. (60) which contain the
assumed restriction that the spontaneous magnetization is only in the crystal-
lographically equivalent directions h0. Using an iterative method, Eq. (60) can
easily be included in the calculation procedure.
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