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Texture and Scale in Object-Based Analysis of
Subdecimeter Resolution Unmanned

Aerial Vehicle (UAV) Imagery
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Abstract—Imagery acquired with unmanned aerial vehicles
(UAVs) has great potential for incorporation into natural resource
monitoring protocols due to their ability to be deployed quickly
and repeatedly and to fly at low altitudes. While the imagery
may have high spatial resolution, the spectral resolution is low
when lightweight off-the-shelf digital cameras are used, and the
inclusion of texture measures can potentially increase the clas-
sification accuracy. Texture measures have been used widely in
pixel-based image analysis, but their use in an object-based en-
vironment has not been well documented. Our objectives were
to determine the most suitable texture measures and the optimal
image analysis scale for differentiating rangeland vegetation using
UAV imagery segmented at multiple scales. A decision tree was
used to determine the optimal texture features for each segmen-
tation scale. Results indicated the following: 1) The error rate
of the decision tree was lower; 2) prediction success was higher;
3) class separability was greater; and 4) overall accuracy was
higher (high 90% range) at coarser segmentation scales. The
inclusion of texture measures increased classification accuracies
at nearly all segmentation scales, and entropy was the texture
measure with the highest score in most decision trees. The re-
sults demonstrate that UAVs are viable platforms for rangeland
monitoring and that the drawbacks of low-cost off-the-shelf digital
cameras can be overcome by including texture measures and using
object-based image analysis which is highly suitable for very high
resolution imagery.

Index Terms—Object-based classification, rangelands, scale,
texture, unmanned aircraft.

I. INTRODUCTION

R EMOTE SENSING data and image analysis tools have

become an integral part of rangeland mapping, assess-

ment, and monitoring in recent years. While satellite imagery

and aerial photography have been used for these tasks [1],

imagery acquired with unmanned aerial vehicles (UAVs) of-

fers several advantages. UAVs can be deployed quickly and

repeatedly and are less costly and safer than piloted aircraft.
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UAVs can also obtain subdecimeter resolution imagery. These

advantages make UAVs ideal for use in forest fire applications

and other natural disasters [2], particularly if orthoimagery can

be produced in near real time, and with high accuracy [3].

In rangelands, UAV imagery provides the ability to quantify

spatial patterns and patches of vegetation and soil not detectable

with piloted aircraft or satellite imagery [4], [5]. The questions

that ecosystem modelers and agencies charged with evaluating

rangeland health are attempting to solve cannot be answered

with the comparatively lower resolution of imagery from pi-

loted aircraft. UAV imagery, on the other hand, offers the ability

to detect and map spatial characteristics of vegetation and gaps

between vegetation patches associated with erosion risk and

wildlife habitat quality [5].

Due to low payload capabilities of small- and medium-size

UAVs, imagery is often acquired with inexpensive off-the-shelf

digital cameras. While the spatial resolution of this imagery is

high, the spectral resolution is not, and imagery usually lacks a

near-infrared band. For that reason, texture can be a potentially

useful parameter for mapping rangeland vegetation and soils

with this imagery.

Texture measures have been used extensively in remote sens-

ing, particularly with high and very high resolution images and

with panchromatic imagery [6]. In general, classification accu-

racies are improved by the use of texture [7]–[10]. Commonly

used texture measures are second-order statistics derived from

the gray-level cooccurrence matrix (GLCM). These statistics

describe changes in gray-level values of pixels and relation-

ships between pixel pairs in a given area [11]. Texture is a

statistical measure of structure and can be defined as smooth

when the within-class variability is lower than the between-

class variability. Likewise, texture is coarse when the within-

class variability is similar to or greater than the between-class

variability [12]. This property makes texture useful for dif-

ferentiating relatively smooth surfaces in an image (water or

bare ground) from coarser more textured surfaces (urban or

vegetated areas). With a fine enough resolution, lower textured

grass areas can be differentiated from higher textured shrubs,

which contain a larger amount of shadow pixels.

In pixel-based analysis, texture is calculated with moving

windows and suffers from the boundary problem, because

windows can straddle the boundary between two landscape

features and potentially different textures. This boundary prob-

lem increases with texture window size [10]. When texture is

calculated from segmented imagery, as is done in object-based
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image analysis [13], the boundary problem is minimized [14],

because the segments are relatively homogenous and texture is

calculated per segment.

Object-based image analysis has proven to be successful and

is often superior to pixel-based analysis with high and very high

resolution images that exhibit a large amount of shadow, low

spectral information, or a low signal-to-noise ratio [15], [16].

We used an object-based image analysis approach (eCognition,

now called Definiens Professional [13]) for mapping shrubs

with multispectral and panchromatic aerial photos [17] and for

mapping arid rangeland vegetation with QuickBird imagery

[18]. Analysis of UAV imagery with the same approach demon-

strated the ability to map small shrubs (30-cm diameter) and to

differentiate different types of bare soil and different densities

of grass cover [5].

In object-based image analysis, the analyst is faced with two

main challenges. The first challenge is the determination of

segmentation parameters, particularly the segmentation scale.

Because the segmentation parameters depend on both image

resolution and the objects of interest to be mapped, often, trial

and error, as well as visual analysis, is used to find acceptable

values [19]–[21]. An optimal scale parameter can be deter-

mined by using class separability indices [22] or by analyzing

local variance [23]. In many cases, multiple segmentation scales

are used to map detailed features at a fine segmentation scale

and broader features at a coarser segmentation scale [18],

[24]–[26]. In [27], the authors used a hierarchical segmentation

as a preprocessing tool for improving the subsequent feature

extraction process, which was driven by relationships of objects

at multiple scales. However, in this paper, our goal was to find a

single segmentation scale that would best separate bare ground,

shrubs, and grasses.

The second challenge is the determination of suitable fea-

tures for classification. In Definiens Professional, as in other

object-based image analysis software packages, potentially

hundreds of spectral, spatial, and contextual features are avail-

able for classification, and often, visual analysis or prior

knowledge is used to choose features subjectively. Due to

their complexity, texture measures such as GLCM are time-

consuming to calculate and display in an object-based envi-

ronment, particularly at fine segmentation scales. In addition,

if a high-dimensional feature space is used (such as all the

texture measures), the class samples have to be sufficient in

number to create a reliable covariance matrix [28]. This is often

prohibitive.

A faster and more objective tool for feature selection is a

decision tree, because it is a nonparametric statistical technique

that is not affected by outliers and correlations, it can reveal

variable interactions, and it is an excellent data reduction tool.

In a decision tree, a data set is successively split into increas-

ingly homogenous subsets until terminal nodes are determined

[29]. A common splitting rule in decision trees (and used in

this paper) is the Gini index, a measure of heterogeneity. If all

observations in a node belong to the same class, the Gini index

is zero; when different class sizes at the node are equal, the

index is one [29]. Decision tree results can be used by applying

the derived class prediction rules or by using the decision trees

as a feature selection tool. We used the latter application in

Fig. 1. BAT 3 UAV on catapult launcher ready for takeoff.

this paper and performed classification within the object-based

environment using a fuzzy classification approach.

Decision trees are commonly used for remote sensing ap-

plications and often reduce the classification error [30], [31].

Decision trees are also increasingly used in combination with

object-based image analysis due to their data reduction capabil-

ities [16], [18], [24], [32], [33].

In this paper, our objectives were to determine the optimal

segmentation scale and most suitable texture measures for

differentiating bare ground, shrubs, and herbaceous vegetation

in an arid rangeland using unmanned aircraft imagery. Results

are designed to be incorporated into a workable solution for

rangeland monitoring protocols using UAVs.

II. METHODS

A. Study Area and Data Collection

The imagery was acquired in October 2006 at the Jornada

Experimental Range in southern New Mexico in the northern

portion of the Chihuahuan desert. For this study, we selected

an area depicting a set of constructed shallow dikes designed

to retain water and promote vegetation growth. The chosen site

was a mixture of vegetation and areas of bare ground of various

soils. Dominant shrubs in the study area consisted of tarbush

(Flourensia cernua), honey mesquite (Prosopis glandulosa),

and broom snakeweed (Gutierrezia sarothrae), and dominant

grasses were bluestem (Bothriochloa laguroides), dropseed

species (Sporobolus spp.), and burrograss (Scleropogon

brevifolius).

The imagery was acquired with an MLB BAT 3 UAV. The

BAT system consists of a fully autonomous GPS-guided UAV

(10-kg weight), a catapult launcher, ground station with mission

planning and flight software, and telemetry system (Fig. 1). The

aircraft was equipped with a Canon SD 550 seven-megapixel

digital camera and flew at 150 m above ground, acquiring

imagery with 60% forward lap and 30% sidelap. The resulting

image footprints were 152 m × 114 m and had a pixel size of

5 cm. Eight images covering the dike area were orthorectified

using Leica Photogrammetric Suite 9.0 (Leica Geosystems

Geospatial Imaging LLC) with a root mean square error of

0.33 pixels and mosaicked into a single image. Brightness

differences between the images were minor, and no color
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balancing was required. Due to the object-based image analysis

approach used, minor changes in brightness values do not

affect the analysis, because individual pixels are aggregated into

image objects.

Ground data collection consisted of using a randomly se-

lected location, with a differentially corrected GPS, and delin-

eating 300 samples, 100 for each of the three classes of interest

(bare ground, shrubs, and grass) in polygon format. Because of

the object-based approach, samples in polygon format are more

appropriate than point locations [18]. In addition, because of

GPS error and the 5-cm resolution imagery, it is not possible

to relate GPS data to a single pixel. The average size of the

polygons was 56.1 m2 (SD: 5.2 m2) for bare ground, 16.3 m2

(SD: 2.5 m2) for grass, and 3.7 m2 (SD: 0.6 m2) for shrubs. The

difference in average size for each class was due to relatively

small patches of grass and the size of shrubs in this vegetation

community. Half of the samples were used for mapping pur-

poses, and half were retained for accuracy analysis.

B. Image Processing

The general workflow consisted of the following: 1) seg-

menting the image at multiple scales; 2) selecting suitable

texture measures to separate the three classes of interest by

using a decision tree; and 3) determining class separability as

well as classification accuracy with and without the selected

texture measures. The image was segmented using Definiens

Professional 5 [13]. Three segmentation parameters have to

be selected: scale parameter, color (spectral information), and

shape. The scale parameter is unitless and controls the general

size of image objects. A smaller scale parameter results in

smaller image objects. Color and shape are weighted from

zero to one, and smoothness and compactness, which are part

of the shape setting, can also be weighted from zero to one.

The segmentation is a bottom-up region merging technique,

whereby smaller segments are merged into larger ones based on

heterogeneity (similarity of spectral and spatial characteristics)

of adjacent image objects and controlled by the three segmen-

tation parameters [34].

Based on previous research in similar vegetation [5], [17],

[18], color/shape and compactness/smoothness were set to

0.9/0.1 and 0.5/0.5, respectively. The image was segmented at

15 segmentation scales starting with scale parameter 10 and

ending with 80 in increments of 5 (Fig. 2). Scale 80 was used

as the coarsest scale, because we wanted to retain individual

shrubs, and at a coarser scale than 80, shrubs were being merged

into broader image objects. The segmentation statistics are

shown in Table I.

C. Texture Features

In pixel-based analysis, GLCM statistics are computed for a

chosen pixel window (3 × 3, 5 × 5, etc.), while in object-based

image analysis as implemented in Definiens Professional 5, the

image is segmented first, using only the red, green, and blue

(RGB) values, then texture features are calculated for the image

objects. Border effects are reduced by taking into account pixels

that border the image object [13].

We used eight GLCM statistics and two gray-level difference

vector (GLDV) statistics in this paper. The GLDV is a sum

of the diagonals of the GLCM and a measure of the absolute

differences of neighbors. We used the average of the three input

bands and the average of the four possible directions to be

calculated due to the assumption that bare soil, shrubs, and

grass are not directionally biased.

The texture measures used were homogeneity (MHOM),
contrast(MCON), dissimilarity(MDIS), entropy(MENT ),
angular second moment (MASM), mean (MMEAN), stan-

dard deviation (MSTD), correlation (MCOR), GLDV angu-

lar second moment (V ASM), and GLDV entropy (V ENT ).
The statistics are defined as follows:

MHOM =

N−1
∑

i,j=0

Pi,j

1 + (i − j)2
(1)

MCON =

N−1
∑

i,j=0

Pi,j(i − j)2 (2)

MDIS =

N−1
∑

i,j=0

Pi,j |i − j| (3)

MENT =
N−1
∑

i,j=0

Pi,j(− lnPi,j) (4)

MASM =

N−1
∑

i,j=0

P 2

i,j (5)

MMEAN =

N−1
∑

i,j=0

Pi,j

N2
(6)

MSTD =
√

σ2

i ;
√

σ2

j , where

σ2

i =
N−1
∑

i,j=0

Pi,j(i − µi)
2

σ2

j =

N−1
∑

i,j=0

Pi,j(j − µj)
2 (7)

MCOR =

N−1
∑

i,j=0

Pi,j

(i − µi)(j − µj)

σiσj

(8)

V ASM =

N−1
∑

k=0

V 2

k (9)

V ENT =
N−1
∑

k=0

Vk(− ln Vk) (10)

where Pi,j is the normalized gray-level value in the cell i, j of

the matrix, N is the number of rows or columns, σi and σj are

the standard deviations of row i and column j, µi and µj are
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Fig. 2. Image segmentations of UAV image mosaic, showing (a) 100-m × 100-m area of the aerial photo mosaic, (b) finest segmentation at scale parameter 10,
(c) intermediate segmentation at scale parameter 45, and (d) coarsest segmentation at scale parameter 80.

the means of row i and column j, Vk is the normalized GLDV,

and k = |i − j|. Every GLCM is normalized according to

Pi,j =
Ci,j

N−1
∑

i,j=0

Ci,j

(11)

where Ci,j is the value of the cell i, j of the matrix.

D. Decision Tree Analysis

The concept behind a decision tree analysis is the successive

splitting of the data set into increasingly homogenous subsets

until terminal nodes are determined. In this paper, the response

variables were the vegetation classes, and the explanatory vari-

ables were the texture values for the sample objects. Texture

values for each of the sample objects for the three classes were

calculated and imported into the decision tree analysis software

CART by Salford Systems, which implements the algorithm

developed by Clausi [28]. The Gini index [35], a measure

of heterogeneity, was used as the splitting rule. Initially, a

maximal tree was grown and then pruned back to obtain an

optimal tree by using tenfold cross-validation. In this process,

a maximal tree is grown from 90% of the subsamples, and

10% of samples are reserved for assessing the misclassification

error. This process was repeated ten times, each time reserving

a different 10% for error assessment. The optimal tree is the

one with the lowest misclassification error. This analysis was

performed for each segmentation level.
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TABLE I
NUMBER OF OBJECTS AND MEAN OBJECT SIZE

FOR 15 SEGMENTATION SCALES

We identified the optimal texture measures at each seg-

mentation scale by assessing variable importance. Prediction

success, cross-validated error rate of the tree, and terminal

node purity, in conjunction with class separability and accuracy

from additional analysis, served as an indication of the optimal

segmentation scale for our data. We were also interested in

determining whether different texture measures dominated at

finer or coarser segmentation scales, and if one or few texture

measures would be suitable at most segmentation scales.

Correlations between texture measures have been reported

for several studies in pixel-based analysis [28], [36]–[38], but

not for object-based analysis. While correlation between vari-

ables is not a large concern in decision tree analysis, a classifi-

cation with multiple texture measures in Definiens Professional

is computer intensive, and fewer variables are preferred. For

that reason, correlation between texture measures was analyzed

using Spearmean’s rank correlation coefficient, which does not

require the assumptions of normality and linearity [39].

E. Classification Accuracy and Class Separability

Definiens Professional implements a fuzzy classification ap-

proach, whereby the outcome of a classification describes the

degree of membership to a specific class. The membership

ranges from zero (no assignment) to one (full assignment). The

closer an image object is located in feature space to a sample

of a class, the higher the membership degree is to this class.

The distance d between sample object s and image object o is

computed as follows:

d =

√

√

√

√

∑

f

(

vs
f − vo

f

σf

)2

(12)

where

vs
f feature value of a sample object for feature f ;

vo
f feature value of an image object for feature f ;

σf standard deviation of the feature values for feature f .

In order to convert the fuzzy classification results to a final

map with discrete classes, the class with the highest member-

ship degree is chosen for the final class assignment. The error

matrix is based on samples that represent image objects, but is

expressed in pixels. Classification accuracies (overall, produc-

ers, and users) and the Kappa Index of Agreement (KIA) [40]

were calculated for each segmentation scale for classifications

using only the RGB bands as well as using the RGB bands

plus the texture measures selected by the decision tree. This

allowed us to assess how much the classification was improved

by addition of texture features.

Separation distances between the classes are calculated in

Definiens Professional by determining for each sample of class

a the sample of class b with the smallest Euclidean distance

to it. This is repeated for samples of class b compared to

class a, etc. The Euclidean distances are then averaged over

all samples. Separation distances were calculated using the

following: 1) only the RGB bands and 2) using the RGB bands

plus the texture measures suggested by the decision tree for the

respective segmentation scales.

III. RESULTS

A. Decision Tree Results

The optimal texture features selected by the decision tree var-

ied for the segmentation scales; however, we observed several

trends. Table II shows the variable importance ranking for the

decision trees for each segmentation scale. Variable importance

is reported as a score in CART, ranging from 0 to 100, and it

reflects the contribution each variable makes in predicting the

target variable [35]. A score of 100 indicates the first splitter in

the tree. As the scale became coarser, fewer texture measures

were required by the tree to partition the classes. From scales

65 to 80, the same three texture measures (MENT , MCON ,

and MSTD) were chosen in the same order and with similar

scores. MENT most frequently received a score of 100, and

it was the texture measure chosen in every tree. In addition, it

ranked either first or second from scales 15 to 80. At finer scales

(10–40), MSTD, MDIS, or MCON had the highest scores.

In a decision tree, the cross-validated relative cost (CVRC)

is the misclassification or error rate of the tree, based on using

the tenfold cross-validation method in this paper. For each

segmentation scale, the tree with the lowest CVRC was chosen,

as is common in decision tree analysis. If a tree has a CVRC

of 0.25, it is interpreted as an error rate of 25% [35], meaning

that lower values of CVRC are desired. Results indicated that

the CVRC decreased from 60% at scale 10 to the lowest value

of 20% at scale 60.

The prediction success for the cross-validated samples also

indicated that segmentation scales at or near 60 appeared to

be most appropriate for this data set. Prediction success is

calculated similar to an error matrix, comparing the training

samples to the cross-validated samples in CART. At scales

10–30, the prediction success varied greatly for the three classes

of interest. At and beyond scale 35, the prediction success was

comparable for all the classes. The classes reached their highest

prediction success at scales 60 for grass, 75 for shrubs, and 80

for bare, while the overall prediction success peaked at scale 60

(Fig. 3).
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TABLE II
VARIABLE IMPORTANCE, REPORTED AS SCORES FROM CART, FOR 15 SEGMENTATION SCALES. A SCORE OF 100

INDICATES THE FIRST SPLITTER OR MOST IMPORTANT VARIABLE IN THE DECISION TREE

Fig. 3. Prediction success of decision trees for 15 segmentation scales.

The terminal node purity is another measure for assessing a

decision tree. Terminal node purity shows the homogeneity of

the terminal nodes of the decision trees and is an indication of

how well CART partitions the classes. In general, fewer nodes

with higher node purity are preferable to many nodes of lower

purity. It is also desirable that all classes show similar values of

node purity, which indicates a better classification based on the

decision tree. Terminal node purity followed a similar trend as

prediction success, with overall higher node purity above 88%

for scales 55 and coarser. At scale 65 and above, node purity

was above 90% for all classes with the exception of shrubs at

scale 75. The number of nodes in the decision tree gradually

dropped from a high of 15 at scale 10 to 3 nodes at scales 50–60,

after which nodes increased to 7 and then fell again to 4 at the

coarsest scale.

MCOR, MMEAN , and MENT were the three measures

showing the least correlation with other texture measures. At

finer segmentation scales (below 20–25), correlation coeffi-

cients often changed at a greater rate from one scale to the

next, while at coarser segmentation scales, the rate of change

in correlation coefficient was smaller. The highest correlation

coefficients that remained stable across all scale parameters

were found for MCON–MDIS and V ASM–V ENT .

B. Classification Accuracy and Class Separability

For all three class comparisons, class separability increased

with increasing segmentation scale, although for grass–shrub

Fig. 4. Class separation distances for three class combinations using only
RGB bands (closed symbols) and using RGB bands plus texture measures
selected by the decision tree (open symbols).

using RGB bands only, this increase was minimal (and not

visible on the graph at that scale) (Fig. 4). This behavior

occurred for RGB bands only as well as RGB bands plus

texture. In addition, when texture measures were included,

class separability was always greater than that for RGB bands

alone. This held true for all three class comparisons, with

only one exception for bare–shrub at scale 60. There was a

noticeable increase in separability after scale 40, particularly

for bare–shrub. Maximum separability for bare–shrub occurred

at scale 80, for grass–bare at scale 75, and for grass–shrub at

scale 65 (values for RGB+texture).

Similar to the class separability results, the overall accu-

racy and KIA increased with increasing segmentation scale

for both RGB and RGB+texture (Fig. 5). The inclusion of

texture increased the accuracy measures at all segmentation

scales with the exception of the coarsest scale 80, at which

the accuracy of RGB+texture was lower (92.25%) than the

accuracy of RGB bands alone (95.19%). In general, accuracy

percentages and KIA values were relatively high for both RGB

and RGB+texture, which is not surprising given the image

resolution and the fact that we only analyzed three classes.

Accuracies of producers and users showed confusion between
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Fig. 5. Accuracy assessment graphs for classification of UAV image into bare, grass, and shrub, showing (a) overall accuracy in percent and (b) KIA, for RGB
bands only (closed symbols) and RGB bands plus texture (open symbols).

Fig. 6. (a) Image mosaic, (b) entropy image, and (c) classification result at scale parameter 60.

grass and shrub until scale 40 was reached, after which both

producers’ and users’ accuracies were consistently over 80%,

with the only exception at scale 80, where producers’ accuracy

of shrubs dropped to 65% (RGB+texture). Both producers’ and

users’ accuracies for bare were consistently over 95%, with the

majority of values nearing 100%. The classification for scale 60

is shown in Fig. 6.

IV. DISCUSSION

The results of this paper give a strong indication that a

segmentation scale greater than 40 is most appropriate for

differentiating bare, grass, and shrub classes with UAV im-

agery in this arid rangeland. The results from the decision tree

analysis corroborate the results of the accuracy analysis: The

error rate of the decision tree was lower, prediction success

was higher, class separability was greater, and overall accuracy

and KIA were higher in > 40 than in < 40 scale parameters.

Taking into account all results, the optimal scale parameters

lie between 55 and 70 for this data set. This is also confirmed

by visual assessment, and if a single scale would be chosen,

we would select scale 60. While the absolute number of the

scale parameter changes with image resolution and classes of

interest, the knowledge that a relatively coarser segmentation

is more appropriate than a finer one is important. Based on

previous studies with aerial photos from piloted and unmanned

aircraft [5], [17] and QuickBird imagery [18] in this area, we

know that there is a tendency to segment an image at a finer

scale than the outcome of this study would indicate. This may

be due to the analyst’s familiarity with the pixel-based analysis,

or the tendency to want to capture every single shrub or grass

patch, or the belief that image objects can always be aggregated

to a coarser scale if needed.

Determining the optimal scale parameter is of utmost im-

portance in the object-based image analysis and, recently, has

been the topic of various studies [18], [22], [23]. An optimal

scale parameter is particularly important in studies such as ours,

where a single segmentation scale is used as a first assessment

of broad vegetation classes. We acknowledge that for more

detailed classifications, multiple segmentation scales may be

better suited so that vegetation patches could be mapped at

different scales and shrubs of different sizes could be classified

at greater detail.

Closer inspection of the imagery showed why the relatively

coarser scale parameters led to higher accuracy. At scales of

< 40, image objects were quite small and individual grass and

shrub patches consisted of multiple image objects. As the scale

increased, those patches, particularly shrubs, were delineated

more accurately and completely. At the coarsest scales, how-

ever, small shrubs were lost because they were more likely
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to be incorporated into neighboring objects (Fig. 2). Because

portions of shrub and grass patches may be relatively similar

spectrally and even with regard to texture, classification accu-

racy and class separability increased when those objects were

delineated more accurately, which occurred at segmentation

scales between 40 and 70.

As the study in [23] had shown, as objects are aggregated

with increasing segmentation, average local variance increases,

then levels out, and the authors used this behavior to determine

optimal segmentation scale. Others used a similar approach of

assessing local variance to determine appropriate scale in pixel-

based analysis [41], [42].

Another possible reason why the accuracy was higher as

scale increased, particularly with the incorporation of texture

measures, might have been the influence of an edge effect, even

though the edge effect is smaller in object-based analysis com-

pared to the moving window approach in pixel-based analysis

[12]. At a fine scale, there are numerous small image objects,

and therefore, the effect of the edge pixels is great. At coarser

scales and with larger image objects, the ratio between edge

pixels of an image object and the number of pixels in an image

object is lower than that at finer scales. It is also likely that

pixels that are edge pixels at small scales are integrated into the

image objects at large scales and are included with the spatially

adjacent classes.

The fact that fewer texture measures were chosen by the

decision tree as the scale parameter became coarser corrobo-

rates the findings of the accuracy assessment. Based on our

conclusion that a scale of 55–70 is most appropriate, the

most suitable texture measures based on variable importance

were MENT , MCON , and MSTD (Table II). Because

MCON and MDIS were strongly correlated at all scales,

either MCON or MDIS could be chosen. If only one texture

measure were to be used to reduce computing time, MENT

would be our choice, since it most frequently received a variable

importance score of 100. Entropy is a measure of disorder, and

contrast is a measure of spatial frequency or smoothness in an

image [43]. In our high-resolution imagery, it is apparent that

bare areas have considerably smoother texture (lower entropy

values) than either shrub or grass patches (Fig. 6), and shrubs

have a higher percentage of shadow and therefore higher spatial

frequency than grasses.

To our best knowledge, there have been no other studies of

the use of texture measures in object-based classification across

multiple scales. Therefore, comparisons can only be made with

texture studies in the pixel-based analysis using moving win-

dows. However, with regard to the choice of texture measures,

it appears that others found similar results, even with different

imagery. In a study of sea ice using radar imagery, Clausi [28]

reported that dissimilarity and contrast produced consistently

strong classifications for all data sets. Shokr [36] determined

that entropy and homogeneity were suited best for his study

of sea ice with radar imagery. Baraldi and Parmiggiani [38]

noted that contrast and energy (also called angular second mo-

ment) were most efficient for discriminating textural patterns

in AVHRR imagery. Coburn and Roberts [10] used texture

measures with digital aerial photography and found that entropy

yielded the largest gains in classification accuracy.

Since image objects are very small at the fine scales, more

edge pixels will be incorporated into the texture calculations,

possibly skewing the results. This is the most likely reason that

correlation coefficients often changed more erratically from one

scale to the next below scale parameters of 25, while the rate

of change in correlation coefficient was smaller as the scale pa-

rameter increased. Similar to our results, Clausi [28] and Barber

and LeDrew [37] reported that contrast and dissimilarity were

strongly correlated. On the other hand, Baraldi and Parmiggiani

[38] determined that contrast and homogeneity were strongly

and inversely correlated, while we observed an inverse but weak

correlation.

A knowledge of correlation is useful in this type of analysis.

Because decision trees are nonparametric in nature and cor-

related variables can be used as input, this tool may output a

set of suitable features that are correlated, as we saw in our

results. Since texture measures in object-based analysis are

time-consuming to compute, one wants to keep the number of

features to a minimum.

The class separability and accuracy analyses indicate that the

inclusion of texture measures improved the results at nearly all

segmentation scales. In general, classification accuracy was rel-

atively high, both for using only RGB bands and RGB+texture

bands. Therefore, the analyst has to decide whether a relatively

small increase in accuracy is warranted by the inclusion of

texture measures which have additional computing require-

ments. Using a workstation with two dual cores and 4 GB of

RAM, a classification using only RGB bands was completed in

1–3 min, depending on the segmentation scales. Adding one

texture measure increased the classification time to 55 min at

scale 75 and to 3 h when three texture measures were used. With

additional texture measures and a finer segmentation scale,

some classifications took up to 6 h to complete. The image file

size was 145 MB.

Due to the low flying height, the UAV imagery covered a

relatively small footprint on the ground, but the number of

pixels in the image was relatively high due to the 5-cm pixel

resolution. Therefore, UAV image analysis can be even more

computer intensive than the analysis of aerial photos from

piloted aircraft. Given those limitations, it is preferable and

less time consuming to use a decision tree analysis to find

the fewest most suitable variables than to perform a series of

classifications and/or class separability analyses to obtain the

same results, particularly if multiple segmentation scales are

analyzed.

While absolute scale parameters may have different values

in different landscapes and for different flying heights, we

expect that the approach of evaluating error rates and prediction

success from decision trees, coupled with assessment of class

separability and overall accuracy, can offer reliable guidance

for selecting an image segmentation scale in other landscapes

as well.

V. CONCLUSION

In this paper, we investigated texture measures at multiple

scales in object-based analysis for the purpose of differentiating

broad functional groups of vegetation in arid rangelands with
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subdecimeter UAV imagery. Relatively coarser segmentation

scales resulted in higher prediction success from the decision

tree, better class separability, and higher accuracy than finer

scales. The decision tree was a useful tool for narrowing

down suitable texture measures for ease of computing, and the

correlation analysis gave valuable insights into the changes in

correlation of texture measure pairs across multiple scales.

The results demonstrate that UAVs are viable platforms

for rangeland monitoring and that the drawbacks of low-cost

off-the-shelf digital cameras can be overcome by including

texture measures and using object-based image analysis which

is highly suitable for very high resolution imagery. Our results

will be incorporated into a rangeland monitoring protocol with

unmanned aircraft. With the recent increase in high-resolution

digital aerial cameras for piloted aircraft, the results have ap-

plicability in that field as well. Future studies will investigate

the suitability of this analysis approach for other vegetation

communities in arid rangelands and for more detailed vegeta-

tion classes. Additional studies are also needed to determine

if the correlation trends we observed for the various texture

measures across segmentation scales occur in other vegetation

communities.
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