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Abstract

This paper presents a texture aware end-to-end trainable iris recogni-
tion system, specifically designed for datasets like iris having limited
training data. We build upon our previous stagewise learning frame-
work with certain key optimization and architectural innovations. First,
we pretrain a Stage-1 encoder network with an unsupervised autoen-
coder learning optimized with an additional data relation loss on top of
usual reconstruction loss. The data relation loss enables learning bet-
ter texture representation which is pivotal for a texture rich dataset
such as iris. Robustness of Stage-1 feature representation is further
enhanced with an auxiliary denoising task. Such pre-training proves ben-
eficial for effectively training deep networks on data constrained iris
datasets. Next, in Stage-2 supervised refinement, we design a pairwise
learning architecture for an end-to-end trainable iris recognition sys-
tem. The pairwise learning includes the task of iris matching inside the
training pipeline itself and results in significant improvement in recog-
nition performance compared to usual offline matching. We validate
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our model across three publicly available iris datasets and the pro-
posed model consistently outperforms both traditional and deep learning
baselines for both ‘Within-Dataset‘ and ‘Cross-Dataset‘ configurations.

Keywords: Convolution Neural Network(CNN), Deep Learning, Iris
Recognition, Pairwise Matching, Texture Aware

1 Introduction

In this era of digital impersonation, security of multimedia systems such as
smartphones, smart homes, digital personal assistants, banking services, bor-
der security etc. becomes extremely important. Iris is one of the most reliable
biometric signatures which is not only unique for a person but, as an internal
organ (yet patterns are visible externally), iris is resilient to external pertur-
bations and is also stable over time. Thus, iris scanning plays a pivotal role in
controlling access grants to such multimedia devices.

Traditional approaches of iris recognition involves extracting handcrafted
features using predefined filter kernels such as Gabor [5, 19, 18], DCT [23],
Laplacian of Gaussian (LOG) [37] etc., which involves empirical filter parame-
ter selection. Most of the traditional methods extract iris descriptors from filter
responses of one form of filter kernels, or a combination of few. This limits the
capability to represent the complex iris textural patterns. On contrary, a Deep
CNN (Convolution Neural Net) is not limited by predefined choice of filter ker-
nels. Instead, a CNN has the potential to learn data driven filter kernels and
are thus more suited for representing complex iris patterns. Invigorated by the
enormous success of Deep Learning(DL) in solving image classification [11, 33],
object detection [9, 29], medical imaging [32, 16, 14, 13], etc., recently iris com-
munity has also started to explore the representation prowess of deep nets for
iris recognition [24, 7, 3]. Although there is a noteworthy gain of performance
in comparison to traditional frameworks, most of the proposed frameworks are
inspired from natural images that have distinctive colour and shape informa-
tion. Iris on the other hand is rich in discriminative textural patterns; however
very few works focused into incorporating the domain knowledge of iris while
designing the architecture. Also, no attention has been given to cater to small
datatset sizes (as low as only 5 samples per subject) in iris recognition. Some
of the initial works used transfer learning (using pre-trained models trained
on natural images) [24, 22] to combat dearth of training. However a straight
forward transfer learning from natural images having color, shape and struc-
ture information to a texture rich domain such as iris might not be a prudent
choice. To the best of our knowledge, our previous work [3] was the first sys-
tematic approach to address these issues with a stagewise learning strategy
and incorporating texture aware layers inside a CNN.

In this paper we build upon on previous work in [3], both at an archi-
tectural and optimization level. For Stage-1 pre-training, we propose a better
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autoencoding framework with a data relation loss between Gram matrix rep-
resentations of input and reconstructed images. While curating iris datasets,
it is possible to have slight relative changes between head and sensor positions
for the same subject during multiple acquisitions. This coupled with sensor
noises contribute towards a noisy dataset. In order to learn robust iris fea-
tures, we further enhance Stage-1 autoencoding with an additional denoising
component. Finally, in Stage-2, we initialize a sub part of the network with
Stage-1’s pre-trained encoder and introduce a pairwise learning strategy which
enables end-to-end learning of iris matching. This is in contrast to our previous
framework in which iris matching is not part of the training paradigm.

This paper presents the following key technical enhancements over our pre-
vious work [3].
– A better Stage-1 auto-encoding framework with data relation loss combined
with usual reconstruction loss; the modified autoencoder network fosters better
texture reconstruction which indicates learning better texture aware features
– Feature learning in Stage-1 with denoising auto-encoding framework: this
aids in learning robust iris features
– Designing a shared network learning strategy for Stage-2 which intakes a
pair of Stage-1 features from the corresponding iris pairs and directly returns
a matching score; this allows end-to-end learning of iris matcher in contrast
to offline matching in our previous work [3]. Pairwise learning drives the net-
work to efficiently learn the closeness or discrepancy of an iris pair resulting in
appreciable gain in recognition performance compared to our previous offline
matching
– A much more comprehensive evaluation framework with ‘all-v/s-all‘ match-
ing under a more challenging ‘open-world’ configuration across three publicly
available iris datasets for both within-dataset and cross-dataset settings. Our
approach consistently outperforms both traditional and deep learning based
methods across all evaluation settings and datasets.

2 Related Works

Initially, iris feature extraction was done by extracting hand-engineered fea-
tures from different filter bank responses. Extraction of features through a
pre-defined set of filters limits the widespread representation capability of
iris textures. Infact, for such approaches the performance heavily depends on
manual parameter selection. In contrast, deep learning learning paradigms
automate the feature learning process with the use of various learnable filter
kernels that enhances the feature representation of iris images and usually have
better generalization capability. We would first discuss some of the notewor-
thy traditional approaches and would then move to the recent deep-learning
school of thought.
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Fig. 1 Block diagram of the proposed framework. Stage-1: Unsupervised encoder pre-
training using relational autoencoder (Eq. 2). Stage-2: Initializing two identical and weight
shared copies of encoder with Stage-1 weights followed by supervised fine tuning for learning
an end-to-end iris matching using pairwise learning. (Sec. 3.2).

2.1 Traditional Methods

Daugman was one of the pioneers to work in iris recognition [4]. Iris fea-
tures were extracted using 2-D Gabor filters which were binarized to get the
Iriscodes. Hamming distance between different Iriscodes was calculated to eval-
uate the dissimilarity measure. Masek [19] extracted response from 1D Log
Gabor filters. Ma et al. [18] used multi-scale circularly symmetric sinusoidal
modulated Gaussian filters banks to extract iris features. XORing of binarised
features gave the dissimilarity score. Wildes et al. [37] used multiresolution
Laplacian of Gaussian (LOG) for extracting representative iris signatures.
Matching score was obtained by calculating the normalised correlation between
an iris pair. Monro et al. [23] used features from Discrete Cosine Transform
(DCT). To summarize, the traditional works mainly focused on handcrafted
iris feature representation. Such pre-defined filter responses of a particular kind
limits the iris textures’ representation capability. Also, the manual parameter
selection of such filter kernels influences the overall recognition efficacy.

2.2 Deep Learning Approaches

Iris datasets are usually small compared to natural images. Most of the iris
datasets have only few thousands of images [27, 12, 2] in contrast to natural
images that have millions of training data [6, 17]. Training a complex deep
learning model using small train set might overfit the model. Thus, transfer
learning was an obvious choice in such scenarios. Minaee et al. [22],Nguyen et
al. [24] used kernel weights from popular pre-trained network (for ImageNet
classification) previously trained on natural images, refined those weights on
iris datasets using supervised classification stage. Minaee et al. [22] for exam-
ple, refined the features obtained from different layers of VGGNet [30] using
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SVM classification stage on iris datasets. Menon et al. [21] used pre-trained
ResNet18 and fined tuned it for the iris datasets. However, directly applying
transfer learning across such disparate data domain without any special pro-
cessing might not be apt as natural images have predominance of structure,
color or shape information while iris is rich in textural signatures.

Gangwar et al. [7] proposed DeepIrisNet, which used a deep neural net-
work coupled with cross entropy loss to solve the iris classification problem.
Once the network is trained a fixed length feature of 4096 dimensions was
extracted for every test image from the second last layer of the trained
DeepIrisNet. Euclidean distance between these features are evaluated to cal-
culate the similarity score. Bagar et al. [1] proposed deep belief network based
iris classification framework. The architecture is primarily inspired from those
used for natural images, they are complex and deep which needs enough train-
ing data unlike iris datasets which lacks enormous training samples required
for effective training of such complex nets.

Our previous work, ICIP’20 [3] showcases the benefit of stagewise learning
for effective training of data constrained iris datasets. The paper proposed
feature learning using unsupervised training in first stage. The second stage or
the supervised stage is first initialised with learned weights from stage 1, later
fine tuned using classification head. For testing, similar to [7], fixed length
1024D features was extracted from the trained network in Stage 2. Euclidean
distance between a pair of representative iris features was evaluated to get the
dissimilarity score. The stagewise learning concept as stated in this manuscript
is inspired from our previous paper, ICIP’20 [3].

3 Methedology

In this section we elaborate our stagewise training and end-to-end pairwise
iris matching framework. We term our composite Stage-1 and Stage-2 frame-
work as CombNet . The block diagram is shown in Figure 1 and the detailed
architecture of both the stages is shown in Figure 2.

3.1 Stage-1: Autoencoding for Unsupervised Feature
Learning

In Stage-1, we propose to learn iris encoding using an autoencoder framework
trained with unsupervised reconstruction loss and an additional data relation
loss [20] to learn feature embedding that respects the data relations present
in input image. Additionally, we train the autoencoder with a denoising task
[36] to promote learning robust texture features.

3.1.1 Relational Autoencoder

A conventional autoencoder first projects a high dimensional data into a low
dimensional representation space using an encoder network; then, from this
compressed representation a decoder network reconstructs back the input data.
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Fig. 2 Netwok architecture. Stage 1: Feature pre-training using relational denoising
autoencoding. Stage 2: Pairwise matching. Note: BNi, PReLUi and AvgPooli are the batch
normalization, parametarized ReLU and average pooling used in order mentioned after iith

convolution, convi. TEL is the texture energy layer[3]. FC is the fully connected layer
and Sig is the sigmoid activation. BNti is the batch normalization after transpose convo-
lution, convti. For NDIRIS-0405 dataset, output channels of conv6 and BN6 is 1024. For
CASIA.v4-Interval and IITD datasets, output channels of conv6 and BN6 is 256.

The objective function trains the parameters of encoder and decoder such that
the reconstruction error is minimised.

If I is the input image, then the reconstructed image, Î = Dφ(Eθ(I)). Here,
Eθ(·) is the encoder (with trainable parameter set θ) and Dφ(·) is the decoder
(with trainable parameter set φ). The objective function is,

[θ∗, φ∗] = min
θ,φ

LR(I,Dφ(Eθ(I))) . (1)

Here, LR(·) is the reconstruction loss. Information bottleneck theory [34] sug-
gests that since we force the encoded space to be of lower dimensional than
the input space, the encoded space learns essential feature representation of
the input and discards non-relevant information. The encoded features are
thus well suited to serve as a feature initialization for the supervised refine-
ment stage, in which, the features can be finetuned based on the final task
requirement.

One significant drawback of compressing data from the original high dimen-
sional to the encoded low dimensional space without any special care is that it
fails to model the inherent data relation as present in original high dimension.
Thus, the objective function of conventional stacked autoencoder (Eq. 1) that
minimises just the reconstruction loss is not enough to capture the complex
iris textural patterns/relations. Towards this, we modify the objective function
in Eq. 1 by incorporating an additional data relation loss, LD. The modified
objective function is,

[θ∗, φ∗]Re = αmin
θ,φ

LR(I, Î) + (1− α) min
θ,φ

LD(IIT , Î ÎT ) ; (2)

where IIT is the similarity relation on the original image, Î ÎT is the similarity
relation on reconstructed image and α ∈ [0, 1] is a relative weight factor. LR(·)
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is the usual data reconstruction loss (we used (1 − SSIM)) and LD(·) is the
Mean Squared Error (MSE) loss.

IIT is the gram matrix representation of input image, I. Similarly, Î ÎT is
the gram matrix representation of the reconstructed image, Î. Gram matrix
has been a preferred texture representation block in deep learning based
applications such as style transfer [8], texture synthesis [31]. Gram matrix
representation of image I gives a sense of co-relation amongst the image pix-
els. Minimising the difference between IIT and Î ÎT fosters the spatial pixel
relation/arrangements of Î to be similar to input image I. Thus, incorporat-
ing relational loss along with usual data reconstruction loss is envisioned to
drive the Stage-1 network to learn better texture primitives. We term the
Stage-2 network initialised with the encoder optimised with Equation 2 as
CombNetERELθ
CombNetERELθ
CombNetERELθ

.

3.1.2 Robust feature learning with denoising autoencoder

Denoising autoencoder (DAE) [36] was first proposed to combat the ‘identity
learning‘ [35] problem of stacked autoencoder. The primary objective of DAE
is to reconstruct the original input image I from its noisy version, IN . DAE
offers the following benefits– a) learning bottleneck features which are stable
and robust against input perturbations; b) denoising task compels the network
to learn the data semantics because it has to reconstruct from perturbed pixels.
Both of these features are practically important for iris biometrics because
during image acquisition there can be various sources of errors such as sensor
noise, shift in relative sensor-head positioning, etc. In this work, we combine
the benefits of data relation preservation of relational autoencoder and robust
feature learning of denoising autoencoder into a single combined objective as
follows:

[θ∗, φ∗]Re+De = αmin
θ,φ

LR(I, ÎN )

+(1− α) min
θ,φ

LD(IIT , ÎN ÎN
T

)
(3)

where ÎN is reconstruction of original image I but from it’s noisy input version,
IN . In this work we get IN by adding noise sampled from a Normal distribution;

IN = I +N (0, σ) , (4)

where σ is the standard deviation. We term this variant of proposed network
as CombNetEREL+De

θ
CombNetEREL+De

θ
CombNetEREL+De

θ
.

3.2 Stage-2: Pairwise Matcher

This is the supervised pairwise matching stage. Unlike offline matcher [3, 7]
where the model training pipeline is agnostic of end task of matching, our
Stage-2 pairwise matcher network incorporates the end task of matching within
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the training pipeline. Thus, in this stage, objective of the training pipeline is
to learn whether a given iris pair is from same/different class.

This stage is initialised with weights of Stage-1 encoder, Eθ(·) which has
been optimised using Eq. 3. In this stage the encoder will be fine-tuned using
supervised shared network learning strategy shown in Figure 1. We abbreviate
this End-to-End pairwise Matching network as E2MCombNetEREL+De

θ
E2MCombNetEREL+De

θ
E2MCombNetEREL+De

θ
. As

shown in Figure 1, two identical copies (weights shared) of Stage-2 encoders are
first initialised with the weights of Stage-1. The encoding section is proceeded
by the pairwise matching sub network which is randomly initialized. The entire
Stage-2 network is then refined using supervised matching loss.

Specifically, let Eθ(I
c
i ) is the iris feature representation from the encoder

output for an ith training image from class c. Similarly, we can have another
representation as Eθ(I

k
j ). The objective of pairwise matcher is to determine if

Eθ(I
c
i ) and Eθ(I

c
j ) belong to same class or not. This stage is optimized using

binary cross entropy loss between the target label, y and predicted score from
the network. The target, y is defined as

y =

{
0, if c = k (i.e., same class)

1, if c 6= k (i.e., different class)

4 Dataset Description

In this section, we describe the different datasets used for our experiments.

4.1 Benchmark Datasets

We have performed our experiments on three popular iris datasets, namely,
ND-Iris-0405 [27], CASIA.v4-Interval [2] and IITD [12]. For iris recognition,
left and right iris of same person are considered to be two different classes [7, 3].
So, effectively, number of classes is always twice the number of subjects.The
details of the datasets are as follows:

1. ND-Iris-0405: This is one of the largest publicly available iris dataset.
There are a total of 64,980 images from 356 subjects (712 classes). From
each subject, first 25 left iris images are taken for training and first 10
right iris images are used for testing. For subjects with less number of
images than the aforementioned numbers, all left iris images are used for
training and all right iris images are used for testing.

2. CASIA.v4-Interval: This dataset is a subset of the CASIA.v4-Iris
dataset. There are a total of 2,639 images from 249 subjects (498 classes).
From each subject, all the left iris images are taken for training (on aver-
age 8 images/subject). First 10 right iris images are used for testing. For
subjects with less number of images than the aforementioned numbers,
all right images are used for testing.

3. IITD Iris Database This database comprises of 2240 images from 224
subjects (448 classes). All left iris images of all subjects form the training
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set (on average 5 images/subject) and all the right iris images comprise
the test set (on average 4 images/subject).

4.2 Iris pre-processing

The iris images are first segmented and then normalized (transformation of
annular segmented iris from cartesian to polar coordinate to get rectangular
patch) using OSIRIS v4.1 [25]. For fair comparison, we follow the same pre-
processing steps across all datasets and for all competing methods.

5 Experimental Setup

5.1 Training Protocols

All the models are trained with 32 batch size for about 8 hours on NVIDIA
GTX 1080Ti card with 11GB memory. The models are trained using Adam [10]
optimizer with learning rate 0.001 using Pytorch 1.0 library [26]. Iris images of
resolution 64× 512 are used for all methods except for VGG-16, for which the
image resolution is 224×224. In Eq. 4, σ is kept at 0.25. For pairwise learning,
to maintain homogeneity, a given batch has equal proportions of genuine and
imposter pairs. Such pairs are selected randomly.

5.2 Testing Protocols

5.2.1 Open world all-v/s-all testing framework

We evaluate recognition performance under the challenging ‘open world‘ set-
ting in which the test set class identities have neither been used during training
nor have been enrolled in the system. We perform an exhaustive ‘all-v/s-all‘
matching wherein matching score of each possible iris pair is considered for
testing. If a test example is matched with another test example of same class,
it accounts for a True Acceptance (TA) else it accounts for a False Reject (FR).
If a test example is matched with an example from another class, it accounts
for False Acceptance (FA).

5.2.2 Testing Configurations

Performance of various methods are evaluated under the following two testing
configurations:

1. Within Dataset: In this configuration, training and test data are parti-
tioned from the same dataset. In this setting even though test time class
identities are mutually exclusive of training class identities, the image
capture setup are same for train and test set as both the partitions are
selected from the same dataset.

2. Cross Dataset: In this setting, the model is trained on one dataset
and tested on a completely different dataset without any further fine-
tuning on the test dataset. This is more challenging because image capture
settings are different across datasets. Cross dataset evaluation usually
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speaks of the robustness and generalization capability of a iris recognition
framework and also mimics a product deployment scenario.

5.3 Evaluation Metrics

To benchmark performances of different competing methods, we report the
Equal Error Rate (EER) and Area under Curve (AUC) ∈ [0, 1] of the Detection
Error Tradeoff (DET) curve. EER is the point where difference between FAR
(False Acceptance Rate) and FRR (False Rejection Rate) is minimum. For a
good recognition system, smaller value of EER is preferred [3, 7]. DET curve
is the plot of FRR versus FAR. For a good recognition system, it is desirable
to have a low value for AUC under DET curve. We also plot DET curves to
visually compare performances of different competing methods.

5.4 Comparing Methods

Our proposed model is compared against various traditional as well as recent
deep learning frameworks. The methods are listed as below:

1. Traditional Methods: We compared against Daugman [4], Masek[19]
and Ma et al. [18]. Feature extraction of all the traditional methods were
implemented using USIT (University Of Salzburg Iris Toolkit) [28]. Tradi-
tional methods can only be compared for ‘Within-Dataset‘ configuration.
In ‘Cross-Dataset‘ configuration, a model is trained on one dataset and
tested on a different dataset. As traditional methods do not involve any
learning stage, ‘Cross-Dataset‘ configuration is not applicable for these
methods.

2. Deep-Learning Approaches: We have compared our method against
the typical DL techniques used for iris recognition. They are listed below:
(a) Transfer Learning: An obvious deep learning baseline on a data con-

strained domain such as iris is to finetune any popular ImageNet
pre-trained networks. Here, we finetuned a pre-trained VGG-16[30].
Before finetuning, we replace the last layer of VGG-16 to match the
number of classes on respective datasets.

(b) Training Deep Conventional CNN Frameworks From Scratch: We
have compared our work with DeepIrisNet [7] which is a direct
application of conventional CNN frameworks. Unlike transfer learn-
ing, DeepIrisNet trains the entire model from scratch.

(c) Stagewise Training: We have also compared against our previous
work, ICIP’20. [3].

We have evaluated the performances of above methods on both ‘Within-
Dataset‘ and ‘Cross-Dataset‘ configurations. It is to be noted that except
for our proposed method, all the remaining deep learning models pro-
cess a single image at a time and use offline matcher [3, 7] based on
features tapped from their respective tapping points. For ablation of
offline-matching variants of our architectural choices (refer to Table 1),
CombNetR, CombNetERELθ

and CombNetEREL+De
θ

, features are tapped
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Table 1 Ablation study of variants of architectural choices. (↓) is better.

Model EER (in%) ↓ AUC ↓ Offline Matcher? Pre-trained Encoder?

CombNetR 6.08 0.018 Yes No
ICIP ′20 [3] 5.01 0.015 Yes Yes
CombNetERELθ

4.81 0.013 Yes Yes

CombNet
EREL+De
θ

4.72 0.011 Yes Yes

E2MCombNet
EREL+De
θ

1.78 0.002 No Yes

from the penultimate fully connected layer of the architecture shown in
Figure 2. The offline matcher module of all the competing DL methods
are adapted from [3, 7], and therefore euclidean distance between a given
iris pairs gives the dissimilarity score.

6 Results

We first present an ablation analysis of different variants of our architectural
choices followed by comparative analysis against competing methods.

6.1 Ablation Study

Here we study the efficacy of variants of our architectural choices on NDIRIS-
0405 under Within Dataset configuration (Section 5.2.2).

6.1.1 Pre-training of Encoder versus Randomly Initialized
Encoder

Here we first show the benefit of encoder pre-training (via autoencoder
training) over a randomly initialised encoder, CombNetR. We compare our
auto-encoder pre-trained network, CombNetERELθ

against randomly initialized
CombNetR.

CombNetR achieves (6.08, 0.018) for (EER, AUC), while CombNetERELθ

achieves (4.81, 0.013) – an improvement of 20.88% for EER and 27.77 % for
AUC. Recognition performance is further enhanced with our additional design
choices of incorporating denoising auto-encoding and pairwise learning (to be
discussed in next sections). From Table 1, the trend of superiority in perfor-
mance can be observed for models with pre-trained encoder over randomly
initialised encoder.

Such improvement of performance with stagewise learning is in line with
the observation of our previous work, ICIP’20 [3]. In this paper, we enhanced
the performances of ICIP’20 further with our proposed design choices.
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Fig. 3 Visual comparison of texture reconstruction of proposed versus our previous work,
ICIP’20 [3] on three different iris images. Top Set: Original images, Middle Set: Recon-
struction from ICIP’20, Bottom Set: Reconstruction from proposed method. It can be
seen clearly that proposed method fosters better reconstruction of texture patterns which is
a signature of learning better texture primitives. Best viewed when zoomed in.

6.1.2 Benefit of Encoder Pretraining with Relational
Autoencoder

Here we show the benefit of using relational autoencoder over conventional
autoencoder as used in ICIP’20 [3] for encoder pre-training. CombNetERELθ

is the Stage-2 recognition framework whose encoder is pre-trained in Stage-
1 using relational loss (Eq. 2). From Table 1 we can see that CombNetERELθ

achieves a relative improvement of 4% and 13.33% in terms of EER and AUC
compared to ICIP’20.

We attribute the better performance of CombNetERELθ
to a better tex-

ture representation learning during encoder pre-training in Stage-1. First, an
encoder learns to represent an iris image as a compact texture representa-
tion. Second, we observe that the texture reconstruction of CombNetERELθ

is superior to that of [3]. In Figure 3, we compare some example recon-
structions from Stage-1 of CombNetERELθ

and ICIP’20 on three different iris
images. CombNetERELθ

is able to reconstruct finer texture details compared
to ICIP’20. Addition of the relational loss thus encourages the network to
learn textures aware features which fosters better texture reconstruction.
Since Stage-2 finetuning is common for both of the methods, the enhanced
recognition performance can be attributed to a better encoder pre-training in
Stage-1 of CombNetERELθ

enabled by the additional data relation loss.

6.1.3 Benefit of Encoder Pretraining with Relational
Denoising Autoencoder

Here we show the benefit of augmenting additional denoising loss (Eq. 3)
while training the relational autoencoder. We term this combined architecture
as CombNetEREL+De

θ
. From Table 1, it is observed that CombNetEREL+De

θ
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Fig. 4 Comparative DET curves of proposed method and three popular traditional base-
lines on: Left: NDIRIS-0405, Middle: CASIA.v4-Interval, Right: IITD datasets under
Within Dataset matching configuration. The curve closest to the bottom is desirable for
better recognition performance, which is the case for our proposed model.

achieves a relative gain of 1.90% and 15.38% on EER and AUC compared to
CombNetERELθ

. Corresponding gains with respect to ICIP’20 are 5.8% and

26.4%. Iris images can be perturbed by different noise sources such as sensor
noise, sensor-head misalignment etc. Denoising autoencoding aids extraction
of features resilient against such perturbations which manifests in better
recognition performance.

6.1.4 End-to-End Pairwise Matching versus Offline Matching

Here we show the benefit of learning an end-to-end trainable iris pair matcher
over the usual paradigm of offline matching. Usually an iris recognition
has a feature learning stage, followed by an offline matcher module that
computes the matching score between the iris features through some deter-
ministic distance measure. In contrast, our pairwise matcher framework,
E2MCombNetEREL+De

θ
, directly predicts if an iris pair belongs to same/d-

ifferent class. Thus, end task of matching is incorporated into the training
pipeline.

As observed from Table 1, E2MCombNetEREL+De
θ

gives the best per-

formance with an EER of 1.78 and AUC of 0.002. This is a significant
improvement of 62.28% on EER and 81.81% on AUC over our best offline
matching framework of CombNetEREL+De

θ
while the improvements over our

ICIP’20 [3] are 64.47% and 86.66% respectively. The observations strongly
encourages end-to-end training of pairwise iris matching instead of the usual
practise of offline matching.

We hypothesize that the pairwise learning strategy promotes better learn-
ing of differential features from a pair of images and ultimately fosters in better
end result of matching task.

Going forward, based on the observations of ablation study, we always refer
to E2MCombNetEREL+De

θ
as our proposed method, unless otherwise stated.
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Table 2 Benchmarking the performance of our proposed model against traditional
methods on NDIRIS-0405 dataset under Within Dataset testing configuration. (↓): lower
is better.

Model EER (%) ↓ AUC ↓

Daugman [4] 7.56 0.053
Masek [19] 6.11 0.026
Li Ma et al. [18] 5.96 0.028
Proposed 1.78 0.002

Table 3 Benchmarking the performance of our proposed model against traditional
methods on CASIA.v4-Interval dataset under Within Dataset testing configuration. (↓)
is better.

Model EER (in%) ↓ AUC ↓

Daugman [4] 14.97 0.077
Masek [19] 8.05 0.012
Li Ma et al. [18] 15.33 0.047
Proposed 3.33 0.005

Table 4 Benchmarking the performance of our proposed model against traditional
methods on IITD dataset under Within Dataset testing configuration. (↓) is better.

Model EER (in%) ↓ AUC ↓

Daugman [4] 1.87 0.0060
Masek [19] 1.29 0.0030
Li Ma et al. [18] 1.16 0.0040
Proposed 0.85 0.0001

6.2 Comparison with Existing Methods

We compare the performance of our final proposed model (E2M -
CombNetEREL+De

θ
) against various traditional as well as deep learning frame-

works across Within Dataset and Cross Dataset testing configurations.
Within Dataset Performance: Here we compare efficacy of our proposed
model against both traditional and deep learning approaches on NDIRIS-0405,
IITD and CASIA.v4-Interval datasets.

Tables 2, 3 and 4 shows the performances of our proposed model against
three popular traditional baseline architectures on NDIRIS-0405, CASIA.v4-
Interval and IITD datasets respectively. Relative gain of our proposed method
in terms of EER over Daugman, Masek and Li Ma et. al. are respectively
76.45%, 70.86%, 70.13% on NDIRIS-0405. On CASIA.v4-Interval the respec-
tive gains are 77.75%, 58.63% and 78.27% and on IITD the respective gains
are 54.54%, 34.10% and 26.72%. In terms of AUC, the relative gain over
Daugman, Masek and Li Ma et. al. on NDIRIS-0405 are 96.22%, 92.30% and
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Fig. 5 Comparative DET curves of proposed method against deep learning baselines
on: Left: NDIRIS-0405, Middle: CASIA.v4-Interval, Right: IITD datasets under Within
Dataset matching configuration. The curve closest to the bottom is desirable for better
recognition performance, which is the case for our proposed model.

92.85% respectively. On CASIA.v4-Interval the respective gains are 93.50%,
92.30% and 92.85% respectively. On IITD the respective gains are 98.33%,
96.66% and 97.50% respectively. Although our proposed method outperformed
the traditional baselines on all the three datasets, the relative gain of pro-
posed framework is less in IITD dataset in comparison to the gains on the
other two datasets. This can be attributed to the very small training dataset
size of IITD. Traditional techniques extract features from handcrafted filters
with deterministic filter parameters and thus do not have training stage and
therefore do not require huge volumes of data for training. Deep learning archi-
tectures on the contrary requires huge volume of data for fruitful training
[30, 11]. However, our texture attentive stagewise architectural choices cou-
pled with pairwise learning scheme, efficiently combats the prominent scarcity
of training data in IITD dataset and still manages to outperform the tradi-
tional baselines. Figure 4 compares the DET curves which again bolsters the
superior recognition performance of our model across all the three datasets.

Tables 5, 6 and 7 compares the performance of our proposed method against
recent deep learning techniques on NDIRIS-0405, CASIA.v4-Interval and IITD
datasets respectively. On NDIRIS-0405, our method outperforms finetuned
VGG-16 by 77.38%, DeepIrisNet by 64.75% and ICIP’20 by 64.25% in terms
of EER. On CASIA.v4-Interval the corresponding gains are 69.94%, 68.73%
and 45.49%. On IITD dataset, the respective gains are 92.41%, 89.26% and
77.86%. In terms of AUC, the corresponding relative gains on NDIRIS-0405
are 92.30%, 81.81% and 85.71%. On CASIA.v4-Interval, the relative gains are
88.37%, 88.88% and 68.75%. For IITD the corresponding relative gains are
99.77%, 99.89% and 98.33%. Also, from DET curves of Figure 5 it can be
clearly seen that our proposed method outperforms all the competing models.
We consistently outperformed our previous work, ICIP’20 across all datasets.
This is attributed to a more texture aware encoder initialization (as previously
shown in Figure 3) coupled with our pairwise learning (as opposed to offline
matching in ICIP’20). It is to be noted that our relative gains over DeepIrisNet
are highest on IITD dataset which has the smallest train set. This strongly
encourages leveraging stagewise training and pairwise matching framework for
data constrained datasets such as iris. Finally, we observe that our stagewise
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Table 5 Benchmarking the performance of our proposed model against deep learning
methods on NDIRIS-0405 dataset under Within Dataset testing configuration.(↓) is
better.

Model EER (in%) ↓ AUC ↓

Finetuned VGG-16 7.87 0.026
DeepIrisNet [7] 5.05 0.011
ICIP’20 [3] 4.98 0.014
Proposed 1.78 0.002

Table 6 Benchmarking the performance of our proposed model against deep learning
methods on CASIA.v4-Interval dataset under Within Dataset testing configuration.(↓)
is better.

Model EER (in%) ↓ AUC ↓

Finetuned VGG-16 11.08 0.043
DeepIrisNet [7] 10.65 0.045
ICIP’20 [3] 6.11 0.016
Proposed 3.33 0.005

Table 7 Benchmarking the performance of our proposed model against deep learning
methods on IITD dataset under Within Dataset testing configuration. (↓) is better.

Model EER (in%) ↓ AUC ↓

Finetuned VGG-16 11.2 0.0450
DeepIrisNet [7] 7.92 0.0920
ICIP’20[3] 3.84 0.0060
Proposed 0.85 0.0001

training strategy is consistently a better option than finetuning a pre-trained
VGG-16.

Cross Dataset Performance: We evaluate the performance of various
competing deep-learning methods under this setting. As the traditional frame-
works do not have a learning stage, this setting is not applicable to those
methods.

This testing configuration is particularly challenging because the distri-
bution of test images’ statistics can be quite different from those of training
images. A good performance under this setting is a sign of data efficient
and generalised feature learning because a pre-trained system trained on one
dataset is directly applied to the test dataset without any further fine-tuning
on the test set. Thus, performance under this setting speaks of the generaliza-
tion capability of different models. Also, this configuration mimics a product
deployment scenario.

For our study, we have trained all the models on NDIRIS-0405 dataset
and tested directly on the test set of CASIA.v4-Interval and IITD datasets
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Table 8 Comparing performance of our proposed model against recent deep learning
techniques under Cross Dataset testing configuration. All the models are trained on
NDIRIS-0405 and tested directly on IITD dataset without any further fine tuning. (↓ is
better.)

Model EER (in %) ↓ AUC ↓

Finetuned VGG-16 4.80 0.013
ICIP’20[3] 3.66 0.008
DeepIrisNet [7] 3.30 0.010
Proposed 1.95 0.001

Table 9 Comparing performance of our proposed model against recent deep learning
techniques under Cross Dataset testing configuration. All the models are trained on
NDIRIS-0405 and tested directly on CASIA.v4-Interval without any further fine
tuning. (↓) is better.

Model EER (in %) ↓ AUC ↓

DeepIrisNet [7] 10.74 0.045
Finetuned VGG-16 5.10 0.020
ICIP’20[3] 6.08 0.026
Proposed 4.68 0.019

without any further fine tuning on the test data. The corresponding results
are reported in Tables 8 and 9 and the respective DET curves for both the
datasets are shown in Figure 6. As evident from both the tables as well as
the DET curves, even under such challenging scenario our proposed model
constantly outperforms the recent deep learning approaches. This experiment
thus bolsters the data efficient feature learning, robustness and generalization
capability of our proposed architecture.

Performance Trend Under Training Data Reduction: Here we per-
form an additional study to see the effect of reduction of training data on final
recognition performance. We compare our model against our previous work,
ICIP’20, and also against our Stage-2 architecture but with no autoencoder
pre-training for encoder. We term this model as, CombNetR.

We have conducted this study on NDIRIS-0405 dataset under Within
Dataset configuration.

At 100% i.e., under the original train split, we have 25images/subject on
average for training. This enables us to experiment at as low as 10% of original
train data. Casia.v4-Interval and IITD datasets already have much less images
per subject and so we exclude those datasets from this study. While reducing
dataset size, we reduced the number of examples/class. For example, at 50%
setting, on average, there are only 12images/class for training. In Figure 7,
we visualize the EER metric of the three models as we gradually reduce the
percentage of original train split to an extreme low of 10%.

There are two important observations. First, the randomly initialized model
consistently underperforms compared to both of the models in which the
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Fig. 6 Comparative DET curves of proposed and competing deep learning baselines under
challenging Cross Dataset matching configuration. All the competing models are trained
on NDIRIS-0405 dataset, and tested directly on Left: CASIA.v4-Interval, Right: IITD
dataset without any futher fine-tuning. The curve closest to the bottom is desirable for
better recognition performance, which is the case for our proposed model.

Fig. 7 Performance of three different architectural variants under progressively reduced
training size. Blue: Randomly Initialised Encoder (CombNetR). Red: Our previous work,
ICIP’20, [3] on stagewise learning where autoencoding (Stage-1) is optimised using only
SSIM loss. Mustard: Proposed pairwise learning where autoencoding (Stage-1) is optimised
using SSIM + Relational + Denoising losses.

Stage-2 encoder is pre-trained in Stage-1. This systematically again bolsters
the importance of stagewise training on small datasets. Second, the proposed
model outperforms our previous ICIP’20 [3] at all levels of train data size– this
manifests the efficacy of our proposed loss functions and training strategies
over our previous model.

Comparing Network Complexities: Iris recognition is becoming
increasing popular in many mobile or handheld devices to grant security access.
In such applications, lightweight models are preferred. In Table 10, we show
that on NDIRIS-0405 dataset, our proposed model utilizes only 0.91%, 1.95%
and 77.01% of total parameters as that used in DeepIrisNet, VGG-16 and
ICIP’20. On CASIA.v4-Interval, the corresponding values are, 0.31%, 0.66%
and 27.91%. On IITD dataset the corresponding values are 0.31%, 0.67% and
28.34% Also, the respective total FLOating Point Operations (FLOPs) for
our model is the least across all the competing methods. It is to be noted,
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Table 10 Paramter count and FLOPs of competing deep networks for NDIRIS-0405,
CASIA.v4-Interval and IITD. In the table columns the respective datset names are
mentioned as NDIRIS, CASIA and IITD.

Models
#Params
(in 106)

FLOPs
(in 106)

NDIRIS CASIA IITD NDIRIS CASIA IITD

DeepIrisNet [7] 293.23 292.35 292.15 7610.49 7609.61 7609.41
Finetuned VGG-16 137.17 136.30 136.09 10166.47 10165.59 10165.39
ICIP’20 [3] 3.48 3.26 3.21 792.27 792.05 792.00
Proposed 2.68 0.91 0.91 207.52 94.07 94.07

that for the other models, we are considering FLOPs only till feature tapping
layer (feature extraction stage) of the respective network. We are excluding
the additional computations required for the offline matching from this calcu-
lation. But, our model does not have such an offline matcher. So, in reality,
FLOPs of the remaining three models will be even higher. Low paramaters
and FLOPs counts for our model means it will have less memory footprint
and will require less computational resource during a recognition task. It is
to be noted, that reduction in computational cost compared to our previous
work, ICIP’20 [3] is marginal. This is primarily because, in this current work,
we focused mainly on better loss functions and training strategies with subtle
modification in base architecture.

7 Conclusion

In summary, this current work can be seen a data efficient paradigm of train-
ing lightweight deep networks on datasets which are rich in texture and also
lacks multitudes of training samples for each subject. This paper built upon
on the stagewise learning strategy [3] which proved to be an effective train-
ing paradigm on iris datasets which have limited training data. Seeding from
[3], the paper presents optimization and architectural novelties which fosters
better recognition performances for both Within-Dataset and Cross-Dataset
configurations over a variety of iris datasets. Specifically, this paper presents
a better autoencoding framework to train the Stage-1 encoder that acts as
a feature initializer for the Stage-2 pairwise matching framework. In Stage-1,
incorporation of relational data loss helped in learning better texture prim-
itives while the denoising loss component aided in learning robust features.
Combination of these two components in Stage-1 explicitly aided in Stage-2
matching performances as can be seen from Table 1. Moreover, our pairwise
matching framework in Stage-2 further enhances recognition performance com-
pared to that achieved from an usual offline matching paradigm. Our method
consistently outperformed deep learning baselines which either exploits trans-
fer learning or training an usual CNN network from scratch. We also took a
step further to show our model’s efficacy under extreme data reduction scenario
(Figure 7), Finally, we showed our network offers significant savings in memory
and FLOPs count compared to competing deep learning models. In summary,
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texture aware processing using data relation loss proved to enhance the recog-
nition performance. Motivated by this, in future we wish to explore better
texture reconstruction methodologies in Stage 1. Towards this end, an imme-
diate extension of this work can be to explore the benefit of using perceptual
loss [15] which is commonly used for texture preserving image reconstruction
tasks.
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