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Abstract

Many rural roads lack sharp, smoothly curving edges and a homogeneous surface
appearance, hampering traditional vision-based road-following methods. However,
they often have strong texture cues parallel to the road direction in the form of
ruts and tracks left by other vehicles. This paper describes an unsupervised al-
gorithm for following ill-structured roads in which dominant texture orientations
computed with Gabor wavelet filters vote for a consensus road vanishing point lo-
cation. The technique is first described for estimating the direction of straight-road
segments, then extended to curved and undulating roads by tracking the vanishing
point indicated by a differential “strip” of voters moving up toward the nominal
vanishing line. Finally, the vanishing point is used to constrain a search for the
road boundaries by maximizing texture- and color-based region discriminant func-
tions. Results are shown for a variety of road scenes including gravel roads, dirt
trails, and highways.

1. Introduction

Many complementary strategies for visual road following have been developed
based on certain assumptions about the characteristics of the road scene. For ex-
ample, edge-based methods such as those described in [17, 16, 1] are often used to
identify lane lines or road borders, which are fit to a model of the road curvature,
width, and so on. These algorithms typically work best on well-engineered roads
such as highways which are paved and/or painted, resulting in a wealth of high-
contrast contours suited for edge detection. Another popular set of methods for
road tracking are region-based [1, 3, 10, 20]. These approaches use characteristics
such as color or texture measured over local neighborhoods in order to formulate
and threshold on a likelihood that pixels belong to the road area vs. the back-
ground. When there is a good contrast for the cue chosen, there is no need for the
presence of sharp or unbroken edges, which tends to make these methods more
appropriate for unpaved rural roads.

Most road images can be successfully interpreted using a variant of one of the
two above approaches. Nonetheless, there are some scenes that possess neither
strong edges nor contrasting local characteristics. Figure 1(a) shows one such road
(the cross was added by our algorithm and is explained in Section 2.1). It is from
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Figure 1: (a) Desert road from DARPA Grand Challenge example set (with van-
ishing point computed as in Section 2.1); (b) Votes for vanishing point candidates
(top 3/4 of image)

a set of “course examples” made available to entrants in the 2004 U.S. DARPA
Grand Challenge, an autonomous cross-country driving competition [4] [DARPA
air-brushed part of the image near the horizon to obscure location-identifying
features]. There is no color difference between the road surface and off-road areas
and no strong edges delimiting it. The one characteristic that seems to define such
roads is texture, but not so much in a locally measurable sense, because there
are bumps, shadows, and stripes everywhere. Rather, one seems to apprehend
the roads most easily because of their overall banding patterns. This banding,
presumably due to ruts and tire tracks left by previous vehicles driven by humans
who knew the way, is aligned with the road direction and thus most apparent
because of the strong grouping cue imposed by its vanishing point.

A number of researchers have used vanishing points as global constraints for
road following or identification of painted features on roads (such as so-called “ze-
bra crossings,” or crosswalks) [14, 13, 15, 9, 2]. Broadly, the key to the approach is
to use a voting procedure like a Hough transform on edge-detected line segments
to find points where many intersect. Peaks in the voting function are good candi-
dates for vanishing points. This is sometimes called a “cascaded” Hough transform
[19] because the lines themselves may have first been identified via a Hough trans-
form. Similar grouping strategies have also been investigated outside the context
of roads, such as in urban and indoor environments rich in straight lines, in con-
junction with a more general analysis of repeated elements and patterns viewed
under perspective [18, 5].

All of the voting methods for localizing a road’s vanishing point that we have
identified in the literature appear to be based on a prior step of finding line seg-
ments via edge detection. Moreover, with the exception of [9], vanishing-point-
centric algorithms appear not to deal explicitly with the issue of road curvature
and/or undulation, which remove the possibility of a unique vanishing point as-
sociated with the road direction. Both of these limitations are problematic if
vanishing point methods are to be applied to bumpy back-country roads like the



desert scene discussed above.
In this paper we present a straightforward method for locating the road’s van-

ishing point in such difficult scenes through texture analysis. Specifically, we re-
place the edge-detection step, which does not work on many such images because
the road bands are too low-frequency to be detected, with estimates of the domi-
nant orientation at each location in the image. These suffice to conduct voting in
a similar fashion and find a vanishing point.

We also add a second important step to deal with road curvature (both in-
and out-of-plane), which is the notion of tracking the vanishing points associated
with differential segments of the road as they are traced from the viewer into
the distance. By integrating this sequence of directions, we can recover shape
information about the road ahead to aid in driving control. The method is easily
extended to temporal tracking of the vanishing point over sequences of images.

Finally, the estimated road curvature alone does not provide information about
the vehicle’s lateral displacement that would allow centering–for this we need esti-
mates of the left and right road boundaries. Vanishing point information provides
a powerful constraint on where these edges might be, however, by defining a fam-
ily of possible edge lines (for straight roads) and edge contours (for curved roads)
radiating outward (below the horizon line) from a single image location. This
allows the road segmentation task to be formulated as simply a 2-D search among
these curves for left and right boundaries which maximize the difference of some
visual discriminant function inside the road region vs. outside it. In this paper, we
describe an approach to combining measures of texturedness and color to robustly
locate these edges.

2. Methods

There are four significant components to the road following algorithm. First, a
dominant texture orientation θ(p) (the direction that describes the strongest local
parallel structure or texture flow) is computed at every image pixel p = (x, y).
Second, assuming a straight, planar road, all dominant orientations in the image
vote for a single best road vanishing point. Third, if the road curves or undulates a
series of vanishing points for tangent directions along the road must be estimated
(for a sequence of road images, the deformation of this vanishing point contour
from image to image must also be estimated, but due to space considerations it
is not described in this paper). Finally, the left and right edges of the road are
determined by optimizing a discriminant function relating visual characteristics
inside and outside the road region. We describe the last three steps in the following
subsections; our method of dominant orientation estimation using n = 72 Gabor
wavelet filters [7] at equally spaced angles is explained in detail in [11].

2.1. Vanishing Point Voting

For a straight road segment on planar ground, there is a unique vanishing point
associated with the dominant orientations of the pixels belonging to the road.
Curved segments induce a set of vanishing points (discussed below). Though road
vanishing points may lie outside the field of view (FOV) of the road-following
camera, it is reasonable to limit our search to the area of the image itself if the



following conditions are met: (1) The camera’s optical axis heading and tilt are
aligned with the vehicle’s direction of travel and approximately level, respectively;
(2) Its FOV is sufficiently wide to accomodate the maximum curvature of the
road; and (3) The vehicle is roughly aligned with the road (i.e., road following is
proceeding successfully).

Furthermore, we assert that for most road scenes, especially rural ones, the
vanishing point due to the road is the only one in the image. In rural scenes, there
is very little other coherent parallel structure besides that due to the road. The
dominant orientations of much off-road texture such as vegetation, rocks, etc. are
randomly and uniformly distributed with no strong points of convergence. Even
in urban scenes with non-road parallel structure, such texture is predominantly
horizontal and vertical, and hence the associated vanishing points are located well
outside the image.

In the following subsections we describe methods for formulating an objective
function votes(v) to evaluate the support of road vanishing point candidates v =
(x, y) over a search region C roughly the size of the image itself, and how to
efficiently find the global maximum of votes.

2.1.1 Straight Roads

The possible vanishing points for an image pixel p with dominant orientation
θ(p) are all of the points (x, y) along the line defined by (p, θ(p)). Because our
method of computing the dominant orientations has a finite angular resolution of
n
π , uncertainty about the “true” θ(p) should spread this support over an angular
interval. Thus, if the angle of the line joining an image pixel p and a vanishing
point candidate v is α(p,v), we say that p votes for v if the difference between
α(p,v) and θ(p) is within the dominant orientation estimator’s angular resolution.
Formally, this defines a voting function as follows:

vote(p,v) =
{

1 if |α(p,v)− θ(p)| ≤ n
2π

0 otherwise (1)

This leads to a straightforward objective function for a given vanishing point
candidate v:

votes(v) =
∑

p∈R(v)

vote(p,v) (2)

where R(v) defines a voting region. For straight, flat roads, we set R(v) to be the
entire image, minus edge pixels excluded from convolution by the kernel size, and
minus pixels above the current candidate v. Only pixels below the vanishing line
l implied by v are allowed to vote because support is only sought from features in
the plane of the road (though in urban scenes out-of-plane building features, etc.
may corroborate this decision [15]).

In this work, we assume that l is approximately horizontal. Other researchers
have inferred l for road and urban scenes by computing a second vanishing point
obtained with either another set of parallel lines [19, 13, 12] or the cross ratio
of equally spaced lines [13]. The road scenes we are considering have insufficient
structure to carry out such computations.



An example of votes computed at a 1-pixel resolution over C = the top three-
fourths of the image in Figure 1(a) (where the maximum vote-getter vmax is indi-
cated with a cross) is shown in Figure 1(b).

An exhaustive search over C for the global maximum of votes of the type nec-
essary to generate Figure 1(b) is costly and unnecessary. Rather, a hierarchical
scheme is indicated in order to limit the number of evaluations of votes and con-
trol the precision with which vmax is localized. Because it integrates easily with
the tracking methods described in the next subsection, we perform a randomized
search by carrying out a few iterations of a particle filter [6] initialized to a uniform,
grid-like distribution over C (with spacing ∆x = ∆y = 10).

2.1.2 Curved Roads

Road curvature and/or non-planarity result in a set of different apparent vanishing
points associated with different tangents along the section of road seen by the
camera. Therefore the procedure of the preceding subsection, which assumes a
unique vanishing point, must be modified to estimate the sequence of vanishing
points which correspond to differential segments of road at increasing distances
from the camera. Furthermore, over a sequence of images gathered as the camera
moves along the road, the vanishing point contour thus traced for a single image
must itself be tracked from frame to frame.

Suppose the spine of the approaching road section that is visible to the cam-
era is parametrically defined by a nonlinear space curve x(u), with increasing u
indicating greater distance along the road. If x(u) lies entirely in one plane then
the image of these vanishing points v(u) is a 1-D curve on the vanishing line l. If
x(u) is not in the plane, then the vanishing line varies with distance according to
l(u) (still assumed to be horizontal) and v(u) is a 2-D curve.

We cannot directly recover v(u) since x(u) is unknown. However, u is a mono-
tonically increasing function of the image scanline s, where s = 0 is the bottom
row of pixels, so we can attempt to estimate the closely related curve v(s). This
implies modifying Equation 2 to

votes(v(s)) =
∑

p∈R(v,s±∆)

vote(p,v) (3)

where R(v, s±∆) is now a differential horizontal strip of voting pixels centered on
scanline s. Smaller values of the height of the strip 2∆ yield a more accurate but
less precise approximation of the road tangent (∆ ≈ 0.1h, where h is the image
height, for the results in this paper). s is iterated from 0 until vmax (s) ∈ R(v, s±∆)
(roughly the point where the strip crosses the vanishing line).

A strip-based approach to vanishing point detection for curvature estimation
was also used in [9] for edge-detected road boundaries and lane lines, but with
only a few non-overlapping strips.

Furthermore, we do not simply estimate a best vanishing point fit vmax (s) for
every s independently by rerunning the full randomized search over C as described
in the previous subsection. Rather, we track the vanishing point by continuing to
run the particle filter with weak dynamics p(v(s) |v(s− 1)) (e.g., a low-variance,
circular Gaussian). This allows a more accurate estimate of vmax (s) because of



the concentration of particles already in the solution area, and reduces the chance
of misidentification of the vanishing point due to a false peak somewhere else in
the image.

The vanishing point of each strip s implies a tangent to the image of the road
curve at s. By hypothesizing an arbitrary point on the road, we can integrate
this tangent function over s (i.e., with Euler steps) and thereby trace a curve or
“flow line” followed by the road point. The results of this process are illustrated
in Figure 4 for two example road segments.

2.2. Constrained Road Segmentation

Searching for the road boundaries de novo would be onerous, but knowledge of the
vanishing point location(s) (plural for curved roads) provides a powerful constraint
on where they may be. Regardless of how curvy the road is, the flow lines induced
by the vanishing point tracking process represent a 1-D family of possible road
edges. Thus, the search for an optimal pair of left and right edges (l, r) is only
2-dimensional, and fairly tightly bounded by the range of possible road widths and
the vehicle’s maximum expected lateral departure from the road midline.

The criterion Q(l, r) which we seek to optimize is the difference between the
average values of some characteristic J within the image road region road(l, r) (as
defined by the candidate left and right edge curves and the borders of the image)
and that characteristic in the region outside the road offroad(l, r) (see [8] for a
related approach applied to autonomous harvesting). For MAP estimation, we
combined this with a weak Gaussian prior on edge locations p(l, r) to obtain the
following expression:

Q(l, r) = |J̄(road(l, r))− J̄(offroad(l, r))| · p(l, r) (4)

We used four region-based cues to distinguish the road: the color channels JR,
JG, and JB ; and a measure of texturedness JT . Because it was already computed
to obtain dominant orientations, it was inexpensive to use the magnitude of the
maximum complex response JT = Icomplex(x, y) at each pixel 1.

The objective functions QT for texturedness, QR for redness, QR for greenness,
and QB for blueness are shown in the lower part of Figure 2 for an example straight
road image (upper left) and its computed vanishing point. The possible angles
θ(l) and θ(r) of the straight candidate road edges with respect to the horizontal
vanishing line were limited to n = 72 discrete values. Thus the Q functions are
plotted as 72×72 height maps, with each row representing a hypothetical left edge
and each column a hypothetical right edge.

The computed road edges for each cue corresponding to the maximum of its
objective function, indicated with a cross in the height map, are plotted as lines on
the input image. Each of the color channel cues localizes the left road edge well,

1We have experimented with directly using the distribution of pixels JV that voted for vmax ,
because by our assumptions the density of such voters should be much heavier within the road
than outside it. For heavily banded roads, this approach was successful, but it did not extend
to lightly-textured roads with strong edges (like paved roads with painted lanes, for which our
vanishing point localization method works quite well). The key problem is that voters for such
roads are concentrated along their edges rather than distributed throughout the interior of the
road region.
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Figure 2: Road segmentation example: (Top left): Image with best texture-based
edges (inner cyan lines), color-based edges (outer red, blue, green); (Top right):
Best left and right edge estimates from green cue; (Bottom): Underlying objective
functions Q for texture and color channels.

while the right edge is found correctly only by the blue and green cues (the green
line is overdrawn by the blue). The red cue has a bimodal distribution on the right
edge and chooses the outer, incorrect option, while the texture cue’s estimate errs
inside the road on both sides.

Empirically, we have found that the left and right road edges are well-localized
over a diverse set of straight-road images in one of two ways: (1) One or more cues
find both edges accurately; or (2) One or more cues find only one edge accurately,
while another one or more cues localize the other edge well. Which cue or cues
exhibit good performance depends on the characteristics of the road material,
lighting conditions, and the distribution of flora and rocks in the off-road image
regions. Situation (2) most often occurs because the background has different
characteristics on the left and right sides of the road.

We have gotten promising preliminary results based on a simple measure of
the peakedness of the Q function. Specifically, we rank every cue a’s left edge
estimate l̂a and right edge estimate r̂a separately by calculating the kurtosis of the
1-D functions Qa(l, r̂a) and Qa(l̂, r), respectively, with the highest winning. The
intuition behind this measure is that peakedness is correlated with confidence in
the solution, and all else being equal we want a left edge estimate that is clearly
above the other choices given the right edge estimate, and vice versa. The best
left and right edges in the example image were both found by the green cue using
this procedure, as shown in the upper right of Figure 2.



Figure 3: Computed vanishing points are shown as crosses, with Gaussian fits of
a set of human responses marked with ellipses

3. Results

Straight roads Vanishing point localization by dominant texture orientation
voting worked robustly on predominantly straight roads with a wide variety of
surface characteristics. Some results are shown in Figure 3. 16 illustrative images
(the “Mojave” data) were chosen from a large set of high-resolution digital pho-
tographs taken on a scouting trip along a possible Grand Challenge route in the
Southern California desert. The algorithm was run on resampled 160×120 versions
of the images using particle-based search; the figure shows the computed vmax for
12 of the 16 images with a green cross. To assess the algorithm’s performance
vs. human perception of the vanishing point location, we conducted a small web-
based study: ∼ 30 people were given a short definition of road vanishing points,
shown two different example images with the vanishing point marked, and asked
to click where they thought the vanishing point was in 640× 480 versions of each
of the 16 Mojave images. 16 subjects completed the study; 11 of their 256 choices
(4.3%) were manually removed as obvious misclick outliers. The figure indicates
the distribution of human choices with purple 3σ error ellipses, most of which were
fairly tight. The median positional difference at the 320 × 240 scale between our
algorithm’s estimates and the human choices was 6.2 pixels horizontally and 4.3
pixels vertically.
Curved roads Examples of tracking the vanishing point for curved, non-planar
roads from a set of 720× 480 DV camera images captured on a variety of roads at
Fort Indiantown Gap, PA are shown in Figures 4(a) and (b). The yellow contour
indicates the trace of the estimated vanishing point positions as the scanline s
was incremented and the set of voters changed to points farther along the road.
Horizontal movement of the vanishing point is of course proportional to left-right
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Figure 4: Tracks of vanishing point (yellow) for curved road and induced road
“flow lines” (green)

road curvature, and vertical movement indicates a rise or dip in the road. Thus
we see that the road in Figure 4(a) is relatively level with a slight dip in the
middle, which is correct. On the other hand, the vanishing point for the road in
Figure 4(b) rises, indicating an approaching hill.

A more intuitive interpretation of the vanishing point motion can be obtained
by simply integrating the implied tangent to the image of the road curve (the line
joining any point on scanline s with its vanishing point v(s)) for a few sample
points. These are the green contours, or “flow lines,” in the images in Figures 4.
These curves are not meant to indicate the width of the road, for no segmentation
has been carried out, but rather only to illustrate the structure of the terrain that
the road ahead traverses.
Segmentation The vanishing points found automatically in Figure 3 were used
to constrain a search for the road edges in those images. The best left and right
edges obtained using the method of Section 2.3 are overlaid on the input images,
with the color of each side indicating which cue’s estimate was used (cyan = JT ,
with the other colors as expected). For efficiency, only n = 72 possible edge
locations angles relative to the vanishing point location were tested, limiting the
angular resolution of road boundary localization. Nonetheless, the performance
was strong on a variety of low-contrast roads, a number of which have ambiguous
borders even to a human (e.g., row 3, column 1–(3, 1); or the railroad embankments
in (1, 3) and (2, 2)). Overestimates of the road width, which are perhaps most
dangerous to an autonomous vehicle, are relatively small, and never so large that
the midline is off the road.

4. Conclusion

We have presented an algorithm for road following that at its most basic level
relies on road texture to identify a global road vanishing point for steering control.
By spatially partitioning the voting procedure into strips parallel to the vanishing
line and tracking the results, we can estimate a sequence of vanishing points for
curved road and recover road curvature through integration. Finally, we have



leveraged the information provided by the vanishing point to make the problem
of road boundary identification highly manageable even on road scenes with very
little structure. With no training, the system is robust to a variety of road surface
materials and geometries, and it runs quickly enough for real vehicle control.

Though our method for road segmentation performs satisfactorily on many
scenes, the general issue of how to identify the best cue or cues for a given image
is a difficult model selection problem, and needs to be examined in more detail.
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