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Correspondence 

Texture Classification by Wavelet Packet Signatures 

Andrew Laine and Jian Fan 

Abstract- This correspondence introduces a new approach to char- 
acterize textures at multiple scales. The performance of wavelet packet 
spaces are measured in terms of sensitivity and selectivity for the classi- 
fication of twenty-five natural textures. Both energy and entropy metrics 
were computed for each wavelet packet and incorporated into distinct 
scale space representations, where each wavelet packet (channel) reflected 
a specific scale and orientation sensitivity. Wavelet packet representations 
for twenty-five natural textures were classified without error by a simple 
two-layer network classifier. An analyzing function of large regularity 
( 0 2 0 )  was shown to be slightly more efficient in representation and 
discrimination than a similar function with fewer vanishing moments 
(Ds) .  In addition, energy representations computed from the standard 
wavelet decomposition alone (17 features) provided classification without 
error for the twenty-five textures included in our study. The reliability 
exhibited by texture signatures based on wavelet packets analysis suggest 
that the multiresolution properties of such transforms are beneficial for 
accomplishing segmentation, classification and subtle discrimination of 
texture. 

Index Terms- Feature extraction, texture analysis, texture classifica- 
tion, wavelet transform, wavelet packet, neural networks. 

I. INTRODUCTION 

Texture is an important characteristic for the analysis of many 
types of images including natural scenes, remotely sensed data and 
biomedical modalities. The perception of texture is believed to play 
an important role in the human visual system for recognition and 
interpretation. Despite the lack of a complete and formal definition 
of texture, a large number of approaches for texture classification 
have been suggested [1]-[7]. 

Previous methods of analysis for accomplishing texture classi- 
fication maybe roughly divided into three categories : statistical, 
structural and spectral. Statistical features based on second-order gray 
level statistics and gray level difference statistics have been studied 
extensively since the early 1970s. R. Haralick et al. [ lo]  proposed 
a set of 14 textural features extracted from a coocurrence matrix. 
They reported an overall accuracy rate of 84 percent on 11 types 
of textures obtained from satellite images. J. S. Weszka et al. [ l l ]  
performed a comparative study on textural features. They argued that 
features based on second-order and difference statistics performed 
better than features obtained from a 2-D Fourier power spectrum. 
They reported a 90 percent accuracy rate on 3 types of sample terrain 
images. More recently, model-based approaches related to random 
field models, have been investigated. Kashyap et al. [ 121 suggested a 
set of features based on a circular symmetric autoregressive random 
field model. They showed an average of 91 percent accuracy on the 
classification of 12 distinct types of natural textures. In addition, 
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F. S.Cohen et al. [13] reported an 99-100 percent accuracy rate for 
nine types of natural textures using a Gaussian Markov random field 
model. 

Although statistical features have been successful, psychophysical- 
experiments have shown that features based on global second-order 
statistics are not complete. For example, B.Julesz et al. [14] and 
A. Gagalowicz [19] showed that some textures with the same global 
second-order statistics remain easily discriminable. This suggests that 
local second-order statistics may differ from global ones. 

Experimental evidence on human and mammalian vision support 
the notion of spatial-frequency (multiscale) analysis that maximizes 
the simultaneous localization of energy in both spatial and fre- 
quency domains [15]-[18]. These recent findings have motivated 
several important studies. M. R.Turner [20] has applied Gabor 
functions to accomplish texture discrimination. A. C. Bovik et al. 
[21][22][23] and A. K. Jian et al. [24] and B. S. Manjunath et 
al. [26] used Gabor functions for the segmentation of texture. 
T.  R.Reed et al. [27] demonstrated an approach to texture seg- 
mentation by using several spatial-frequency representations. J. R. 
Bergen and M. S. Landy [28] computed a pyramid structure of 
different spatial resolution and four orientation specific channels 
for visual texture segregation. M. Unser [8], [9] introduced local 
linear transforms for texture segmentation and classification. In this 
correspondence, we present a novel method of texture classification 
by multiresolution representations obtained from wavelet packet 
analysis. 

Wavelet theory provides a precise and unified framework forspatial- 
scale analysis. Carter [29] first reported texture classification results 
using Morlet and Mexican hat wavelets. He achieved 98 percent 
accuracy on 6 types of natural textures. However, these wavelets 
were not orthonormal, and the Mexican hat wavelet lacked direction 
selectivity. In this correspondence, these drawbacks are overcome 
by using orthonormal and compactly supported wavelets. The ad- 
vantages are twofold. First, since the representation features at 
each scale are obtained by decomposing a signal (image) onto 
an orthonormal basis [30], correlation between scales is avoided. 
Second, orientation selectivity is built into the two-dimensional 
orthonormal wavelets included in our study. Experimentally, these 
capabilities provided outstanding sensitivity and selectivity for reli- 
able discrimination. In this paper, we introduce a methodology for 
identifying texture representations based on wavelet packet analysis 
[31], [32]. We suggest that such analyses can provide a powerful 
method for accomplishing robust texture classification, compared to 
traditional single resolution techniques. The efficacy of the tech- 
nique was rigorously demonstrated by the perfect classification of 
1600 samples (no errors), obtained from 25 classes of natural tex- 
tures. 

In the next section, we review the wavelet packet decomposition 
and define thetwo measures of information compared as signatures 
for texture discrimination. Section I11 presents an overview of our 
strategy and experimental design. Methods of sample acquisition, 
selection of wavelet packet bases, and the performance of two 
classifiers are described. In Section IV, we present our results 
and discuss the performance with respect to the several parameters 
considered in our investigation. Finally, Section V summarizes the 
results and conclusions of our study. 
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11. WAVELET PACKET SIGNATURES 

Wavelet packets are a generalization of orthonormal and compactly 
supported wavelets [34], [30]. Pioneered by R. Coifman et aL[31], 
[32], methods of wavelet packets analysis have been successfully 
used for data compression [33]. Wavelet packets may be described 
by the collection of functions {WJ(r)lj  E 2') obtained from 

2 % v 2 , + 1 ( 2 p - - 1 T  - I )  = C g m - 2 1 2 f N ; i ( 2 P s  - m )  (2) 
m 

where p is a scale index, 1 is a translation index, 116(s) = d ( z ) ,  
N'l(x) = vl(s), 4(s) is a scaling function and L I ( T )  is a basic 
wavelet [34], [30]. The discrete filters h k  and g k  are quadrature 
mirror filters [35], [34], [30]. 

We can show [31] that such wavelet packets are orthonormal in 
L 2 ( R )  and serve as bases similar to sinusoid functions in Fourier 
analysis. Furthermore, wavelet packets are well localized in both 
time and frequency and thus provide an attractive alternative to 
pure frequency (Fourier) analysis. The inverse relationship between 
wavelet packets of different scales can be shown by, 

P - 1  
2'1Vn(2'.2' - k )  = ~ h k - 2 1 2 2 b ~ 2 n ( 2 P - 1 ~  - I )  

r 
p--l 

+ C g k - 2 1 2  * ~ ~ 2 n + 1 ( 2 ~ - ' . r  - I ) .  (3) 

Analogous to Fourier methods, any function f(r) E L 2 ( R )  can be 
decomposed onto a wavelet packet basis. The coefficients of this 
decomposition are simply the inner products of f(s) with distinct 
wavelet packets. For example, coefficients from the inner product 
( f ( ; ~ ) . T I ; , ( 2 ~ s  - k ) )  indicate the intensity of this component in 
f ( x ) .  An approximation of an original function f(s) using wavelet 
packet Urn at scale 2 p  can be written as 

1 

i i i P f ( . r )  = CSE , 2% ~ ~ ~ ( 2 p . r  - /i) (4) 
I ,  

where 

Next, we show how wavelet packets may be computed efficiently. 
From (3), we may write 

Using (1) and (2), coefficients at coarser scales are calculated by 

S2pL.t = C hm--2i S," nl (7) 
1 

S;tii,r = Cgnl--2r S:.,. (8) 
77, 

Note that for standard wavelet decompositions [30], only two 
wavelet packets and 11'1 are used. In this case, the index n 
is restricted to R = 0, and only nodes S t  are decomposed from 
(7) and (8). Thus only the leftmost node at each level has children, 
and each level has exactly two nodes. Thus from the subband 
filtering (filter bank) point of view, the difference between a wavelet 
packet decomposition and the standard wavelet transform is that the 
former recursively decomposes the high-frequency components, thus 
constructing a tree-structured multiband extension of the wavelet 
transform. 

Fig. 1 .  Frequency responses of discrete filters, where ( i , j )  denotes rowi, 
colomn 1. (1,l): level 1, diagonal channel; (1,2): level 1,vertical channel; 
(1,3): level 1, horizontal channel; (1,4): level 1, dc channel. (2-5,l): level 2, 
four children of (1,l); (2-5,2): level 2, four children of (1,2); (2-5,3): level 2, 
four children of (1,3); (2-5,4): level 2, four children of (1,4). 

For discrete signals, we treat the original discrete signal as the set 
of wavelet packet coefficients at the first scale ( p  = 0), and then 
apply the technique previously described. Since we process digitized 
samples of textures, we focus on discrete signals for the rest of the 
correspondence. 

The basis functions are obtained by translation and scale change. 
They remain well localized in both time (spatial) and frequency 
domains and thus represent scale and spatial information. Thus, a 
complete tree presents the distribution of a signal within a scale space 
continuum. Note that the total number of coefficients in a complete 
tree decomposition is exactly equal to the number of points (pixels) 
in an original signal. Energy distributions within transform spaces 
have been applied in Fourier analysis [3]. Similarly, we will show 
similar significance in wavelet packet analysis. Since wavelet packets 
form orthogonal bases, their decompositions will preserve energy. It 
is easy to show that c G:,J = C(S2pi.y + (s;;:l,J2. (9) 

I I I 

Therefore, if we define a energy measure as Ef:  = E, (S:,,)', then 

Our strategy was to first compute the energy associated within each 
wavelet packet. We hypothesized that the energy pattern distributed 
in scale space shall provide unique information, and support a repre- 
sentation (signature) for classification. Thus, a signature was a feature 
vector consisting of a set of energy values. In this correspondence, we 
demonstrate that such signatures can provide a powerful and efficient 
means to accomplish signal classification. 

An alternative measure of information is entropy, defined by, 

H(.r )  = -E lskI21og l . r k 1 2 .  (11) 
k 

This measure was previously proposed in [lo] for texture analysis, 
and has also been used in [36] to identify a "best basis" for building 
wavelet packet libraries for signal compression. In this paper, we 
compare the entropy and energy measures described above for their 
performance in accomplishing robust texture discrimination. 

The extension for 2-D signals is straight forward by using aspecial 
class of separable 2-D wavelet packets. In this case, the energy 



1188 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. IS, NO. 11, NOVEMBER 1993 

Fig. 2. Twenty-five natural texturesrorr 1 : D1. DG. D l l  . 0 2 0 .  021: row 2 : DjG. DG5. D7.5. D82. 0101: 
r o w  3 : D.5.j. D6-1. D6l.  D11(J. DG4: voir 4 : D76. DIT. D5. D i .  Di2:  row 5 : Dl4. D6. DIG. 01 .  0 2 .  

preserving equation is specified by the sum 

Orientation selectivity is embedded in the tensor product of the low- 
pass filter h and high-pass filter $1, and therefore, energy distributions 
are captured in three orientations (subbands). Fig. 1 shows the set 
of equivalent frequency channels associated with a wavelet packet 
transform for levels one and two. 

111. METHODOLOGY 

In this section, we present our experimental design and analytic 
methods for accomplishing texture classification using wavelet packet 
representations. 

A. Texture Selection and Sumpling 

Twenty-three distinct natural textures were selected from the Bro- 
datz album (371 and two additional textures were obtained from 
public archive. The complete set and diversity of the twenty-five 
texture classes are shown in Fig. 2. Each texture class was digitized 
on a Microtek 3002 scanner at 130 samples/in density on a Sun4/75 
workstation, and stored as a 312 x ,512, 8 bitipixel digital image. Each 
texture class was then broken down into 128 x 128 sub-samples. Our 
selection criteria was such that each texture pattern sample maintained 
a certain degree of spatial periodicity within its 128 x 128 matrix size. 

Both a neural network and a minimum-distance classifier were 
usedto accomplish supervised classification. To obtain a large amount 
of data for training the classifiers, we adapted a method of overlapped 
sampling. We extracted 64 sub-samples of size 128 x 128 (pixels) 
from each original 512 x 312 sample texture. The amount of overlap 
was fixed at 43 pixels for extracting all sub-samples. 

B. Partitions of Wavelet Packet Space 
A complete set of wavelet packets were computed for each 128 x 

128 subsample. The discrete filters DS and D ~ o  were obtained from 
Daubechies [34]. Due to downsampling at each decomposition step, 
the size of each subsample was reduced by a factor of four. Thus, a 
subsample at level four, consisted of 64 (8 x 8) coefficients. Recall 
that each “parent” node has four “children.” Therefore, a complete 
five-level decomposition (levels 0 through 4) consisted of exactly 
341 wavelet packets. 

We measured the energy (and entropy) contributed by each wavelet 
packet,and treated its real value as a distinct feature element in a 
vector. Thus, in our representation, the maximum number of features 
encoded for a sample texture consisted of a vector of 341 real 
values. However, we investigated the classification performance of 
each signature supported by distinct subsets of wavelet packet nodes. 
Subset were defined by complete and overcomplete (redundant) 
representations. We considered six distinct partitions of wavelet 
packets selected from a complete decomposition tree (full recursion) 
and measured their performance in terms of sensitivity and selectivity 
for the discrimination of all twenty-five classes of natural texures. 
Next, we identify the six partitions of wavelet packet nodes that 
provided the bases for feature representation in our study. 

Complete set of wavelet pucket nodes: Each texture sub-sample 
was represented by a vector of 341 features. 
Standard wuvelets: As mentioned earlier, nodes of the standard 
wavelet decomposition (Mallat [30]) are a subset of a complete 
wavelet packet decomposition. In this case, the four leftmost 
nodes at each level of the complete wavelet packet decomposi- 
tion tree were selected. Thus, each sub-sample was represented 
by only 17 features. 
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Fig. 3. 
coefficients for decomposition levels 2, 3, and 4 ( ro11 .2 .  ~ O I I . , ! .  r o w , ) .  

Three sample textures ( r . o ~ y ) ,  and magnitude of wavelet packet 

3)  Levels 1, 2 and 3: In this case, each texture sample was 
represented by exactly 84 features. Energy features computcd 
from wavelet packet nodes of levels 0 and 4 were discarded. 

4) Levels 2 and 3: Each texture sample was represently by exactly 
80 features. 

5 )  Level 3: Each texture sample was represented by exactly 64 
features. 

6) Level 4: Each texture sample was represented by exactly 256 
features. In this case, energy features contributed from a single 
coarse scale. 

For each of the six representations, we computed feature vectors 
for the 64 subsamples of each texture class. Our database consisted 
of 42 samples for classification training and 22 samples for resting. 
Therefore, in total, our study processed 1050 (42 x 2.5) sample 
signatures in training and 550 (22 x 2.5) sample signatures in testing 
classification performance. 

In Fig. 3 , we show three samples of texture, and themagnitude 
of their wavelet packet coefficients for levels 2, 3, and 4 (from 
top to bottom). Fig. 4 displays in pseudo-color, energy signatures 
corresponding to the wavelet packet coefficients pictured in Fig. 3. 
The color map was obtained by first computing the logarithm for 
each feature value, then globally scaling the values within a 0-255 
range. Therefore, Fig. 4 shows a normalized energy distribution for 
each signature. 

C. Discrimination Using a Simple Minimum-Distance Classifier 
To decide the efficacy of wavelet packet signatures for texture 

classification, the performance of a simple minimum-distance classi- 
fier was evaluated. A single prototype minimum-distance classifier 
[40] was based on the assumption that each pattern class is 
representable by a prototype pattern ZI; (class center). The minimum- 
distance classifier assigned a pattern X of unknown classification to 

. . ,  

Fig. 4. 
the texture samples shown in Fig. 3. 

the class dk, if the distance DA. between X and zi was minimum 
among all possible class prototypes J) # d~., where the Euclidean 
distance DA. was defined by 

Log energy maps for wavelet packet nodes of levels 2, 3, and 4, for 

(1 3)  
j = O  

In practice, the true class centers Zi’s are also unknown. In our 
case (supervised classification), each class center ZI; was estimated 
by using the mean of the training sample for each class d~., 

The estimated class center minimized a performance index defined 
by 

J L  = 1 1 1 X - Z 1 1 ( 2 . k = 1 . 2 . . . . . ~ ~ ~ .  (15) 
X t - i  

where -U was the total number of texture classes (twenty-five). 
To discriminate the subtle differences between some of the texture 
classes included in our study, we engaged a more sophisticated 
classifier, described in the next section. 

D. Discrimination Using a Neural Network Classifier 
We examined the classification performance of each wavelet packet 

representation for several network topologies. We used a two-layer 
back propagation network [38] having a conjugate gradient function 
for error correction [39]. For each topology, the number of input 
nodes was matched to the vector dimension (number of real values) 
comprising each wavelet packet representation. All network topolo- 
gies had twenty-five output nodes, the total number of distinct texture 
classes. 

By using wavelet packet representations, we reduced the number 
of bits required for each original texture pattern by a factor of 240 \ 
( 17x32 ). Thus we were able to reduce the number of input nodes 
(bandwidth) of a neural network by a factor of 960 (- ). 

1 2 X X  1 2 R X X  

IV. RESULTS AND DISCUSSION 

In this section, we summarize the discrimination results obtained 
for the twenty-five classes of natural textures. In Table I, we show 
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Hidd. Training Train. Num. % 
Time of Correct 

Packets 

Dm 
4 99.3 

Comp. 341 D?O 0 100 
H Ds 0 100 

Stand. 17 Dm 1 99.8 
D6 5 99.1 

Sig. 
Selected Andy. Num. % 
Wavelet N h e .  of Correct 

Packets I Featurea I Errors I 

Level 3 only 
Level4only 256 100 

Ds 

Dm 

Packets Featurea Errors 
Level 1,2,3 84 1 99.8 
Level 2,3 80 0 100 

Level3onlv 64 n 

Nodes Epoches (sec.) Err. 
1 225 50740 1 99.8 
2 226 53770 3 99.5 
3 102 24828 4 99.3 
5 32 8300 8 98.5 
1 153 35231 2 99.6 
2 125 29857 1 99.8 
3 21 5203 0 100 
5 33 8822 1 99.8 

the performance of three parameters included in our study: a) Energy 
versus entropy based signature metrics, b) a minimal (standard) 
and maximum (overcomplete) number of wavelet packet nodes for 
representation, c) DZO (long FIR) versus DS (short FIR) analyzing 
functions. When using overcomplete (redundant) wavelet packet 
representations, perfect classification for twenty-five textures was 
observed regardless of the signature (energy versus entropy) or 
analyzing wavelet (De versus DZO)  included. However, when tex- 
ture signatures were computed from a minimal (complete) number 
of wavelet packet nodes (i.e., the standard wavelet tree), perfect 
classification was observed only for the D ~ o  analyzing wavelet. 
For sensitive applications, this demonstrates that a) longer (FIR) 
analyzing functions are more efficient for discriminating salient 
textural features b) perfect classification is achievable by a minimal 
representation of energy, based on 17 wavelet packet nodes of a four 
level decomposition. For the textures included in our investigation, 
we observed that signatures computed from energy performed only 
slightly better than entropy based representations. 

In Table 11, we show the classification performance of energy 
signatures computed from redundant and complete sets of wavelet 
packet representations. Signatures computed from wavelet packets of 
level 3 alone (64 features) and level 4 alone (256 features) yielded 
perfect classification results for all twenty-five texture classes. How- 
ever, texture signatures computed from levels l, 2, and 3 (redundant 
representations) resulted in a classification error! This suggests that 
redundancy may increase uncertainty (degrees of freedom) for the 
classifier employed in our study. 

Table I11 compares the performance of network topologies for 
the two analyzing functions (DG and 0 2 0 ) .  Energy signatures for 
samples of the twenty-five texture classes were computed from a 
standard wavelet decomposition (17 wavelet packets) and trained for 
classification. Classification results for five topologies are reported, 
where the number of hidden nodes varied from one to five in 
each case. The neural network classifier was trained and tested 
independently for each configuration using the same data set. In 
the case of the De analyzing function, errors were observed for all 
five network topologies. Perfect classification was observed only for 

Selected Number 
Wavelet of 

Number 
of % Correct 

the DzO analyzing function when the network consisted of exactly 
three hidden nodes. Note that fewest training epochs were required 
in this case. In general, signatures computed from De analyzing 
functions required significantly more training time than signatures 
obtained from D20 analyzing functions. In particular, we observed 
an almost five-fold difference in the number of epochs required to 
train a network classifier containing three hidden nodes (21 epochs 
for DZO,  versus 102 epochs for D6).  This suggests that longer (FIR) 
analyzing functions (high regularity) may provide a more efficient 
representation for texture discrimination. 

Even the simple minimum-distance classifier using wavelet packet 
signatures from level 3 alone was able to discriminate 550 sample 
patterns (22 samples/texture x 25 textures) with 96 percent (not 
shown above) accuracy. This result supports our claim that texture 
signatures computed from wavelet packet energies alone, can be 
highly efficient representations for texture analysis. 

In the next section, we summarize the results of our investigation. 

V. SUMMARY AND CONCLUSION 

Wavelet packet representations for twenty-five natural textures 
were classified without error by a simple two-layer network classifier. 
A longer analyzing function was shown to be more efficient in 
representation and discrimination than a similar function of shorter 
length. Experimentally, we observed that a neural network classifier 
performed best in terms of accuracy and minimal training time when 
configured with exactly three hidden units. 

Energy representations computed from the standard set of wavelet 
nodes alone were sufficient for errorless classification. However, 
finer discrimination may be more strongly supported by additional 
subsets of wavelet packets (redundancy). We suggest that identifying 
an “optimal” set of wavelet packets for texture representation may 
depend on the aggregate of textural features targeted for classification. 
Thus, similar textures consisting of variations mostly at finer scales 
may be best discriminated by representations computed from wavelet 
packets of higher levels. 

With respect to the 128 x 128 pixels/sample sizes included in 
this study, we observed that representations computed from level 
three (64 feature values) exhibited acute selectivity and sensitivity 
typically required for autonomous texture analysis. Texture signatures 
computed from wavelet packet energy performed only slightly better 
than entropy signatures computed from the same wavelet packets. 
In this study, analyzing functions were constructed by computing the 
tensor product of one-dimensional functions, and exhibited sensitivity 
along the principal axes. Finer discrimination may be possible by 
using two-dimensional nonseparable analyzing functions such as 
hexagonal wavelets having more orientation selectivity. 

Texture signatures based on multiresolution wavelet packet analysis 
holds a great potential for accomplishing robust classification and 
subtle discrimination. In addition, methods of scale-space analysis 
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for texture segmentation may benefit by the techniques and efficient 
representations suggested by these results. 
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B-Spline Contour Representation and Symmetry Detection 

Philippe Saint-Marc, Hillel Rom, and Gerard Medioni 

Abstract-The detection of edges is only one of many steps in the 
understanding of images. Further processing necessarily involves gronp- 
ing operations between contours. We present a representation of edge 
contours by approximating B-splines and show that such a represen- 
tation facilitates the extraction of symmetries between contours. Our 
representation is rich, compact, stable, and does not critically depend 
on feature extraction. We turn our attention to the detection of three 
types of symmetries: skew symmetries and parallel symmetries, which 
have proven to be of great importance in inferring shape from contour, 
and smooth local symmetries, which have been used for planar shape 
description. We show that our representation facilitates the computation 
of these symmetries. 

Index Terms-B-splines, contour representation, shape representation, 
spline approximation, symmetry, symmetry detection. 
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