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Abstract

Texture classi�cation is an active area of research in the �eld of pattern recognition. Convolutional neural networks (CNNs) 
have a remarkable capability of recognizing patterns and are one of the most e�cient deep learning techniques. But, 
�nding the optimal values of the di�erent hyperparameters of the CNN is a major challenge. Nature-inspired algorithms 
(NIAs) are the meta-heuristic algorithms well-known for their optimizing capability. Whale optimization algorithm (WOA) 
is a recent nature-inspired algorithm (NIA) that is inspired by the hunting behaviour of the humpback whales. In this 
paper, we propose a novel deep learning technique for texture recognition using a CNN optimized through WOA. We 
apply WOA at the two di�erent levels in the CNN: In the convolutional layer (for optimizing the values of the �lters), and 
in the fully-connected layer (for optimizing the values of the weights and biases). For examining the performance of our 
technique, we apply it to the following three benchmark texture datasets: Kylberg v1.0, Brodatz, and Outex_TC_00012. 
Our model performs better than the most of the existing methods for the Kylberg and the Outex_TC_00012 datasets 
and gives competitive results for the Brodatz dataset. It is evident from the results that our model has the potential for 
application in the �eld of texture recognition.

Keywords Convolutional neural network · Whale optimization algorithm · Pattern recognition · Texture classi�cation · 
Deep learning

1 Introduction

Deep Learning for the past few years has evolved as one of 
the important pillars while developing models based on 
machine learning. CNN is one of the models which have 
performed exceptionally well for image classi�cation and 
pattern recognition tasks [1, 2]. The following sub-sections 
help in introducing the fundamentals of texture recogni-
tion, CNN, and NIA and also discuss the contributions of 
the paper and its organization.

1.1  CNN

CNN is a biologically inspired technique for classi�cation. 
It generally deals with the image classi�cation and pat-
tern recognition tasks. The architecture of a simple CNN is 
represented by Fig. 1 as shown below.

The working of a typical CNN is explained as follows. 
The data in the input layer is being processed by the con-
volutional layer with the help of �lters/kernels to generate 
feature maps which signify the raw features. The pooling 
layer performs a downsampling operation which reduces 
the dimensionality of the feature map. The processed fea-
tures from the ReLU units are supplied to the fully con-
nected layer (FCL) which enables classi�cation of the data. 

Received: 1 January 2019 / Accepted: 28 May 2019 / Published online: 31 May 2019

 * Apoorva Mishra, apoorvamish1989@gmail.com | 1Soft Computing and Expert System Laboratory, ABV-IIITM, Gwalior, Gwalior, 
India. 2Department of Computer Science Engineering, Bennett University, Greater Noida, India. 3Indian Institute of Information Technology, 
Pune, Pune, India.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-0678-y&domain=pdf
http://orcid.org/0000-0002-9223-3973


Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:655 | https://doi.org/10.1007/s42452-019-0678-y

Output layer generally consists of the soft-max approxi-
mation which facilitates the multiclass classi�cation (if 
needed).

1.2  Texture classi�cation

Texture is the atomic quantity for the characterization of 
an object which helps in its identi�cation. Various images 
such as medical, agricultural, aerial, satellite and others 
have been identi�able due to the presence of texture in 
them. Hence, textures play a key role in distinguishing 
objects in such images. In the textile industry as well, tex-
tures play an important role. Hence, the correct classi�-
cation of texture could be very useful in such �elds and 
forms the motivation for conducting the current research. 
In the recent years, textures have been widely used in the 
content-based image retrieval systems as well. The com-
mon methods which are used for texture classi�cation are 
namely parametric statistical model-based methods, struc-
tural methods, empirical second order statistical methods 
and various other transform methods. Deep learning-
based techniques for the classi�cation of texture have 
been proposed in [3–6].

There is also a major class of classi�cation approaches 
based on the local properties of texture. These approaches 
use local operators to identify the local properties of tex-
ture and classify them according to those properties. Also, 
the local neighbourhood properties are the dominant 
reasons for the overall appearance of a texture or a pat-
tern, and so, any local operation on exploiting the neigh-
bourhood properties helps in identifying the texture. The 
common local properties which are exploited are “edges” 

and “spots.” The convolution operation plays a crucial role 
in determining the neighbouring properties. Hence, the 
techniques which are based on the convolutional opera-
tion can be helpful in the classi�cation of the textures. CNN 
is one such technique which helps in identifying the local 
neighbourhood properties during the feature extraction 
phase. In this paper, we have utilized this property of the 
CNN to excel over the texture databases.

1.3  Nature inspired algorithm

NIAs are the meta-heuristic algorithms which have the 
remarkable capability to solve optimization problems 
concerning the constrained environment. Most of these 
problems are NP-hard in nature and cannot be solved 
using the traditional deterministic algorithms. NIAs have 
been proven to be an excellent method to address these 
complex optimization problems, and have been applied 
to solve many such problems. Over the past few decades, 
various NIAs have been developed taking inspiration 
from the processes that occur in nature; WOA is one such 
recently developed algorithm [7]. Recently, NIAs have 
been applied to the �elds of medical image classi�cation, 
robot path planning, �nancial and industrial optimization, 
etc. through hybridization with various existing machine 
learning techniques [8].

1.3.1  Whale optimization algorithm

WOA is an NIA that imitates the behaviour of humpback 
whales [7]. WOA has been hybridized with the various 
machine learning algorithms like SVM, ANN, etc. [9–12]. 
WOA consists of the following two phases [7].

 I. Encircling Prey (Exploration Phase) and,
 II. Bubble-Net Attacking (Exploitation Phase)

The basic WOA can be mathematically represented as 
follows [7].

(1)A⃗ = ���⃗2a ⋅ r⃗ − a⃗

(2)C⃗ = 2 ⋅ r⃗

(3)D⃗ =
|
|
|
C⃗ ⋅ X⃗

∗(t) − X⃗ (t)
|
|
|

(4)X⃗ (t + 1) = X⃗
∗(t) − A⃗ ⋅ D⃗

(5)D⃗ =

|
|
|
C⃗ ⋅ X⃗rand − X⃗

|
|
|

(6)X⃗ (t + 1) = X⃗rand − A⃗ ⋅ D⃗

Fig. 1  Basic CNN model
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here a⃗ = variable that linearly decreases from 2 to 0 with 
iterations, r⃗ = random vector in [0, 1], b = constant, l = ran-
dom number in [− 1, 1], D⃗

′

 = the distance between the best 
solution obtained till now and the whale, t = present itera-
tion, A⃗, C⃗ = coe�cient vectors, X⃗∗ = Best solution’s Position 
Vector, X  = Position Vector

Equations 3 and 4 represent the ‘encircling prey’ behav-
iour, Eqs. 5 and 6 represent the ‘search for prey’ mecha-
nism, and Eqs. 7 and 8 represent the ‘bubble-net attacking’ 
behaviour of the humpback whales. The detailed working 
mechanism of the WOA can be referred from [7]. Some 
changes need to be incorporated in the basic WOA to align 
it with the working of the CNN model. In Sect. 4.2, we have 
discussed these changes in detail.

1.4  Our contributions and organization 
of the paper

The incremental addition to current state-of-art is given 
as follows:

1. A novel deep learning based approach using a CNN 
optimized through WOA has been proposed.

2. Addition of optimization at the feature extraction 
phase of the CNN model.

3. The proposed approach has given competitive results 
for the three di�erent benchmark datasets for tex-
ture recognition viz. Kylberg, Brodatz, and Outex_
TC_00012.

The rest of this manuscript is arranged in the following 
way: In Sect. 2, a review of the related work is given. Sec-
tion 3 gives a brief description of the datasets being used. 
Section 4 explains the proposed technique and discusses 
its implementation details. In Sect. 5, the results of experi-
ments conducted over the various datasets are presented. 
Section 6 concludes the paper and highlights the scope 
for enhancing it.

2  Literature review

A CNN employs the concept of ANN for the purpose of 
classification. This section deals with the related work 
on the amalgamation of the ANN with the NIAs, and also 

(7)D⃗
� =

|
|
|
X⃗
∗(t) − X⃗ (t)

|
|
|

(8)X⃗ (t + 1) = D⃗
�
⋅ e

bl
. cos (2�l) + X⃗

∗(t)

describes the research papers utilizing the concept of NIAs 
for the optimization of the CNN.

There have been various methodologies proposing 
the hybridization of NIAs with the ANN. These hybrid 
algorithms have outperformed the traditional algo-
rithms for classification (which may be binary or multi-
class). A comparative study of the genetically optimized 
neural network (NN) and the individual algorithms like 
ANN, SVM, and GA has been presented in [13]. Another 
such comparison of the traditional NN, WOA-Elman NN, 
and chaos WOA-Elman NN model can be seen in [12].

ANNs work on the methodology of trial-and-error 
which makes it complex in time and space analysis. 
ANNs are also not able to utilize the benefits of multi-
threading or multi-clustering properties of the modern 
technologies. There is a need for the fusion of other algo-
rithms like NIAs to introduce the concept of parallelism 
in neural networks and related models. Further, the con-
ventional algorithms for classification problems perform 
poorly on raw, unstructured, and noisy data. Examples 
of such datasets could be medical images, traffic signs, 
speech recognition systems, etc. The integration of NIAs 
makes these algorithms suitable for various kinds of data 
which may or may not have noise along with it. The evo-
lutionary nature of the NIA makes it possible to dimin-
ish the effect of noise, as the solution evolves from the 
scratch.

CNNs with deep architecture usually deploy a fully con-
nected layer which has some weights associated with it. 
In some architecture, there is an addition of the soft-max 
regression to make it suitable for multi-class classi�cation. 
[14] focused on learning activation functions by combin-
ing basic activation functions. The feature extraction layer 
of the CNN consists of �lters/kernels which help in gen-
erating the feature maps, indicating the various possible 
features present in the data. The number of these �lters is 
usually tuned up manually. NIAs can contribute in decid-
ing the number of �lters so as to make the system more 
robust and accurate. But there have been no signi�cant 
advancements in employing NIAs to the feature extraction 
layer. The other parameters such as window size, stride, 
�lter values, etc. also need to be adjusted as per the need 
of the application. NIAs can come handy for selecting the 
optimal values of these parameters also.

A hybrid deep learning technique utilizing GA to 
optimize the weights of the FCL of the CNN has been 
proposed in [15]. The model was tested on the bench-
mark dataset of the Devanagari numerals, and the results 
indicated that it outperformed the basic CNN model and 
had given encouraging results. It is a well-known fact 
that the initial layers of a CNN that is trained on a large 
dataset are capable of extracting the common features 
of the other dataset as well through the concept of 
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transfer learning. A detailed review of the transfer learn-
ing approaches has been given in [16]. Lopes et al. [17] 
had utilized pre-trained CNNs as feature extractors for 
detecting tuberculosis, and had achieved encouraging 
results.

3  Overview of the datasets

We have used three benchmark datasets belonging to 
the family of texture classification for conducting the 
experiments. The summary of these three datasets is 
given below.

3.1  Kylberg dataset

We have used the Kylberg Dataset v1.0. This dataset has 
two versions: (1) with rotation patches and (2) without 
rotation patches [18]. Currently, we have used the ver-
sion that is without rotation patches. The summary of 
this dataset is represented by Table 1.

Some of the classes in this dataset include the tex-
tures of blankets, lentils, canvas, ceilings, cushions, etc.

3.2  Brodatz dataset

Brodatz Dataset [19–21] is very popular for texture clas-
sification. Here, we have referred it from the University 
of Southern California [20, 21]. The original dataset did 
not contain the rotated images, which are introduced 
into it through a simple computer graphics technique 
using 40 different rotation angles. The summary of this 
dataset is given by Table 2.

3.3  Outex dataset

We have used the Outex_TC_00012 dataset, which is one 
of the datasets in the Outex Database [22, 23]. The sum-
mary of this dataset is as follows (Table 3).

4  Proposed methodology

4.1  Data pre-processing and splitting

As each of the datasets mentioned above has a simi-
lar arrangement, they are pre-processed using single 
module architecture. Each dataset is divided into three 
subsets: train, test, and validation. The splitting ratio for 
these three subsets is 80:10:10, i.e., 80% of the images 
are taken for training, 10% for validation, and the rest 
10% for testing. The splitting of the images within the 
class is also kept consistent with the overall ratio. For 
example, in the Kylberg dataset each class contains 160 
images, out of which 128 images are used for training, 
16 images are used for validation, and the rest 16 images 
are used for testing. Hence, the ratio within the class, 
i.e., 128:16:16 remains equivalent to the overall ratio, i.e., 
80:10:10.

Table 1  Summary of the Kylberg Dataset [18]

Feature Value

Number of classes 28

Number of unique samples/class 160

Total number of samples 4480

Texture patch size 576 × 576 pixels

Format of image 8 bit gray scale PNG

Total size of dataset 1.76 GB

Table 2  Summary of the Brodatz dataset

Feature Value

Number of classes 112

Number of unique samples/class 40

Total number of samples 4480

Texture patch size 640 × 640 pixels

Format of image 8 bit Gray scale GIF

Total size of dataset 1.02 GB

Table 3  Summary of the Outex_TC_00012 dataset

Feature Value

Number of classes 24

Number of unique samples/class 40

Total number of samples 960

Texture patch size 128 × 128 pixels

Format of image 8 bit Gray scale GIF

Total size of dataset 0.16 GB
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4.2  Proposed hybrid model consisting of CNN 
and WOA

Our model consists of the three major modifications in 
the basic CNN model. The key highlights of the proposed 
model are as follows:

1. Feature extraction using the Pre-Trained CNN model.
2. Optimizing the �lter/kernel values using the WOA.
3. Optimizing the weights of the dense layer of CNN 

using the WOA.

The overall architecture of our model is represented by 
Fig. 2.

The summary of the model after the pre-trained feature 
extraction unit is represented by Table 4 as shown below.

The summary of the major modifications which are 
incorporated in the model is given as follows.

A. Feature extraction from VGG-16 pre-trained model

Fig. 2  Our model (pre-trained CNN + WOA)

Table 4  Model summary after the feature extraction unit

Layer Characteristics

conv1 + pool1 + active_1 # �lters = 16 stride = 2

conv2 + pool2 + active_2 # �lters = 32 stride = 3

conv3 + pool3 + active_3 # �lters = 64 stride = 3

dense1 # neuron units = 1024
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VGG-16 model comprises of total 16 layers, of which 
13 are convolutional and 3 are fully connected layers 
[24]. This model provides the features which need to be 
reshaped. ‘Reshape,’ provided by the TensorFlow API [25] 
does the job for us.

B. Optimization at feature extraction layer and dense 
layer

The paradigm for optimizing the �lter values at the fea-
ture extraction layer and weights at the dense layer is quite 
similar. The �lter values and weights are arranged one after 
the other, and are passed onto the WOA algorithm for par-
ametric optimization. During individual �tness calculation, 
these weights are passed onto the module that contains 
the replica of the model, and the individual weights get 
copied onto that replica for accuracy/�tness calculation. 
The following �gure helps in understanding the data �ow 
through the entire process (Fig. 3).

C. WOA algorithm and objective function

The changes which are introduced into the WOA algo-
rithm to align it with the convolutional model are as 
follows:

• The individual length is n-dimensional instead of the 
single point in space.

• Parameters are no longer of the single dimension. 
Instead, they change to an n-dimensional array with n 
being controlled by the size of the individual.

• The objective function consists of the evaluation of the 
forward network.

The objective function for the current model is given 
as follows:

Vectors:  vexp = Expected output for given input
vcalc = Calculated output for given individual with For-
ward Network Evaluation

Similarity index: 
�

∑

i

�

vexp(i) − vcalc(i)
�2

Best individual: The individual having the minimum 
similarity index.

The complexity of the model is stated in terms of the 
parameters which are to be optimized as represented by 
Table 5.

5  Results and analysis

5.1  Simulation environment

The experiments are carried out on a system with Intel 
i7-6850K processor @ 3.60 GHz with 12 cores, 24 GB RAM 
and a Nvidia GeForce GTX 1080 Ti having 11 GB GDDR5X 
memory and 3584 Cuda cores. Models are implemented 
using Python 3.5.2 version and use Tensor�ow-GPU as 
backend. Other python dependencies are NumPy, Pandas, 
TQDM (image folder search). The entire model is designed 

Fig. 3  Optimization process 
�ow in the feature extraction 
layer

Table 5  Complexity of the model

Layer No. of trainable 
parameters

Convolutional layer (conv1) 576 × 576 × 400

Dense layer (dense1) 32 × 32 × 64
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using the TensorFlow Library [25]. It provides the GPU sup-
port and place-holding capabilities, which makes it more 
reliable for dynamic model testing.

5.2  Results and discussion

The accuracies and Root Mean Square Loss for the follow-
ing three models is calculated for each dataset.

1. Basic CNN model,
2. Pre-trained model (VGG-16) and,
3. Pre-trained VGG-16 + CNN + WOA (proposed method)

The results are represented in a graphical as well as 
tabular manner as shown below.

A. Results for Kylberg dataset (Fig. 4)
B. Results for Brodatz dataset (Fig. 5)
C. Results for outex dataset (Fig. 6)

In Figs. 4(i, ii), 5(i, ii), 6(i, ii) the purple line indicates the 
accuracy curve and the blue line indicates the loss curve.

In Fig. 4(iii), 5(iii), and 6(iii) the orange line represents 
the accuracy curve and the red line represents the loss 
curve.

The summary of the performance of various models 
over the three benchmark datasets is represented by 

Fig. 4  Accuracy and loss curves for the Kylberg dataset using a Basic CNN (acc.: 96.62%, loss: 0.1127), b VGG-16 (acc.: 97.19%, loss: 0.0528), 
and c Proposed Model (acc.: 99.71%, loss: 0.0301)
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Table 6. Table 7 represents the detailed results obtained 
by applying our model to these three datasets (Figs. 5, 6).

The summary of performance comparison of our tech-
nique with the models based on LBP descriptors, Extreme 
Learning Machine, and other statistical techniques [25–29] 
is represented by Tables 8, 9 and 10.   

It is clear from the results that our method gives bet-
ter results than most of the other existing models for the 

Kylberg and Outex TC-12 datasets, and gives competitive 
results for the Brodatz dataset.

6  Conclusion and future enhancement

In this paper, we have proposed a novel methodology 
for finding the optimal structure of a deep CNN for the 
task of texture recognition. Our methodology applies 
the concept of WOA for optimizing the values of the 

Fig. 5  Accuracy and loss curves for the Brodatz dataset using i Basic CNN (acc.: 96.37%, loss: 0.1309), ii VGG-16 (acc.: 97.12%, loss: 0.0767), 
and iii Proposed model (acc.: 97.43%, loss: 0.0391)
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filters in the convolutional layer, and the values of the 
weights and biases in the dense layer. For testing the 
performance of our method, we have applied it to the 
three different benchmark datasets viz. Kylberg v1.0, 
Brodatz, and Outex_TC_00012. The results indicate that 

Fig. 6  Accuracy and loss curves for the Outex dataset using i Basic CNN (acc.: 96.12%, loss: 0.0945), ii VGG-16 (acc.: 96.89%, loss: 0.0492), and 
iii Proposed Model (acc.: 97.70%, loss: 0.0396)

Table 6  Performance comparison of our method with the basic 
CNN and VGG-16 pre-trained model

Dataset Basic CNN (%) VGG-16 (%) Modi�ed 
CNN + WOA 
(%)

Kylberg 96.62 97.19 99.71

Brodatz 96.37 97.12 97.43

Outex 96.12 96.89 97.70

Table 7  Precision, recall, and F1-score for our method

Dataset Precision Recall F1 score

Kylberg 0.989 0.980 0.984

Brodatz 0.967 0.958 0.962

Outex 0.970 0.965 0.967

Table 8  Performance comparison of our model with the existing 
techniques for the Kylberg dataset

Paper (reference) Model/technique Classi�cation 
accuracy (%)

[5] T-CNN-3 99.4 ± 0.2

[26] KNN + nLBP(d = 1) 99.64%

[27] RALBGC 99.23%

[26] LBP 97.97%

Proposed method Modi�ed CNN + WOA 99.71%
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our model gives better results than most of the existing 
methods for the Kylberg and Outex_TC_00012 datasets 
and achieves competitive classification accuracy for the 
Brodatz dataset. We conclude that our approach helps in 
making the CNN more robust, and is an effective method 
for the task of texture recognition.

Our future work includes the utilization of the other 
recently proposed swarm-intelligence algorithms for 
optimizing the structure of the CNN. There is immense 
scope for enhancing this research by applying our model 
to other pattern recognition tasks like traffic sign recog-
nition, handwritten character recognition, gait recogni-
tion, medical image classification, etc.
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