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Texture Classification using Convolutional
Neural Networks

Fok Hing Chi Tivive∗ and Abdesselam Bouzerdoum, Senior Member, IEEE †
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong, Northfields Avenue
Wollongong, NSW 2522, AUSTRALIA.

∗tivive@uow.edu.au, †a.bouzerdoum@ieee.org

Abstract— In this paper, we propose a convolutional
neural network (CoNN) for texture classification. This net-
work has the ability to perform feature extraction and
classification within the same architecture, whilst preserving
the two-dimensional spatial structure of the input image.
Feature extraction is performed using shunting inhibitory
neurons, whereas the final classification decision is per-
formed using sigmoid neurons. Tested on images from the
Brodatz texture database, the proposed network achieves
similar or better classification performance as some of
the most popular texture classification approaches, namely
Gabor filters, wavelets, quadratic mirror filters (QMF) and
co-occurrence matrix methods. Furthermore, The CoNN
classifier outperforms these techniques when its output is
postprocessed with median filtering.

I. INTRODUCTION

Texture analysis which consists of texture classification,
segmentation, and synthesis has a wide variety of applica-
tions in image processing, e.g., industrial and biomedical
surface inspection, ground classification and segmentation
of satellite imagery, and content-based image retrieval.
Texture, even though humans can effortlessly recognize
texture, is very difficult to define. Many different texture
definitions were reported in the literature, but still there
is no common definition [1]. Despite numerous studies,
texture classification has remained an elusive pattern
recognition task. The fundamental issues in texture clas-
sification are how to extract compact features to represent
the texture and what type of metric to use in comparing
the feature vectors. The classical framework of texture
classification is to transform the texture image into a
feature vector using a bank of filters, followed by some
nonlinearity and smoothing steps before classification. In
[2], Randen and Husøy performed a comprehensive study
on texture classification where several filtering approaches
were evaluated.

Two early texture analysis techniques are the co-
occurrence matrix [3] and Markov random fields (MRFs)
[4], which have been popularly used for texture classi-
fication. However, the analysis of spatial interactions of
these methods is constrained to a relative small neighbor-
hoods, which may result in a limited expressive power
[5]. More recently, advanced filter bank methods, such
as Gabor and wavelet filters, have been developed for
texture classification and segmentation [6]–[8]. One of the
drawbacks of these approaches is that the generated filters

usually discriminate a wide variety of textures, and this
requires either an optimization method or manually select
the filters for a given set of textures. Moreover, some of
the optimization techniques are restricted to a two-class
problem, or may be computationally intensive [2].

Jain and Karu [9] combined the texture feature ex-
traction and classification in a unified framework by
embedding the principles of multichannel filtering scheme
into a neural network architecture. The first network they
developed is a three layer (including the input layer)
feedforward network, i.e., a multilayer perceptron (MLP),
with each input node fully connected to a small region of
size M × M in the input image. The second network
is similar to that proposed by LeCun et al. [10], where
the hidden neurons use a weight sharing mechanism to
connect to the previous layer. The latter network has
around 5000 weights and was trained with an online
backpropagation algorithm. To reduce the number of
weights and input filters, they applied a pruning algorithm
developed by Mao et al. [11].

In this paper, we develop a convolutional neural net-
work (CoNN) derived from our previous work [12] for
texture classification. The network is based on the same
structural ideas as LeNet-5 [13], but with a much simpler
network structure and a systematic connection scheme,
which results in a small number of free network parame-
ters. For comparison purposes, the CoNN is evaluated on
texture images taken from [2]. The next section describes
the proposed CoNN structure and highlights its novel
aspects, in comparison to its predecessor CoNN models.
Section III presents the training process and the texture
images used for testing. The experimental results and
performance analysis is given in Section IV, and Section
V presents some concluding remarks on the appearance-
based method for texture classification.

II. CONVOLUTIONAL NEURAL NETWORK

ARCHITECTURE

The CoNN that we have developed here for texture
classification is a four layer network: one input layer,
two hidden layer, and one output layer. The network
receives inputs from a two-dimensional (2-D) array of
size 13×13 pixels, and produces an output that indicates
the texture class to which of the center pixel belongs. The
arrangement and connection of the neurons in the hidden
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layers are different from those of an MLP. Neurons in
each hidden layer are arranged into planes, called feature
maps, and each neuron is locally connected to a small
neighborhood of the input plane. This connection strategy
is derived from our understanding of the mammalian vi-
sual system, where ganglion cells are connected to groups
of photoreceptors; the region from which a cell receives
its inputs is known as the receptive field. In CoNN, the
weights linking the neuron to its receptive field, including
the bias term, are shared among all neurons in the feature
map, which we refer to as the weight sharing mechanism.
The receptive field sizes used in the first and second
hidden layers are 7 × 7 and 5 × 5, respectively. In the
first hidden layer, the feature maps are down-sampled by a
factor of two; this is done by simply shifting the receptive
field centers of adjacent neurons by two positions in
the vertical and horizontal directions. Consequently, the
network inherits some degree of invariance to geometric
distortions since higher-order features are no longer de-
pendent on their absolute positions in the input image.
For the second hidden layer, no down-sampling operation
is applied; hence the size of the feature maps is the
same as those in the first hidden layer. To incorporate
some smoothing effect on the extracted features, a local
averaging operation is performed on all feature maps in
the second hidden layer; that is, a non-overlapping mask
of size 2 × 2 is used to average every four outputs into
a single signal, which is fed to the output neurons. Each
output neuron represents one texture class, and a winner-
take-all technique is applied to classify the texture of the
central pixel in the 13 × 13 input region.

In contrast to early models of CoNN, the proposed
network uses a different type of neuron rather than the
sigmoid one for feature extraction. This type of neuron is
based on the shunting inhibitory mechanism, which has
been used to model a number of visual and cognitive
functions, see, e.g., [14]. Recently, shunting inhibitory
neurons have been used for supervised classification and
regression problems, where experiments have shown that
shunting neurons are more powerful than their sigmoid
counterparts [15].

The neural activity of a shunting neuron in the kth

feature map of the Lth layer centered at position (i, j) is
given by

ZL,k(i, j) =
XL,k(i, j)

aL,k(i, j) + YL,k(i, j)
, (1)

where

XL,k(i, j) = fL

(SL−1∑
m=1

[CL,k ∗ ZL−1,m](x,y) + bL,k(i, j)
)

YL,k(i, j) = gL

(SL−1∑
m=1

[DL,k ∗ ZL−1,m](x,y) + dL,k(i, j)
)

(x, y) =
{

(2i, 2j), First hidden layer (L=1);
(i, j), Second hidden layer (L=2).

∀ i, j = 1, ..., ML

The weights of the receptive fields of the neuron, CL,k

and DL,k, are adaptive, as well as the biases bL,k and
dL,k, and the passive decay term aL,k. ML is the size
of the feature map. After some preliminary experimen-
tations, both activation functions fL and gL in the first
hidden layer are chosen as linear functions, except that
gL is bounded from below by zero:

f(x) = max(0, x). (2)

However, in the second hidden layer, fL is chosen as the
hyperbolic tangent function. In order to avoid division by
zero in (1), the passive decay rate is constrained during
both the initialization and training process as follows:

[aL,k(i, j) + YL,k(i, j)] ≥ ε > 0, (3)

where ε = 0.1. To classify the features extracted from the
second hidden layer, sigmoid type neurons are used in the
output layer. Each output neuron performs a weighted sum
and a nonlinearity operation on its input signals. That is,
the response of the output neuron is computed as

y = h

(SN

i=1

wizi + b

)
, (4)

where h is the hyperbolic tangent activation function, wi’s
are the connection weights, zi’s are the net signals to
the neuron, which are averaged features from the second
hidden layer, SN is the number of inputs, and b is the
bias term.

The connection strategy used in the network developed
by Jain and Karu [9] is a full connection scheme, which
subsequently adapted to a partial connection scheme with
a pruning algorithm. In contrast, the CoNN proposed here
has a binary connection scheme, in which each feature
map branches to two feature maps in the next layer,
similar to a binary tree. Moreover, depending on the
complexity of the input, the number of feature maps in
the first hidden layer (F1) can be chosen arbitrarily, and
the subsequent hidden layer (F2) is constrained to have
twice the number of feature maps. In other words, the
feature map in F1 extracts local features from the input
image; each feature is further decomposed into two other
features. A schematic diagram of the proposed CoNN for
texture classification is shown in Fig 1.

Receptive Fields

Input Layer

Feature Maps with
(Shunting Inhibitory Neurons)

Perceptron

13 x 13 6 x 6 6 x 6Down-
sampling

F1 Layer F2 Layer Output Layer

2 x 2 Local Averaging

Fig. 1. A schematic diagram of the binary-connected CoNN for texture
classification.



III. TRAINING AND EVALUATION PROCEDURES

Before starting the training process of the network,
its weights are initialized with random values using a
uniform distribution on the interval [−1/t, 1/t], where t
is the width of the receptive field. The bias parameters
are initialized similarly with t = 1. However, due to
the condition given in (3), the passive decay rate term
is initialized in the range (0, 1]. The weight adjustment is
done with a first-order gradient method derived from the
training algorithms Rprop, QuickProp and SuperSAB (see
[12] for more details), in which each weight (including
biases and passive decay rate) has its own learning pa-
rameters (i.e., learning and momentum rates). Since it is
a batch training, the weight update and the computation
of the gradient are performed after presenting all input
patterns.

The Brodatz texture database has become the standard
data set for evaluating texture algorithms which is derived
from the Brodatz album [16]. Randen and Husøy [2]
created a set of texture mosaics from these Brodatz images
to compare different classification approaches including
the neural technique developed by Jain and Karu. To
evaluate the performance of the proposed CoNN, five
test texture mosaics, i.e., 11(a), 11(d), 11(h), 12(a) and
12(c), have been used; these images are available from the
website [17]. The texture mosaics used in our experiment
vary in terms of number of textures and granularity,
as shown in Fig. 2. The grayscale texture mosaics are
linearly scaled to the range [−1, 1] before training and
testing, and the target value is 1 for the correct class and
−1 otherwise.

              12(a)                                 12(c) 

11(a)                                  11(d) 

11(h) 

Fig. 2. Texture images used to evaluate the proposed network.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

As the texture mosaics have different number of tex-
tures to be classified, three different networks were devel-
oped; their network configurations are given in Table I.
The sizes of training sets vary from 13000 to 19000
samples according to the number of textures, and all
networks were trained for 1000 iterations. From Table I,
all three CoNNs have fewer trainable parameters than
the neural network developed by Jain and Karu [9]. The
classification errors of these networks based on the five
texture mosaics are given in Table II, together with the
classification results of other approaches, such as the co-
occurrence matrix, Gabor, wavelet, and QMF filters, and
Jain’s neural network; the results in Table II are taken
from Tables 3 and 6 in [2].

TABLE I

NETWORK CONFIGURATION USED FOR DIFFERENT NUMBER OF

TEXTURE CLASSES.

Network No. of No. of feature maps No. of
Index weights Layer 1 Layer 2 output neurons

Net-01 974 4 8 2
Net-02 1490 5 10 5
Net-03 3106 8 16 10

TABLE II

ERROR RATES OF DIFFERENT TEXTURE CLASSIFICATION

APPROACHES.

Texture classification Test image from [17]
Approach 11(a) 11(d) 11(h) 12(a) 12(c) Mean

CoNN mask size 13 9.7 25.6 37.8 3.4 9.4 17.2
CoNN + Median filter 7.5 18.3 32.3 1.6 7.2 13.4
Neural Net mask size 11 [9] 47.4 67.2 69.3 32.1 43.6 51.9
Co-occurrence 9.9 51.1 35.3 1.9 3.3 20.3
Gabor filter bank 8.2 36.9 39.7 6.5 15.6 21.4
Wavelet - Daubechies 4 8.7 23.4 40.9 5.7 8.2 17.4
QMF filter bank - f16b (d) 8.7 18.4 39.8 8.1 8.2 16.6

From Table II, it can be concluded that our CoNN can
be employed for texture classification; its classification
accuracy is slightly better than or comparable to that
of the best existing approaches, i.e., wavelets and QMF
filter banks. When using a 5 × 5 median filter on the
final outputs of the network, the classification errors
across all five texture images decreases markedly. On
the two texture images with complex border, the CoNN
outperforms the co-occurrence and Gabor filter methods.
Figure 3 shows an example of the output texture image
with and without median filtering.

Even though the CoNN structure uses similar concepts
taken from LeCun et al. [13], i.e., weight sharing and sub-
sampling, the network implementation and its connection
scheme are different, which yields a smaller network with
fewer trainable parameters. For example, Jain and Karu
[9] developed a network that has around 5000 weights
to classify nine textures, whereas our CoNN has 3106
weights for ten textures, i.e., a reduction of 1894 weights.



(a)

(b)

Fig. 3. Segmentation of the texture image 11(a): (a) output image from
the CoNN, and (b) post-processed by a median filter.

V. CONCLUSION

Many texture classification algorithms have been re-
ported in the literature including neural networks. How-
ever, the existing neural architectures are too massive in
terms of number of trainable parameters, and hence may
require a pruning method. In this paper, we developed a
CoNN that can be trained with a batch training algorithm
to adapt its receptive fields as texture filters and its output
layer as a linear classifier, where both processes are per-
formed within the same network architecture. Evaluated
on some benchmark texture images, the CoNN achieves

superior classification results than the existing neural
networks and has very competitive results with respect
to the wavelets and QMF filter banks. Postprocessing the
outputs of the CoNN with median filtering significantly
improves the classification accuracy.
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