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Texture for Script Identification
Andrew Busch, Member, IEEE, Wageeh W. Boles, Member, IEEE, and

Sridha Sridharan, Senior Member, IEEE

Abstract—The problem of determining the script and language of a document image has a number of important applications in the

field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character

recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on

the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is

conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task.

Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.

Index Terms—Script identification, wavelets and fractals, texture, document analysis, clustering, classification and association rules.

�

1 INTRODUCTION

AS the world moves ever closer to the concept of the
“paperless office,” more and more communication and

storage of documents is performed digitally. Documents
and files that were once stored physically on paper are now
being converted into electronic form in order to facilitate
quicker additions, searches, and modifications, as well as to
prolong the life of such records. A great proportion of
business documentation and communication, however, still
takes place in physical form and the fax machine remains a
vital tool of communication worldwide. Because of this,
there is a great demand for software which automatically
extracts, analyzes, and stores information from physical
documents for later retrieval. All of these tasks fall under
the general heading of document analysis, which has been a
fast growing area of research in recent years.

A very important area in the field of document analysis is
that of optical character recognition (OCR), which is broadly
defined as the process of recognizing either printed or
handwritten text from document images and converting it
into electronic form. To date, many algorithms have been
presented in the literature to perform this task, with some of
these having been shown to perform to a very high degree of
accuracy in most situations, with extremely low character-
recognition error rates [1]. However, such algorithms rely
extensively on a priori knowledge of the script and language
of the document in order to properly segment and interpret
each individual character. While in the case of Latin-based
languages such asEnglish,German, andFrench, this problem
canbeovercomeby simply extending the trainingdatabase to
include all character variations, such an approach will be
unsuccessful when dealing with differing script types. At
best, the accuracyof sucha systemwill benecessarily reduced

by the increased number of possible characters. In addition,
many script types do not lend themselves to traditional
methods of character segmentation, an essential part of the
OCR process and, thus, must be handled somewhat differ-
ently. For all of these reasons, the determination of the script
of thedocument is an essential step in the overall goal ofOCR.

Previous work has identified a number of approaches for
determining the script of a printed document. A number uses
character-based features or connected component analysis
[2], [3]. The paradox inherent in such an approach is that it is
sometimes necessary to know the script of the document in
order to extract such components. In addition to this, the
presence of noise or significant image degradation can also
significantly affect the location and segmentation of these
characters, making them difficult or impossible to extract. In
such conditions, a method of script recognition which does
not require such segmentation is required. Texture analysis
techniques are a logical choice for solving such a problem as
they give a global measure of the properties of a region,
without requiring analysis of each individual component of
the script. Printed text of different scripts is also highly
preattentively distinguishable, a property which has long
been considered a sign of textural differences [4].

In Section 2, we provide an overview of the problem of
script recognition, highlighting its importance in a number of
applications. The idea of using texture analysis techniques to
determine the script of printed text is then investigated in
Section 3, showing the rationale behind suchanapproach and
the work done in this area to date. Due to the nature of most
texture features, document images must be normalized to
ensure accuracy and algorithms for such preprocessing
stages, includingbinarization, skewdetection andcorrection,
andnormalizationof text are presented in Section 4.Details of
the final texture features extracted from the normalized
images are then given in Section 5, with experimental
evaluation of each such feature set performed in Section 6,
using a newly constructed document image database con-
taining a total of 10 different scripts.

Section 7 outlines a technique for improving classifier
performance by utilizing the common properties of printed
text when training a Gaussian mixture model classifier. It is
proposed that by taking advantage of this a priori informa-
tion, less trainingdatawill be required to adequately describe

1720 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 11, NOVEMBER 2005

. A. Busch is with the School of Microelectronic Engineering, Griffith
University Nathan Campus, Nathan, QLD. 4111 Australia.
E-mail: a.busch@griffith.edu.au.

. W.W. Boles and S. Sridharan are with the School of Engineering Systems,
Queensland University of Technology, GPO Box 2343, Brisbane, QLD.
4001 Australia. E-mail: {w.boles, s.sridharan}@qut.edu.au.

Manuscript received 1 Mar. 2004; revised 10 Dec. 2004; accepted 14 Dec.
2004; published online 14 Sept. 2005.
Recommended for acceptance by M. Pietikainen.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0112-0304.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



each class density function, leading to increased over
performance. The problem of multifont script recognition is
addressed inSection8.This isofmuch importance inpractical
applications since the various fonts of a single script type can
differ significantly in appearance and are often not ade-
quately characterized in feature space if modeling with a
single class is attempted.Amethod for clustering the features
and using multiple classes to describe the distribution is
proposed here, with experimental results showing that this
technique can achieve significant improvement when auto-
matically dealing with many font types.

2 SCRIPT AND LANGUAGE RECOGNITION

Although a large number of OCR techniques have been
developed in recent years, almost all existing work in this
field assumes that the script and/or language of the
document to be processed is known. Although it is certainly
possible to train an OCR system with characters from many
languages to obtain a form of language independence, the
performance of such a classifier would naturally be lower
than one trained solely with the script and/or language of
interest. Using specialized classifiers for each language is
also advantageous in that it allows for the introduction of
language and script specific knowledge when performing
other required tasks such as document segmentation
character separation. Using such specialized classifiers in
a multilingual environment requires an automated method
of determining the script and language of a document.

A number of different techniques for determining the
script of a document have been proposed in the literature.
Spitz has proposed a system which relies on specific, well-
defined pixel structures for script identification [2]. Such
features include locations and numbers of upward concav-
ities in the script image, optical density of text sections, and
the frequency and combination of relative character heights.
This approach has been shown to be successful at
distinguishing between a small number of broad script
types (Latin-based, Korean, Chinese, and Japanese) and
moderately effective at determining the individual lan-
guage in which the text is written. Results when using a
wider variety of script types (Cyrillic, Greek, Hebrew, etc.)
are not presented nor is any attempt made to define the
conditions for an unknown script type.

Preprocessing of document images is required before this
technique is applied. The purpose of this is to form a binary
image, that is, an image composed entirely ofwhite and black
pixels only. By convention, white pixels are considered
background and black pixels are considered text. Following
this, connected components [5] are extracted from the binary
representation. For each component extracted in this way,
information such as the position, bounding box, and lists of
pixels runs is stored. Representing the image in this way
provides an efficient data structure on which to perform
image processing operations, such as the calculation of
upward concavities and optical density required in the latter
stages of the process. For many script types, calculating
connected components will also separate individual char-
acters, although this is not always true in the general case.
Further work has attempted to address this problem by
segmenting individual connected components at this stage
[6]. This is required primarily for languages that possess a
highdegree of connectivity between characters, such as types

of Indian script, and certain fonts such as italics which
enhance connectivity of consecutive characters.

Suen et al. also apply two extra segmentation algorithms
at this point, in order to remove extremely large connected
components and noise [3]. Large components are consid-
ered to be those with bounding boxes more than five times
the average size. It is thought that these correspond to
nontextual regions of the input image and can safely be
discarded. Any bounding boxes with dimensions smaller
than the text font stroke are considered noise and also
removed. Practical experiments have shown some problems
when using these techniques, as important image features
such as the dots on “i” characters and accent marks are
erroneously removed. If character segmentation is not
accurate entire lines of text may also be removed, as they
are considered to be a single large connected component.

Before feature extraction, it is necessary to define various
regions within a line of text. Four horizontal lines define the
boundaries of three significant zones on each text line.
These lines are the top-line, x-height, baseline, and bottom-
line. The top-line is the absolute highest point of the text
region, and typically corresponds to the height of the largest
characters in the script, for example “A.” The x-height line
is the height of the smaller characters of the script, such as
“a” and “e,” and is not defined for all scripts, for example,
Chinese. The baseline is defined as lowest point of the
majority of the characters within a script, excluding those
which are classified as descenders. Finally, the bottom-line is
the absolute lowest point of any character within the script,
for example the “g” and “q” characters. The three zones
encompassed by these lines are known as the descender
zone, x-zone, and ascender zones. Fig. 1 shows the locations
of each of these lines and regions for an English text sample.

Calculating the positions of these lines is performed using
vertical projection profiles of the connected components. By
projecting the lowest position, top position, and pixels for
each connected component, thepositionsof each line can then
bedetermined.Thepeak in the lowestpositionprofile is taken
as thebaselineposition, since themajority of characters in any
known language will have their lowest point here. Searching
upwards from this point, thepeak in the toppositionprofile is
then labeled as the x-height, although this may lead to
inaccurate x-line positioning when lines of text with a large
number of capital letters and/or punctuation symbols are
present [2]. The positions of the top and bottom lines are
found simply by searching for the highest and lowest
projected positions, respectively, and removing any values
which are excessive. Having determined the positions of
these lines, they are then used as a reference point for all
location information for individual connected components.

The primary feature used in the script recognition
algorithm of Spitz is the location and frequency of upward
concavities in the text image. An upward concavity is present
at a particular location if two runs of black pixels appear on a
single scan line of the image and there exists a run on the line
below which spans the distance between these two runs.
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Once found, thepositionof eachupward concavity in relation
to the baseline of the character is noted and a histogram of
these positions for the entire document constructed. Analysis
of such histograms for Latin-based languages shows a
distinctly bimodel distribution, with the majority of upward
concavities occurring either slightly above the baseline or
slightly below the x-height line. In contrast to this, Han-based
scripts exhibit a much more uniform distribution, with the
modal value typically evenly spaced between the baseline
and x-height. Using this information, it is possible to
accurately distinguish Latin-based and Han-based scripts
using a simple measure of variance. No histograms were
provided for other script types such as Greek, Hebrew, or
Cyrillic, so it is unknownhow such amethodwill perform for
these script types. In constant use, thismethodhasnever been
observed to incorrectly classifyLatin orHan-based scripts [7].

Aswell as this technique, a number of other approaches to
automatic script recognition have been proposed. Hochberg
used textual symbols extracted from individual characters to
classify text regions, with template matching used to classify
each such symbol [8]. Pal and Chaudhuri use properties of
individual text lines to distinguish between five scripts,
including the challenging Devanagari and Bangla scripts [9].
This approach uses a rule-based approach relying on
extensive knowledge of the distinctive properties of these
scripts, making unsuitable for applications where unknown
scripts are to be added and recognized.

3 TEXTURE ANALYSIS FOR SCRIPT RECOGNITION

The work presented in the previous section has shown
excellent results in identifying a limited number of script
types in ideal conditions. In practice, however, such techni-
ques have a number of disadvantages which in many cases
make identification of some scripts difficult. The detection of
upward concavities in an image is highly susceptible to noise
and imagequality,withpoorqualityandnoisy imageshaving
high variances in these attributes. Experiments conducted on
noisy, low-resolution, or degraded document images have
shown that classification performance drops to below
70 percent for only two script classes of Latin-based and
Han. The second disadvantage of the technique proposed by
Spitz is that it cannot effectively discriminate between scripts
with similar character shapes, such as Greek, Cyrillic, and
Latin-based scripts, even though such scripts are easily
visually distinguished by untrained observers.

Determination of script type from individual characters is
alsopossibleusingOCRtechnology.This approach, aswell as
otherswhich rely on the extraction of connected components,
requires accurate segmentation of characters before their
application, a task which becomes difficult for noisy, low
resolution, or degraded images. Additionally, certain script
types, for example, Sanskrit, do not lend themselves well to
character segmentation, and require special processing. This
presents a paradox in that to extract the characters for script
identification, the script, in some cases, must already be
known. Using global image characteristics to recognize the
script type of a document image overcomes many of these
limitations. Because it is not necessary to extract individual
characters, no script-dependent processing is required. The
effects of noise, image quality, and resolution are also limited
to the extent that it impairs the visual appearance of a sample.
In most cases, the script of the document can still be readily

preattentively determined by ahumanobserver regardless of
such factors, indicating that the overall texture of the image is
maintained. For these reasons, texture analysis appears to be
a good choice for the problem of script identification from
document images.

Previous work in the use of texture analysis for script
identification has been limited to the use of Gabor filterbanks
[10], [11].While thiswork has shown that texture can provide
a good indication of the script type of a document image,
other texture featuresmaygive better results for this task, and
we investigate this possibility in this work.

4 PREPROCESSING OF IMAGES

In general, blocks of text extracted from typical document
images are not good candidates for the extraction of texture
features. The varyingdegrees of contrast in gray-scale images
and thepresence of skewandnoise could all potentially affect
such features, leading to higher classification error rates.
Additionally, the large areas of white space, unequal
character word and line spacings, and line heights can also
have a significant effect on these features. In order to reduce
the impact of these factors, the text blocks fromwhich texture
features are to be extracted must undergo a significant
amount of preprocessing. The individual steps which are
performed in this stage are binarization, deskewing, and
block normalization.

The segmentation and extraction of text regions from a
document image is a difficult problem which has received
significant attention in the literature [12], [13], [14], [15],
[16]. This stage of processing, however, is beyond the scope
of this paper, and manual extraction of text regions is
performed for all experiments. Such an approach is
consistent with previous work in this field, with manual
extraction text regions used by a number of authors [2], [11].

Binarization can be described as the process of converting
a gray-scale image into one which contains only two distinct
tones, that is black and white. This is an essential stage in
manyof the algorithmsused indocument analysis, especially
those that identify connected components, that is, groups of
pixels which are connected to form a single entity. Although
document images are typically producedwith a high level of
contrast for ease of reading, scanning artifacts, noise, paper
defects, colored regions, and other image characteristics can
sometimes make this a nontrivial task, with many possible
solutions presented to date in the literature. In general, a
decision threshold is used to determine the final binary value
of each pixel, with the actual threshold value determined
either globally for the entire image [17], [18], [19] or, locally,
for different regions of the image [20], [21], [22]. Iterative
approaches to binarization, which allow for better perfor-
mance in the presence of textured and other irregular
background, have also been proposed [23].

For the purposes of this evaluation, all of the images
used are of high contrast with no background shading
effects. Because of this, a global thresholding approach
provides an adequate means of binarization, and the
method proposed by Otsu in [17] is used.

4.1 Skew Detection and Correction

Knowing the skew of a document is necessary for many
document analysis tasks. Calculating projection profiles, for
example, requires knowledge of the skew angle of the
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image to a high precision in order to obtain an accurate
result. In practical situations, the exact skew angle of a
document is rarely known, as scanning errors, different
page layouts, or even deliberate skewing of text can result
in misalignment. In order to correct this, it is necessary to
accurately determine the skew angle of a document image
or of a specific region of the image, and, for this purpose, a
number of techniques have been presented in the literature.

Postl [24] found that the maximum valued position in the
Fourier spectrum of a document image corresponds to the
angle of skew. However, this finding was limited to those
documents that contained only a single line spacing, thus the
peak was strongly localized around a single point. When
variant line spacings are introduced, a series of Fourier
spectrum maxima are created in a line that extends from the
origin. Also evident is a subdominant line that lies at
90 degrees to the dominant line. This is due to character and
word spacings and the strength of such a line varies with
changes in language and script type. Peake and Tan expand
on this method, breaking the document image into a number
of small blocks, and calculating the dominant direction of
each suchblock by finding theFourier spectrummaxima [25].
These maximum values are then combined over all such
blocks and a histogram formed. After smoothing, the
maximum value of this histogram is chosen as the approx-
imate skew angle. The exact skew angle is then calculated by
taking the averageof all valueswithin a specified rangeof this
approximate. There is some evidence that this technique is
invariant to document layout and will still function even in
the presence of images and other noise [25]. A number of
other techniques for the estimation of the skew angle have
also been proposed [26], [27], [28].

Expanding on the work of Peake and Tan, Lowther et al.
use the Radon transform to accurately locate the peak of the
Fourier spectrum of the document image [29]. In order to
remove DC components and the higher weightings of the
diagonals, a circular mask is first applied to the spectrum.
Experimental results have shown that this technique
provides superior accuracy in estimating the skew angle
of a wide range of documents, with the correct skew angle
of over 96 percent of test documents determined to within
0.25 degrees [29], and almost all within 1 degree. Because of
these results, this technique has been used to detect and
correct the skew of all text regions in each of the
experiments outlined in Section 6.

4.2 Normalization of Text Blocks

Extraction of texture features from a document image
requires that the input images exhibit particular properties.
The images must be of the same size, resolution, orientation,
and scale. Line and word spacing, character sizes and
heights, and the amount of white space surrounding the
text, if any, can also affect texture features. In order to
minimize the effects of such variations to provide a robust
texture estimate, our system attempts to normalize each text
region before extracting texture features. This process will
also remove text regions that are too small to be
characterized adequately by texture features.

An effective algorithm for overcoming these problems
and normalizing each region of text has been developed,
based on the work done by Peake and Tan [10]. After
binarization, deskewing, and segmentation of the document
image, a number of operations are performed on each
region in order to give it a uniform appearance.

First, horizontal projection profiles are taken for each
segment. By detecting valleys in these profiles, the positions
of line breaks, as well as the height of each line and line
space is calculated, assuming that the text is correctly
aligned following deskewing. An example of a typical
projection profile obtained in this manner is shown in Fig. 2.

Having detected the lines of text, the average height of the
lines in the region is then calculated and those that are either
significantly larger or smaller than this averagearediscarded.
Investigation of many regions has found that such lines often
representheadings, captions, footnotes, orothernonstandard
text, and as such may have an undesirable effect on the
resulting texture features if they are retained. The remaining
lines are then normalized by the following steps:

1. Each line is scaled to convert it to a standard height.
Although 15 pixels has been found to provide good
results in our experiments, larger or smaller values
may be more appropriate in situations where the
expected input resolution of the document images is
significant higher or lower.

2. Normalization of character andword spacings. Often,
modern word processing software expands spaces
between words and even characters to completely fill
a line of text on a page, leading to irregular and
sometimes large areas of white space. Tabulation and
other formatting techniques may also cause similar
problems. By traversing the line and ensuring that
each space does not exceed a specified distance (two-
thirds of the standard height), this white space can be
removed.

3. Removal and padding of short lines. After perform-
ing the above operations on each line, the length of
the longest line is determined, and each of the others
padded to extend them to this length to avoid large
areas of white space at the ends of lines. To
accomplish this, the line is repeated until the desired
length is achieved. Clearly, for lines which are very
short, such repetition may lead to peaks in the
resulting spatial frequency spectrum of the final
image, and hence lines which do not satisfy a
minimum length, expressed as a percentage of the
longest line, are simply removed.

Following normalization, lines must be recombined to
construct the finalblockof text.Whenperforming this stageof
processing, it is important that the line spacings are constant
to avoid significant white space between lines. Due to
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differences in the nature of various scripts, analysis of the line
is required in order to determine the limits and relative
frequencies of character heights. For example, Latin-based
scripts comprise mostly of characters of a small height, such
as “a,” “r,” and “s,” with a small but significant number of
characterswhichprotrudeaboveand/orbelowtheseheights,
for example, “A,” “h,” “p,” and “j.” In contrast to this, almost
all characters in some other scripts, such as Chinese, have
identical heights and, thus, require a somewhat larger line
spacing in order tomaintain a uniform appearance. Determi-
nation of which class a sample of text belongs to can be easily
madebyan examinationof theprojectionprofiles of each line.
In order to obtain a uniform appearance over all script types,
this information is taken into account when normalizing the
line spacings. To allow for a more uniform appearance,
samples of text with uniform or near-uniform character
heights are combined using a larger line spacing.

An example showing the effect of the entire normalization
process applied to a typical text segment is shown in Fig. 3.
From this example, it can be seen that the original image,
which is somewhat noisy and contains many large regions of
whitespace, highly variable line spacing, and nonstandard
text in form of equations, is transformed into a block of
relatively uniform appearance. Closer inspection reveals the
existence of repeated sections, however, preattentively this is
not apparent. The algorithm described above works equally
well on all tested scripts and languages, which is clearly an
important property for this application. Fig. 4 shows the
results obtained after processing a Chinese document image.
Note in this example the increased line spacings due to the
equal height of characters in the Chinese script.

5 TEXTURE FEATURE EXTRACTION

From each block of normalized text, the following texture
features are evaluated for the purpose of script identification.

5.1 Gray-Level Co-Occurrence Matrix Features

Gray-level co-occurrence matrices (GLCMs) are used to
represent the pairwise joint statistics of the pixels of an image
and have been used for many years as a means of
characterizing texture [30]. For a gray-scale image quantized
to R discrete levels, such matrices contain R�R elements
and can be defined for an image I as

Pdði; jÞ ¼
jfððr; sÞ; ðt; vÞÞ : Iðr; sÞ ¼ i; Iðt; vÞ ¼ jgj

NM
; ð1Þ

where j j represents the cardinality of a set.Due to thevariable
parameter d, the set of co-occurrence matrices is arbitrarily
large. In practice, themost relevant correlations occur at short
distances and, thus, the values of d are typically kept small,
and expressed in the form ðd; �Þ, with d representing the lineal
distance in pixels, and � the angle between them. Typically, �
is restricted to the values f0�; 45�; 90�; 135�g, and d limited to a
small range of values. It is also possible to modify the GLCM
somewhat to ensure diagonal symmetry of thematrix. This is
achieved by the transformation

Pðd;�Þ ¼ Pðd;�Þ þ Pð�d;�Þ: ð2Þ

For a typical image with R � 8, the size of the resulting
GLCMs makes their direct use unwieldy, and statistical
features such as correlation, entropy, energy, and homo-
geneity are instead extracted and used to characterize the
image [30]. Due to the binary nature of the document images
from which the features are extracted, the extraction of such
features is unnecessary and indeed counterproductive. Since
thereareonly twogray levels, thematriceswill beof size2� 2,
meaning that it is possible to fully describe each matrix with
only three unique parameters due to the diagonal symmetry
property. Using these values directly is feasible and has
experimentally shown to give better results than attempting
to extract the co-occurrence features of such a small matrix.
Using values of d ¼ f1; 2g and � ¼ f0�; 45�; 90�; 135�g leads to
a total of 24 features.

5.2 Gabor Energy Features

The energy of the output of a bank of Gabor filters has been
previously used as features for identifying the script of a
document image, with good results shown for a small set of
test images [10], [11]. In this work, both even and odd
symmetric filters are used; they are described by

geðx; yÞ ¼ e
�1

2
x2

�2x
þy2

�2y

� �

cosð2�u0ðx cos �þ y sin �ÞÞ ð3Þ

goðx; yÞ ¼ e
�1

2
x2

�2x
þy2

�2y

� �

sinð2�u0ðx cos �þ y sin �ÞÞ; ð4Þ

where x and y are the spatial coordinates, �0 the frequency of
the sinusoidal component of the Gabor filter, and �x and �y
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Fig. 4. Example of text normalization process on a Chinese document image. (a) Original image and (b) normalized block.



the frequencies of the Gaussian envelope along the principal
axes, typically with �x ¼ �y. In the experimental results
presented in [11], a single value of �0 ¼ 16 was used, with
16 orientation values spaced equidistantly between 0 and 2�,
giving a total of 16 filters. By combining the energies of the
outputs of the even and odd symmetric filters for each such
orientation, a feature vector of same dimensionality is
created. To obtain rotation invariance, this vector is trans-
formed via the Fourier transform, and the first four resulting
coefficients used for classification. Since skew detection and
correctionhasbeenperformedon the test images to beused in
these experiments, such a transformation is not required, and
the features will be used unmodified. By combining the
energies of the odd and even symmetric filters for each
resolution and orientation, a total of 16 features are obtained
using this method. While these features have shown good
performance on a small number of script types [11], using
only a single frequency does not provide the necessary
discrimination when a large set of scripts and fonts are used.
To overcome this, an additional 16 filters with a frequency of
�0 ¼ 8 are employed, giving a final dimensionality of 32.

5.3 Wavelet Energy Features

The wavelet transform has emerged over the last two
decades as a formal, concise theory of signal decomposition
and has been used to good effect in a wide range of
disciplines and practical applications. A discrete, two-
dimensional form of the transform can be defined as [31]

Aj ¼ ½Hx � ½Hy �Aj�1�#2;1�#1;2 ð5Þ

Dj1 ¼ ½Gx � ½Hy �Aj�1�#2;1�#1;2 ð6Þ

Dj2 ¼ ½Hx � ½Gy �Aj�1�#2;1�#1;2 ð7Þ

Dj3 ¼ ½Gx � ½Gy �Aj�1�#2;1�#1;2; ð8Þ

where Aj and Djk are the approximation and detail
coefficients at each resolution level j, H, and G are the
low and high-pass filters, respectively, and #x;y represents
downsampling along each axis by the given factors. The
energies of each detail band of this transform, calculated by

Ejk ¼

PM
m¼1

PN
n¼1 Djkðm;nÞ

MN
; ð9Þ

whereM andN represent the size of each detail image, have
been used by many authors as a texture feature vector [32],
[33]. Although such features are relatively primitive in
nature, their wide use and simple nature make them an ideal
point of reference with which to comparemore sophisticated
approaches.

These features can be directly extracted from a region of
normalized text, giving a total of 3J features, where J is the
total number of decomposition levels used in the transform.
In the evaluation conducted in this paper, a value of J ¼ 4 is
used, leading to a feature dimensionality of 12. The choice of
analyzing is also of importance when extracting such
features. Although the literature has presented results using
a number of different analyzing wavelets, the family of
biorthogonal spline wavelets [34] is a popular choice due to
their symmetry, compact support and smoothness, and
regularity properties. Previous work has shown that these
wavelets perform well in texture characterization problems,
and we have used a second-order wavelet of this type in all
work presented in this paper [35].

5.4 Wavelet Log Mean Deviation Features

Previous work in the field of texture classification has shown
that by applying a nonlinear function to the coefficients of the
wavelet transform, a better representation of naturally
textured images can be obtained [36]. By using a logarithmic
transform and extracting the mean deviation of these values
rather than the energy, significant improvements in overall
classification accuracy were obtained when compared to the
standard wavelet energy signatures, at negligible increase in
computational cost. These features, named the wavelet log
mean deviation features, are defined as [36]

LMDjk ¼

PM
m¼1

PN
n¼1 log

jDjkðn;mÞj
Sj�

þ 1
� �

MN
; ð10Þ

where � is a constant specifying the degree of nonlinearity in
the transform, and Sj represents the estimated maximum
value of the coefficients at resolution level j. Although the
optimal value of � is high dependent upon the textures being
used, previous work has found that a value of � ¼ 0:001
performs well over a wide variety of natural textures. The
total number of features obtained in this manner is equal to
the wavelet energy features, thus when using four levels of
decomposition a dimensionality of 12 is again obtained.

5.5 Wavelet Co-Occurrence Signatures

By extracting second-order features of the wavelet coeffi-
cients, represented by the co-occurrence features at small
distances, it is possible to significantly improve the classifica-
tion of natural textures [35]. Such features are extracted from
each of the wavelet detail images in a similar manner to the
GLCM features described previously, with linear quantiza-
tion used to transform the near-continuous wavelet coeffi-
cients to discrete form. In order to avoid overly sparse
matrices, an undecimated form of the wavelet transform is
used in place of the standard two-dimensional FWT, provid-
ing greater spatial resolution, less sparse co-occurrence
matrices at low resolutions, and translation invariance [37].
These features are known as the wavelet co-occurrence
features.

The nonlinear transform described above can also be
used when calculating the wavelet co-occurrence features
by modifying the quantization function, with experimental
results showing significantly reduced overall error rates
when used to classify a variety of natural textures [36]. This
is most easily achieved by modifying the quantization
function qðxÞ such that for a desired number of levels I,

q1ðxÞ ¼
round � log x

Sj�
þ 1

� �h i

; x >¼ 0

�round � log jxj
Sj�

þ 1
� �h i

; x < 0;

8

<

:

ð11Þ

where

� ¼
I � 1

log 1=� þ 1ð Þ
: ð12Þ

Once the wavelet coefficients are quantized using (11), co-
occurrence matrices are formed in an identical manner to the
construction of the GLCMs described previously. From such
matrices, the following co-occurrence features are extracted:
energy, entropy, inertia, local homogeneity, contrast, cluster
shade, cluster prominence, and information measure of
correlation, as shown in Table 1 [30]. These features are
known as the wavelet log co-occurrence features.
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Extracting these features for the first four resolution levels
of the wavelet decomposition gives a total of 96 features for
both the linear and logarithmic quantized cases.

5.6 Wavelet Scale Co-Occurrence Signatures

The wavelet scale co-occurrence signatures have been
recently shown to provide unique texture information by
describing the relationships between scales of the
wavelet transform, allowing improved modeling of visual
texture features which contain information on many
scales and orientations [38]. A scale co-occurrence matrix
is defined as [36]

Sjiðk; lÞ ¼
jfðu; vÞ : q1ðDjiðu; vÞÞ ¼ k; q2ðAjðu; vÞÞ ¼ lgj

NM
;

ð13Þ

where Ajðu; vÞ is the approximation image at resolution
level j,Djiðu; vÞ are the three detail images, q1ðxÞ and q2ðxÞ are
the quantization functions for the detail and approximation
coefficients, respectively, and ðk; lÞ 2 f1 . . . Ig, where I is the
number of discrete quantization levels used. The logarithmic
quantization function described in (11) is used for the detail
coefficients, while linear quantization has been shown to be
more suitable for the approximation data. From each of the
scale co-occurrence matrices, a number of the features
described in Table 1 are extracted. These features have been
shown to perform well on a variety of naturally textured
images, with lower overall classification errors when applied
to some texture databases.

6 CLASSIFICATION RESULTS

The proposed algorithm for automatic script identification
from document images was tested on a database containing
eight different script types (Latin, Chinese, Japanese, Greek,

Cyrillic, Hebrew, Sanskrit, and Farsi). Examples of these
images are shown in Fig. 5. Each such image was binarized,
deskewed, and normalized using the algorithms described
above, and200 segments, each64� 64pixels in size, extracted
for each script class. This size sample corresponds to roughly
four lines of printed text, typically, containing two or three
words on each line. Although higher accuracies could be
obtained by using larger areas or even complete regions, we
have used these small regions to simulate situations where
onlya limitedamountof text isavailable.The imagesobtained
from this process were then divided into two equal groups to
create the training and testing sets, ensuring that samples
taken from the same image were placed into the same group.

In order to improve classification accuracy and reduce
the dimensionality of the feature space, feature reduction is
performed prior to classification by means of linear
discriminate analysis [39]. This technique maps the feature
space to one of lower dimensionality while maximizing the
Fisher criterion, a measure of class separability. For a
training set of N classes and a feature dimensionality of M,
this analysis will return a M ! ðN � 1Þ mapping, repre-
senting the N � 1 hyperplanes necessary to segment the
feature space linearly. To illustrate the effectiveness of this
technique, the results obtained both with and without
performing this step are shown in Table 2.

Classification of the samples is performed using a
Gaussian mixture model (GMM) classifier, which attempts
to model each class as a combination of Gaussian distribu-
tions in feature space [39], and is trainedusing aversion of the
expectation maximization (EM) algorithm. Due to the large
range of possible scripts, a dynamicmethod of determining a
classifier topology for each class is required. For this purpose,
we have chosen to use the Bayes information criterion (BIC),
which can be approximated for each candidate topology T i

by [40], [41], [42]

BICðT iÞ ¼ log pðXijT i; �̂�������iÞ � �
Ki

2
logNi; ð14Þ

where Xi is the set of N training observations, �̂�������i the
parametric form of the trained classifier, K the number of
freeparameters in themodel, and�ascaling factor. From(14),
it can be seen that this criterion ismadeup of the likelihood of
the model given the training data minus a penalty factor
which increases linearly with model complexity.

The overall classification error rates for each of the texture
features are shown in Table 2. It can be seen that the wavelet
log co-occurrence significantly outperform any of the other
features for script classification, with an overall error rate of
only 1 percent. This result is relatively consistent with those
reported for natural textures [36], indicating that local
relationships between wavelet coefficients are an excellent
basis for representing texture. The relative increase in
performance of these features compared to those extracted
with linear quantization is again consistent with previously
published results.

The scale co-occurrence features did not perform as well
on the binary script images as has been previously reported
for natural textures [38], with only a slightly reduced error
rate when compared to the wavelet energy features. The
GLCM features showed the worst overall performance,
from which it can be concluded that pixel relationships at
small distances are insufficient to characterize the script of a
document image. The poor performance of the features
proposed by Spitz can be attributed to the fact that they
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were only designed to distinguish between Latin and Han-
based scripts and cannot effectively discriminate script
pairs such as Greek and Latin or Persian and Devangari.

Table 3 shows the distribution of the errors among the
various script classes for the wavelet log co-occurrence
features. In order to give a meaningful distribution, linear
discriminate analysis was not used when generating these
results. The Chinese script shows the lowest overall error
rate for these features, with the largest errors arising from
misclassifications between the Cyrillic and Greek scripts.

7 ADAPTIVE GMMS FOR IMPROVED CLASSIFIER

PERFORMANCE

Printed text, regardless of the script, has a distinct visual
texture and is easily recognized as such by a casual observer.

With such a commonality between all script classes, it is
possible to use this a priori knowledge to improve the

modeling of each individual texture class. This is done by
training a global model using all available training, then
adapting this model for each individual class, rather than

creating each model independently. By doing this, a more
robust representation can be obtained, somewhat overcom-

ing the blind nature of the learning algorithm. It is also
possible to train a class using less training observations, since

an initial startingpoint for themodel is alreadyavailable. This
technique has been used with great success in applications

where the general form of a model can be estimated using
prior information, such as the modeling of speech and
speakers, and is known as maximum a posterior (MAP)

adaptation [43].

7.1 MAP Adaptation

When estimating the parametric form of a classifier, the

maximum likelihood estimate is defined as the parameter
set �̂������� such that [44], [39]

�̂������� ¼ argmax
����

lð����Þ; ð15Þ
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TABLE 2
Script Recognition Results for Each of the Feature Sets

with and without Feature Reduction

Fig. 5. Examples of document images used for training and testing. (a) English, (b) Chinese, (c) Greek, (d) Cyrillic, (e) Hebrew, (f) Hindi, (g) Japanese,

and (h) Persian.



where lð����Þ is the likelihood of the training observations for

that parametric form ���� defined as

lð����Þ ¼ pðoj����Þ: ð16Þ

Given these definitions, the ML framework can be thought

of as finding a fixed but unknown set of parameters �̂�������. In

contrast to this, the maximum a posterior (MAP) approach

assumes ���� to be a random vector with a known distribution,

with an assumed correlation between the training observa-

tions and the parameters ���� [45]. From this assumption, it

becomes possible to make a statistical inference of ���� using

only a small set of adaption data o, and prior knowledge of

the parameter density gð����Þ. The MAP estimate therefore

maximizes the posterior density such that

����MAP ¼ argmax
����

gð����joÞ ð17Þ

¼ argmax
����

lðoj����Þgð����Þ: ð18Þ

Since the parameters of a prior density can also be

estimated from an existing set of parameters ����0, the MAP

framework also provides an optimal method of combining

����0 with a new set of observations o.
In the case of a Gaussian distribution, the MAP

estimations of the mean ~mm and variance ~��2 can be obtained

using the framework presented above, given prior distribu-

tions of gðmÞ and gð�2Þ, respectively. If the mean alone is to

be estimated, this can be shown to be given by [46]

~mm ¼
T�2

�2 þ T�2
�xxþ

�2

�2 þ T�2
�; ð19Þ

where T is the total number of training observations, �xx is

the mean of those observations, and � and �2 are the mean

and variance, respectively, of the conjugate prior ofm. From

(19), it can be seen that the MAP estimate of the mean is a

weighted average of the conjugate prior mean � and the

mean of the training observations. As T ! 0, this estimate

will approach the prior �, and as T ! 1, it will approach �xx,

which is the ML estimate.
Using MAP to estimate the variance parameter, with a

fixed mean, is accomplished in a somewhat simpler

manner. Typically, a fixed prior density is used, such that

gð�2Þ ¼
constant �2 � �2

min

0 otherwise;

�

ð20Þ

where �2
min is estimated from a large number of observa-

tions, in the case of our application the entire database of
script images. Given this simplified density function, the
MAP estimate of the variance is then given by

~��2 ¼
Sx Sx � �2

min

0 otherwise;

�

ð21Þ

where Sx is the variance of the training observations. This
procedure is often known as variance clipping and is effective
in situations where limited training data does not allow for
an adequate estimate of the variance parameter.

In the current application of script recognition, the prior
parameter density gð����Þ can be estimated using a global
model of script, trained using all available data. This choice
is justified by the observation that printed text, in general,
regardless of script type, has a somewhat unique appear-
ance and as such the texture features obtained should be
relatively well clustered in feature space. Training for each
of the individual textures is then carried out by adapting
this global model for each individual script class. In order to
create more stable representations and limit computational
expense, only the mean parameters and weights of these
mixtures are adapted during this process, using (19).

7.2 Classification Results

Using the same training data as the previous experiment
and the MAP approach outlined above, a global script
model was created for each of the feature sets and adapted
separately for each script class. The optimal number of
mixtures for these models was again determined dynami-
cally using the Bayes information criterion (BIC) described
in Section 6. The overall classification results from this
experiment are shown in Table 4. These results show a
small improvement in overall classifier error when com-
pared to those of Table 2, due to the more robust model
obtained by utilizing prior information.

It is important to note that in these experiments a
relatively large amount of training data (100 samples per
class) is used, resulting in models which are stable and well-
defined. In situations where less training data is available, it
is expected that results will be somewhat poorer, and the
benefit of using MAP adaptation to create a starting point
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for each model more clearly illustrated. To test this
hypothesis, the amount of training data was reduced to
only 25 samples per class, and the experiment above
repeated. The overall classification error rates obtained
with and without using MAP are shown in Table 5. These
results more clearly indicate the benefits of the MAP
adaptation process, with error rates significantly reduced
for each of the feature sets when compared to using models
trained independently using the ML algorithm.

8 MULTIFONT SCRIPT RECOGNITION

Within a given script there typically exists a large number of
fonts, often of widely varying appearance. Because of such
variations, it isunlikely thatamodel trainedononesetof fonts
will consistently correctly identify an image of a previously
unseenfontof thesamescript.Toovercomethis limitation, it is
necessary to ensure that an adequate amount of training
observations from each font to be recognized are provided in
order that a sufficiently complex model is developed.

In addition to requiring large amounts of training data,
creating a model for each font type necessitates a high
degree of user interaction, with a correspondingly higher
chance of human error. In order to reduce this level of
supervision, an ideal system would automatically identify
the presence of multiple fonts in the training data and
process this information as required.

8.1 Clustered LDA

The linear discriminate function described previously
attempts to transform the feature space such that the
interclass separation is maximized, while minimizing the
intraclass separation, by finding the maximum of the cost
function trðCS

�1
w SbC

0Þ. While this function is optimal in this
sense, it does make a number of strong assumptions
regarding the nature of the distributions of each class in
feature space. All classes are assumed to have equal
covariance matrices, meaning that the resulting transform
will be optimal only in the sense of separation of the class
means. Additionally, since the function is linear, multimodal
distributions cannot be adequately partitioned in some
circumstances. Fig. 6 shows a simplistic synthetic example
of this case, where two classes are clearly well separated in
feature space, however have the same mean and therefore
cannot be effectively separated by a linear discriminate
function.Whenanalyzing scripts containingmultiple fonts, it
is common to encounter such multimodal distributions in

feature spacewithin a particular script, as the texture features
extracted from different fonts can vary considerably due to
the unique characteristics of each.

To overcome this limitation of LDA, we propose to
perform automatic clustering on the data prior to determin-
ing the discriminate function, and assign a separate class
label to each individual cluster. Training and classification
is then performed on this extended set of classes, and the
final decision mapped back to the original class set.
Although this leads to less training data for each individual
subclass, using the adaptation technique presented in the
previous section can somewhat alleviate this problem.

The k-means clustering algorithm is a fast, unsupervised,
nondeterministic, iterative method for generating a fixed
number of disjoint clusters. Each data point is randomly
assigned to one of k initial clusters, such that each cluster has
approximately the same number of points. In each subse-
quent iteration of the algorithm, the distance from each point
to each of the clusters is calculated using some metric, and
moved into the cluster with the lowest such distance.
Commonly used metrics are the Euclidian distance to the
centroid of the clusters or a weighted distance which
considers only the closest n points. The algorithm terminates
when no points are moved in a single iteration. As the final
result is highly dependent on the initialization of the clusters,
the algorithm is often repeated a number of times, with each
solution scored according to some evaluation function.
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TABLE 4
Script Recognition Results for Various Feature Sets
Using MAP Adaptation with Large Training Sets

TABLE 5
Script Recognition Results with and without MAP Adaptation for

Various Texture Features for Small Training Sets

Fig. 6. Synthetic example of the limitations of LDA. The two multimodal
distributions, although well separated in feature space, have identical
means and, hence, an effective linear discriminate function cannot be
determined.



Determining the optimal number of clusters is a problem
which has been previously addressed in the literature [47],
[48], [49]. However, for the purposes of multifont script
recognition, using a fixed number of clusters has shown to
provide adequate results at significantly reduced computa-
tional cost. In the experiments in the following section,
10 clusters are used in all cases, as this number was found to
be generally sufficient to describe the font variations present
within all of the tested scripts. Although the majority of
classes can in fact be representedadequatelyusing fewer than
this number of clusters, using more clusters does not
significantly degrade performance.

8.2 Classification Results

To illustrate the limitations of using a singlemodel in amulti-
font environment, experiments using a number of fonts from
each script class were conducted. A total of 30 fonts were
present in the database, with 10 from Latin script, four each
from Chinese, Japanese, and Persian, and three each from
Sanskrit, Hebrew, Greek, and Cyrillic. 100 training and
testing samples were extracted from each font type.

To illustrate the limitations of using a single model for
multiple fonts, each of the scripts was trained as a single class
using the MAP classification system proposed above. From
the results shown inTable 6, it canbe seen that large errors are
introduced, with the most common misclassification occur-
ring between fonts of the Latin and Greek scripts. Interest-
ingly, these results show that the simpler texture features do
not suffer the same performance degradation as the more
complex features, with the wavelet energy signatures
showing the lowest overall classification error of 12.3 percent.

The proposed clustering algorithm is implemented by
using k-means clustering to partition each class into
10 regions. Each subclass is then assigned an individual label
and LDA and classification performed as normal. The results
of this experiment are shown in Table 7, with the wavelet log
co-occurrence features again providing the lowest overall
error rate of 2.1 percent. Although the error rates for each of
the feature sets is slightly higher than the single font results of
Table 5, a vast improvement is achieved when compared to
the results obtained using a single model only.

9 CONCLUSIONS AND FUTURE WORK

This paper has shown the effectiveness of texture analysis
techniques in the field of document processing and, more
specifically, to the problem of automatic script identification.

A number of texture features were evaluated for the purpose
of script recognition, including GLCM, Gabor filterbank
energies, and a number of wavelet transform-based features.
Byusing such features, it is notnecessary to extract individual
script components, making them ideal for degraded and
noisy documents or situations where such segmentation is
not possible. The amount of text required for accurate
recognition is also quite small, with as little as five words
sufficient in somecases.Whenclassifying scripts containing a
single font, experimental results have shown that texture
features can outperform other script recognition techniques,
with thewavelet log co-occurrence features giving the lowest
overall classification error rate.

Inordertoprovidemorestablemodelofeachscriptclass,as
well as reducing the need for excessive training data, a
techniquewas proposedwherebyMAP adaptation is used to
create a global script model. Because of the strong interclass
correlations which exist between the extracted features of
script textures, this approach was found to be well-suited to
the application of automatic script identification. Experi-
mentalresultsshowedasmall increaseinoverallclassification
performance when using large training sets, and significant
improvement when limited training data is available.

Using a singlemodel to characterize multiple fonts within
a script class has been shown to be inadequate, as the fonts
within a script class can vary considerably in appearance,
often resulting in a multimodal distribution in feature space.
To overcome this problem, a technique whereby each class is
automatically segmented using the k-means clustering
algorithm before performing LDA is presented. By doing
this, a number of subclasses are automatically generated and
trained without the need for any user intervention. Experi-
ments performed on a multifont script database have shown
that this technique can successfully identify scripts contain-
ing multiple fonts and styles.
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