
Texture Measurements as a Basis for Heuristic Commitment Techniques
in Constraint-Directed Scheduling

by

John Christopher Beck

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

© Copyright J. Christopher Beck 1999

ii

Abstract

Texture Measurements as a Basis for Heuristic Commitment Techniques

in Constraint-Directed Scheduling

John Christopher Beck

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

1999

The central thesis of this dissertation is that an understanding of the structure of a problem leads
to high-quality heuristic problem solving performance in constraint-directed scheduling. Our
methods for gaining an understanding of problem structure focus on texture measurements: algo-
rithms that implement dynamic analyses of each search state. Texture measurements distill struc-
tural information from the constraint graph representation of a search state which is then used as a
basis for heuristic decision-making.

To enable the rigorous empirical investigation of the above thesis in the context of real-world
scheduling problems, we define the ODO framework for constraint-directed search. The frame-
work allows us to implement scheduling algorithms and their components, and to compare them
both from the perspective of static similarities and on the basis of empirical performance.

In this dissertation, we extend the scope of scheduling problems that can be addressed, in general,
by constraint-directed techniques. Specifically, we develop the concept of a generalized measure
of constraint criticality that enables the construction of dynamic, opportunistic heuristic commit-
ment techniques. Based on an analysis of the requirements of a measure of constraint criticality,
we suggest the probability of breakage of a constraint as such a measure.

The investigation of our thesis focuses on three classes of scheduling problems: job shop schedul-
ing, scheduling with inventory, and scheduling with alternative activities. In each of these problem
classes we empirically demonstrate that, as a problem becomes more complex, knowledge of its
structure has a dominant role in guiding heuristic search to a solution.

iii

Acknowledgements

Many people have contributed, both directly and indirectly, to this dissertation, making it better
than it otherwise would have been.

Thanks to Mark S. Fox for insight, support, and guidance for the past four and a half years (not to
mention the two years before that).

Thanks to my committee members Mike Carter, Victor Lesser, Steve Smith, and John Mylopoulos
for their cogent comments and guidance.

Thanks to Andrew Davenport who has been invaluable in many respects and has contributed
much to the quality of the research recorded herein.

Thanks to Edward Sitarski and the R&D staff at Numetrix, Ltd. for the opportunity to spend
almost three years in the real-world of scheduling and software development. In particular, I wish
to thank Edward, Ioan Popescu, Scott Hadley, Drew van Camp, Georgi Grosev, Rob Morenz, and
Stew Ballie for numerous discussions, their technical, commercial, and industrial knowledge, and,
of course, the beer.

Thanks to my parents, Anne and John, for years of support and love.

Last and most, thanks to Angela, sine qua non, for all her love and support (emotional, financial,
nutritional, grammatical, editorial, pastoral-comical, historical-pastoral, tragical-historical, tragi-
cal-comical-historical-pastoral).

iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables x

List of Figures xiv

Chapter 1 Introduction 1

1.1 Motivations 1

1.2 Overview of Dissertation 3

1.3 Summary of Contributions 4

Chapter 2 Literature Review 5

2.1 An Overview of Constraint-Directed Search and Scheduling 5

2.1.1 The Constraint Satisfaction Problem 5

2.1.2 Why Constraints? 6

2.1.3 Constraint-Directed Scheduling 8

2.2 Techniques for Constraint-Directed Scheduling 10

2.3 Heuristic Commitment Techniques 10

2.3.1 The ORR/FSS Heuristic 11

2.3.2 Task Interval Entropy Heuristic 13

2.3.3 Resource Slack, First/Last Heuristic 14

2.3.4 CBASlack Heuristic 15

2.3.5 The Randomized Left-Justified Heuristic 16

2.3.6 Local Search Heuristics 16

2.3.7 Open Issues 17

2.4 Propagators 18

2.4.1 Constraint-Based Analysis 18

2.4.2 Edge-finding Exclusion 19

2.4.3 Edge-finding Not-First/Not-Last 20

2.4.4 Open Issues 21

2.5 Retraction Techniques 22

2.5.1 Choosing Commitments to Retract 23

2.5.2 Dealing with Intervening Commitments 26

2.5.3 Open Issues 27

2.6 Scheduling with Inventory 28

2.6.1 Problem Definition 28

2.6.2 Previous Work 29

2.6.3 Discussion 30

v

2.7 Scheduling with Alternative Activities 31

2.7.1 Alternative Resources 31

2.7.2 Alternative Process Plans 33

2.7.3 Discussion 35

2.8 Summary 36

Chapter 3 The ODO Framework 37

3.1 Overview of the ODO Framework 37

3.1.1 Why the Framework? 39

3.2 The Components of ODO 40

3.2.1 The Constraint Graph Representation 41

3.2.2 The Commitment Model 41

3.2.3 Texture Measurements and Heuristic Commitment Techniques 44

3.3 Scheduling Algorithms as Instances of the Framework 45

3.3.1 The ORR/FSS Algorithm 45

3.3.2 The SOLVE Algorithm 46

3.3.3 GERRY 46

3.3.4 Tabu Search 47

3.3.5 Genetic Algorithms 48

3.3.6 Summary and Discussion 49

3.4 Summary 51

Chapter 4 An Experimental Study of Heuristics for Job Shop Scheduling 53

4.1 Motivation 53

4.1.1 Search State Analysis and Scheduling Performance 53

4.1.2 Criticisms of Texture-based Heuristics 54

4.2 The Job Shop Scheduling Problem 55

4.3 Updating Contention and Reliance: SumHeight 56

4.3.1 An Event-based Texture Measurement Implementation 56

4.3.2 Heuristic Commitment Selection 57

4.3.3 Complexity 59

4.4 Instantiations of the ODO Framework 59

4.5 Evaluating Scheduling Performance 60

4.5.1 Competitive versus Scientific Testing 61

4.5.2 Empirical Testing in Scheduling 61

4.5.3 A Compromise Approach 62

4.5.4 The Reporting of Time-outs 62

4.6 Experiment 1: Operations Research Library 63

4.6.1 Problem Set 63

4.6.2 Results 64

4.6.3 Summary and Discussion 67

4.7 Experiment 2: Scaling with Problem Size 69

4.7.1 Problem Set 69

vi

4.7.2 Results 69

4.7.3 Summary 74

4.8 Experiment 3: Bottleneck Resources 74

4.8.1 Problem Sets 75

4.8.2 Results 75

4.8.3 Summary 84

4.9 Discussion 84

4.9.1 Heuristics 84

4.9.2 Retraction Techniques 89

4.10 Conclusions 91

Chapter 5 The Criticality of Constraints 93

5.1 From Contention to Criticality 93

5.1.1 The Criticality of a Constraint 93

5.1.2 Contention and Aggregate Demand 94

5.1.3 Requirements for a Measure of Criticality 95

5.2 Probability of Breakage of a Constraint 95

5.2.1 Estimation of the Probability of Breakage 96

5.2.2 The JointHeight Texture 97

5.2.3 The TriangleHeight Texture 98

5.2.4 The VarHeight Texture 99

5.3 Empirical Studies 101

5.3.1 Instantiations of the ODO Framework 101

5.4 Experiment 1: Operations Research Library 102

5.4.1 Results 102

5.4.2 Summary 105

5.5 Experiment 2: Scaling with Problem Size 105

5.5.1 Results 106

5.5.2 Summary 111

5.6 Experiment 3: Bottleneck Resources 111

5.6.1 Results 111

5.6.2 Summary 120

5.7 Discussion 120

5.7.1 The Practical Utility of the Probability of Breakage 120

5.7.2 Probability of Breakage versus Aggregate Demand 121

5.7.3 Estimations of Probability of Breakage 121

5.8 Conclusions 121

Chapter 6 Scheduling with Inventory 123

6.1 Introduction 123

6.1.1 Motivation and Problem Definition 124

6.1.2 Overview of Approach 125

6.2 Inventory Representation 126

vii

6.2.1 Calculating the Inventory Bounds 127

6.2.2 Inventory Termination 129

6.3 Inventory Commitments 130

6.3.1 Producer/Consumer Commitments 131

6.3.2 Producer/Consumer Interval Commitments 135

6.3.3 Start Time Commitments 136

6.4 Texture Measurements for Inventory 136

6.4.1 Adapting VarHeight to Inventory 136

6.4.2 Aggregating Demand 138

6.5 Propagators for Inventory 140

6.5.1 Inventory Bound Propagation 140

6.5.2 Producer/Consumer Propagation 141

6.6 Inventory Scheduling Strategies 142

6.6.1 Propagators 142

6.6.2 A Texture-based Heuristic Commitment Technique 143

6.6.3 Non-texture-based Inventory Heuristic Commitment Techniques 145

6.6.4 Scheduling Without Inventory Heuristics 146

6.6.5 A Note on Early Termination 146

6.6.6 Instantiations of the ODO Framework 146

6.7 Problem Generation 147

6.7.1 One-Stage Inventory Problems 148

6.7.2 Two-Stage Inventory Problems 150

6.8 Empirical Evaluation 151

6.9 Experiment 1: Inventory Propagators 151

6.9.1 Results 152

6.10 Experiment 2: One-Stage Problems 153

6.10.1 Algorithms 153

6.10.2 Problems 154

6.10.3 Results 154

6.10.4 Summary 157

6.11 Experiment 3: Two-Stage Problems 158

6.11.1 Results 158

6.11.2 Summary 161

6.12 Discussion 161

6.12.1 Inventory Heuristics 161

6.12.2 Inventory Propagators 163

6.12.3 Appropriateness of the Experimental Problems 163

6.12.4 Allowing Varying Inventory Constraints 164

6.13 Conclusions 164

Chapter 7 Scheduling with Alternative Activities 165

7.1 Introduction 165

7.1.1 Motivation and Problem Definition 165

viii

7.1.2 Overview of Approach 167

7.2 Probability of Existence 167

7.2.1 Desired Functionality 167

7.2.2 Limitations on the PEX Implementation 169

7.3 Adding PEX to the Temporal Network 169

7.3.1 Extending the Temporal Graph 170

7.4 Propagating PEX 173

7.4.1 Initial Propagation 173

7.4.2 Incremental Propagation 175

7.5 Temporal Propagation with PEX 179

7.5.1 Temporal Propagation through a XorNode 179

7.5.2 Deriving Implied PEX Commitments from Temporal Propagation 179

7.5.3 Temporal Propagation After PEX Propagation 180

7.5.4 A Note on Temporal Propagation Algorithms 181

7.6 Incorporating PEX in Scheduling Heuristics 182

7.6.1 Texture-based Heuristics 182

7.6.2 Other Heuristics 184

7.6.3 The Information Content of Heuristic Commitment Techniques 185

7.7 Incorporating PEX in Propagators 186

7.7.1 Constraint Based Analysis 186

7.7.2 Edge-finding 186

7.8 Empirical Evaluation 187

7.8.1 Experimental Design 187

7.8.2 Instantiations of the ODO Framework 188

7.8.3 Statistical Analysis 188

7.9 Alternative Process Plans 189

7.9.1 Experiment 1: Scaling with the Number of Alternatives 189

7.9.2 Experiment 2: Scaling with Problem Size 195

7.10 Combining Alternative Process Plans and Alternative Resources 199

7.10.1 Experiment 3: Scaling with the Number of Alternatives 199

7.11 Discussion 202

7.11.1 Heuristics 202

7.11.2 PEX-Edge-Finding 204

7.11.3 Exploiting Non-uniformities of Problem Structure 205

7.11.4 Alternative Resources 206

7.12 Conclusion 206

Chapter 8 Conclusions and Future Work 209

8.1 Contributions 209

8.1.1 Major Contributions 209

8.1.2 Other Contributions 211

8.2 Future Work 211

8.2.1 Heuristics for Constraint-Directed Search 211

ix

8.2.2 Models of Scheduling 214

8.3 Conclusion 217

Appendix A Index of Important Terms 219

Appendix B Detailed Results for the Experiments in Chapter 4 and Chapter 5 221

Appendix C Detailed Results for the Experiments in Chapter 6 249

Appendix D Detailed Results for the Experiments in Chapter 7 259

Chapter 9 References 291

x

List of Tables

Table 1. Notation. 9

Table 2. Summary of the ODO Policy Model of Five Example Scheduling Algorithms. 49

Table 3. Summary of Experimental Scheduling Algorithms. 60

Table 4. Test Problems. 63

Table 5. Summary of Experimental Scheduling Algorithms. 102

Table 6. The Algorithms Used in the Inventory Experiments. 147

Table 7. The Time Windows for the Activities in Figure 101. 172

Table 8. The PEX Values for a Subset of the Nodes in Figure 105. 176

Table 9. The Eight Algorithms Used in the Alternative Process Plan Experiments. 189

Table 10. The Groups of Algorithms Used in the Statistical Tests. 190

Table 11. The Characteristics of the Problems in Experiment 1. 191

Table 12. The Characteristics of the Problems in Experiment 2. 195

Table 13. The Distribution of Alternative Resources for the Problems in Experiment 3. 199

Table B.1. Experiment 1: Fraction of Problems Timed-out. 221

Table B.2. Experiment 1: Mean CPU Time in Seconds. 222

Table B.3. Experiment 1: Mean Number of Backtracks. 222

Table B.4. Experiment 1: Mean Number of Commitments. 223

Table B.5. Experiment 1: Mean Number of Heuristic Commitments. 223

Table B.6. Experiment 1: Mean Percentage of Heuristic Commitments. 224

Table B.7. Experiment 2 Overall: Fraction of Problems Timed-out. 224

Table B.8. Experiment 2 Overall: Mean CPU Time in Seconds. 225

Table B.9. Experiment 2 Overall: Mean Number of Backtracks. 225

Table B.10. Experiment 2 Overall: Mean Number of Commitments. 226

Table B.11. Experiment 2 Overall: Mean Number of Heuristic Commitments. 226

Table B.12. Experiment 2 Overall: Mean Percentage of Heuristic Commitments. 227

Table B.13. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out. 227

Table B.14. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds. 228

Table B.15. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks. 228

Table B.16. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments. 229

Table B.17. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments. 229

Table B.18. Experiment 2, 5✕ 5 Problems: Mean Percentage of Heuristic Commitments. 230

Table B.19. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out. 230

Table B.20. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds. 231

Table B.21. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks. 231

Table B.22. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments. 232

Table B.23. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments. 232

Table B.24. Experiment 2, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments. 233

Table B.25. Experiment 2, 15✕ 15 Problems: Fraction of Problems Timed-out. 233

Table B.26. Experiment 2, 15✕ 15 Problems: Mean CPU Time in Seconds. 234

Table B.27. Experiment 2, 15✕ 15 Problems: Mean Number of Backtracks. 234

Table B.28. Experiment 2, 15✕ 15 Problems: Mean Number of Commitments. 235

Table B.29. Experiment 2, 15✕ 15 Problems: Mean Number of Heuristic Commitments. 235

Table B.30. Experiment 2, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments. 236

Table B.31. Experiment 2, 20✕ 20 Problems: Fraction of Problems Timed-out. 236

Table B.32. Experiment 2, 20✕ 20 Problems: Mean CPU Time in Seconds. 237

Table B.33. Experiment 2, 20✕ 20 Problems: Mean Number of Backtracks. 237

xi

Table B.34. Experiment 2, 20✕ 20 Problems: Mean Number of Commitments. 238

Table B.35. Experiment 2, 20✕ 20 Problems: Mean Number of Heuristic Commitments. 238

Table B.36. Experiment 2, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments. 239

Table B.37. Experiment 3, 10✕ 10 Problems: Fraction of Problems Timed-out. 239

Table B.38. Experiment 3, 10✕ 10 Problems: Mean CPU Time in Seconds. 240

Table B.39. Experiment 3, 10✕ 10 Problems: Mean Number of Backtracks. 240

Table B.40. Experiment 3, 10✕ 10 Problems: Mean Number of Commitments. 241

Table B.41. Experiment 3, 10✕ 10 Problems: Mean Number of Heuristic Commitments. 241

Table B.42. Experiment 3, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments. 242

Table B.43. Experiment 3, 15✕ 15 Problems: Fraction of Problems Timed-out. 242

Table B.44. Experiment 3, 15✕ 15 Problems: Mean CPU Time in Seconds. 243

Table B.45. Experiment 3, 15✕ 15 Problems: Mean Number of Backtracks. 243

Table B.46. Experiment 3, 15✕ 15 Problems: Mean Number of Commitments. 244

Table B.47. Experiment 3, 15✕ 15 Problems: Mean Number of Heuristic Commitments. 244

Table B.48. Experiment 3, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments. 245

Table B.49. Experiment 3, 20✕ 20 Problems: Fraction of Problems Timed-out. 245

Table B.50. Experiment 3, 20✕ 20 Problems: Mean CPU Time in Seconds. 246

Table B.51. Experiment 3, 20✕ 20 Problems: Mean Number of Backtracks. 246

Table B.52. Experiment 3, 20✕ 20 Problems: Mean Number of Commitments. 247

Table B.53. Experiment 3, 20✕ 20 Problems: Mean Number of Heuristic Commitments. 247

Table B.54. Experiment 3, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments. 248

Table C.1. Experiment 1: Fraction of Problems Timed-out. 249

Table C.2. Experiment 1: Mean CPU Time in Seconds. 249

Table C.3. Experiment 1: Mean Number of Backtracks. 250

Table C.4. Experiment 1: Mean Number of Commitments. 250

Table C.5. Experiment 1: Mean Number of Heuristic Commitments. 250

Table C.6. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out. 251

Table C.7. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds. 251

Table C.8. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks. 251

Table C.9. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments. 252

Table C.10. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments. 252

Table C.11. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out. 252

Table C.12. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds. 253

Table C.13. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks. 253

Table C.14. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments. 253

Table C.15. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments. 254

Table C.16. Experiment 3, 5✕ 5 Problems: Fraction of Problems Timed-out. 254

Table C.17. Experiment 3, 5✕ 5 Problems: Mean CPU Time in Seconds. 254

Table C.18. Experiment 3, 5✕ 5 Problems: Mean Number of Backtracks. 255

Table C.19. Experiment 3, 5✕ 5 Problems: Mean Number of Commitments. 255

Table C.20. Experiment 3, 5✕ 5 Problems: Mean Number of Heuristic Commitments. 255

Table C.21. Experiment 3, 10✕ 10 Problems: Fraction of Problems Timed-out. 256

Table C.22. Experiment 3, 10✕ 10 Problems: Mean CPU Time in Seconds. 256

Table C.23. Experiment 3, 10✕ 10 Problems: Mean Number of Backtracks. 256

Table C.24. Experiment 3, 10✕ 10 Problems: Mean Number of Commitments. 257

Table C.25. Experiment 3, 10✕ 10 Problems: Mean Number of Heuristic Commitments. 257

Table D.1. Experiment 1 Overall: Fraction of Problems Timed-out. 259

Table D.2. Experiment 1 Overall: Mean CPU Time in Seconds. 259

Table D.3. Experiment 1 Overall: Mean Number of Backtracks. 260

xii

Table D.4. Experiment 1 Overall: Mean Number of Commitments. 260

Table D.5. Experiment 1 Overall: Mean Number of Heuristic Commitments. 260

Table D.6. Experiment 1 Overall: Mean Percentage of Heuristic Commitments. 261

Table D.7. Experiment 1, 1-Alternative Problems: Fraction of Problems Timed-out. 261

Table D.8. Experiment 1, 1-Alternative Problems: Mean CPU Time in Seconds. 261

Table D.9. Experiment 1, 1-Alternative Problems: Mean Number of Backtracks. 262

Table D.10. Experiment 1, 1-Alternative Problems: Mean Number of Commitments. 262

Table D.11. Experiment 1, 1-Alternative Problems: Mean Number of Heuristic Commitments. 262

Table D.12. Experiment 1, 1-Alternative Problems: Mean Percentage of Heuristic Commitments. 263

Table D.13. Experiment 1, 3-Alternative Problems: Fraction of Problems Timed-out. 263

Table D.14. Experiment 1, 3-Alternative Problems: Mean CPU Time in Seconds. 263

Table D.15. Experiment 1, 3-Alternative Problems: Mean Number of Backtracks. 264

Table D.16. Experiment 1, 3-Alternative Problems: Mean Number of Commitments. 264

Table D.17. Experiment 1, 3-Alternative Problems: Mean Number of Heuristic Commitments. 264

Table D.18. Experiment 1, 3-Alternative Problems: Mean Percentage of Heuristic Commitments. 265

Table D.19. Experiment 1, 5-Alternative Problems: Fraction of Problems Timed-out. 265

Table D.20. Experiment 1, 5-Alternative Problems: Mean CPU Time in Seconds. 265

Table D.21. Experiment 1, 5-Alternative Problems: Mean Number of Backtracks. 266

Table D.22. Experiment 1, 5-Alternative Problems: Mean Number of Commitments. 266

Table D.23. Experiment 1, 5-Alternative Problems: Mean Number of Heuristic Commitments. 266

Table D.24. Experiment 1, 5-Alternative Problems: Mean Percentage of Heuristic Commitments. 267

Table D.25. Experiment 1, 7-Alternative Problems: Fraction of Problems Timed-out. 267

Table D.26. Experiment 1, 7-Alternative Problems: Mean CPU Time in Seconds. 267

Table D.27. Experiment 1, 7-Alternative Problems: Mean Number of Backtracks. 268

Table D.28. Experiment 1, 7-Alternative Problems: Mean Number of Commitments. 268

Table D.29. Experiment 1, 7-Alternative Problems: Mean Number of Heuristic Commitments. 268

Table D.30. Experiment 1, 7-Alternative Problems: Mean Percentage of Heuristic Commitments. 269

Table D.31. Experiment 2 Overall: Fraction of Problems Timed-out. 269

Table D.32. Experiment 2 Overall: Mean CPU Time in Seconds. 270

Table D.33. Experiment 2 Overall: Mean Number of Backtracks. 270

Table D.34. Experiment 2 Overall: Mean Number of Commitments. 270

Table D.35. Experiment 2 Overall: Mean Number of Heuristic Commitments. 271

Table D.36. Experiment 2 Overall: Mean Percentage of Heuristic Commitments. 271

Table D.37. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out. 271

Table D.38. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds. 272

Table D.39. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks. 272

Table D.40. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments. 272

Table D.41. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments. 273

Table D.42. Experiment 2, 5✕ 5 Problems: Mean Percentage of Heuristic Commitments. 273

Table D.43. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out. 273

Table D.44. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds. 274

Table D.45. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks. 274

Table D.46. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments. 274

Table D.47. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments. 275

Table D.48. Experiment 2, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments. 275

Table D.49. Experiment 2, 15✕ 15 Problems: Fraction of Problems Timed-out. 275

Table D.50. Experiment 2, 15✕ 15 Problems: Mean CPU Time in Seconds. 276

Table D.51. Experiment 2, 15✕ 15 Problems: Mean Number of Backtracks. 276

Table D.52. Experiment 2, 15✕ 15 Problems: Mean Number of Commitments. 276

xiii

Table D.53. Experiment 2, 15✕ 15 Problems: Mean Number of Heuristic Commitments. 277

Table D.54. Experiment 2, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments. 277

Table D.55. Experiment 2, 20✕ 20 Problems: Fraction of Problems Timed-out. 277

Table D.56. Experiment 2, 20✕ 20 Problems: Mean CPU Time in Seconds. 278

Table D.57. Experiment 2, 20✕ 20 Problems: Mean Number of Backtracks. 278

Table D.58. Experiment 2, 20✕ 20 Problems: Mean Number of Commitments. 278

Table D.59. Experiment 2, 20✕ 20 Problems: Mean Number of Heuristic Commitments. 279

Table D.60. Experiment 2, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments. 279

Table D.61. Experiment 3 Overall: Fraction of Problems Timed-out. 280

Table D.62. Experiment 3 Overall: Mean CPU Time in Seconds. 280

Table D.63. Experiment 3 Overall: Mean Number of Backtracks. 281

Table D.64. Experiment 3 Overall: Mean Number of Commitments. 281

Table D.65. Experiment 3 Overall: Mean Number of Heuristic Commitments. 281

Table D.66. Experiment 3 Overall: Mean Percentage of Heuristic Commitments. 282

Table D.67. Experiment 3, 1-Alternative Problems: Fraction of Problems Timed-out. 282

Table D.68. Experiment 3, 1-Alternative Problems: Mean CPU Time in Seconds. 282

Table D.69. Experiment 3, 1-Alternative Problems: Mean Number of Backtracks. 283

Table D.70. Experiment 3, 1-Alternative Problems: Mean Number of Commitments. 283

Table D.71. Experiment 3, 1-Alternative Problems: Mean Number of Heuristic Commitments. 283

Table D.72. Experiment 3, 1-Alternative Problems: Mean Percentage of Heuristic Commitments. 284

Table D.73. Experiment 3, 3-Alternative Problems: Fraction of Problems Timed-out. 284

Table D.74. Experiment 3, 3-Alternative Problems: Mean CPU Time in Seconds. 284

Table D.75. Experiment 3, 3-Alternative Problems: Mean Number of Backtracks. 285

Table D.76. Experiment 3, 3-Alternative Problems: Mean Number of Commitments. 285

Table D.77. Experiment 3, 3-Alternative Problems: Mean Number of Heuristic Commitments. 285

Table D.78. Experiment 3, 3-Alternative Problems: Mean Percentage of Heuristic Commitments. 286

Table D.79. Experiment 3, 5-Alternative Problems: Fraction of Problems Timed-out. 286

Table D.80. Experiment 3, 5-Alternative Problems: Mean CPU Time in Seconds. 286

Table D.81. Experiment 3, 5-Alternative Problems: Mean Number of Backtracks. 287

Table D.82. Experiment 3, 5-Alternative Problems: Mean Number of Commitments. 287

Table D.83. Experiment 3, 5-Alternative Problems: Mean Number of Heuristic Commitments. 287

Table D.84. Experiment 3, 5-Alternative Problems: Mean Percentage of Heuristic Commitments. 288

Table D.85. Experiment 3, 7-Alternative Problems: Fraction of Problems Timed-out. 288

Table D.86. Experiment 3, 7-Alternative Problems: Mean CPU Time in Seconds. 288

Table D.87. Experiment 3, 7-Alternative Problems: Mean Number of Backtracks. 289

Table D.88. Experiment 3, 7-Alternative Problems: Mean Number of Commitments. 289

Table D.89. Experiment 3, 7-Alternative Problems: Mean Number of Heuristic Commitments. 289

Table D.90. Experiment 3, 7-Alternative Problems: Mean Percentage of Heuristic Commitments. 290

xiv

List of Figures

Figure 1. A Small Graph Coloring Problem Represented as a CSP. 6

Figure 2. A Possible Search Tree for the Problem in Figure 1. 7

Figure 3. An Example 3 × 5 Job Shop Scheduling Problem. 8

Figure 4. Activities A1, B2, and C3. 12

Figure 5. Individual Demand Curves (A1, B2, C3) and Their Aggregate Demand Curve (R1). 12

Figure 6. An Example Where CBA Can Infer a New Constraint: A1 Before B3. 19

Figure 7. An Example Where Edge-finding Exclusion Can Infer a New Constraint: STC 25. 20

Figure 8. An Example Where EdgeFinding Not-First/Not-Last Can Infer That C4 Must Execute
After Either A1 or B3 (adapted from [Nuijten, 1994]). 21

Figure 9. A Search at a Dead-end. 22

Figure 10. A Comparison of Traversals of the Search Space for a Binary Tree of Depth 4. 25

Figure 11. Using the Cumulative Constraint to Model Inventory
(from [Simonis and Cornelissens, 1995]). 29

Figure 12. Four Alternative Process Plans. 33

Figure 13. A High-level View of the ODO Framework. 38

Figure 14. A Conceptual Four-Level Constraint-Directed Search Tree. 38

Figure 15. Schematic of a Policy. 39

Figure 16. Pseudocode for a Policy. 40

Figure 17. Constructive and Local Search in the Commitment Model. 43

Figure 18. Event-based Individual Demand Curves (A1, B2, C3) and Their Aggregate Curve (R1). 57

Figure 19. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(Chronological Backtracking). 64

Figure 20. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(LDS). 65

Figure 21. The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking). 65

Figure 22. The Mean CPU Time in Seconds for Each Problem Set (LDS). 66

Figure 23. The Mean Percentage of Commitments Made by the Heuristic Commitment Technique
(Chronological Backtracking). 67

Figure 24. The Mean Percentage of Commitments Made by the Heuristic Commitment Technique
(LDS). 68

Figure 25. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(Chronological Backtracking). 70

Figure 26. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(LDS). 70

Figure 27. The Fraction of the 20✕ 20 Problems at Each Makespan Factor for which Each Algorithm
Timed-out (Chronological Backtracking). 71

Figure 28. The Fraction of the 20✕ 20 Problems at Each Makespan Factor for which Each Algorithm
Timed-out (LDS). 71

Figure 29. The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking). 72

Figure 30. The Mean CPU Time in Seconds for Each Problem Set (LDS). 72

Figure 31. The Mean CPU Time in Seconds for the 20✕ 20 Problems at Each Makespan Factor
(Chronological Backtracking). 73

Figure 32. The Mean CPU Time in Seconds for the 20✕ 20 Problems at Each Makespan Factor
(LDS). 73

Figure 33. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(10✕ 10 Problems – Chronological Backtracking). 76

Figure 34. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(10✕ 10 Problems – LDS). 76

xv

Figure 35. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – Chronological Backtracking). 77

Figure 36. The Mean CPU Time in Seconds for Each Problem Set (10✕ 10 Problems – LDS). 77

Figure 37. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(15✕ 15 Problems – Chronological Backtracking). 78

Figure 38. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(15✕ 15 Problems – LDS). 79

Figure 39. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – Chronological Backtracking). 80

Figure 40. The Mean CPU Time in Seconds for Each Problem Set (15✕ 15 Problems – LDS). 80

Figure 41. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(20✕ 20 Problems – Chronological Backtracking). 81

Figure 42. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(20✕ 20 Problems – LDS). 82

Figure 43. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – Chronological Backtracking). 82

Figure 44. The Mean CPU Time in Seconds for Each Problem Set (20✕ 20 Problems – LDS). 83

Figure 45. Activities A and B. 86

Figure 46. The Standard Deviation in Resource Usage for Each Problem in the 10✕ 10, 15✕ 15, and
20✕ 20 Problem Sets of Experiment 2 and Experiment 3 versus the Difference in CPU Time
in Seconds between SumHeight and CBASlack (Chronological Backtracking). 87

Figure 47. The Mean Reduction in CPU Time in Seconds When Using LDS Instead of Chronological
Backtracking for Each Heuristic. 90

Figure 48. Calculating the Probability of Breakage at Event t with TriangleHeight. 98

Figure 49. Calculating the Probability of Breakage at Event t with VarHeight. 100

Figure 50. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(Chronological Backtracking). 103

Figure 51. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out

(LDS). 103

Figure 52. The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking). 104

Figure 53. The Mean CPU Time in Seconds for Each Problem Set (LDS). 104

Figure 54. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(Chronological Backtracking). 106

Figure 55. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(LDS). 107

Figure 56. The Fraction of the 20✕ 20 Problems at Each Makespan Factor for which Each Algorithm
Timed-out (Chronological Backtracking). 107

Figure 57. The Fraction of the 20✕ 20 Problems at Each Makespan Factor for which Each Algorithm
Timed-out (LDS). 108

Figure 58. The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking). 109

Figure 59. The Mean CPU Time in Seconds for Each Problem Set (LDS). 109

Figure 60. The Mean CPU Time in Seconds for the 20✕ 20 Problems at Each Makespan Factor
(Chronological Backtracking). 110

Figure 61. The Mean CPU Time in Seconds for the 20✕ 20 Problems at Each Makespan Factor
(LDS). 110

Figure 62. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(10✕ 10 Problems – Chronological Backtracking). 112

Figure 63. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(10✕ 10 Problems – LDS). 112

Figure 64. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – Chronological Backtracking). 113

Figure 65. The Mean CPU Time in Seconds for Each Problem Set (10✕ 10 Problems – LDS). 113

xvi

Figure 66. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(15✕ 15 Problems – Chronological Backtracking). 115

Figure 67. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(15✕ 15 Problems – LDS). 115

Figure 68. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – Chronological Backtracking). 116

Figure 69. The Mean CPU Time in Seconds for Each Problem Set (15✕ 15 Problems – LDS). 116

Figure 70. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(20✕ 20 Problems – Chronological Backtracking). 117

Figure 71. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out
(20✕ 20 Problems – LDS). 118

Figure 72. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – Chronological Backtracking). 119

Figure 73. The Mean CPU Time in Seconds for Each Problem Set (20✕ 20 Problems – LDS). 119

Figure 74. Example InventoryChunks, Their Producers, and Their Consumers. 126

Figure 75. The Naive Upper Bound and the Actual Upper Bound When a Producer and Consumer
are Linked with a Meets Constraint. 127

Figure 76. Pseudo-code for the Calculation of the Upper Bound on the Inventory Level for
Inventory I. 128

Figure 77. Pseudo-code for the Calculation of the Lower Bound on the Inventory Level for
Inventory I. 130

Figure 78. An Example of the Need to Assign Some Start Times to Ensure Satisfaction of Inventory
Constraints. 131

Figure 79. A Situation Where Consideration of a Commitment in Between P1 and C2 in State S’ is
Necessary for Completeness. 133

Figure 80. Given Two No-goods (1 and 2), Will the Third also Result in a Dead-end? 133

Figure 81. Activities A1, B2, and C3 Producing or Consuming Inventory I1. 138

Figure 82. Inventory Curves for the Activities Shown in Figure 81. 139

Figure 83. Calculating the Probability of Breakage at Event t with VarHeight. 139

Figure 84. An Example of a Dead-end that Inventory Bound Dead-end Detection Does Not Find
but Producer/Consumer Dead-end Detection Does. 142

Figure 85. A Process Plan from a One-Stage 5✕ 5 Inventory Problem. 148

Figure 86. The Fraction of Problems Timed-out for Each Problem Set and Algorithm. 152

Figure 87. The Mean CPU Time in Seconds for Each Problem Set and Algorithm. 153

Figure 88. The Fraction of Problems Timed-out for Each Problem Set and Algorithm. 154

Figure 89. The Mean CPU Time in Seconds for Each Problem Set and Algorithm. 155

Figure 90. The Fraction of Problems Timed-out for Each Problem Set and Algorithm. 156

Figure 91. The Mean CPU Time in Seconds for Each Problem Set and Algorithm. 157

Figure 92. The Fraction of Problems Timed-out for Each Problem Set and Algorithm. 159

Figure 93. The Mean CPU Time in Seconds for Each Problem Set and Algorithm. 159

Figure 94. The Fraction of Problems Timed-out for Each Problem Set and Algorithm. 160

Figure 95. The Mean CPU Time in Seconds for Each Problem Set and Algorithm. 161

Figure 96. Four Alternative Process Plans. 166

Figure 97. Modification of the Temporal Network to Directly Model the Alternatives Implicit in
Figure 96. 167

Figure 98. A Process Plan with a Choice of Activities. The duration of each activity is shown in the
lower left corner of the activity. 168

Figure 99. Extensions to the Activity Hierarchy to Implement PEX Functionality. 170

Figure 100. A Sample Temporal Sub-graph with an AndNode. 170

Figure 101. A Temporal Graph with XorNodes. 171

Figure 102. Examples of Illegal Temporal Networks. 172

xvii

Figure 103. Examples of Legal Temporal Networks. 173

Figure 104. Pseudocode for the Initial PEX Propagation Algorithm. 174

Figure 105. An Example of Cascading PEX Propagation. 175

Figure 106. High-level Pseudocode for the Main Procedure of the Incremental PEX Propagation
Algorithm. 177

Figure 107. Pseudocode for Identifying the Downstream XorNode during PEX Propagation. 177

Figure 108. An Example of Cascading Temporal Propagation. 180

Figure 109. Pseudocode for Determining Heuristic Commitment. 184

Figure 110. Pseudocode for PEX-Edge-Finding. 187

Figure 111. Generating a Single Process Plan with Two Alternatives. 191

Figure 112. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out. 192

Figure 113. The Fraction of Problems with Seven Alternatives for which Each Algorithm Timed-out. 193

Figure 114. The Mean CPU Time in Seconds for Each Problem Set. 193

Figure 115. The Mean CPU Time in Seconds for the Problems with Seven Alternatives at Each
Makespan Factor. 194

Figure 116. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out. 196

Figure 117. The Fraction of the 20✕ 20 Problems at Each Makespan Factor for which Each Algorithm
Timed-out. 197

Figure 118. The Mean CPU Time in Seconds for Each Problem Set. 197

Figure 119. The Mean CPU Time in Seconds for the 20✕ 20 Problems at Each Makespan Factor. 198

Figure 120. The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out. 201

Figure 121. The Mean CPU Time in Seconds for Each Problem Set. 201

Figure 122. The Mean Percentage of Commitments in Each Problem Set Made by the Heuristic
Commitment Technique for Experiment 1. 205

1

Chapter 1 Introduction

he central thesis of this dissertation is that an understanding of the structure of a problem
leads to high-quality heuristic problem solving performance in constraint-directed schedul-
ing. Exploration of this thesis has a history in the artificial intelligence literature

[Simon, 1973; Fox, 1983; Fox et al., 1989; Sadeh, 1991] and this dissertation is a continuation of
such investigations. Our methods for gaining an understanding of problem structure focus on tex-

ture measurements: algorithms that implement dynamic analyses of each search state. Texture
measurements distill structural information from the constraint graph which is then used as a basis
for heuristic decision making. Empirical results indicate that, under a number of conditions in a
variety of types of scheduling problems, superior search performance is achieved from texture
measurement-based heuristic commitment techniques over simpler, less knowledge-intensive
heuristics.

In particular, in this dissertation:

• We create and investigate a number of new texture measurements and texture measurement-
based heuristics. The texture measurements allow us to achieve a deeper understanding of the
problem structure resulting in novel knowledge-based heuristic commitment techniques that
outperform existing heuristics.

• We expand the scope of problems that are able to be addressed, in general, by constraint-
directed scheduling techniques. Specifically, we demonstrate representation and generic solu-
tion techniques for scheduling with inventories and scheduling with alternative activities.

1.1 Motivations

This dissertation is motivated by the need to extend constraint-directed techniques to a wider
range of real-world scheduling problems than are currently addressed. The nature of these exten-
sions, including our hypotheses about how to address constraint-directed scheduling problems,
closely mirror the motivations for the larger ODO project within which this work has been con-
ducted [Beck et al., 1998]. In more detail, then, the motivations for the work in this dissertation
are as follows:

1. The investigation of texture measurements as a basis for heuristic search – There are a
wide variety of heuristics that can be used as part of a constraint-directed scheduling algorithm.
Unfortunately, many of these heuristics are ad hoc or specific to the particular class of schedul-
ing problems being addressed. There has been little examination of generalizations of heuris-
tics beyond the conditions of a particular study or of why particular heuristics work in some
situations. It has been suggested that a domain-independent basis for heuristic commitment

T

2

techniques can be formed from metrics on the constraint graph representation that underlies a
search state [Fox et al., 1989]. Such metrics, called texture measurements [Fox et al., 1989],
have been developed and used as the basis for heuristics commitments in constraint-directed
scheduling problems, notably job shop scheduling [Sadeh, 1991; Sadeh and Fox, 1996], dis-
tributed scheduling [Sycara et al., 1991; Neiman et al., 1994], and distribution planning
[Saks, 1992]. The investigation of texture measurements in this dissertation focuses on the for-
mulation of a firm theoretical basis for texture measurements and uses this basis to extend the
types of constraints to which texture measurements can be applied.

2. The application of constraint-directed scheduling techniques to real-world problems –
One of the original premises for applying constraint-directed search techniques to scheduling
was the realization that a scheduling problem is not simply the meeting of due dates
[Fox, 1983]. Rather, scheduling is the satisfaction of a plethora of constraints and objectives
from many parts of the organization, be it a manufacturing organization scheduling production,
a transportation organization scheduling deliveries, or a rostering organization (e.g., schools,
hospitals) scheduling people, rooms, and equipment. Much of the scheduling research, how-
ever, has concentrated not on the wide variety of constraints, but rather on narrowly defined
optimization criteria with questionable real-world relevance (e.g., minimization of makespan).
The primary goal of this dissertation, therefore, is to address some of the real-world constraints
that have been neglected and investigate the extension of constraint-directed scheduling tech-
niques to problems that incorporate such constraints. There are a number of scheduling sys-
tems in use within organizations that deal with a wide variety of real world constraints.
However, these systems and the approaches they incorporate have yet to be analyzed in a sys-
tematic fashion. Clearly, then yet another ad hoc attempt to deal with such constraints will not
advance the state of the research. So while we address such new constraints, we do so in a prin-
cipled fashion: developing the representation to allow modeling of scheduling problems with
inventory constraints and alternative activities, as well as extending and comparing solution
techniques used in constraint-directed scheduling.

3. The need for rigorous empirical comparison of scheduling techniques – Since the incep-
tion of constraint-directed scheduling, many different constraint-based scheduling systems
have been developed and successfully applied. However, most published results have reported
the performance of a particular system on one or two problem sets. There has been little com-
parative analysis of why or when one approach may be better than another (although there has
been more work on this recently, e.g., [Le Pape and Baptiste, 1997]). In addition, there has
been a tendency to view a scheduling algorithm as a monolithic whole rather than as a system
of interacting components that may be individually investigated. Empirical comparison of
components of a scheduling algorithm is critical for a deeper understanding of search behavior
[Beck et al., 1997a]. One of the motivations for the work in this dissertation, therefore, is the
development of a framework that can be used to model a wide variety of constraint-directed
scheduling techniques and algorithms. This framework, furthermore, should not just be a way
of statically comparing scheduling algorithms, but should also form an implementational basis
of a scheduling shell. Such a shell would allow the implementation of a wide variety of sched-
uling techniques, and allow them to be rigorously and empirically tested on the same problem
sets with only the components of interest varying among the algorithms.

4. The investigation of the use of commitments as a unification of constraint-directed
search – A number of styles of search have been developed and applied to constraint-directed
scheduling such as constructive search (e.g., MicroBoss [Sadeh, 1991; Sadeh and Fox, 1996],
PCP [Smith and Cheng, 1993; Cheng and Smith, 1997], CORTES [Sadeh and Fox, 1989]) and
iterative repair (e.g., SPIKE [Johnston, 1990; Johnston and Minton, 1994], GERRY [Zweben

3

et al., 1994; Zweben et al., 1993]). Superficially, these search styles appear quite different;
however, underlying the differences are a number of fundamental concepts. Chief among these
concepts is the mechanism of modification of the constraint graph by the addition and removal
of commitments. A motivation for this dissertation, therefore, is the use of the commitment
model as a unifying basis for disparate constraint-directed search techniques. Indeed, it is criti-
cal to the formulation of the constraint-directed scheduling framework noted above that a
generic model of commitments is adopted.

1.2 Overview of Dissertation

The chapters in this dissertation address the motivations to varying degrees. In Part 1 of the disser-
tation (Chapters 2, 3, and 4), we primarily address the last two motivations (the rigorous empirical
comparison of scheduling techniques and the use of commitments as a unifying concept in con-
straint-directed search) while building a foundation that will enable us to address our first two
motivations (the investigation of texture measurements and the extension of constraint-directed
scheduling techniques to characteristics of real-world scheduling problems).

Chapter 2 presents an introduction to constraint-directed search and scheduling, and a review of
the literature of constraint-directed scheduling. We focus on three classes of techniques for sched-
uling and show how a wide range of scheduling research can be understood from the perspective
of these three classes.

Chapter 3 presents the ODO Framework for constraint-directed search and scheduling. Given the
general applicability of the three classes of scheduling techniques identified in Chapter 2, we
present the framework within which we conceptualize and implement our constraint-directed
scheduling algorithms.

Chapter 4, the final chapter in the first part of the dissertation, presents the empirical comparison
of existing constraint-directed scheduling techniques for job shop scheduling. We examine claims
that have been made in the literature and empirically test these claims with a variety of instantia-
tions of the ODO framework.

Part 2 of this dissertation (Chapters 5, 6, and 7) turns to novel constraint-directed scheduling tech-
niques. In particular, we extend existing texture-based scheduling heuristics and create a number
of new propagation techniques. These techniques improve the performance of constraint-directed
scheduling techniques when applied to standard models of scheduling problems, and allow the
application of constraint-directed scheduling techniques to new problem domains. The good per-
formance of the novel texture-based heuristics strongly supports our central thesis.

In Chapter 5, we address the foundation of texture measurements and introduce the notion of the
probability of breakage of a constraint as an extension of an existing texture measurement. We
create three estimations of the probability of breakage of a constraint, two of which are fully gen-
eralizable beyond the constraints typically found in job shop scheduling. In order to evaluate these
new texture measurements, we first focus on job shop and show that heuristics based on the gener-
alizable texture measurements are competitive with existing heuristic commitment techniques.

Chapter 6 is our first direct application of constraint-directed scheduling techniques to a charac-
teristic of real-world problems. We present a model of scheduling with inventory and show how
one of the extensible texture measurements presented in Chapter 5 is used to measure the proba-
bility of breakage of the inventory constraints. We create a heuristic commitment technique based
on the texture measurements and introduce a number of new propagation techniques for inventory

4

constraints. Empirical results indicate that new propagators are critical for successful scheduling
with inventories while the texture-based heuristics outperform other heuristics.

In Chapter 7, we turn to scheduling with alternative activities. By adding the explicit representa-
tion of the probability that an activity will exist in a final schedule and by further extending tex-
ture measurements, we show significant performance gains over other techniques on problems
where alternative activities are used to represent alternative resources and/or alternative process
plans. We also extend two existing propagators to reason about activities that may not exist in a
final solution. We show that the modified propagators confer significant performance advantages,
with the best performance resulting from the use of the new texture-based heuristics and the mod-
ified propagators.

Finally, in Chapter 8, we conclude and suggest a number of areas for future work.

Appendix A contains an index of important terms used in this dissertation while the other appen-
dices contain detailed data from our experiments. Complete data from the experiments performed
in this dissertation are contained in Appendix B, Appendix C, and Appendix D.

1.3 Summary of Contributions

The contributions of this dissertation are as follows:

1. An analysis, within the ODO framework, of competing algorithms in order to determine the
main factors contributing to their ability to solve scheduling algorithms.

2. The investigation of the hypothesis that as a problem becomes more complex, knowledge of
the problem structure has a dominant role in guiding heuristic search to a solution. The correct-
ness of this hypothesis is demonstrated in the context of job shop scheduling, scheduling with
inventory, and scheduling with alternative process plans.

3. The widening of the scope of principled constraint-directed scheduling techniques through the
introduction of a more general concept of criticality applicable to any type of constraint. The
utility of such a measure as a basis for heuristic commitment techniques is demonstrated in the
problem classes noted above.

4. The extension the ODO representation of constraint-directed scheduling problems to represent
inventory storage, consumption, and production. The estimation techniques for the probability
of constraint breakage are extended to inventory constraints and it is demonstrated that heuris-
tic commitment techniques based on such general estimations are able to outperform non-inte-
grated heuristics as well as heuristics that do not directly reason about inventory constraints.

5. The extension of the ODO framework to represent alternative activities. The concept of the
probability of existence of an activity is greatly refined and incorporated into measures of
resource criticality and techniques for constraint propagation. The extended measures of
resource criticality together with the propagation techniques result in significantly better over-
all search performance.

5

Chapter 2 Literature Review

n this chapter we present a review of the constraint-directed scheduling literature. In the first
section, constraint-directed search and constraint-directed scheduling are introduced. The bal-
ance of the chapter examines techniques used in constraint-directed scheduling and examples

of each technique that have appeared in the research literature. Finally, we look at techniques for
scheduling with inventory and scheduling with activity alternatives. Work on these final two sub-
jects is relevant to Chapter 6 and Chapter 7 respectively.

2.1 An Overview of Constraint-Directed Search and Scheduling

Constraint-directed search (CDS), broadly defined, is an approach to problem solving that
explores the problem space under the guidance of the relationships, limitations, and dependencies
among problem objects. These relationships, limitations, and dependencies together are known as
constraints. The approach requires that these constraints are first, represented, and second, repre-
sented in such a way that search techniques can make use of them for guidance.

2.1.1 The Constraint Satisfaction Problem

The simplest application of constraint directed search is to the finite constraint satisfaction search

problem (CSP) [Mackworth, 1977; Tsang, 1993] which can be defined as follows:

Given:

• A set of n variables Z = {x1, …, xn} with discrete, finite domains D = {D1, …, Dn}.

• A set of m constraints C = {c1, …, cm} which are predicates ck(xi, …, xj) defined on the Carte-
sian product Di × … × Dj. If ck is TRUE, the valuation of the variables is said to be consistent

with respect to ck or, equivalently, ck is satisfied.

Find:

• An assignment of a value to each variable, from its respective domain, such that all constraints
are satisfied.

An instance of a CSP (Z, D, C) can be conceptualized as a constraint graph, G = {V, E}. For every
variable v ∈ Z there is a corresponding node n ∈ V. For every set of variables connected by a con-
straint c ∈ C there is a corresponding hyper-edge e ∈ E. Other conceptualizations of a CSP exist,
including the dual constraint graph and join graph [Dechter et al., 1990].

I

6

A consistent assignment or consistent valuation of a set of CSP variables, S, is the assignment of a
value to each variable in S such that all constraints in the subgraph induced by variables in S are
satisfied.

In Figure 1 we present a constraint graph of a CSP modeling a small graph coloring problem.
Each variable in the CSP is represented by a node in the graph to be colored. Each variable (node)
has a domain of three values {red, green, blue} and each constraint (edge) expresses a “not
equals” relationship.

The search for a solution to a CSP can be viewed as a traversal of the problem space consisting of
all combinations of variable domain subsets. A solution is a state with a single value remaining in
the domain of each variable and no unsatisfied constraints. The mechanism for the traversal of the
problem space is the modification of the constraint graph by the addition and removal of con-
straints. The constraint graph, therefore, is an evolving representation of the search state. In the
example of Figure 1, we may (heuristically) add a unary constraint that assigns v4 = green. Alter-
natively, we may have at our disposal an algorithm that is able to infer that v1 and v4 must have the
same color, and therefore we introduce a binary “equals” constraint between those two variables.
Figure 2 shows a search tree for the graph coloring problem in Figure 1.

CSPs have been successfully used to model a wide range of problems, from the abstract (e.g.,

graph coloring [Minton et al., 1992]) to the concrete (e.g., design [Navinchandra and
Marks, 1987; Navinchandra, 1991]). For excellent reviews of CSP solution techniques and appli-
cations, see [Kumar, 1992; Tsang, 1993].

A constraint optimization problem (COP) [Tsang, 1993] is defined as a CSP together with an opti-
mization function f which maps every tuple to a numerical value: (Z, D, C, f) where (Z, D, C) is a
CSP, and if S is the set of solution tuples of (Z, D, C), then f:S → numerical value. The task in a
COP is to find a solution tuple with the optimal (minimal or maximal) value of f. A common vari-
ation of this model is one in which the optimization function is a weighted sum of the constraints
violated by a particular valuation of the variables [Fox, 1983; Smith et al., 1989; Zweben
et al., 1993; Zweben et al., 1994]. Rather than satisfy all constraints and optimize f, the goal is to
minimize the cost by satisfying as many constraints as possible.

2.1.2 Why Constraints?

Constraint-directed search relies on two interdependent intuitions. First, the representational intu-

ition is that to solve a problem, the relevant problem information must be represented. Second, the
search intuition states that to solve a problem, the search should be guided with that represented
information. Underlying these intuitions is the topological assumption [Fox, 1986]: understand-

v1

v4v3

v2

Di = {red, green, blue}

≠

≠ ≠

≠

≠

Figure 1. A Small Graph Coloring Problem Represented as a CSP.

7

ing a problem’s search space will enable the creation and selection of search techniques that can
efficiently navigate the space to a solution.

In the context of CDS, the representational intuition results in the creation of a rich constraint rep-
resentation that is able to express problem knowledge at a deep level. The search intuition sug-
gests that we look to the constraints for search guidance: constraints are not passive objects that
evaluate a potential solution, but rather provide an understanding of the structure of the problem
which may be used to guide search in the problem space.

Assert: v4 = green (heuristic)

≠
≠ ≠

≠
≠

=

≠
≠ ≠

≠
≠

gr
=

=b

=

≠
≠ ≠

≠
≠

gr
=

=g

=

≠
≠ ≠

≠
≠

g

=

≠
≠ ≠

≠
≠

gr
=

=

≠
≠ ≠

≠
≠

gr
=

=g b=

Assert: v3 = red (heuristic)

Assert: v1 = blue (heuristic)

Dead-end: No value for v2.

Retract: v1 = blue

Assert: v1 = green (heuristic)

Assert: v2 = blue (implied)

Figure 2. A Possible Search Tree for the Problem in Figure 1.

8

2.1.3 Constraint-Directed Scheduling

Constraint-directed scheduling is the representation of a scheduling problem and the search for a
solution to it by focusing upon the constraints in the problem. Given that even simple models of
scheduling (e.g., job shop scheduling) are NP-hard [Garey and Johnson, 1979], the search process
typically depends on heuristic commitments, propagation of the effects of commitments, and the
retraction of commitments. In more complex scheduling models, the goal is not simply meeting
due dates, but also satisfying many complex (and interacting) constraints from disparate sources
within the organization as a whole [Fox, 1983; Fox, 1990]. In short, scheduling is a prime applica-
tion area for constraint-directed search.

2.1.3.1 The Job Shop Scheduling Problem

One of the simplest models of scheduling widely studied in the literature is the job shop schedul-

ing problem. The classical n × m job-shop scheduling problem is formally defined as follows.
Given are a set of n jobs, each composed of m totally ordered activities, and m resources. Each
activity Ai requires exclusive use of a single resource Rj for some processing duration duri. There
are two types of constraints in this problem:

• precedence constraints between two activities in the same job stating that if activity A is before
activity B in the total order then activity A must execute before activity B;

• disjunctive resource constraints specifying that no two activities requiring the same resource
may execute at the same time.

Jobs have release dates (the time after which the activities in the job may be executed) and due
dates (the time by which all activities in the job must finish). In the classical decision problem, the
release date of each job is 0, the global due date is D, and the goal is to determine whether there is
an assignment of a start time to each activity such that the constraints are satisfied and the maxi-
mum finish time of all jobs is less than or equal to D. This problem is NP-complete [Garey and
Johnson, 1979]. A recent survey of techniques for solving the job shop scheduling problem can be
found in [Blazewicz et al., 1996].

An example of a 3 × 5 job shop scheduling problem is shown in Figure 3. In this example, there
are 3 jobs (A, B, and C) and 5 resources (R1, …, R5). Each job has 5 activities (e.g., A1, …, A5), a
release date of 0 and a due date of D. The resource required by each activity is indicated in the
upper-left corner, and the duration, though not specified, is represented by the length of each
activity. The arrows represent precedence constraints.

A1 A2 A3 A4 A5

0 D

R4 R5 R1 R3 R2

B1 B2 B3 B4 B5
R1 R3 R5 R4 R2

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

Figure 3. An Example 3 × 5 Job Shop Scheduling Problem.

9

Many scheduling problems are not simply CSPs, but rather COPs. Relatively simple optimization
functions have been studied in the literature such as: the minimization of makespan (i.e., find the
schedule with the minimum D) [Applegate and Cook, 1991], minimization of the average (or
maximum) tardiness of activities (i.e., how late after their due date activities finish), or some com-
bination of other attributes (e.g., minimize work-in-process combined with tardiness) [Fox, 1983;
Smith et al., 1989; Sadeh, 1991]. There has been little work that addresses the many complex and
interacting objective functions that typically arise in real-world problems.

2.1.3.2 Notation

For an activity, Ai, and a set of activities, S, we use the notation in Table 1 through the balance of
this dissertation. We will omit the subscript unless there is the possibility of ambiguity.

2.1.3.3 Historical Perspective

A number of threads of research have contributed to modern constraint-directed scheduling. It is
beyond the scope of this document to discuss the contributions of each thread, much less those of
each scheduling system. For our purposes, we note the three chief threads and direct interested
readers to [Fox, 1990] and [Le Pape, 1994a] for more in-depth historical perspectives. There has
been cross-fertilization among these threads as they have evolved, and some work (e.g., [Carlier
and Pinson, 1989; Erschler et al., 1976; Erschler et al., 1980]) spans more than one category. This
categorization is not meant to indicate completely independent lines of research, but rather the
areas that modern constraint-directed scheduling draws on.

The Knowledge Representation Thread. The original constraint-directed scheduling work is
due to Mark Fox and Steve Smith, and their work on the ISIS scheduler [Fox, 1983]. They were
the first to adopt constraints as a key knowledge representation (KR) and search guidance tool for
both schedule construction and revision. In particular, this thread is responsible for the use of con-
straints to represent scheduling problems in their full generality, and for the use of the problem
knowledge represented in the constraints as the main basis for heuristic decision making. Systems
directly descended from ISIS (OPIS [Smith et al., 1989], CORTES [Sadeh and Fox, 1989],
MicroBOSS [Sadeh, 1991], and DCHS [Sycara et al., 1991]), and others which have adopted the

Symbol Description

STi a CSP variable representing the start time of Ai

STDi the discrete domain of possible values for STi

esti earliest start time of Ai

lsti latest start time of Ai

duri duration of Ai

efti earliest finish time of Ai

lfti latest finish time of Ai

lft(S) the latest finish time of all activities in S

est(S) the earliest start time of all activities in S

dur(S) the sum of the durations of all activities in S

Table 1. Notation.

10

constraint-directed philosophy (SONIA [Collinot and Le Pape, 1987], DAS [Burke and
Prosser, 1994], GERRY [Zweben et al., 1993; Zweben et al., 1994], MinConflicts [Minton
et al., 1992], and DisARM [Neiman et al., 1994]), investigate a wide space of constraint represen-
tations and solution techniques.

The Constraint Programming Thread. The constraint programming (CP) community has tradi-
tionally stressed representation while using more generic solution techniques: CP languages could
typically represent problems far more complex than their solution techniques could handle. The
CP thread, developing from Prolog, aimed to provide languages for clear, declarative problem
representations, with constraint propagation being dealt with in the underlying language.
Attempts to solve hard scheduling problems with these languages were often unsuccessful as the
propagation in early versions of constraint programming languages was not sufficiently powerful.
More recent work in this field has developed specific propagation techniques for constraints found
in scheduling. These recent investigations have corrected the imbalance in solution power and
have provided a number of impressive results [Van Hentenryck, 1989; Caseau and
Laburthe, 1995; Caseau and Laburthe, 1996; Nuijten, 1994; Le Pape, 1994c; Le Pape and
Baptiste, 1996].

The Operations Research Thread. The long(er) history of Operations Research (OR) provides a
number of techniques for constraint-directed scheduling. From work which pre-dates constraint-
directed scheduling itself [Baker, 1974; Little et al., 1963] to techniques which have been adopted
and adapted more recently [Applegate and Cook, 1991; Carlier and Pinson, 1989; Erschler
et al., 1976; Erschler et al., 1980], a variety of OR methods continue to have significant impact on
both the approaches to and performance of modern constraint-directed scheduling systems.
Within the OR community, scheduling techniques have been developed based on mathematical
programming techniques (integer programming, column generation) and local search (tabu search
[Glover, 1989; Glover, 1990; Nowicki and Smutnicki, 1996], genetic algorithms [Dorndorf and
Pesch, 1995], simulated annealing [Laarhoven et al., 1992]).

2.2 Techniques for Constraint-Directed Scheduling

There are three classes of constraint-directed techniques that have been applied to scheduling:
heuristic commitment techniques, propagators, and retraction techniques. In the balance of this
chapter, we examine the literature on each of these classes.

Throughout the discussion of constraint-directed scheduling techniques we use the term commit-

ment to refer to a decision made during search. In Chapter 3, we present a more formal definition
of a commitment, but for now it can be conceptualized as a constraint that is added to or removed
from the constraint graph. For example, assigning a start time to an activity can be modeled as the
assertion of a unary equals commitment on the activity, while sequencing two activities can be
represented as the assertion of a binary precedence constraint between the two activities.

2.3 Heuristic Commitment Techniques

A heuristic commitment technique is a procedure that finds new commitments to be added to the
graph in order to (heuristically) move toward a solution. In traditional constraint-directed search
(and, indeed, artificial intelligence search more generally) heuristic commitments are the primary

11

component of a search for a solution. A critical component of constraint-directed scheduling tech-
niques, therefore, is the technique used to generate and select the heuristic commitments to make.

In the balance of this section, we will look at a number of heuristics that have been applied to con-
straint-directed scheduling.

2.3.1 The ORR/FSS Heuristic

The Operation Resource Reliance/Filtered Survivable Schedules (ORR/FSS) heuristic is based on
two texture measurements: contention and reliance [Sadeh, 1991]. A texture measurement is an
analysis of the constraint graph underlying a problem state in order to distill information that can
be exploited by the heuristic commitment technique.

Contention. Contention is the extent to which variables linked by a disequality constraint com-
pete for the same value. In the context of job shop scheduling, contention is the extent to which
activities compete for the same resource over the same time interval. In ORR/FSS, contention is
estimated by finding a probabilistic estimate of an activity’s individual demand for the resource
and then summing the individual demands for a resource to form an aggregate demand (see exam-
ple below).

Reliance. Reliance is the extent to which a variable must be assigned to a particular value in order
to form an overall solution. In scheduling, one illustration of reliance arises with alternative
resources. If activity A1 requires resources R1, R2, R3, or R4 and activity A2 requires resources R2

or R5, clearly A2 has a higher reliance on R2 than does A1. If A1 is not assigned to R2, it has three
other resource alternatives; however A2 has only one. Reliance can also be formulated in the con-
text of an activity relying on being assigned to a particular start time on a particular resource. In
ORR/FSS for job shop scheduling, reliance is a probabilistic estimate of the activity’s time prefer-
ences.

To calculate contention for a resource, we first determine the individual demand each activity has
for that resource. If an activity does not require a resource, it has no demand for it, so its demand
is 0. Otherwise, to calculate an activity’s individual demand, a uniform probability distribution
over the possible start times is assumed: each start time has a probability of 1/|STD|. (Recall that
STD is the domain of the activity’s start time variable. A uniform probability distribution is the
“low knowledge” default. It may be possible to use some local propagation in the constraint graph
to find a better estimate of the individual demand [Sadeh, 1991; Muscettola, 1992].) The individ-
ual demand, ID(A, R, t), is the probabilistic amount of resource R, required by activity A, at time
t. It is calculated as follows:

 (1)

Where:

 (2)

ID A R t, ,() σA τ()
t durA– τ t≤<

∑=

σA τ()
1

ST DA

----------------- τ ST DA∈

0 otherwise





=

12

Figure 5 shows both the individual demand curves for the three activities in Figure 4 and the
aggregate curve for the resource.

Contention is estimated by aggregate curves found for each resource by summing the individual
demand curves. The aggregate demand curves and a time interval equal to the average activity
duration are, then, used to identify the {resource, time interval} with the greatest area. By defini-
tion, the unassigned activity that contributes the most area to the critical time interval is the most
critical activity. This is the activity that the ORR heuristic predicts is important to schedule at this
point in the search: it is the most reliant activity on the most contended-for {resource, time inter-
val} pair.

Once the critical activity, A, is identified, FSS is used to rate each of its possible start times by
using the demand curves. This rating takes into account the effect an assignment to A will have
both on activities competing directly with A and on those temporally connected to A. A more

B2
R1

C3
R1

A1
R1

0 20 40 60

time

80 100

Figure 4. Activities A1, B2, and C3.

Figure 5. Individual Demand Curves (A1, B2, C3) and Their
Aggregate Demand Curve (R1).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90

D
em

an
d

Time

A1
B2
C3
R1

13

detailed description of the start time assignment heuristic is beyond the scope of this document;
interested readers are referred to [Sadeh, 1991].

Sadeh presents empirical evidence showing that the MicroBOSS scheduler, using ORR/FSS,
dominates all of the tested dispatch rules on a set of 60 problems. Subsequent work showing the
competitive performance of simpler heuristics (e.g., the CBASlack heuristic (Section 2.4.1)
[Smith and Cheng, 1993]) and significantly better performance using edge-finding
[Nuijten, 1994] have called into question the efficacy of ORR/FSS. A difficulty with both of these
subsequent works is that a number of different techniques were conflated and therefore it is diffi-
cult to determine that it is the heuristics rather than, for example, the retraction method, that lead
to the poor results [Beck et al., 1997a]. No work of which we are aware has compared only the
heuristic commitment techniques while holding all other components constant. In Chapter 4 we
will undertake such a comparison.

2.3.2 Task Interval Entropy Heuristic

Caseau and Laburthe use task intervals as a basis for a heuristic commitment technique [Caseau
and Laburthe, 1995; Caseau and Laburthe, 1996].1 A task interval is defined as follows:

If activity Ai and Aj are two activities (possibly the same), that use the same resource and
such that esti ≤ estj and lfti ≤ lftj, then the task interval [Ai, Aj] is the set of tasks {Ak}, that
use the same resource as Ai and Aj, and such that esti ≤ estk and lftk ≤ lftj.

For task interval, I, and resource, R, the following are defined:

• UR is the set of all activities using R.

• First(I) = the set of activities, in I, that might execute first of the activities in I.2

• Last(I) = the set of activities, in I, that might execute last of the activities in I.

 (3)

 (4)

The Task Interval Entropy (TIE) heuristic identifies the critical resource as the one which mini-
mizes the product in expression (5).

 (5)

1. Task Intervals were primarily formulated for use with the edge-finding propagators (see Section 2.4.2).

2. The edge-finding not-first/not-last propagator (Section 2.4.3) can be used to efficiently identify these sets of
activities.

IntervalSlack I() lft I() est I()– dur I()–=

ResourceSlack R() lft UR() est UR()– dur UR()–=

IntervalSlack I∗() ResourceSlack R()× min First I∗() Last I∗() par, ,()×

14

Where I* is the task interval of R with the minimum IntervalSlack and par is a parameter,
assigned empirically, to around 3.3

I*R is then defined to be I* on the critical resource. TIE chooses the smallest set from First(I*R)
and Last(I*R), and picks two activities, A and B, to sequence. If |First(I*R)| is smaller, A is the
activity with minimal est and B is chosen to minimize the sum of the slack resulting from
sequencing A before B and sequencing B before A. Similarly, if |Last(I*R)| is smaller, B is the
activity with maximal lft and A is chosen to minimize the sum of the slack resulting from sequenc-
ing A before B and B before A. In either case, A before B is posted.

The intuition for choosing the activities that minimize the sum of the slack is that a search state is
a branch point and it is desirable to simplify the problem as much as possible on both branches.
Minimizing the slack is likely to increase the number of implied commitments that the propaga-
tors can find and therefore simplify the problem most.

Experiments are carried out with this heuristic, sophisticated propagators (including edge-finding
and some extensions), and chronological backtracking on a set of problems from the Operations
Research library [Beasley, 1990]. While there are no direct comparisons to other constraint-
directed work (comparisons are done against a number of polyhedral (cutting plane) methods),
comparison of reported results with those found in [Vaessens et al., 1994], seems to indicate that
TIE is competitive or better than the other approaches.

Interestingly, the heuristic attempts to minimize the resulting slack on both branches because then
the propagators will infer more constraints. This is in contrast to the CBASlack heuristic
(Section 2.4.1) which attempts to maximize the slack remaining after a commitment.

2.3.3 Resource Slack, First/Last Heuristic

[Baptiste et al., 1995a] use ResourceSlack (equation (4) above) to identify the critical resource as
the one with the smallest slack. Based on comparison of the time-windows available for each
unsequenced activity on the critical resource, one is selected to execute first (or last). All activities
on the critical resource are sequenced before identifying the next critical resource. Three heuris-
tics are examined for activity selection:

1. Select an activity to execute first among the unsequenced activities. Propagators (e.g., edge-
finding not-first/not-last, Section 2.4.3) can be used to identify activities that cannot execute
first; however, it is unclear precisely which propagators are used. Once the set of activities is
identified, one activity is selected to execute first by the EST-LST rule: select the activity with
the smallest est and break ties using the smallest lst.

2. Select an activity to execute last among the unsequenced activities. Analogously, identify the
set of activities that can execute last from the set of activities and use a LFT-EFT4 (select the
activity with the largest lft and break ties using the largest eft) to pick the activity to schedule
last.

3. Dynamically, choose to schedule an activity first or last based on the size of the sets of activi-
ties that are able to execute first or last. Select the smaller set and use the appropriate rule (EST-
LST or LFT-EFT) to select an activity from that set. If the set sizes are equal, the tie is broken
by comparing the difference between the earliest start times of the top two activities to sched-

3. Unfortunately, the authors provide no justification or intuition for their use of par.

4. [Baptiste et al., 1995a] refer to this rule as the LET-EET rule for “latest end time” and “earliest end time”.

15

ule first with the difference between the latest finish times of the top two activities to schedule
last. If the difference is greater between the activities to execute first, then that set is used; oth-
erwise the set of activities that can execute last is used.

Once the critical resource is identified, all activities on it are scheduled before moving to another
resource. This is quite different from most modern techniques which have a more opportunistic
nature in that after each commitment the critical resource is recalculated. Such resource-centered
approaches have been previously investigated in OPIS [Smith et al., 1989].

Empirical evidence shows little difference among the activity selection heuristics; however, they
are not directly compared with any other heuristics. Reported results of these heuristics with the
edge-finding propagator and chronological backtracking seem to be a significant improvement
over many techniques, though they lag behind results using the TIE heuristic. Again, head-to-head
comparison is necessary for firmer conclusions to be drawn.

2.3.4 CBASlack Heuristic

The Constraint-Based Analysis Slack (CBASlack) heuristic forms the heuristic component of the
Precedence Constraint Posting (PCP) scheduling algorithm [Smith and Cheng, 1993; Cheng and
Smith, 1997].

Bslack (equation (8) below) is calculated for all pairs of activities and the pair with the smallest
Bslack value is identified as the most critical. Once the critical pair of activities is identified, the
sequence that preserves the most slack is the one chosen. The intuition here is that a pair with a
smaller Bslack is closer to being implied than one with a larger value. Once we have identified this
pair, it is important to leave as much temporal slack as possible in sequencing them in order to
decrease the likelihood of backtracking.

 (6)

 (7)

 (8)

The intuition behind the use of is that there is search information in both the minimum and
maximum slack values. While choosing activity pairs based on minimum slack remains a domi-
nant criteria, the authors hypothesize that more effective search guidance may be achieved with a
biasing factor that will tend to increase the criticality of activity pairs with similar minimum and
maximum slack values. For example, it is unclear if an activity pair with a minimum slack of 5
and a maximum slack of 5 is more or less critical than a pair with minimum slack 3 and maximum
slack 20. S (equation (7)) is a measure of the similarity of the minimum and maximum slack val-
ues for an activity pair and it is incorporated in the biased-slack calculation as shown in equation
(8).

slack i j→() lft j esti–= dur i dur j+()–

S
min slack i j→() slack j i→(),()
max slack i j→() slack j i→(),()
---=

Bslack i j→() slack i j→()
S

--------------------------------=

S

16

Empirical evidence [Smith and Cheng, 1993] shows that the CBASlack heuristic combined with
the CBA propagator (Section 2.4.1) competes very well with ORR/FSS though different types of
commitments are made (i.e., precedence constraints rather than start time assignments).

2.3.5 The Randomized Left-Justified Heuristic

In the Randomized Left-Justified Heuristic (LJRand) [Nuijten et al., 1993; Nuijten, 1994] the set
of activities that can execute before the minimum earliest finish time of all unscheduled activities
is identified. One of the activities is randomly selected and scheduled at its earliest start time.

In the job shop scheduling context, a new commitment can be inferred when a heursitic commit-
ment made by LJRand is undone by chronological backtracking (or another provable retraction
technique (see Section 2.5.1.1)). Because a dead-end results when the activity, A, is assigned its
earliest start time, the earliest start time of A can be updated to the smallest earliest finish time of
all other unscheduled activities on the same resource as A. The provable backtracking has shown
that some other activity must come before A in the resource in question [Nuijten, 1994].

Experiments were run comparing LJRand (as part of the SOLVE algorithm (Section 3.3.2)) with
the ORR/FSS heuristic (as part of the ORR/FSS algorithm (Section 3.3.1)) and with the ORR/FSS
augmented with the propagators used in SOLVE. SOLVE strongly outperforms the augmented
ORR/FSS, which, in turn, strongly outperforms, unaugmented ORR/FSS.

It is not clear from this study whether the ORR/FSS heuristic or some other component of the
ORR/FSS algorithm is to blame for its poor performance. Nonetheless, these results raise ques-
tions in regard to sophisticated heuristic techniques like ORR/FSS. We address this issue in
Chapter 4.

2.3.6 Local Search Heuristics

Finally, there are a number of heuristic commitment techniques often used in local search algo-
rithms.

The basic MinConflicts algorithm [Minton et al., 1992] begins with a start time assigned to each
activity and then identifies the most critical activity as the one which conflicts with the most other
activities. For each possible start time of the critical activity, the number of resource violations
that would result from reassigning the activity is assessed. The start time with the lowest number
of violations is chosen as the new commitment. The heuristic commitment used in GERRY [Zwe-
ben et al., 1993; Zweben et al., 1994] (Section 3.3.3) is a variation of MinConflicts. MinConflicts
has shown to perform very well on some large constraint satisfaction problems (e.g., N-queens
with N=1000000) and on a set of space shuttle scheduling problems [Zweben et al., 1993; Zwe-
ben et al., 1994]. Performance is weaker on other job shop scheduling benchmarks [Davis, 1994].

An in-depth comparison of many of the neighborhood functions that have been applied to sched-
uling is done in [Vaessens et al., 1994]. Based on a search state where all the activities on a
resource are completely sequenced, the neighborhood functions span the following commitments:

• swapping two adjacent activities

• removing an activity from its current position and inserting it before or after another (non-adja-
cent) activity

• re-ordering all activities on a single machine

• modifying orderings across multiple machines

17

For our current purposes, the critical point is not what types of commitments can be made (though
clearly the type of commitment will profoundly affect the search) but rather the heuristics that fil-
ter and/or evaluate neighboring states.

Unfortunately, the empirical comparisons embed the heuristic commitment techniques in different
overall strategies (e.g., one heuristic with tabu search (Section 3.3.4) compared to another heuris-
tic with simulated annealing). Where they are able to compare the overall search strategies it is
not clear how these results speak to a comparison solely based on the heuristic commitment tech-
niques.

2.3.7 Open Issues

1. Taken together, there are few similarities among the heuristic commitment techniques pre-
sented above. We believe that texture measurements can be used to characterize the various
heuristic commitment techniques, even though, with the exception of ORR/FSS, they were not
originally conceived in this way. This characterization would be an effort toward an underly-
ing, domain-independent, foundation for heuristics used in constraint-directed search. Such a
foundation can lead to a deeper understanding of the existing heuristics as well as provide a
firm basis for the creation of new heuristic commitment techniques. However, the foundation
must be justified both theoretically and empirically. Theoretically, texture measurements
require a mathematical basis for both their exact calculation and their estimation. The ability to
characterize various estimation techniques based on the expected error from the true measure-
ments is a significant open question. From an empirical perspective, a basic starting point is to
demonstrate that a better estimate of texture measurement (while holding the type of commit-
ments made constant) leads to a better heuristic commitment. In Chapter 3, we begin this char-
acterization by demonstrating how a number of these heuristic commitment techniques can be
reinterpreted as being based on texture measurements.

2. There is a major need for a head-to-head comparison of the techniques for heuristic commit-
ments. It is not at all clear how to evaluate the techniques described above since empirical stud-
ies often embed the techniques in larger search strategies. It would seem straightforward to
compare a number of these techniques (ORR/FSS, Task Interval Entropy, Resource Slack First/
Last, CBASlack, and Randomized Left-Justified) while holding all other components of the
search strategy constant. It is more difficult, however, to compare, say, ORR/FSS meaningfully
with the various local search heuristics since their formulations use very different retraction
strategies. This comparison is an important issue.5

3. Given the wide variety of approaches to heuristic commitment techniques, (e.g., LJRand com-
pared with ORR/FSS) is there a way to identify problems where one is likely to perform better
than the other? Can we quickly analyze a problem and discover internal structure indicating
that it will be particularly amenable to a simple heuristic in a local search strategy or, con-
versely, a sophisticated heuristic in a constructive strategy?

4. Propagators vs. Heuristics. It seems possible that if a heuristic technique is good enough, there
is no need for propagators: the heuristics will make the same decisions that the propagators will
make. If propagators are more expensive than the heuristic technique, a trade-off is suggested
between spending effort in finding and making sound decisions as opposed to just making heu-
ristic commitments. Such a trade-off has not been observed.

5. Work in the operations research literature [Hooker, 1996] raises this issue, among many others concerning the
empirical study of heuristics.

18

5. The fact that CBASlack maximizes remaining slack, while TIE minimizes it raises an interest-
ing question as to the intuition behind the heuristics. The slack-maximizing algorithm pre-
serves slack in a least-commitment approach: by leaving more slack it is more likely that a
solution will be found because there is a higher probability that the to-be-scheduled activities
can be scheduled. The slack-minimizing algorithm attempts to minimize the slack resulting
from either sequence at a branch point. The intuition is that both branches will terminate more
quickly (either in solution or failure). Work on branching rules for satisfiability problems
[Hooker and Vinay, 1995] shows that a popular heuristic works not because it increases the
probability that the chosen branch contains a solution (as was conjectured), but that it simpli-
fied the problem the most (and allowed a propagator to infer more implied commitments). We
interpret this work as supporting the slack-minimizing intuition.

6. Few of the heuristic techniques discussed above are directly applicable to more complex con-
straints outside of the job shop scheduling model. If research is to address real world problems,
the more complex constraints need to be addressed.

2.4 Propagators

A propagator is a function that analyzes the current search state to find constraints that are implied
by, but are not explicitly present in, the constraint graph. By making these constraints explicit, we
can use them to prune the number of possibilities to be explored in the search space. For example,
these constraints may be used to reduce the start time domains of some of the activities in the
problem. The advantages of propagators stem from the soundness of their commitments (a propa-
gator will never infer a constraint that is not a logical consequence of the current problem state)
and the fact that, when a constraint is explicitly present in the graph, it not only reduces the search
space, but it is often possible to use additional propagators to further prune the search space.

Examples of propagators from a CSP perspective include the various consistency enforcement
algorithms such as arc-consistency and k-consistency [Mackworth, 1977; Freuder, 1978;
Freuder, 1982]. These algorithms are typically viewed as removing values (or tuples of values)
from variable domains; however, we treat them as adding implied constraints that, for example,
rule out domain values (e.g., a unary “not-equals” constraint).

Many powerful propagation techniques have been developed for constraint-directed scheduling in
recent years, for instance, many variations of edge-finding [Carlier and Pinson, 1989; Caseau and
Laburthe, 1994; Nuijten, 1994; Le Pape and Baptiste, 1996] and shaving [Carlier and
Pinson, 1994]. It has long been known that search can be drastically reduced by enforcing various
degrees of consistency [Freuder, 1982]. The effort to achieve high degrees of consistency, how-
ever, appears to be at least as expensive as more traditional algorithms. The goal for propagator
research, then, is to find the trade-off between complexity and the resultant easing of the search
effort.

In the balance of this section, we examine three propagators used in job shop scheduling.

2.4.1 Constraint-Based Analysis

Constraint-Based Analysis (CBA) [Erschler et al., 1976; Erschler et al., 1980; Smith and
Cheng, 1993; Cheng and Smith, 1997] enforces arc-B-consistency on unary resource constraints.
Arc-B-consistency [Lhomme, 1993] (where ‘B’ stands for “bounds”) ensures that for the mini-
mum and maximum values of any variable, v1, there exists at least one consistent assignment for

19

any other connected variable, v2 (when considered independently of all other variables). Clearly,
arc-B-consistency is limited to variables where there is a total ordering over the values. The start
time variables in scheduling meet this requirement.

CBA analyzes the start and end times of all pairs of activities executing on the same unary capac-
ity resource. Given activities, Ai and Aj, that compete for the same resource, CBA identifies the
following cases:

1. If lfti – estj < duri + durj ≤ lftj – esti then Ai must be before Aj.

2. If duri + durj > lftj – esti and duri + durj > lfti – estj then the current state is a dead-end.

3. If duri + durj ≤ lftj – esti and duri + durj ≤ lfti – estj then either sequence is still possible.

If, after looking at all pairs of activities on each resource, CBA finds that all pairs are in Case 3, it
cannot infer any new constraints: all the resource constraints are arc-B-consistent.The worst-case
time complexity for CBA is O(mn2), where n is the number of activities on one resource and m is
the number of resources.

In the example shown in Figure 6, CBA is able to infer that A1 must be before B3 because the
interval between the earliest start time of B3 and the latest end time of A1 is 15, which is smaller
for the combined durations of the activities which is 20.

Empirical evaluation of CBA with the CBASlack heuristic (Section 2.3.4) has demonstrated good
performance on one set of job shop scheduling benchmarks. The experimental design, however,
did not evaluate CBA independently of the heuristic commitment technique and so it cannot be
judged whether the performance was due to CBA, the heuristic, or the combination.

2.4.2 Edge-finding Exclusion

Given, S, a non-empty sub-set of activities executing on the same resource, and activity A ∉ S, on
the same resource as the activities in S, edge-finding exclusion operationalizes implications (9)
and (10).

 (9)

 (10)

A1
R1

B3
R1

0 10 20 30

time

Figure 6. An Example Where CBA Can Infer a New Constraint: A1 Before B3.

lft S() est S()– durA dur S()+<()
lft S() estA– durA dur S()+<()∧

estA est S() dur S()+≥→

lft S() est S()– durA dur S()+<()
lf tA est S()– durA dur S()+<()∧

lf tA lft S() dur S()–≤→

20

Implication (9) states that if A is scheduled at its earliest start time and there is not enough room
for all the activities in S before the latest finish time of S, then A must occur after all the activities
in S have finished. Implication 1 can be used to derive a new earliest start time of A. Similarly,
Implication (10) is used to find a new latest end time.

Complete examination of the 2n subsets of activities on a resource is not practical. However, it is
possible to deduce the same consequences by examining only n2 subsets of activities on each
resource [Carlier and Pinson, 1989; Caseau and Laburthe, 1994; Caseau and Laburthe, 1995].
Algorithms to do this with time-complexity of O(n2) [Nuijten, 1994] and O(n log n) [Carlier and
Pinson, 1994] for each resource have been presented.

Figure 7 presents an example where edge-finding exclusion is able to infer not only that C4 must
execute after A1 and B3, but also that the earliest possible start time of C4 is 25. Implication (9),
where S = {A1, B3} and A = C4, is applicable and results in a new lower bound on the start time of
C4.

Empirical evaluation of edge-finding for job shop scheduling has been performed on the Opera-
tions Research library of benchmarks [Beasley, 1990]. Results show that the LJRand heuristic
(Section 2.3.5) plus edge-finding exclusion and a number of simpler propagators can find
makespans approximately 25% closer to optimal than the heuristic by itself and further out-per-
forms ORR/FSS with the same set of propagators [Nuijten, 1994].

Subsequent work has extended the exclusion rule (and the not-first/not-last rule discussed below)
beyond the unary capacity constraints of job shop to multi-capacitated resources [Nuijten, 1994;
Nuijten and Aarts, 1997], cumulative resources [Caseau and Laburthe, 1996], and preemptive
scheduling [Le Pape and Baptiste, 1996; Le Pape and Baptiste, 1997]. Other work [Caseau and
Laburthe, 1995; Caseau and Laburthe, 1996] has extended edge-finding by adding additional
valid implications and has demonstrated very favorable empirical results against a number of
polyhedral (cutting plane) methods from the OR literature.

2.4.3 Edge-finding Not-First/Not-Last

While the edge-finding exclusion rules discover that an activity must execute before or after a set
of activities, the edge-finding not-first/not-last rules discover that an activity cannot execute first
(or last) among a set of activities.

A1
R1

B3
R1

C4
R1

0 10 20 30

time

Figure 7. An Example Where Edge-finding Exclusion Can Infer a New Constraint:
STC ≥ 25.

21

Given, S, a non-empty sub-set of activities executing on the same resource, and activity A ∉ S, on
the same resource as the activities in S, edge-finding not-first/not-last implements implications
(11) and (12).

 (11)

 (12)

Implication (11) states that if A is scheduled at its earliest start time and there is not enough room
for all the activities in S before the latest finish time of S, then A must occur after at least one of
the activities in S have finished. Implication 1 can be used to derive a new earliest start time of A.
Similarly, Implication (12) is used to find a new latest finish time for A.

An O(n3) for edge-finding not-first/not-last is presented in [Nuijten, 1994] and a number of other
partial implementations exist at lower complexity (e.g., [Carlier and Pinson, 1989; Carlier and
Pinson, 1994; Caseau and Laburthe, 1994; Baptiste et al., 1995b]). The current best known com-
plexity for the full implementation of the not-first/not-last rules is an O(n2) due to [Baptiste and
Le Pape, 1996].

Figure 8 presents an example (taken from [Nuijten, 1994]) where edge-finding not-first/not-last is
able to infer that activity C4 must execute after either A1 or B3. The earliest start time of C4 can
therefore be updated from 1 to 6, the minimum earliest finish time of S = {A1, B3}.

2.4.4 Open Issues

1. Given the theoretical basis for propagators as consistency techniques, there may be other forms
of consistency that can be used in scheduling. Given the excellent results reported, novel prop-
agators may further improve performance.

2. Can we selectively apply propagators to particular sub-graphs rather than blindly apply them
across all resources? Anecdotal evidence suggests that on some problems, the constraints

lft S() estA– durA dur S()+<() estA minB S∈ ef tB()≥→

lf tA est S()– durA dur S()+<() lf tA maxB S∈ lstB()≤→

B3
R1

C4
R1

0 4

time

Figure 8. An Example Where EdgeFinding Not-First/Not-Last Can Infer That C4 Must
Execute After Either A1 or B3 (adapted from [Nuijten, 1994]).

128 16

A1
R1

22

inferred by edge-finding often involve a small number of activities. If structures within the
scheduling problem where a propagator is likely to be useful can be cheaply identified, it may
be possible to avoid the use of propagators where they are unlikely to contribute. (An example
of such a selective application of a propagator in a close interaction with a commitment retrac-
tion technique is presented in [Sadeh et al., 1995]).

3. Applications of edge-finding to other types of scheduling (multiple capacitated [Nuijten, 1994;
Nuijten and Aarts, 1997], cumulative [Caseau and Laburthe, 1996] and preemptive [Le Pape
and Baptiste, 1996]) have resulted in evidence indicating that edge-finding, though still useful,
has less impact where constraints are more complex. There is, therefore, the dual challenge of
extending these techniques for more complex constraints and, should they be found wanting,
identifying new propagators.

4. Because propagators find implied commitments, it is reasonable to expect that they will per-
form better in more constrained problems. Indeed, the results on non-job shop constraints may
be due to the fact that the more complex constraints are not as constraining. A correlation of
constraint tightness (and other problem characteristics) to propagator performance will not
only aid in understanding propagators, but may speak to the other research issues.

2.5 Retraction Techniques

Assume that a search algorithm moves through a sequence of states S = (s0, s1, s2, …, sk) as a
result of the assertion of a number of commitments A = (a1, a2,...,ak). Further assume that a mis-
take is made: as a result of one or more of the commitments in A we have reached a search state sk

which is inconsistent with respect to the constraints in the problem. This is a dead-end in the
search. This scenario is presented in Figure 9.

State sk: Dead-end

To-be-retracted
commitment

Intervening
commitments

Figure 9. A Search at a Dead-end.

State si

23

To deal with a dead-end we must retract some commitments, C ∈ A. The retraction component of
the search strategy must then answer two questions:

1. Which commitments should be retracted?

2. In retracting a commitment that was made, say at state si, where i < k, what should be done
with the intervening commitments, that is those made in all states sj, where i < j < k?

Different retraction techniques supply different answers to these questions.

2.5.1 Choosing Commitments to Retract

Techniques for identifying, C, the commitment to be retracted, fall into two general categories:

1. Provable: Provably, no solution exists in the area of the search space defined by C and the com-
mitments made prior to C. The proof is typically necessary but not sufficient: at least the com-
mitment C must be retracted; however, prior commitments may also need to be retracted to
escape the dead-end.

2. Heuristic: Based on a heuristic evaluation, it is determined that C is likely to be the cause of the
dead-end.

2.5.1.1 Provable Retraction

Provable retraction appears reasonable: until it can be proved that there is no solution given C and
the commitments preceding C, the search should concentrate on the states in that area.

There is a distinction between provability and completeness. It is possible to have a retraction
technique (such as Limited Discrepancy Search (LDS) [Harvey, 1995; Harvey and
Ginsberg, 1995] (Section 2.5.1.2)) that is complete but not provable, that is, that retracts commit-
ments even though there may be a solution in the sub-space.To maintain completeness, the sub-
space is revisited later in the search if no solution has been found elsewhere.

The simplest scheme is chronological retraction: the most recent commitment is retracted.
Clearly, since the search space under the most recent commitment contains one state and it is a
dead-end, we can retract the most recent commitment without missing a solution. However, it
may be that a commitment made much earlier in the search is responsible for the dead-end that
has only been discovered now. Chronological retraction will exhaustively search the sub-space
below that wrong commitment before finding and retracting it.

If chronological retraction is to be improved upon, while still maintaining provability, it is neces-
sary to exploit the situation where chronological retraction does too much work. For example,
assume some set of commitments, C1, lead to a state s1, and then a second set of commitments C2

lead from state s1 to state s2. Further suppose that in s2 it is discovered that none of the values for
variable, V, are consistent with the current search state. It might be the case that, had we decided to
make commitments involving V at state s1, we would have discovered precisely the same dead-
end. In other words, the commitments in C2 do not contribute to the dead-end. Chronological
retraction will revisit all the search states between s1 and s2, and try all the possible commitments
exhaustively before returning to a state prior to s1 where, finally, it may be possible to escape the
dead-end. All provable retraction techniques rely on some mechanism to identify the most recent
state at which it is possible to escape the dead-end.

Full dependency-directed backtracking [Stallman and Sussman, 1977] is the most extreme of
these methods as it ensures that the correct state will be identified. The time and space complexity

24

of maintaining the dependency information is in the same order (exponential) as the search itself.
Other methods (e.g., backjumping [Gaschnig, 1978], conflict-directed backjumping
[Prosser, 1993], graph-based backjumping [Dechter, 1990], and dynamic backtracking
[Ginsberg, 1993]) use various techniques to prove necessity rather than sufficiency: it is necessary
to jump back at least as far as the identified state, but it might be that subsequent search shows
that the jump was not sufficient to escape the dead-end. The intervening commitments are not
causes of the dead-end and so no solutions will be missed. Empirically, these techniques are able,
in the average case, to make significant improvements over chronological retraction.

While many of these techniques show good average time performance on constraint satisfaction
problems, few have been applied to scheduling where the most common method of provable
retraction is chronological.

2.5.1.2 Heuristic Retraction

The major difficulty with provable retraction is that the search can get stuck in a sub-space that
takes so long to prove to not contain a solution that the problem cannot be solved in a reasonable
amount of time. It might be better to be more opportunistic in the selection of commitments to be
retracted and therefore move more freely in the search space. The problems with heuristic retrac-
tion are that it may abandon completeness (i.e., there is no guarantee that the strategy will find a
solution or prove that none exists) and that multiple search-states can be re-discovered a large
number of times.

Restart. The simplest heuristic retraction technique is to restart the search whenever a dead-end is
found. This technique is called iterative sampling or restart. Provided the heuristic commitment
component has some randomness,6 restarting the search is very likely to explore new states.
Unless the search space is fairly dense in terms of solutions, however, incompleteness can be
damaging. Nonetheless, there has been successful scheduling done using simple iterative sam-
pling on a set of job shop scheduling problems [Crawford and Baker, 1994].

It is easy to adapt iterative sampling to produce bounded chronological retraction with restart
[Nuijten, 1994]. When a dead-end is found, a bounded number of chronological retractions are
performed to investigate the neighborhood of the dead-end. If no solution is found, it is heuristi-
cally concluded that there is no solution in the area and so the search is restarted. Good results
with this technique as part of a full strategy are discussed in Section 2.3.5. A similar retraction
technique, the Incomplete Backjumping Heuristic (IBH), is proposed in [Sadeh et al., 1995].
After a bounded number of chronological retractions, the retraction returns to the root commit-
ment. Sadeh’s heuristic (ORR/FSS) does not have a random component, so rather than restart, the
search selects the next best commitment in the initial search state. Empirical results indicate that
IBH is particularly effective where a dead-end is the result of a complex interaction among activi-
ties on more than one resource.

There has recently been some interesting theoretical evidence supporting the use of retraction
techniques that include restart [Gomes et al., 1998]. The authors show the “heavy-tailed cost dis-
tribution” phenomenon where at any time during an experiment there is a non-trivial probability
of finding a problem requiring exponentially more search effort than any problem that has yet
been encountered. This heavy-tailed distribution also exists when the search procedure is run mul-

6. This does not necessarily mean that the forward search must be completely random. It is straightforward to con-
struct a forward step where the heuristic’s suggestion for a commitment is probabilistically ignored.

25

tiple times on a single problem. These matching distributions suggest that the way to solve prob-
lems in a class that exhibits a heavy-tailed cost distribution is with a partially randomized forward
step and a retraction technique that includes restart. If a particular probe of the search enters the
high-cost region of the distribution, not too much effort will be spent before restarting. If the
probe encounters the low-cost area of the distribution, a solution is likely to be found before the
restart is triggered. It is not clear what characteristics of a problem class lead to the heavy-tailed
cost distribution or which classes of scheduling problems might exhibit these distributions; how-
ever, this work begins to work toward an interesting theoretical justification for incorporating
some form of restart in a retraction technique.

Limited Discrepancy Search. Limited Discrepancy Search (LDS) [Harvey, 1995] maintains
completeness at the cost of significant effort spent in the rediscovery of search states that have
already been visited. If the search exhausts the entire search space, LDS visits polynomially more
search states than chronological retraction. LDS is based on three ideas:

1. With good heuristics, the solution is expected in states where the heuristic is wrong a limited
number of times. Indeed, this seems a reasonable definition of a “good” heuristic.

2. Heuristics are more likely to be wrong earlier in the search.

3. A wrong commitment early in the search has more impact.

Based on these intuitions, LDS follows the heuristic during its first probe into the search tree until
arriving at a dead-end. The search is restarted and the probes investigate all paths in the search
tree with up to one search state where the heuristic is ignored: all paths with discrepancy level 1.
Discrepancies early in the search are explored first. In the second phase of the search, the first path
(the one where there were no discrepancies) will be rediscovered. The discrepancy level is incre-
mented every time all the search paths up to the current level are exhausted. The search of a binary
tree up to level 4 for both chronological backtracking and LDS is shown in Figure 10.

Chronological Backtracking

LDS (Only the first visit to each leaf-node is shown)

Figure 10. A Comparison of Traversals of the Search Space for a Binary Tree of Depth 4.

26

Each iteration with a particular discrepancy level will rediscover all the search states found at all
previous levels. This weakness is overcome in Improved LDS (ILDS) [Korf, 1996]. ILDS gener-
ates more states than chronological retraction but, at worst, the number of ILDS states is bounded
by a linear factor of the number of chronologically generated states.

Empirical evaluation of LDS on job shop scheduling problems (with a partially randomized heu-
ristic commitment technique) shows significant gain over chronological retraction and iterative
sampling, and comparable results to bounded backtracking with restart. The best performance
was attained with a combination of LDS with bounded backtracking [Harvey, 1995].

Retraction for Local Search. At the extreme of opportunistic retraction techniques are the local
search methods that move in the search space with few limitations. The retraction is completely
driven by the heuristics. If the search is free to follow the gradient defined by the neighborhood
function, however, it is likely to discover a locally optimal state from which it cannot move: all
neighboring states are worse than the current one, yet the current one is not a global solution. A
number of techniques to escape local optima have been suggested:

• simulated annealing [Zweben et al., 1993; Zweben et al., 1994] where, with some probability,
a worse neighbor will be accepted as a new state and where the acceptance probability
decreases as problem solving continues,

• tabu search (see Section 3.3.4),

• genetic algorithms (see Section 3.3.5), and

• the shuffle technique [Baptiste et al., 1995a] where each commitment is probabilistically
retracted and forward search is continued with the remaining commitments.

In general, local search with such escape techniques has been shown to perform very well. How-
ever, these techniques are often treated as abstract frameworks (“meta-heuristics”) for algorithms
rather than algorithms themselves, and so comparison between local search algorithms specifi-
cally crafted for a benchmark set with more general strategies is questionable.

2.5.2 Dealing with Intervening Commitments

When the to-be-retracted commitment has been identified, there are three encompassing ways to
deal with commitments made in states between the dead-end and the state where the to-be-
retracted commitment was made: retract all, retract some, or retract none.7

2.5.2.1 Retract All

The most principled way to deal with intervening commitments is to retract them all. The intuition
for this is that each commitment depends on all commitments made previously. If the search is
jumping back to retract a commitment, all the commitments that were made subsequently are
retracted because their justification no longer exists. Iterative sampling or restart, dependency
directed backtracking, the host of provable retraction techniques (except dynamic backtracking),
and LDS all follow this method.

7. Chronological retraction does not need to be concerned with intervening commitments as it always chooses to
retract a commitment in the most recent state and therefore there are, by definition, no intervening commitments.

27

Bounded chronological backtracking with restart is a special case as sometimes (i.e., when per-
forming chronological backtracking) there are no intervening commitments to retract, while at
others (i.e., restart) all the intervening commitments are retracted.

2.5.2.2 Retract Some

Assuming that the justification for a commitment no longer exists simply because a previous com-
mitment is retracted may be too conservative. The retracted commitment may have had no bearing
on some of the intervening commitments: by retracting an intervening commitment the search is
discarding information that must be rediscovered later when precisely the same commitment is
made again. This is strongly argued in [Ginsberg, 1993] and used as motivation for dynamic back-
tracking.

In dynamic backtracking, limited dependency information (used to choose the to-be-retracted
commitment in backjumping) is cached so that it is not necessary to make the assumption that all
intervening commitments depend on the retracted commitment. In fact, only those intervening
constraints that may have depended (based on the cached information) on the retracted commit-
ment are retracted. Empirical evidence [Ginsberg, 1993] shows significant improvement over
backjumping on the CSPs tested. Interestingly, further evidence [Baker, 1994] shows that in some
situations dynamic backtracking can be exponentially worse than chronological backtracking!
The intuition is that dynamic backtracking changes the heuristic ordering of commitments as the
search proceeds. This ordering has significant impact on the search and therefore modifying it can
lead to highly inefficient behaviour. From another perspective, this intuition can be restated as fol-
lows: although the intervening commitments do not directly depend on the to-be-retracted com-
mitment, the state created by the to-be-retracted commitment leads via the heuristic to the
intervening components. Given the retraction, the heuristic may well guide the search in a com-
pletely different direction that would not result in the intervening commitments being made at all.
While the intervening commitments are not directly dependent on the retracted commitment, they
are dependent via the heuristic component.

2.5.2.3 Retract None

Finally, in typical local search algorithms such as hill-climbing, tabu, simulated annealing, and
shuffle none of the intervening commitments are retracted. The intuition here is that if they actu-
ally do need to be retracted, subsequent iterations will determine the retraction that must be done.

2.5.3 Open Issues

1. There are a number of retraction techniques that make compromises between the ability to heu-
ristically move through the search space and the maintenance of completeness [Havens, 1997].
These techniques can often be characterized by the cache of information that is used to select
the commitment to retract and/or determine the fate of the intervening commitments. Dynamic
backtracking and tabu search begin to look very similar when it is realized that the contents and
size of the cache are the main differences. So too for dependency-directed backtracking (with
an exponential size cache) as compared with restart and LDS (with caches of zero size). Can
we use the size and content of the cache to construct new retraction techniques with varying
trade-offs between the completeness and heuristic responsiveness?

2. There would seem to be a middle ground between local search algorithms and, say, LDS, in
terms of the ability to respond heuristically. For example, it would be interesting to record a

28

confidence with which all commitments are made and, when a dead-end is reached, use the
confidences to identify the commitment to retract.

3. Three examples of retraction techniques discussed above are actually combinations of other
retraction techniques: bounded chronological backtracking with restart, IBH, and bounded
LDS backtracking with restart. Are there other retraction techniques that may be combined to
improve performance over the individual techniques by themselves?

4. Is the completeness of the retraction technique relevant? In a large problem it is practically
impossible to explore more than a small percentage of the search space, so why should we care
that “eventually” our search will cover the entire space?

2.6 Scheduling with Inventory

The management of inventory, its storage, production, and consumption, represents the core func-
tion of a manufacturing organization, be it a diversified global manufacturing enterprise or a sin-
gle factory work-center. Manufacturing is primarily concerned with the transformation of raw
materials into finished goods. The economic viability of a manufacturer depends on the efficiency
with which this transformation can be achieved.

2.6.1 Problem Definition

In manufacturing, activities may produce and/or consume inventory that must be stored before
consumption and after production subject to minimum and maximum limits on the amount of
each inventory that can be stored at any time. Scheduling, then, must take into account not only
the temporal and resource constraints, but also these minimum and maximum inventory con-
straints.

An inventory problem can be defined as follows, given:

• A set of process plans. Each process plan defines a temporally connected set of activities for
the production of a particular inventory or set of inventories. Each activity has a duration,
resource requirements, and, perhaps, inventory requirements.

• A set of resources. Each resource has maximum capacity specifying the number of activities
that can simultaneously execute on the resource. This maximum may vary across the schedul-
ing horizon.

• A set of inventories. Each inventory has both a minimum and maximum storage capacity, spec-
ifying, respectively, the smallest and largest amount of the inventory that can exist at any time.
The capacity constraints may vary, independently, across the scheduling horizon with the only
requirement being that the minimum can not be greater than the maximum at any time point. A
non-zero amount of each inventory may be present at the beginning of the scheduling horizon.

• A set of supply and demand events. Each event indicates a time interval during which an exter-
nal force will instantaneously add (supply) a specific amount of inventory to or remove
(demand) it from the plant.

Find:

• An instantiation of process plans and an assignment of start times and resources to each instan-
tiated activity such that all resource, inventory, and temporal constraints are satisfied. It is, in
addition, desirable to minimize the inventory levels at any time (while still satisfying the mini-
mum inventory constraints).

29

The inventory problem encompasses the Generalized Resource Constrained Project Scheduling
Problem [Herroelen and Demeulemeester, 1995] while adding inventory production and con-
sumption, inventory constraints, and the need to reason about and instantiate the to-be-scheduled
activities.

The above description of inventory scheduling contains many characteristics that have not been
systematically addressed in the scheduling literature. Indeed, the necessity of instantiating process
plans blurs the line between scheduling and planning (see Chapter 7). The problem model
addressed in this dissertation will therefore be simpler than the above description (see
Section 6.1.1).

2.6.2 Previous Work

Given the importance of inventory in industrial scheduling, many commercial scheduling systems
represent and reason about inventory in some way. Unfortunately, little is known about the tech-
niques that are used by these systems, and, indeed, a comparative study of inventory scheduling
techniques does not appear in the literature. We look at the few systems for which published
descriptions do exist: CHIP, ILOG Scheduler, and KBLPS.

In CHIP [Simonis and Cornelissens, 1995], the cumulative constraint is used to represent inven-
tory as a re-usable resource. An activity which produces an inventory at some time, t1, is repre-
sented as an activity that uses the corresponding resource from time 0 to time t1. At t1 the activity
ends and the resource is released for use by other activities. Similarly, an activity which consumes
an inventory at some time, t2, is represented as an activity which uses the corresponding resource
from t2 to the end of the scheduling horizon. The consuming activity, therefore, begins at t2 and
ends at the end of the horizon. Graphically, the model can be pictured as in Figure 11, taken from
[Simonis and Cornelissens, 1995]. As long as the producers and consumers do not overlap, the
inventory minimum constraint is satisfied.

The cumulative constraint is defined by three sets of domain variables, [S1, …, Sn], [D1, …, Dn],
[R1, …, Rn] and a natural number L. Intuitively, L is the maximum amount of resource that can be
shared by a set of activities at any time-point. Sj and Dj are, respectively, the start time and the
duration of activity j, and Rj is the amount of the resource used by activity j.

Figure 11. Using the Cumulative Constraint to Model Inventory
(from [Simonis and Cornelissens, 1995]).

L

Initial
Stock

Producers

Consumers

30

Using the convention that for variable V, min(V) and max(V) are respectively the smallest and
largest values in the domain of V, the cumulative constraint holds if:

 (13)

Where:

• a = min(min(S1), …, min(Sn))

• b = max(max(S1)+max(D1), …, max(Sn)+max(Dn))

This formulation is directly applicable to the inventory minimum constraint of 0. The authors are
able to model inventory minimums of m > 0 by simply decreasing the initial stock level by m. This
essentially removes m units of the inventory from the model so that reasoning about an inventory
minimum of 0 is valid. A further extension, by reversing the role of the producer and consumer
activities, allows for the modeling of a maximum constraint on the inventory. Other extensions
(e.g., variable rate production and consumption) are discussed by the authors.

In ILOG Scheduler, one method of inventory modeling is the use of a time-table mechanism
[Le Pape, 1994c; Le Pape, 1994b].8 Each inventory has a time-table defining the time-varying
minimum and maximum capacity constraints. Activities produce and consume inventory, and
propagation is done through the time-tables to prune start times that are not consistent with the
inventory constraints.

In the KBLPS distribution planner (DP) [Saks, 1992], inventory is treated in a more discrete fash-
ion with the notion of a Product Supply. A Product Supply is an entity with the characteristics of
product type, uncommitted quantity, time available, and initial location. The DP algorithm treats
the initial inventory and subsequent incoming supplies as separate discrete quantities. In addition,
DP schedules all the activities in one order before moving to the next order. This enables the algo-
rithm to use texture measurements to identify the most contended for resource or Product Supply,
and to schedule an order which relies most on that resource or Product Supply. Such an order-
based reasoning reduces the complexity of the inventory representation and reasoning as all the
inventories, from raw materials through work-in-process to finished goods are accounted for when
an order is scheduled.

2.6.3 Discussion

In CHIP and ILOG Scheduler, it appears that the primary use of the inventory modeling is for
dead-end detection and propagation.9 With such an approach, traditional scheduling algorithms
can be used to assign start times to activities, while the inventory propagation maintains the inven-
tory constraints. One omission of this approach is that no heuristics examine the inventory con-

8. Different, proprietary inventory constraint representations are used in recent version of ILOG Scheduler
[Nuijten, 1999].

9. While no sophisticated propagators have been defined specifically for inventory constraints, edge-finding has
been extended to the cumulative constraint [Nuijten, 1994; Caseau and Laburthe, 1996; Baptiste and
Le Pape, 1996] and therefore we expect that it has been incorporated into the algorithms in CHIP. In the case of
ILOG Scheduler, such an edge-finding extension does exist, but for propagation of inventory constraints other,
proprietary, techniques are used [Nuijten, 1999].

t a b,[]∈() j S j t S j D j 1–+≤ ≤() R j L≤∑∀∀

31

straints. Even if inventory constraints are critically constrained and, therefore, the major challenge
in solving a problem, there does not appear to be any commitments that attempt to directly
decrease inventory criticality. Given much of the work on scheduling heuristics, it is expected that
the ability to identify and reason about inventory criticality would improve scheduling perfor-
mance.

The KBLPS model, in contrast, directly represents and reasons about inventory as part of the heu-
ristic commitment technique. However, the approach depends on the complete scheduling of an
entire order and all inventory transitions for that order, before moving to another order. This
order-based decomposition is reminiscent of early constraint-directed schedulers like ISIS
[Fox, 1983] and OPIS [Smith et al., 1989] rather than micro-opportunistic approaches
[Sadeh, 1991; Nuijten et al., 1993]. In the latter approach, the solver has the flexibility to address
the activities in any order, driven by heuristics, rather than based on orders.

2.7 Scheduling with Alternative Activities

It is not uncommon in a realistic scheduling problem to have a number of choices that are not typ-
ically represented in constraint-directed scheduling approaches. In particular, there are two exten-
sions of typical research scheduling models that we examine in this dissertation: alternative
resources and alternative process plans.

2.7.1 Alternative Resources

Given a facility in need of scheduling (e.g., a chemical plant) and difficulty in creating schedules
due to high competition for a resource, the company may attempt to reduce contention by pur-
chasing an additional resource that can run the same activities as the current bottleneck resource.
Using our chemical plant example, additional reaction vessels may be purchased to both expand
the capacity of the plant and to loosen the scheduling problem. The existence of an alternative
resource, however, introduces the need to decide which activities will be performed on which
resource. If the alternatives are truly identical, then it may be possible to represent the alternatives
with a single multi-capacity resource [Nuijten, 1994]. However, in many cases the resources are
not truly identical: one resource may incorporate new technology and so is able to process activi-
ties more quickly, produce higher quality inventory, etc.

In its most basic form, the alternative resource problem can be represented with the use of multi-
capacity resources. A resource of capacity k can be used to model a resource set of k identical
unary capacity resources and the activities can simply be scheduled on the multi-capacity
resource without representing the unary capacity resources. For such a model to be correct, the
unary capacity resources must be completely substitutable, which implies two characteristics of
the problem. First, an activity’s characteristics such as duration must be independent of the actual
unary capacity resource on which it is executed. Second, the resource sets must be mutually
exclusive so an activity that can execute on one unary resource within a set can execute on any of
the unary resources in the set. Significant representational savings can be gained from this type of
representation. For example, representing a pool of 100 skilled crew-members as a single multi-
capacity resource is likely to lead to more successful problem solving than using 100 separate
unary resources. Unfortunately, elaborations of the resource model, such as requiring changeover
activities [Brucker and Thiele, 1996] tend to invalidate one or both of the problem characteristics
necessary to use the multi-capacity resource model.

32

ISIS [Fox, 1983] provided representation for alternative resources within an order-based Incre-
mental Decomposition and Incremental Scheduling (IDIS) [Kott and Saks, 1998] approach. Ini-
tially, an order represents activities together with their resource alternatives. A multi-level
scheduling algorithm heuristically identifies an order to be added to the schedule, and then heuris-
tically determines the resource reservations for each activity based on an analysis of the temporal
aspects of the order (e.g., due date, precedence constraints, activity durations) and on the set of
activities that have already been given resource reservations. All the activities for one order are
assigned start times and resource assignments before the next order is selected for scheduling.

A similar order-based decomposition is used in the Dynamic Scheduling System (DSS)
[Hildum, 1994]. Based on a black-board system and stochastic order arrival, the DSS system
instantiates process plans with resource alternatives that include preference information. Based on
analyses of the existing schedule (including resource contention, activity slack-time, and resource
availability) and the represented preferences, resource reservations are created for each of the
newly instantiated activities. While the scheduling process typically assigns activities to resources
in one order before moving to the next, in more challenging scheduling problems, DSS may can-
cel previous reservations in order to search for a global solution among the currently instantiated
activities.

In a constraint programming language, such as ILOG Solver and Scheduler [Baptiste and
Le Pape, 1995], alternative resources can be modeled with a set of boolean variables attached to
the resource requirements of each activity. These “demand” variables are such that each possible
resource for an activity has a corresponding variable. An activity uses a resource only if the corre-
sponding demand variable is TRUE. By using a constraint stating that only one of the demand
variables can be TRUE, the alternative resource requirements can be modeled and demand vari-
ables can be incorporated into solution techniques.

A combination of the multi-capacity representation and the low-level constraint representation is
also possible by using multiple representations of the same resource requirements. In
[Nuijten, 1994], multi-capacity resources are used to represent resource sets while, at the same
time, the unary capacity resources are directly represented. [Nuijten, 1994] implements a multi-
capacity version of the edge-finding exclusion propagator, and uses it on the multi-capacity
resources at the same time as using edge-finding and other propagators on the unary capacity
resources. Scheduling begins with all activities assigned to their resource sets. The heuristic com-
mitment technique (a modification of the LJRand heuristic (Section 2.3.5)) assigns an activity to
its earliest start time and to a randomly selected resource on which the activity can execute at its
earliest start time. Extensions of these techniques allow activities to have overlapping resource
sets and allow the duration of an activity to depend on the assigned resource alternative. Empirical
results show that while the edge-finding leads to better problem solving performance, the gain is
not as great as when edge-finding is applied to unary capacity resources in job shop.

Building on the use of multiple representations, [Davenport et al., 1999] formulate a number of
heuristic commitment techniques for alternative resource problems. Again, both the multi-capac-
ity resource and unary capacity resources are explicitly represented. The central algorithm for
scheduling has two-phases: in the first, all the activities not assigned to one of their resource alter-
natives are assigned (based on texture measurements of both the multi-capacity and unary capac-
ity resources), and in the second phase the activities on the unary capacity resources are
sequenced using job shop scheduling techniques. Throughout the phases, both unary and multi-
capacity edge-finding is done on the respective resources. Experimental results show that a slack-
based heuristic and a heuristic based on the VarHeight texture measurement (see Section 5.2.4 and

33

Section 7.6.1) deliver good performance, significantly improving on the results of
[Nuijten, 1994].

2.7.2 Alternative Process Plans

Depending on the flexibility of the production facility, it may be the case that there are multiple
ways to achieve the same goal. The different ways may result from flexibility in the sequence of
activities, separate processes that result in the same goal, or choices within a process plan.
Figure 12 displays four alternative process plans (PP1, …, PP4). The label in the upper-left corner
of each activity represents the activity’s resource requirement while the lower-right label is the
name of the activity. Thus, activities with the same name (e.g., A3 in PP1 and A3 in PP2) are the
same. The first two process plans, PP1 and PP2, are simply different orderings of the same activi-
ties. The third process plan, PP3, is a completely different recipe while the fourth, PP4, is a varia-
tion on the third: the first and last activities are identical, but the middle ones are different.

As noted by [Kott and Saks, 1998], there is a spectrum of approaches to alternative process plan
scheduling. At one extreme, the Multiple Alternative Decomposition (MAD) approach, the alter-
natives are fully represented and integrated in the scheduling process. The other extreme is the
Complete Decomposition Prior to Scheduling (CDPS) approach where all alternatives are decided
in a pre-scheduling phase of the search. In the initial phase, specific alternatives are selected for
scheduling based, perhaps, on an abstract analysis of the evolving scheduling problem, but with-
out detailed scheduling knowledge. An intermediate approach along this spectrum is the Incre-

mental Decomposition and Incremental Scheduling (IDIS) approach where the search through the
alternatives and the scheduling is interleaved. A subset of alternatives may be decided and then
scheduled before the remaining alternatives are addressed.

2.7.2.1 Complete and Incremental Decomposition

The order-based decomposition approach of ISIS discussed above (Section 2.7.1) in the context of
resource alternatives can also be used to represent and solve problems containing alternative pro-
cess plans [Fox, 1983]. In addition to alternative resources, the order representation in ISIS allows
multiple alternative routings of a single order through a factory. After such an order is chosen for
scheduling at the order-selection, the resource allocation heuristics are used to choose a single
routing and resource reservations for all activities along the chosen routing.

Figure 12. Four Alternative Process Plans.

A1 A2 A3 A4 A5
R4 R5 R1 R3 R2

B1 B2 B3 B4
R1 R3 R5 R4

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

A1A2A3 A4A5
R4R5

R1 R3R2

C1 C5
R4 R3

PP1

PP2

PP3

PP4

34

The KBLPS scheduling system [Saks, 1992; Fox, 1999] builds on the order-based decomposition
of ISIS by the direct representation of alternative process plans and the incorporation of alterna-
tive information into texture-based heuristics. At a search state, the routing and resource reserva-
tion heuristics of ISIS were based on examination of the set of orders that had already been
scheduled. In KBLPS, rather than limiting the resource analysis to the already scheduled activi-
ties, a probabilistic representation of all activities was used in the spirit of the reliance and conten-
tion texture measurements due to [Sadeh, 1991]. Therefore, resource reservation decisions could
be influenced not only by the existing partial schedule, but also by a probabilistic representation
of the demand from yet-to-be-scheduled activities. The innovation, here, in terms of representa-
tion of alternative process plans was to recognize that the probability that a particular routing is
chosen depends on the number of alternative routings that are available: the individual resource
demand for each activity in a routing was therefore biased to represent the likelihood that the rout-
ing itself was chosen. For example, if there were four possible routings for a single order, the a

priori probability that an activity on one of the routings would execute is 0.25.10 Therefore, the
individual demand of that activity is biased to be only one-quarter what it would be if the activity
was a member of a routing with no alternatives. The overall scheduling process remains similar to
ISIS in that orders are selected and scheduled before the next order is examined. The difference,
however, is that the resource reservation heuristics have deeper probabilistic resource demand
information on which to base their commitments.

[Kott and Saks, 1998] extend the KBLPS work by embedding alternative process plan scheduling
in the context of combining planning and scheduling. Viewing alternative process plans as the
result of decomposing goals, the authors examine the scheduling of multiple, alternative goal
decompositions. Using domain specific rules, a set of alternative process plans are constructed for
each goal to create the scheduling problem. Then, based on the contention and reliance texture
measurements (Section 2.3.1), the activity most reliant on the most contended-for resource is
selected. As in KBLPS, the individual demand of each activity is biased by its probability of exe-
cution given the alternative process plans that are available to achieve the same goal. The critical
activity is used to identify the critical goal, and a single process plan is selected to achieve that
goal based on a combination of domain specific rules and the reliance of the critical activity. All
the activities in the chosen process plan are scheduled. Temporal and resource propagation is then
performed, and any activities that have been made infeasible are removed. The algorithm contin-
ues, without backtracking, until all feasible goals have had a process plan scheduled. This tech-
nique has been implemented and applied to a number of large-scale scheduling problems
involving logistics distribution, medical evacuation, and transportation. These systems are suc-
cessfully used by various organization; however, a rigorous comparison of these methods to other
techniques does not appear in the literature.

A number of observations can be made about the approach used in ISIS, KBLPS, and the work of
[Kott and Saks, 1998]:

1. All the activities in the chosen process plan are scheduled at the time that the process plan is
selected to achieve a goal. In job shop scheduling, it has been shown that the ability to micro-
opportunistically focus on different activities regardless of the job or resource results in
improved scheduling performance [Smith et al., 1989; Sadeh, 1991].

10. In practice, the KBLPS system used domain dependent preference information to bias the division of probability
among alternative routings. It is not necessarily the case, therefore, that each routing in an order is equally likely
[Fox, 1999].

35

2. Nested alternatives cannot be represented or reasoned about [Fox, 1999]: a process plan cannot
contain alternative sub-routings. This case arises in particular when activities that are part of an
alternative process plan also have alternative resources. Following a least-commitment
approach, we may want to commit to a process plan, but delay the commitment on nested alter-
natives.

3. The propagation techniques such as temporal propagation [Lhomme, 1993] as well as more
sophisticated propagation techniques discussed above (Section 2.4) have not been integrated
into the reasoning process in the presence of activities that may not execute in a final schedule.
These techniques have been shown to significantly extend the reach of constraint directed
scheduling techniques and so their full integration with alternative process plans would seem
likely to benefit overall scheduling performance.

A higher-level approach to alternative process plan scheduling can be seen in work that integrates
the process planning task with scheduling. Rather than having a pre-defined set of process plan
alternatives to achieve a goal, systems such as Design-to-Criteria [Wagner et al., 1997; Wagner
et al., 1998] and IP3S [Sadeh et al., 1998] dynamically form the actual process plans based on a
number of criteria. The Design-to-Criteria work takes into account a sophisticated combination of
factors such as uncertainty, cost, and time-to-completion in exploring the space of plans with
which a set of goals can be achieved. Based on the high-level evaluation, a set of activities without
alternatives is selected and scheduled. Depending on the quality of the resulting schedule, deci-
sions from the planning phase may be revisited in order to achieve a better overall schedule based
on the user’s criteria. Similarly, IP3S uses a black-board architecture to integrate process planning
and scheduling functionality. In an environment where process plans must often be dynamically
generated for an order, IP3S achieves this integration by taking into account the resource conten-
tion when formulating process plans. As with Design-to-Criteria, non-alternative process plans
are generated and scheduled; however, based on the quality of the schedule, alternative process
plans may be generated specifically to route process plans away from highly contended-for
resources. In both systems, however, the alternative process plans are represented only in the plan-
ning phase: no representation of alternatives is present during the actual scheduling.

2.7.2.2 Multiple Alternative Decomposition

[Le Pape, 1994c] extends the activity representation of ILOG Scheduler to allow an activity’s
duration to be 0 to represent that the activity does not execute. In an application that represents
activities with varying durations, all activities are initially present in the problem and the heuristic
commitment technique has the choice of setting an activity’s duration to 0, setting it to some
lower-bound, and/or assigning a start time. This technique allows the representation alternative
activities; however, no information is given on what, if any, propagation is done to reason about
activity dependencies. For example, it may be the case that as a result of setting the duration of
one activity to 0, some other subset of activities must also have their durations set to be 0 as they
depend on the former activity. Furthermore, we would like to be able to leverage sophisticated
propagators to infer that some activities must have a duration of 0. It is not clear how or if this is
done in [Le Pape, 1994c]. In addition, the heuristics discussed are based on random choices and
dispatch rules. Again, we would like to be able to make use of more sophisticated heuristics.

2.7.3 Discussion

We draw two general themes from the literature. The first is the constraint programming approach
represented by ILOG Scheduler where an alternative is represented by a full variable in the con-
straint representation of the problem. Much of this work depends on propagation techniques to

36

significantly limit the heuristic commitments that must be made. However, to our knowledge,
none of the sophisticated propagators developed over the past few years have been extended to
directly reason about activities that may not exist in a final solution. The second theme is the heu-
ristic approach present in KBLPS and [Kott and Saks, 1998]: resource and start time reservations
are made with texture-based heuristics which take into account the fact that alternative choices
change the individual demand an activity has for a resource. As discussed above, there are a num-
ber of questions about the approach; however, we view it as a significant starting point for the heu-
ristic commitment techniques to address alternative activities.

2.8 Summary

In this chapter, we presented a review of the literature of constraint-directed scheduling concen-
trating on the three classes of scheduling techniques: heuristic commitment techniques, propaga-
tors, and retraction techniques. In addition, we reviewed the literature on the problems of
scheduling with inventory and scheduling with alternative activities.

While instances of each class of constraint-directed scheduling technique are typically used
together to form a scheduling algorithm, it is not clear from the literature how the classes relate to
one another and how a decision to use a particular heuristic commitment technique impacts the
performance of a propagator. Furthermore, while propagators are theoretically based on consis-
tency techniques, there does not appear to be much underlying theory regarding heuristic commit-
ment techniques. As a consequence, it is difficult to compare heuristic commitment techniques to
one another on a conceptual level.

In the next chapter, we address these issues using the ODO framework for constraint-directed
search. The ODO framework makes explicit the relationship among the three classes of tech-
niques introduced in this chapter. In addition, the framework presents the use of texture measure-
ments as a basis for heuristic commitment techniques. This texture-based characterization of
heuristic commitment techniques allows us to begin to identify similarities and differences among
heuristic commitment techniques.

37

Chapter 3 The ODO Framework

ne of the themes that underlies this dissertation is the development of a deeper understand-
ing of techniques for constraint-directed scheduling. As part of the ODO scheduling
project we have formulated a generic constraint-directed scheduling framework that can

model a wide variety of existing (and novel) constraint-directed scheduling algorithms. In the pre-
vious chapter, we discussed the constraint-directed scheduling literature with respect to three
classes of techniques: heuristic commitment techniques, propagators, and retraction techniques.
These classes form the functional basis of the ODO framework. In addition to these classes, there
are a number of other conceptual components of the ODO framework: the explicit recognition of
the constraint graph as the primary representation of scheduling problems, the use of commit-
ments as a unifying basis for constraint-directed search, and the use of texture measurements as a
domain-independent foundation for heuristic commitment techniques. After presenting an over-
view of the ODO framework, we discuss each of the components in depth.

3.1 Overview of the ODO Framework

The ODO framework is a way to understand constraint-directed scheduling algorithms. As such,
we believe that the existing constraint-directed scheduling work can be understood within the
framework and that this understanding allows a new perspective on that work. We are not neces-
sarily proposing this framework at the implementation level. Depending on the choices made for
the various components of the scheduling strategy, close interaction may be required and there-
fore an implementation may split or merge the components we have identified. That is not to say
that the framework cannot also be used at the implementational level: the ODO framework is also
the object-oriented architecture of the ODO implementation.

A high-level view of the ODO framework is shown in Figure 13. At this level the objects of the
framework are the constraint graph, the scheduling strategy or policy, and commitments which are
asserted into and retracted from the constraint graph by the policy. This framework for CDS is an
extension of the original ODO framework proposed in [Davis, 1994] and [Davis and Fox, 1993].

The constraint graph contains a representation of the current problem state in the form of vari-
ables, constraints, and objects built from variables and constraints. A commitment is a set of con-
straints, variables, and problem objects that the search strategy adds to and removes from the
constraint graph. The assertion and retraction of commitments are the only search operators.
Figure 14 displays our conceptual model of a constraint graph as the representation of each state
in a search tree. As represented in Figure 14, the state transitions are achieved by the modification
of the constraint graph through the assertion and retraction of commitments.

O

38

A policy contains the components displayed in Figure 15. A pseudo-code representation of a pol-
icy is presented in Figure 16. The commitment assertion component is trivial as it requires adding
a constraint to the existing graph. The other components may require significant effort.

Constraint Graph Scheduling Strategy

Assert Commitment

Retract Commitment

START

EXIT

FAILURE

Figure 13. A High-level View of the ODO Framework.

Figure 14. A Conceptual Four-Level Constraint-Directed Search Tree.

39

A heuristic commitment technique is a procedure that finds new commitments to be asserted. It
can be divided into two components: the first performs some measurement of the constraint graph
in order to distill information about the search state and the second uses this distilled information
to heuristically choose a commitment to be added to the constraint graph. A propagator is a pro-
cedure that examines the existing search state to find commitments that are logically implied by
the current constraint graph. A retraction technique is a procedure for identifying existing com-
mitments to be removed from the constraint graph. The termination criteria is a list of user-
defined conditions for ending the search. There may be many criteria including a definition of a
solution (e.g., all the activities have a start time and all the constraints are satisfied), determination
that a solution does not exist, and limits on the search in terms of CPU time, number of commit-
ments, number of heuristic commitments, and/or number of retractions.

3.1.1 Why the Framework?

The ODO framework provides two important advantages to our research effort. The first is a cog-
nitive model of constraint-directed scheduling: the framework represents a way to think about
constraint-directed scheduling. Using the framework, we can more quickly understand (and cre-

Heuristic

Assert
Commitment(s)

START

No implied
commitments

Retraction
Technique

Termination
criteria met

EXIT

found

FAILURE

Nothing
to retract

Measure
Textures

Identify
Commitment

Propagators

Found
implied
commit- Commitment

Techniquement(s)

Figure 15. Schematic of a Policy.

Retraction
necessary

40

ate) novel scheduling strategies and components, understand the structural similarities and differ-
ences among existing strategies, and approach new problem types.

The second advantage of the ODO framework is as an implementational model of constraint-
directed scheduling. The high-level concepts of constraint graph, commitment, and scheduling
strategy as well as the strategy components all have corresponding objects in our C++ implemen-
tation of the ODO scheduling shell. New propagators, for example, can be created by inheriting
an interface from an abstract Propagator class and then implementing the details of the new
propagator. At run-time, then, we can specify that the new propagator (perhaps as one of a set of
propagators) is used in a scheduling strategy. The architecture supports rigorous empirical com-
parison of the components of scheduling algorithms, allowing us to compare, for example, differ-
ent heuristic commitment techniques while keeping the propagators and retraction techniques
constant. It provides the ability to compose novel scheduling strategies simply from the compo-
nent instances previously implemented. It also allows us to address novel problems with exten-
sions to the constraint graph and commitment representations.

3.2 The Components of ODO

In Chapter 2, we discussed the three main functional components of a scheduling strategy: heuris-
tic commitment techniques (Section 2.3), propagators (Section 2.4), and retraction techniques
(Section 2.5). We will not repeat that discussion here. There are, however, three additional aspects
of our model constraint-directed scheduling that the ODO framework makes explicit: the con-
straint graph, the commitment model, and the use of texture measurements as a basis for heuristic
commitment techniques. In this section, we examine each of these aspects of the ODO frame-
work.

Figure 16. Pseudocode for a Policy.

1: forever
2: if termination criteria is met
3: EXIT

4:
5: while(untried propagators AND
6: no implied commitments found AND
7: no retraction necessary)
8: try next propagator
9:
10: if (retraction necessary)
11: retract commitment(s)
12: if (no commitments to retract)
13: FAILURE

14:
15: else
16: if (no implied commitments)
17: measure textures
18: make heuristic commitment
19: assert commitment

41

3.2.1 The Constraint Graph Representation

The constraint graph is the evolving representation of the search state. It is composed of con-
straints and variables aggregated to form the components of the scheduling problem. Examples of
the lower level components include interval variables which can be assigned to a (possibly non-
continuous) interval of integer values and constraints expressing various mathematical relation-
ships (e.g., less-than, equal) among interval variables. At the aggregate level, the constraint graph
represents, among other scheduling components: activities; Allen’s 13 temporal relations
[Allen, 1983]; and resources and inventories with minimum and maximum constraints. The com-
ponents of the constraint graph are not an innovation of the ODO model as most constraint-
directed scheduling systems represent these concepts in some way (e.g., [Van Hentenryck, 1989;
Le Pape, 1994c; Le Pape, 1994b; Caseau and Laburthe, 1994]).

Neither the implementation-level details of the constraint graph nor the scope of the objects repre-
sented are part of the ODO framework. Such prescriptive details and scope would unnecessarily
limit the applicability of ODO to scheduling problems with well-understood constraint-based rep-
resentations. One of the key aspects of constraint-directed search is the extensibility and flexibil-
ity of the representation, and therefore the ODO constraint graph is continuously evolving as our
research explores new areas of application of constraint-directed scheduling.

3.2.2 The Commitment Model

In traditional, constructive, constraint-directed search, the forward movement through the search
space is achieved by the assignment of a value to a variable. Given the heuristic nature of the
assignment step, it is likely (in difficult problems) to encounter a dead-end, that is, a state in which
at least one variable has no values to which it can be assigned without breaking one or more con-
straints. At this point some form of backtracking is done: some previously made assignments are
undone. Forward search then continues.

An instance of a CSP or COP can also be addressed with a local search procedure (such as tabu
search and simulated annealing). Local search techniques work on sets of search states S, which
may be partial or complete assignments of values to variables. A local search procedure uses a
neighborhood function f to generate new search states from the current search state: f(S) → S’.
From S’, one or more states are selected for exploration. Some analysis is typically done in each
new state to decide whether it is acceptable. If so, the neighborhood function is applied to the new
state and search continues. If the new state is not accepted, the previous state is returned to and a
different neighbor is chosen.

3.2.2.1 Commitments, Assertion, and Retraction

A commitment is a variable, a constraint, or a set of variables and constraints, added to the con-
straint graph representation of the problem during search. Assertion of a commitment is the pro-
cess of adding the problem objects in the commitment to the constraint graph. Thus commitment
assertion is a state transition operator. Retraction of a commitment is the process of removing a
commitment from the constraint graph. Like assertion, retraction is a state transition operator,
resulting in a new constraint graph.

Examples of commitments in scheduling include:

• assigning a start time to an activity by posting a unary “equals” constraint (e.g., the start time of
activity A is equal to 100).

42

• posting a precedence constraint between activities (e.g., activity A executes before activity B)
[Smith and Cheng, 1993; Cheng and Smith, 1997].

• instantiating a process plan, in response to a demand for some amount of an inventory. A pro-
cess plan is a set of activities and constraints that together produce some inventory. Assertion
of a process plan commitment, like the assertion of any commitment, adds these new objects to
the constraint graph.

• adding a new resource to the problem. It may be that part of the scheduling problem is to deter-
mine (and perhaps minimize) the number of resources used. Such a problem arises in transpor-
tation applications where it is desired to use as few trucks as possible to meet the shipment
requirements. A resource, like an activity, is composed of variables and constraints that, with
an assertion, are added to the constraint graph.

3.2.2.2 Commitments as a Unification for Constructive and Local Search

Both constructive and local search techniques can be modeled as the assertion and retraction of
commitments. This is straightforward in constructive search where the assertion and the retraction
are explicit. In local search, the assertion and retraction take place in a single step. Changing the
value of a variable can be modeled as an assertion (add the new commitment that assigns the vari-
able to its new value) followed by a retraction (un-assign the variable, that is remove the commit-
ment that assigned it to its current value). A step in the search space, for local search, therefore, is
one or more assertions and retractions. Figure 17 shows a schematic example of both styles of
search based on assertion and retraction of commitments.

The definition and use of commitments makes no assumptions either about the form of a commit-
ment (other than being a set of variables and constraints), or about why particular commitments
are asserted or retracted. The former point is critical in modeling the variety of commitments that
are used in constraint-directed scheduling while the latter point is important for the wide applica-
bility of the commitment model. One of the major differences between local search and construc-
tive search styles is in the reasoning that identifies the commitments to be asserted and retracted.
By simply modeling the assertion and retraction of commitments without specifying the ways in
which the commitments are identified, we are able to account for both constructive and local
search techniques.

3.2.2.3 Research Issues

The use of the assertion and retraction of commitments as the sole search operators raises a num-
ber of research issues.

1. Constructive and local search are generally viewed as having different strengths and weak-
nesses. While constructive search, in recent years at least, makes use of both sophisticated
propagators and heuristic commitment techniques and is typically systematic and complete,
local search generally uses simpler heuristics, appears to scale better in some domains (e.g.,

hard random 3-SAT [Selman et al., 1992]), and is often easier to understand. An overarching
issue is the investigation of hybrid techniques that can combine the strengths of each. For
example, can we use propagators with local search techniques?1 Can we apply the heuristics
that are more typical of local search to constructive search or vice versa?

1. Some work has recently been done on this question in the context of vehicle routing [DeBacker et al., 1997].

43

2. Are there structural characteristics of a problem (and of a sub-problem) that indicate it is better
to apply constructive rather than local search techniques or vice versa? Can we move back and
forth between constructive and local search while solving a single problem? Can we identify
search states where we should change our style from constructive to local or vice versa?

3. Given that the same problem may be solved using different commitments (e.g., job shop sched-
uling can be solved by assigning start times or by sequencing activities), is there any informa-
tion that can tell us which types of commitments should be used? Can finding the right
commitment type make the search for a solution much easier?

4. Commitments can be of different granularities. “Macro” commitments are large moves in the
search space where, for example, all the activities on a unary resource are sequenced (or re-
sequenced) [Smith et al., 1989; Vaessens et al., 1994]. In contrast, “micro” commitments make
small steps such as assigning (or reassigning) the start time of a single activity [Sadeh, 1991].
An interesting question therefore is the distinction among commitments of different granulari-
ties. Are they all equivalent in some sense (i.e., is a macro commitment simply an agglomera-

Assert

Retract

Assert

Assert

Retract Assert

Retract Assert

Constructive Search Local Search

Figure 17. Constructive and Local Search in the Commitment Model.

44

tion of micro commitments)? Are there structures in the constraint graph or conditions of the
search (e.g., significant backtracking) that suggest that a macro commitment may be of more
use? If macro commitments are based on the same information as a micro commitment, are
they more cost effective? Is there a trade-off?2

3.2.2.4 The Advantages of the Commitment Model

Overall, the use of the commitment model provides two key advantages to our research effort:

1. A new, unifying perspective on local and constructive search that affects how we conceptualize
search, and how we address novel problems with CDS techniques.

2. An implementational foundation for the ODO scheduling shell that matches our conceptual
model of scheduling. The general commitment model is not only an abstract model of the
scheduling work, but also the basis for the object-oriented architecture of the ODO scheduling
shell.

3.2.3 Texture Measurements and Heuristic Commitment Techniques

A texture measurement is a technique for distilling information embedded in the constraint graph
into a form that heuristics can use. A texture measurement is not a heuristic itself. For example, a
texture measurement may label some structures in the constraint graph (e.g., constraints, vari-
ables, sub-graphs) with information condensed from the surrounding graph. On the basis of this
condensed information, heuristic commitments can be made. A relatively small number of texture
measurements have been explicitly identified [Fox et al., 1989; Sadeh, 1991]; however, we take
the broad view of a texture measurement as any analysis of the constraint graph producing infor-
mation upon which heuristic commitments are based.

The concept of texture measurements is directly related to the representational and search intui-
tions discussed in Section 2.1.2. If we are to intelligently search for a solution to a problem and if
the problem information is represented in a rich constraint representation, we need to look to the
constraints for guidance. We need to distill information from the underlying constraint graph rep-
resentation of a problem state and base our search commitments on this information.

It is not the case that any possible heuristic decision that can be made in constraint-directed search
is necessarily based on texture measurements. However, any heuristic commitment technique that
makes use of information in the constraint graph is, at least partially, texture-based. For example,
we would not classify a “heuristic” that randomly selects an activity and randomly assigns it a
start time as texture-based as it is performing no measurement of the constraint graph.

In general, a texture measurement may be prohibitively expensive (e.g., NP-hard or worse) to
compute. Making practical use of texture measurements, then, often requires a polynomial esti-
mation algorithm. For example, the value goodness texture is defined to be the probability that a
variable, V, will be assigned to a particular value, va, in a solution [Fox et al., 1989]. To exactly
calculate the value goodness we need the ratio of the number of solutions to the problem, where
V = va, to the total number of complete valuations. This is clearly impractical. In practice, there-
fore, we might estimate the goodness of va by examining the proportion of values of connected
variables that are consistent with V = va. We may then base a heuristic commitment on the (esti-
mated) value goodness by choosing to assign the value with greatest (or least) goodness. What
information a texture distills, how that information is practically estimated, and what commitment

2. For research that has examined some of these issues see [Clements et al., 1997; Muscettola, 1994; Sadeh, 1991].

45

is made on the basis of the estimated information form the basic issues surrounding texture mea-
surements.

3.2.3.1 Research Issues

The texture measurement concept produces a number of research issues.

1. What is the information that is to be distilled by a texture? We may not be able to precisely cal-
culate this information in any practical algorithm; however, a firm theoretical basis showing
that if we had this information, we could use it to find a solution, allows us to then look to the
practical aspects of forming an estimate of this information.

2. Given the impracticality of precisely calculating texture information, can we construct an algo-
rithm that estimates the desired information? It is likely that we can construct a number of
algorithms producing estimates of increasing accuracy at the cost of increasing computational
complexity. Where is the trade-off in terms of impact on the overall scheduling algorithm? Can
we characterize different estimation techniques on the basis of expected error from the true
measurements?

3. What are the heuristic commitments that are being made on the basis of the information dis-
tilled by the texture measurements? After the texture measurements have been estimated, it is
necessary to use that information to make a heuristic commitment. The type of commitment
and the heuristic for finding the instance of the commitment, based on the distilled information,
may have a significant impact on the search.

4. The texture hypothesis is one focus of our research in constraint-directed scheduling. It states
that spending a significant, but polynomial, computational effort in measuring textures and
making commitments on the basis of the texture information pays off in the reduced need for
backtracking and hence results in greater search efficiency. We believe this hypothesis to be
true of scheduling though there appear to be CSP domains where it does not hold (e.g., hard
random 3-SAT [Selman et al., 1992]).

5. Scheduling problems often require a variety of commitment types: the assignment of activities
to resources, the instantiation of process plans, the addition of new resources, etc. Can textures
provide a basis for integrating a variety of commitment types in a single search? Based on the
constraint graph, can we (heuristically) decide that it is better to make a resource assignment at
some point than to sequence activities?

3.3 Scheduling Algorithms as Instances of the Framework

To illustrate the applicability of our framework, we now demonstrate how it can be used to model
a number of existing scheduling algorithms.

3.3.1 The ORR/FSS Algorithm

One of the algorithms implemented in the MicroBOSS Scheduler is the Operation Resource Reli-
ance/Filtered Survivable Schedules (ORR/FSS) algorithm [Sadeh, 1991; Sadeh, 1994; Sadeh and
Fox, 1996]. It is a constructive algorithm that uses the ORR/FSS heuristic. The texture measure-
ments estimated are the reliance of each activity and the contention for each resource. The heuris-
tic commitment is found by identifying the most critical activity and rating its possible start times
in terms of survivability. Survivability is the likelihood that an assignment of the start time will
“survive” to participate in a full solution, and is calculated based on the reliance and contention

46

measures. The commitment made is to assign the most survivable start time to the activity with
the highest reliance on the resource and time interval with highest contention.

Two propagators are used: temporal propagation and resource propagation. Temporal propagation
(technically, arc-B-consistency) operates on the precedence constraints. If Ai and Aj are activities
in the same job such that Aj is a successor of Ai, temporal propagation enforces that:
estj ≥ esti + duri and lfti ≤ lftj – durj. Resource propagation (arc-consistency) plays a similar role
for unary capacity resource constraints. For example, if Ai and Bj require the same unary resource
and lstj < eftj, then for the time interval [lstj, eftj), Bj must be the only activity using the resource.
Resource propagation will remove the values [lstj – duri+1, eftj – 1] from the possible start times
of Ai. Both propagators remove values from the start time domain of activities by asserting com-
mitments composed of unary disequality constraints.

The retraction technique is chronological backtracking.

3.3.2 The SOLVE Algorithm

The SOLVE algorithm [Nuijten et al., 1993; Nuijten, 1994] is also a constructive algorithm, but
takes a different approach than ORR/FSS. In ORR/FSS, the main effort (and computational com-
plexity) is in the heuristic commitment component while the other components are relatively inex-
pensive. In SOLVE, the heuristic commitment technique is a simpler, less expensive, less
powerful technique while the propagators are more expensive and more powerful.

The heuristic commitment technique is the Left-Justified Randomized (LJRand) heuristic. The set
of activities that can execute before the minimum earliest finish time of all unscheduled activities
is identified. One activity from this set is randomly selected and scheduled at its earliest start time.
The heuristic commitment that is made is a unary equals constraint, assigning the start time of the
selected activity. The heuristic commitment technique randomly searches the space of “left-justi-
fied” schedules which have been shown to form a dominance class in terms of makespan minimi-
zation [Baker, 1974]. While it is clearly a measurement of the constraint graph (based on earliest
start times and earliest finish times of activities), it is unclear what, if any, underlying constraint
graph properties are being estimated by LJRand.

In addition to temporal propagation and resource propagation, SOLVE uses an extensive set of
propagators including edge-finding.

The retraction technique is bounded chronological backtracking with restart: chronological back-
tracking is done until the user-specified bound on the number of backtracks is reached. At that
point all commitments are retracted and the search starts over. Clearly, at the root node a different
commitment than previously must be made to prevent cycling. With a randomized heuristic com-
mitment technique. the random nature of the heuristic performs this function.

3.3.3 GERRY

GERRY [Zweben et al., 1993; Zweben et al., 1994] is a local search algorithm based on the Min-
Conflicts heuristic [Minton et al., 1992]. Starting from a complete variable assignment with a
non-zero cost, GERRY will reschedule some activity in order to reduce the total cost of the sched-
ule. The cost is a weighted sum of the extent to which each constraint is violated. The precedence
constraints are always maintained (using temporal propagation); therefore, when applied to job
shop, the only constraints that GERRY repairs are the resource constraints. To do this, GERRY
reschedules one of the conflicting activities in a MinConflicts fashion, that is, by assigning it to a

47

new start time that will minimize its conflicts with other activities. GERRY examines moving
each conflicting activity to the previous and next time at which the resource is available. Each of
these moves is evaluated by a linear combination of factors including the extent to which the size
of the activity matches the size of the violation, the number of activities temporally dependent on
the activity, and the distance from the current start time of the activity to the new start time. Each
move is scored and the score is used to select the heuristic commitment.

In terms of textures, the activity rating procedure estimates contention by calculating the weighted
sum of violations for each activity and then estimates the change in contention from moving activ-
ities to other start times. Every l commitments, a different texture (the overall cost of the sched-
ule) is calculated. If the cost is less than the previous schedule (i.e., from l iterations ago), it is
accepted as the new schedule. If it is of lower cost than all schedules seen so far, it is also stored as
the “best so far” schedule. Even if the schedule is of higher cost than the previous schedule it is
accepted at some probability based on a simulated annealing technique [Kirkpatrick et al., 1983].

GERRY can be modeled in our framework by encoding the local search moves as first asserting a
new commitment (in this case, start time assignment) and then retracting an existing commitment.
Every l iterations the retraction is different because the whole schedule is evaluated. If the new
schedule is accepted, the usual retraction takes place (after replacing the stored solution with the
new one). If the new schedule is not accepted, the previous schedule is put back: the l most recent
commitments are retracted and the l commitments that must be (re)made to return to the previous
schedule are asserted.

3.3.4 Tabu Search

In tabu search [Glover, 1989; Glover, 1990; Vaessens et al., 1994] a heuristic neighborhood func-

tion defines a set of states that can be reached by retracting a set of commitments and then assert-
ing a new set. For example, one neighborhood function swaps the ordering of two adjacent
activities (see Section 2.3.6) and another is that used by GERRY. After the neighborhood function
has (implicitly or explicitly) defined the set of neighboring states, each state is rated. The state that
the search moves to depends not only on the rating, but also on a (potentially) complex mecha-
nism involving a tabu list, an aspiration criteria, and, perhaps, other caches of search information.
A tabu list is typically a set of states, sub-states, state attributes, or moves that are prohibited as
the next state. The form of the tabu list and the criteria for adding and removing elements can be
varied and complex, and indeed, are important research issues. A simple example is to have a tabu
list of limited length and to insert every move on the list: when the tabu list is full, the oldest
moves are removed. While the move is on the tabu list, it cannot be performed. The intuition is
that the search should not revisit states too frequently, so as to avoid being trapped in a local opti-
mum of the state-rating function. An aspiration criteria is a condition (or set of conditions) for
over-riding the tabu list. Like the tabu list, the aspiration criteria can be complex, and a full dis-
cussion is beyond our scope. As an example, perhaps a state with an attribute that is on the tabu
list is selected anyway because it is more highly rated than any state visited to this point in the
search.

Based on the combination of the neighborhood function, the state-rating function, the tabu list,
and the aspiration criteria, a search state to move to is selected. The search terminates when a state
with the optimal rating is found or when a bound on the number of iterations is reached.

With a conceptualization similar to that used with GERRY, we see that the neighborhood func-
tion, the tabu list, the aspiration criteria, and the state-rating function together identify the heuris-
tic commitment that will be made. Once the commitment is identified and asserted, existing

48

commitments that directly conflict with the new commitment are retracted. Note that the retracted
commitments are dictated solely by the heuristic commitment component and in addition there is
very little effort spent in identifying conflicting commitments that are to be removed. Because
tabu works from a state that does not satisfy all constraints, no sophisticated techniques are used
in the retraction technique to identify existing commitments that indirectly conflict with the new
heuristic commitment.

The formulation of the neighborhood function, tabu list, and other components of the heuristic
commitment techniques are purposely left unspecified in the tabu search definition. In this way,
tabu search is more of a framework for local search techniques than a specific search algorithm. In
particular, the heuristic commitment technique is free to use any texture measurements to distill
information upon which the neighborhood function can be based or as a component of the state-
rating function. Propagators are typically not used in conjunction with tabu search (though see
[DeBacker et al., 1997] for work on incorporation of propagators into local search), and the
retraction technique is wholly driven by the heuristic commitments that are to be asserted.

3.3.5 Genetic Algorithms

Genetic algorithms (GAs) [Holland, 1975; Goldberg, 1989] operate on an evolving population of
potential solutions rather than a single solution. An initial population of solutions is created by
some (usually randomized) means and each individual schedule is rated. Based on the rating, a
subset of existing solutions are allowed to “reproduce” either by cross-over (two new schedules
are created from two existing schedules by exchanging some commitments) or mutation (a ran-
dom sub-set of commitments are changed). The cross-over and mutation operators are usually
random, or at least have a random component. After reproduction, potential solutions from the
previous generation are discarded, though in some GAs those that are highly rated remain in sub-
sequent populations. The search repeats until a bound is reached on the number of generations or
until the optimal solution is found. Clearly, performance of a GA depends highly on the rating
function, and on the cross-over and mutation operators.

In terms of our framework, a commitment is an entire schedule (e.g., a set of unary constraints
that assign a start time to each activity or, in an alternative formulation, a set of binary precedence
constraints that order all activities on each resource). To this point, we have had a single constraint
graph to which constraints are added and from which constraints are removed. To represent a pop-
ulation of schedules, we need a set of constraint graphs, one for each population member. A single
commitment results in a single population member by the addition of a complete set of constraints
to its own constraint graph (i.e., a separate “copy” of the problem).

At each iteration, the heuristic commitment component rates each schedule in the population and
generates a new set of heuristic commitments with the reproduction operators. The actual rating
function as well as the reproduction operators are left unspecified in the genetic algorithm frame-
work; therefore, texture measurements used as a basis for state-rating or the reproduction opera-
tors are left unspecified. As in tabu search, typically no propagators are used (though, of course, it
may be possible to incorporate propagators into the unspecified reproduction operators) and the
retraction technique is determined by the heuristic component: all those commitments (that is,
complete schedules) that will not be present in the subsequent generation are retracted.

49

3.3.6 Summary and Discussion

Table 2 displays a summary of how each of the example scheduling algorithms can be modeled
with an ODO policy.

From the above examples, two points, in particular, should be noted:

• In order to account for local search algorithms in our framework, the heuristic commitment
technique and retraction technique were functionally combined. The retraction component
simply retracts the commitments identified as to-be-retracted by the heuristic commitment
component.

• In order to fit GAs into the framework, we needed, in addition, to change a commitment to
account for the population of schedules on which GAs operate.

Algorithm

Heuristic Commitment Technique

Propagators
Retraction
TechniqueTexture

Measurements
Commitment
Identification

ORR/FSS
Contention and
reliance.

Assign the most surviv-
able start time to the activ-
ity with the highest
reliance on the {resource,
time interval} with high-
est contention.

Temporal
and resource
propagation.

Chronological back-
tracking.

SOLVE Unknown.

Randomly pick an activity
from the identified set and
assign it to its earliest start
time.

Edge-find-
ing, tempo-
ral and
resource
propagation.

Bounded chronologi-
cal backtracking with
restart.

GERRY
Contention and
over-all sched-
ule cost.

Assign activities with
highest contention to a
start time that minimizes
contention.

Temporal
propagation.

Retract the previous
start time assignment
for the activity
assigned in the heu-
ristic technique.

Tabu
Search

Unspecified.

Unspecified: a combina-
tion of neighborhood
function, state-rating
function, tabu list, and
aspiration criteria.

None.

Retract the commit-
ments that directly
conflict with the to-
be-asserted heuristic
commitment.

Genetic
Algorithms

Unspecified.

Unspecified: a combina-
tion of the state-rating
function and reproduction
operators.

None.

Retract all commit-
ments that the heuris-
tic technique has
determined will not
exist in the subse-
quent generation.

Table 2. Summary of the ODO Policy Model of Five Example Scheduling Algorithms.

50

Given these points, the question arises: “Why should we force these disparate algorithms into the
framework?”. The answer offered here is that it is not such a leap of faith to conceptualize these
algorithms as we have and, even if it were such a leap, the benefits of the unified framework are
significant.

We believe the conceptualization of the various algorithms is not forced. To account for local
search algorithms, we have created a simple retraction technique that simply carries out the retrac-
tions specified by the heuristic commitment component. One could imagine replacing the retrac-
tion technique with another that completely, partially, or probabilistically ignores the heuristic
commitment component. Alternatively, perhaps the retraction technique could remove all the
commitments specified by the heuristic component and then perform further analysis to retract
additional constraints. For GAs, our original definition of a commitment noted that it might be a
set of constraints and other problem objects. The fact that each iteration retracts and asserts a
whole population of these commitments does not significantly modify this definition.

Secondly, the benefits from describing these strategies within the framework are significant. The
chief benefits are:

1. The ability to perform empirical comparisons of different instances of the same component. As
noted in Chapter 2, very little empirical work compares, for example, two heuristic commit-
ment techniques while holding all other components constant. As a result it is difficult to com-
pare strategies, attribute performance observations to specific components, and correlate
problem features to performance. The framework allows us to experiment with a variety of
combinations, and to generate and test specific hypotheses to explain performance differences.

2. The ability to generate novel strategies and components by combining aspects of existing ones.
A case in point is our musing about a retraction component in local search that might retract
commitments other than those specified by the heuristic commitment component. In many of
the strategies discussed above the main focus of “intelligence” is in only one of the compo-
nents (e.g., compare ORR/FSS with SOLVE). By making the components more autonomous,
we may be able to introduce intelligence into a number of components. By placing GAs within
our framework, we can similarly imagine a number of interesting scenarios. To wit:

• Modify the GA retraction technique to, under certain circumstances (e.g., finding a solu-
tion significantly better than all other solutions seen), retract all individual schedules and
transfer to, for example, a tabu search on that one solution.

• Rather than moving to tabu search, perhaps the retraction component could not only
retract all but the best solution, but also remove some subset of the constraints from that
best solution. The heuristic commitment technique could become ORR/FSS while the
retraction component becomes chronological backtracking to try to build a complete
schedule from that promising partial schedule.

• Tabu search, under certain circumstances, may randomly spawn a number of schedules
from the best schedule it has found and move to a GA search.

The point is not whether these scheduling strategies will work (that remains to be seen), but rather
that being able to conceptualize a variety of strategies within the ODO framework provides a new
perspective on these techniques that, in turn, creates a space of novel strategies to be investigated.

51

3.4 Summary

In this chapter we presented the ODO framework for constraint-directed search. While we intro-
duced the main functional components of the framework (heuristic commitment techniques, prop-
agators, and retraction techniques) in Chapter 2, here we concentrated on the constraint graph
representation of problem and search states, the unifying model of assertion and retraction of
commitments as the sole search operators, and the use of texture measurements as a basis for heu-
ristic commitment techniques. We demonstrated how a number of existing scheduling strategies
could be conceptualized within the ODO framework.

This chapter has emphasized the use of the ODO framework to provide a basis for the conceptual
comparison of various scheduling strategies and techniques. While conceptual comparison of
scheduling strategies is valuable for the reasons discussed in the chapter, it is also useful to be able
to empirically compare the performance of specific instances of scheduling components while
holding all the other components of a strategy constant. We turn to such a comparison in the fol-
lowing chapter.

52

53

Chapter 4 An ExperimentalStudyofHeuristics

for Job Shop Scheduling

n the previous chapter, we highlighted the use of the ODO framework to model a wide variety
of constraint-directed scheduling algorithms and to allow their conceptual comparison. Of
equal importance is the use of the ODO framework as an experimental tool. The ability to

modify scheduling algorithms by substituting one instance of a component with another instance
of the same component while holding the rest of the algorithm constant provides us with a tool to
conduct rigorous experimental studies.

In this chapter, we examine a number of heuristic commitment techniques for job shop scheduling
and formulate a variation of the ORR/FSS heuristic [Sadeh, 1991]. We examine claims that have
appeared in the literature concerning the efficacy of texture-based heuristic commitment tech-
niques and re-evaluate texture-based heuristics in light of recent advances in scheduling technol-
ogy.

4.1 Motivation

Our motivation for the work in this chapter is twofold. First, the work serves as an example of the
use of the ODO framework for the experimental evaluation of constraint-directed scheduling
components. Second, and more importantly, the central thesis of this dissertation is that, as prob-
lems become more complex, knowledge of the problem structure (through, for example, the use
of texture measurements) becomes increasingly important in successful heuristic search. While
our eventual goal is application of texture-based heuristics to novel constraints (Chapter 6 and
Chapter 7), we first to evaluate this thesis in the job shop scheduling paradigm.

The first question to be addressed in examining heuristics for job shop scheduling is the extent to
which they are based on a dynamic analysis of a search state and how this analysis correlates with
performance. Does sophisticated analysis of the search state by texture measurements correspond
to improved overall search performance? Second, a number of criticisms of texture-based heuris-
tics have appeared in the literature. The criticisms call into question our basic hypothesis and
therefore, deserve to be addressed before we attempt an extension of texture-based heuristics
beyond the job shop model.

4.1.1 Search State Analysis and Scheduling Performance

A central part of the hypothesis regarding texture measurements is that dynamic analysis of the
constraint graph representation of the search state can form a superior basis for constraint-directed
search heuristics. In this chapter, we investigate three job shop heuristics with varying levels of

I

54

dynamic analysis: SumHeight (a variation of ORR/FSS, that is developed in this chapter, see
Section 4.3), CBASlack (see Section 2.3.4), and LJRand (see Section 2.3.5).

SumHeight, like ORR/FSS, is based on using the aggregation of the probabilistic individual
demand of each activity to estimate the contention for a resource. Of the three heuristics, it makes
the most use of dynamic information distilled from the constraint graph in forming heuristic deci-
sions.

CBASlack, though not originally conceptualized as a texture-based heuristic, uses a form of the
contention texture to form commitments. CBASlack calculates the biased-slack between all pairs
of activities that compete for the same resource and selects the pair with minimum biased-slack as
the most critical. We view the pair-wise biased-slack as an estimation of pair-wise contention: the
lower the biased-slack the more the two activities contend for the same resource over the same
time window. While pair-wise contention distills less information from the constraint graph than
the more aggregate measure used in SumHeight, it is nonetheless a dynamic analysis of the search
state. Note that pair-wise contention is a measure of how much two activities compete for a
resource while the SumHeight texture is a measure of the extent to which all activities compete
for a resource. So while SumHeight and CBASlack are both based on forms of contention, they
are not based on an identical texture measurement: we expect that the difference in aggregation
level will lead to different heuristic performance.

Finally, the LJRand heuristic identifies the unassigned activities that are able to start before the
minimum end time of all unassigned activities. One of these activities is randomly selected and
assigned to its earliest start time. LJRand performs the least analysis of the search state of the
three heuristics tested.

Based on our hypothesis that increased analysis leads to improved scheduling performance, we
expect that SumHeight will outperform CBASlack which in turn will outperform LJRand.

4.1.2 Criticisms of Texture-based Heuristics

As noted in Chapter 2, two criticisms of texture-based heuristics have appeared in the literature.

Smith and Cheng. As part of the evaluation of the PCP scheduling algorithm, [Smith and
Cheng, 1993] compare Sadeh’s ORR/FSS heuristic (Section 2.3.1) (which uses temporal and
resource propagation, but no retraction technique) with the CBASlack heuristic (using the CBA
propagator (Section 2.4.1), temporal propagation, and no retraction). The results, on a set of job
shop scheduling benchmarks, indicated that equal or better performance is achieved with the
CBASlack heuristic. Given equal performance and the relative simplicity of the CBASlack heuris-
tic compared with ORR/FSS, the authors conclude that the more complicated implementation
associated with texture measurements is not justified.

Nuijten. The SOLVE scheduling algorithm (Section 3.3.2) consists of LJRand, a set of sophisti-
cated propagators including edge-finding exclusion (Section 2.4.2), and bounded chronological
backtracking with restart (Section 2.5.1.2) as the retraction technique. On a set of difficult job
shop benchmark problems from the Operations Research literature [Beasley, 1990], SOLVE sig-
nificantly outperformed both Sadeh’s ORR/FSS algorithm (using chronological retraction) and
the ORR/FSS heuristic augmented with the propagators used in SOLVE but still using chronolog-
ical retraction [Nuijten, 1994].

55

Both of these empirical results appear to be evidence against the use of sophisticated search state
analyses as a basis for heuristic commitment techniques. The flaw in both pieces of research, how-
ever, is the empirical model of scheduling algorithms. Rather than viewing the algorithms as com-
posed of components (as in the ODO framework) the researchers treat them as monolithic wholes.
As a consequence, the heuristic commitment technique is not the only component that is varied
among algorithms. In the case of [Smith and Cheng, 1993], the CBA propagator was used as part
of the PCP algorithm, but not as part of the ORR/FSS algorithm. Similarly, though
[Nuijten, 1994] uses the same propagators in SOLVE and in the augmented ORR/FSS, the retrac-
tion techniques are different: SOLVE uses bounded chronological backtracking with restart while
ORR/FSS uses chronological backtracking. Given these differences, to what should we attribute
the observed experimental results? Is it really the case that the CBASlack heuristic achieves equal
performance to ORR/FSS, or is the quality of the PCP algorithm due to the combination of the
CBASlack heuristic with the CBA propagator? Does LJRand really significantly outperform
ORR/FSS, or does the performance difference arise from the different retraction techniques?

In this chapter, we address these questions by creating a number of instances of the ODO frame-
work that vary only the heuristic commitment technique. In particular, the same set of propagators
is used in all experiments and two separate experimental conditions for the retraction techniques
are set-up: one uses chronological backtracking for all algorithms while the other uses Limited
Discrepancy Search (LDS) (Section 2.5.1.2) for all algorithms.

Before presenting the instantiations of the ODO framework, we review the definition of job shop
scheduling and then turn again to texture measurements to present details of the SumHeight heu-
ristic.

4.2 The Job Shop Scheduling Problem

One of the simplest models of scheduling widely studied in the literature is the job shop schedul-

ing problem. The classical n × m job shop scheduling problem is formally defined as follows.
Given are a set of n jobs, each composed of m totally ordered activities, and m resources. Each
activity Ai requires exclusive use of a single resource Rj for some processing duration duri. There
are two types of constraints in this problem:

• precedence constraints between two activities in the same job stating that if activity A is before
activity B in the total order then activity A must execute before activity B;

• disjunctive resource constraints specifying that no two activities requiring the same resource
may execute at the same time.

Jobs have release dates (the time after which the activities in the job may be executed) and due
dates (the time by which all activities in the job must finish). In the classical decision problem, the
release date of each job is 0, the global due date (or makespan) is D, and the goal is to determine
whether there is an assignment of a start time to each activity such that the constraints are satisfied
and the maximum finish time of all jobs is less than or equal to D. This problem is NP-complete
[Garey and Johnson, 1979]. A recent survey of techniques for solving the job shop scheduling
problem can be found in [Blazewicz et al., 1996].

56

4.3 Updating Contention and Reliance: SumHeight

The ORR/FSS heuristic [Sadeh, 1991] (Section 2.3.1) identifies the most critical activity in a
search state and assigns it to its most “survivable” start time. The estimation of activity criticality
and start time survivability is done on the basis of the underlying texture measurements of conten-
tion and reliance. Reliance estimates the extent to which an activity depends on being assigned to
a particular resource at a particular time in order to participate in a complete schedule. Contention
estimates the competition among the activities for a resource and start time.

Most of the intuitions and texture measurements underlying SumHeight are the same as those
underlying ORR/FSS. There are, however, two key differences:

1. SumHeight uses an event-based implementation of texture measurements.

2. Rather than assigning a start time to an activity, SumHeight generates a heuristic commitment
to sequence the two most critical activities on the most critical resource.

We describe each of these differences in depth in the rest of this section.

4.3.1 An Event-based Texture Measurement Implementation

Recall that the key component of the contention and reliance texture measurements upon which
the ORR/FSS heuristic is based is the calculation of an activity’s individual demand, ID(A, R, t).
The individual demand is (probabilistically) the amount of resource R, required by activity A, at
time t and was calculated using Equations (1) and (2) in Section 2.3.1. For simplicity, we repeat
those equations here as Equations (14) and (15). (Recall that STDA is the start time domain of
activity A).

 (14)

Where:

 (15)

In the straightforward implementation of the individual demand, ID(A, R, t) is calculated for each
time point, t, estA ≤ t < lftA, creating the “step” curves displayed in Figure 5 in Chapter 2. The
time-complexity of this calculation relies not only on the number of activities and resources, but
also on the length of the scheduling horizon. To prevent such scaling, we use an event-based rep-
resentation and a piece-wise linear estimation of the ID curve. The individual activity demand is
represented by four (t, ID) pairs:

 (16)

ID A R t, ,() σA τ()
t durA– τ t≤<

∑=

σA τ()
1

ST DA

----------------- τ ST DA∈

0 otherwise





=

est
1

STD
--------------, 

  lst
min STD dur,()

STD
---, 

  eft
min STD dur,()

STD
---, 

  lft 0,(), , ,

57

The individual demand level between any two points on the ID curve is interpolated with a linear
function.

To estimate contention, the individual demands of each activity are aggregated for each resource.
Aggregation is done, as in Sadeh’s formulation, by summing the individual activity curves for that
resource. This aggregate demand curve is used as a measure of the contention for the resource
over time.

Figure 18 shows the individual activity curves and the aggregate resource curve for the activities
and resource in Figure 4 of Chapter 2 as implemented for the SumHeight heuristic.

4.3.2 Heuristic Commitment Selection

As in the ORR/FSS heuristic, SumHeight makes a commitment on the activities most reliant on
the resource for which there is the highest contention. In more detail, SumHeight does the follow-
ing:

1. Identifies the resource and time point with the maximum contention.

2. Identifies the two activities, A and B, which rely most on that resource at that time and that are
not already connected by a path of temporal constraints.

3. Analyzes the consequences of each sequence possibility (A → B and B → A) and chooses the
one that appears to be superior based on our sequencing heuristics (see Section 4.3.2.2).

The intuition for SumHeight is the same as that for ORR/FSS: by focusing on the most critical
resource and activities, we can make a decision that reduces the likelihood of reaching a search
state where the resource is over-capacitated. Furthermore, once such critical decisions are made
the problem is likely to be decomposed into simpler sub-problems.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90

D
em

an
d

Time

A1
B2
C3
R1

Figure 18. Event-based Individual Demand Curves (A1, B2, C3) and
Their Aggregate Curve (R1).

58

4.3.2.1 Finding the Critical Activities

After the aggregate demand curves are calculated for each resource, we identify the resource, R*,
and time point, t*, for which there is the highest contention (with ties broken arbitrarily). We then
examine the activities that contribute individual demand to R* at t*. The two critical activities, A

and B, are selected as follows:

• A is the activity with highest individual demand for R* at t* which is not yet sequenced with all
activities executing on R* (i.e., at least one activity executing on R* is not yet connected to A
via a path of temporal constraints).

• B is the activity not yet sequenced with A with highest individual demand for R* at t*.

Because these two activities contribute the most to the aggregate demand curve, they are the most
reliant on the resource at that time.1

It can be seen in Figure 18 that one of the critical time points on R1 is 35. There are only two
activities that contribute to this time point, as C3’s latest end time is 22 (see Figure 4 in
Chapter 2). Therefore, A1 and B2 are selected as the critical activities.

4.3.2.2 Sequencing the Critical Activities

ORR/FSS assigns start times to activities. It identifies the single most reliant activity and deter-
mines the start time assignment using the survivability value ordering heuristic.2 Because we post
sequencing constraints between the two most critical activities, rather than assigning start times,
we do not calculate survivability or use Sadeh’s value ordering. Instead, to determine the
sequence of the two most critical activities, we use three heuristics: MinimizeMax, Centroid, and
Random. If MinimizeMax predicts that one sequence will be better than the other, we commit to
that sequence. If not, we try the Centroid heuristic. If the Centroid heuristic is similarly unable to
find a difference between the two choices, we move to Random.

MinimizeMax Sequencing Heuristic. The intuition behind the MinimizeMax (MM) heuristic is
that since we are trying to reduce contention, we estimate the worst case increase in contention
and then make the commitment that avoids it. MM identifies the commitment that satisfies:

 (17)

Where:

 (18)

1. The activities with highest individual demand are the most reliant because, in the job shop scheduling problem,
there are no resource alternatives. With such alternatives, reliance is not necessarily solely based on individual
demand.

2. ORR/FSS also uses a time interval equal to the average activity duration rather than a single time point in identi-
fying the critical resource and activities.

MM min maxAD' A B,() maxAD' B A,(),()=

maxAD' A B,() max AD' A A B→,() AD' B A B→,(),()=

59

AD’(A, A → B) is an estimate of the new aggregate demand at a time point. It is calculated as fol-
lows:

• Given A → B, we calculate the new individual demand curve of A and identify the time point,
tp, in the individual demand of activity A that is likely to have the maximum increase in
height.3 This leaves us with a pair: {tp, ∆height}.

• We then look at the aggregate demand curve for the resource at tp and form AD’(A, A → B) by
adding ∆height to the height of the aggregate demand curve at tp.

The same calculation is done for AD’(B, A → B) and the maximum (as shown in Equation (18)) is
used in maxAD’(A, B). Equation (17) indicates that we choose the commitment resulting in the
lowest maximum aggregate curve height.

Centroid Sequencing Heuristic. The centroid of the individual demand curve is the time point
that equally divides the area under the curve.4 We calculate the centroid for each activity and then
commit to the sequence that preserves the current ordering (e.g., if the centroid of A is at 15 and
that of B is at 20, we post A → B). Centroid is a variation of a heuristic due to [Muscettola, 1992].

Random Sequencing Heuristic. Randomly choose one of the sequencings.

4.3.3 Complexity

The worst-case time complexity to find a heuristic commitment at a problem state is due to the
aggregation of the demand curves for each resource and the selection of the critical activities. By
storing the incoming and outgoing slopes of the individual curves at each point, we can sort the
event points from all activities and then, with a single pass, generate the aggregate curve. This
process has complexity of O(mn log n) (where n is the maximum number of activities on a
resource and m is the number of resources). Selection of the pair of unsequenced activities on the
resource requires at worst an additional O(n2). Thus the overall time complexity for a single heu-
ristic commitment is O(n2) + O(mn log n).

The space complexity is O(mn) as we maintain an individual curve for each activity and these
individual curves make up the aggregate curve for each resource.

4.4 Instantiations of the ODO Framework

The scheduling algorithms that we evaluate all instantiations of a scheduling strategy of the ODO
framework. As our primary purpose in these experiments is to evaluate the efficacy of heuristic
commitment techniques, the only difference among the strategies in our experiments is the heuris-
tic commitment technique. Specifically, we hold the set of propagators constant across all experi-
ments and create two experimental conditions based on the retraction technique used.

3. Non-local effects resulting from subsequent propagation may have an impact on A’s individual demand curve
after a heuristic commitment. As a consequence, we do not calculate the actual increase in height of A, but esti-
mate it based on arc consistency of the to-be-posted precedence constraint (i.e., we find A’s new lft based on local
arc consistency propagation and use it to calculate the maximum change in the individual demand).

4. This is a simplification of centroid that is possible because the individual activity curves are symmetric.

60

Heuristic Commitment Techniques. We use three heuristic commitment techniques in our
experiments: SumHeight, CBASlack, and LJRand.

Propagators. Four propagators are used in the following order: temporal propagation
(Section 3.3.1), edge-finding exclusion (Section 2.4.2), edge-finding not-first/not-last
(Section 2.4.3), and CBA (Section 2.4.1).

Retraction Techniques. We use two retraction techniques in two separate experimental condi-
tions: chronological backtracking (Section 2.5.1.1) and limited discrepancy search (LDS)
(Section 2.5.1.2).

Termination Criteria. The termination criteria for all experiments are to find a solution by fully
sequencing the activities on each resource, or to exhaust the CPU limit. The CPU time limit for all
experiments is 20 CPU minutes on a Sun UltraSparc-IIi, 270 Mhz, 128 M memory, running
SunOS 5.6. If an algorithm exhausts the CPU time on a problem, it is counted as a failure to solve
the problem.

Table 3 displays a summary of the experimental scheduling strategies.

4.5 Evaluating Scheduling Performance

Given the six instantiations of the ODO scheduling strategy just described, we now want to empir-
ically evaluate these algorithms. While our proximate goals are to investigate the use of texture
measurements as a basis for scheduling heuristics and to address the criticisms cited earlier, we
have a number of more general goals in conducting an experimental comparison of scheduling
algorithms. Included in these goals are:

• An evaluation of the relative usefulness of the scheduling algorithms.

• The ability to generalize results beyond the experimental problem sets.

• Evaluation of differences in the search styles of the algorithms.

• Insight into the reasons for performance differences.

Strategy
Heuristic Commitment

Technique
Propagators Retraction Technique

SumHeightChron SumHeight Alla

a. Temporal propagation, edge-finding exclusion, edge-finding not-First/not-Last, and CBA

Chronological backtracking

CBASlackChron CBASlack All Chronological backtracking

LJRandChron LJRand All Chronological backtracking

SumHeightLDS SumHeight All LDS

CBASlackLDS CBASlack All LDS

LJRandLDS LJRand All LDS

Table 3. Summary of Experimental Scheduling Algorithms.

61

Before discussing the approach used in this dissertation for experimental design and analysis, it is
instructive to examine experimental design in the literature.

4.5.1 Competitive versus Scientific Testing

In [Hooker, 1996] the current practice of empirical evaluation of algorithms is termed “competi-
tive testing”. This testing consists of running a “track meet” among algorithms, usually on a set of
benchmark problems, and using run statistics (often CPU time) to declare a champion among the
algorithms tested. This approach is assailed by Hooker as anti-intellectual and counter-productive
to the progress of understanding the algorithms in question. The competitive testing paradigm
leads not only to researchers spending an inordinate amount of time and resources polishing and
optimizing code in order to compete with commercial code but also, given the variety of differ-
ences among algorithms, it is difficult to attribute performance differences to any one factor:
while competitive testing crowns a champion, no insight into the reasons for the better perfor-
mance of the algorithm is provided. In particular, the reasons may have more to do with the soft-
ware engineering abilities of the researchers rather than characteristics of the algorithms tested.

The use of benchmark problems for competitive testing also raises some issues:

• Problem sets become benchmarks because they are solved by some existing algorithm (other-
wise they are unlikely to be published) and so existing algorithms have an advantage over new
ones.

• Benchmarks exert an evolutionary pressure on subsequent algorithms since if a new algorithm
does not perform well on an existing benchmark, it is unlikely to be published.

• It is unclear what problem population benchmarks are representative of, and it is debatable
whether a representative set of benchmark problems would even be recognized.

The solution to this dilemma, according to [Hooker, 1996] is to abandon competitive testing in
favor of what is referred to as “scientific testing”. The point here is controlled experimentation
where algorithms are crafted with a single difference and that difference arises out of the desire to
test competing hypotheses. The testing then consists of “simulating” the algorithm only to the
level of detail necessitated by an algorithmic model. Even though the ultimate goal of the research
is a minimized run-time, such data can be estimated from results of the simulation, and further-
more, the simulation provides much deeper insight into why an algorithm performs as it does.
Problem sets should not be generated randomly or to mirror some “real world” problem, but
rather to have varying levels of specific characteristics that are believed to affect performance.

The benefits of scientific testing, it is claimed, are that the algorithms compete on a fair playing
field: machine speed, data structure efficiency, coding skill, and parameters are all either irrelevant
or specifically part of the algorithmic model.

4.5.2 Empirical Testing in Scheduling

Most, if not all, of the experimental studies in the scheduling literature follow what
[Hooker, 1996] describes as the competitive testing paradigm. While frameworks, such as the
ODO framework, are designed to allow rigorous empirical testing (by varying a single component
of the strategy), there are a number of characteristics of the scheduling domain that make the
wholesale adoption of Hooker’s “scientific testing” model premature.

The scheduling domain is inherently applied and there are a variety of scheduling problems for
which little, if any, research has been done. Given this immaturity, the first goal of research is to

62

demonstrate that some technology (e.g., constraint-directed scheduling technology) can be of use
in some problem domain. This demonstration of usefulness necessarily includes the ability to
solve problems in a relatively short amount of time. In other words, CPU time is an important
component of evaluation. Until the demonstration of usefulness is made, the question of which
problem characteristics can be correlated with the performance of which strategy components is
moot. In a new problem domain, the identity of relevant problem characteristics is often unclear.
Until we gain experience via less structured experimentation, the investigation of problem charac-
teristics is at best interesting and at worst misguided: much time and energy may be spent on deal-
ing with problem characteristics that are seldom encountered.

This is not to say that the concept of scientific testing is irrelevant to scheduling. Rather, the
scheduling research is only beginning to achieve a level of maturity at which such testing can be
usefully applied. For example, a number of attempts have been made to investigate difficulty of
job shop scheduling problems [Sadeh, 1991; Brasel et al., 1997; Beck and Jackson, 1997]. Fur-
thermore, one of the key motivations for the ODO framework was the ability to rigorously control
the scheduling strategies that are tested so that we can attribute any observed performance differ-
ences to the component that is varied.

4.5.3 A Compromise Approach

In this dissertation, we have adopted an approach to experimentation that represents a compro-
mise between the competitive and scientific testing paradigms identified by Hooker. While we do
perform competitive testing and measure statistics such as CPU time, there are a number of char-
acteristics of our experiments that move toward the scientific testing paradigm.

• We control the scheduling strategies so that only the component of interest is varied.

• We make use of a variety of problem sets: a benchmark set of job shop problems
[Beasley, 1990], sets of randomly generated problems, and sets with controlled characteristics
(e.g., the number of bottleneck resources).

• We evaluate a variety of measurements. These measurements include CPU time, but also
attempt to probe deeper into the search styles of the algorithms. For example, for job shop
problems we measure the percentage of total commitments5 generated by the heuristic com-
mitment technique.

4.5.4 The Reporting of Time-outs

All the experiments in this dissertation make use of a bound on the CPU time. Each algorithm
must either find a schedule or prove that no schedule exists for each problem instance. If an algo-
rithm is unable to do so within a limit on the CPU time (in all our experiments in this dissertation
the limit is 20 minutes), a time-out is recorded. A time-out indicates that the algorithm was unable
to find a solution or prove that no solution exists for a particular scheduling problem instance.
Obviously, the fewer problems that an algorithms times-out on, the better the algorithm.

The primary reason for reporting time-out results is that it allows us to use problem sets that con-
tain both soluble and insoluble (over-constrained) problems. The phase transition work in combi-
natorial problems such as SAT and CSPs [Gent and Walsh, 1994; Gent et al., 1996b]
demonstrates that the hardest problem instances are found in locations of the problem space

5. Recall that commitments are generated by both heuristic commitment techniques and propagators.

63

where approximately half of the problems are overconstrained. A “hard instance” is one that can-
not be easily shown to be either over-constrained or soluble: significant search effort is required to
find a solution or show that none exists. While the space of scheduling problems is not as well-
understood as SAT or CSP in terms of phase transition phenomena [Beck and Jackson, 1997], we
want to take advantage of this insight in order to generate challenging problem instances. We con-
struct our problem sets so that as the independent variable changes, the problems move from an
overconstrained area in the problem space to an under-constrained area. In the former area, proofs
of insolubility can often be easily found while in the latter area, solutions can be easily found. It is
in the middle range of problems where we expect to find the most difficult problems.

The use of time-outs as a search statistic allows us to integrate search performance on over-con-
strained problems and soluble problems into a single statistic. The intuition here is that algorithms
fail when they can neither find a solution nor a proof of insolubility. By using the number of fail-
ures, in this way, we get a clearer picture of the algorithm performance. For example, plotting the
number of problems for which a solution is found obscures the fact that some algorithms may be
performing very well on over-constrained problems (by finding proofs of insolubility) whereas
others are not able to find any such proofs.

4.6 Experiment 1: Operations Research Library

4.6.1 Problem Set

The basic set of problems for the first experiment is a set of 20 job shop scheduling problems (see
Table 4) from the Operations Research library of problems [Beasley, 1990]. The set is the union
of the problem sets used in [Vaessens et al., 1994] and [Baptiste et al., 1995a] with the exception
of one problem (la02) which was removed as it was small and easily solved by all algorithms.

In order to generate a problem set with problems of varying difficulty, we took the set of 20 prob-
lems and the known optimal or lower-bound makespan, and created a total of six problem sets by
varying the makespan of the problem instances. Recall that, in the classical job shop optimization
problem, the goal is to find the minimum makespan within which all activities can be scheduled
(see Section 4.2). Rather than adopting an optimization approach, we attempt to satisfy each prob-
lem instance at different makespans. This data provides more information on the performance of
each algorithm across problems with a range of difficulties. We generate problems with varying
makespans by using the makespan factor, the primary independent variable in this experiment. It
is the factor by which the optimal or lower-bound makespan is multiplied to give the makespan

Source Problem (lower bound)

[Adams et al., 1988] abz5(1234), abz6(943)

[Fisher and Thompson, 1963] ft10(930)

[Lawrence, 1984]
la19(842), la20(902), la21(1046), la24(935),
la25(977), la27(1235), la29(1142), la36(1268),
la37(1397), la38(1196), la39(1233), la40(1222)

[Applegate and Cook, 1991]
orb01(1059), orb02(888), orb03(1005), orb04(1005),
orb05(887)

Table 4. Test Problems.

64

within which we attempt to solve the problem instances. In this experiment, the makespan factor
is varied from 1.0 (the optimal makespan) to 1.25 (25% greater than the optimal makespan) in
steps of 0.05, producing six sets of 20 problems each.

4.6.2 Results

Tables of all the results for this experiment can be found in Section B.1 of Appendix B.

4.6.2.1 Problems Timed-Out

Figure 19 displays the fraction of problems in each problem set for which each algorithm (using
chronological backtracking) was unable to find a solution. Figure 20 presents the same data for
the algorithms using LDS. In terms of the comparison of heuristic commitment techniques, the
graphs indicate the same results. Overall, with either retraction technique, LJRand times-out on
significantly more problems than either CBASlack or SumHeight, while there is no significant
difference between SumHeight and CBASlack.6 For the individual problem sets, the only signifi-
cant difference between SumHeight and CBASlack occurs for makespan factor 1.15. For that set
CBASlack times-out on significantly fewer problems than SumHeight.

In terms of the comparison between the retraction techniques, overall, the only significant differ-
ence was for LJRand which was able to find solutions to significantly more problems when using
LDS than when using chronological backtracking. On individual problem sets, LDS significantly
outperforms chronological backtracking with SumHeight on the sets with makespan factors 1.05,
1.1, and 1.15, while with CBASlack superior performance of LDS is seen on problem sets 1.05
and 1.1.

6. Unless otherwise noted, statistical tests are performed with the bootstrap paired-t test [Cohen, 1995] with
p ≤ 0.0001.

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

LJRandChron
CBASlackChron

SumHeightChron

Figure 19. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (Chronological Backtracking).

65

4.6.2.2 Mean CPU Time

Figure 21 and Figure 22 show the mean CPU time for the chronological backtracking algorithms
and the LDS algorithms respectively. As with the number of problems timed-out, overall there is
no significant difference between SumHeight and CBASlack while both perform significantly bet-

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 20. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (LDS).

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

LJRandChron
CBASlackChron

SumHeightChron

Figure 21. The Mean CPU Time in Seconds for Each Problem Set
(Chronological Backtracking).

66

ter than LJRand. These results hold regardless of retraction technique. On the individual problem
sets, there are no significant differences between SumHeight and CBASlack except on problems
with makespan factor 1.25 where SumHeight achieves a significantly lower mean CPU time for
both retraction techniques. Significantly worse performance by LJRand versus the other two heu-
ristics holds up to the problems with makespan factor 1.1. On problems with larger makespan fac-
tors, there is no significant CPU time difference, except on problems with makespan factor 1.25,
where LJRand achieves a significantly smaller mean CPU than CBASlack. Again, these results
hold with both retraction conditions.

In comparing the retraction techniques, we see significantly larger mean CPU times with chrono-
logical retraction than with LDS. The magnitude of the improvement for heuristics indicates that
LJRand has a larger improvement in moving to LDS from chronological backtracking than the
other two heuristics.

Other measurements of search effort (i.e., mean number of backtracks, mean number of commit-
ments, mean number of heuristic commitments) parallel the CPU time results: no significant dif-
ferences between SumHeight and CBASlack while both are superior to LJRand. Comparison of
the retraction techniques on the other statistics also follow the CPU time results: all algorithms
using LDS significantly outperform the corresponding algorithm using chronological backtrack-
ing and the magnitude of the improvement appears to be larger for LJRand than for the other two
heuristics.

4.6.2.3 Percentage of Heuristic Commitments

Our final search result for Experiment 1 is an attempt to inquire more deeply into the problem
solving process of each of these scheduling algorithms. It has been suggested [Baptiste
et al., 1995a] that, given the power of propagators in constraint-directed scheduling, a good heu-
ristic is one that makes decisions that result in many subsequent propagated commitments. While
the intuition here seems to be primarily pragmatic (i.e., to maximize the contributions from

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 22. The Mean CPU Time in Seconds for Each Problem Set
(LDS).

67

sophisticated propagators) there is some more theoretical evidence from SAT heuristics that is
consistent with such a suggestion [Hooker and Vinay, 1995]. While further research is necessary
to evaluate whether a good heuristic necessarily results in more propagated commitments, it is
interesting from the perspective of examining the search behavior to understand the interactions
between heuristic commitment techniques and propagators. One measure of this interaction is the
percentage of commitments in the search that are made by the heuristic commitment technique:
those heuristics that make more use of the propagators will have to make a smaller proportion of
heuristic commitments.

The graphs (Figure 23 and Figure 24) display the mean percentage of commitments that are heu-
ristic commitments. Recall that the total set of commitments are composed of heuristic commit-
ments found by the heuristic commitment technique and the implied commitments found by the
propagators.7 The graphs show that LJRand makes a significantly smaller percentage of heuristic
commitments than does SumHeight, which in turn makes a significantly smaller proportion of
commitments than CBASlack. This holds with both chronological backtracking and LDS.

4.6.3 Summary and Discussion

The basic results from Experiment 1 are that:

• SumHeight and CBASlack are both superior to LJRand while there are no significant differ-
ences when SumHeight is compared directly with CBASlack.

• LDS is superior to chronological retraction for all heuristics tested.

7. For this statistic we take into account the implied commitments found by both types of edge-finding and by CBA.
We do not count the implied commitments found by temporal propagation as these commitments are typically
implemented by removing values from the domains of start time variables rather than by the explicit assertion of
a constraint.

0

20

40

60

80

100

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
%

 o
f C

om
m

itm
en

ts
 th

at
 a

re
 H

eu
ris

tic
 C

om
m

itm
en

ts

Makespan Factor

CBASlackChron
SumHeightChron

LJRandChron

Figure 23. The Mean Percentage of Commitments Made by the
Heuristic Commitment Technique (Chronological Backtracking).

68

The only statistic measured that shows a significant difference among all heuristic techniques is
the percentage of commitments that are heuristic. As this is a non-standard statistic, some discus-
sion is in order. The first point to be noted is that LJRand makes a different type of commitment
than the other two heuristics. By assigning an activity a start time, LJRand makes a highly con-
straining commitment from which we might expect a large number of implied commitments to be
readily identifiable. This appears to be the case in our experimental results as LJRand demon-
strates the lowest percentage of heuristic commitments. Given the difference in heuristic commit-
ment type and the fact that LJRand is significantly worse than the other heuristics on all the
problem solving performance measures, it is not very useful to compare the LJRand percentage of
heuristic commitments to that of SumHeight and CBASlack. It is interesting, however, to note that
the percentage of heuristic commitments for LJRand does not vary much with the makespan fac-
tor. This is somewhat surprising: as the makespan factor gets smaller, the problems get tighter and
therefore it is expected that the percentage of commitments that are implied should grow.

A comparison of the heuristic commitment percentage between SumHeight and CBASlack is
striking. Recall that there were no statistically significant differences in either the number of com-
mitments or the number of heuristic commitments between CBASlack and SumHeight. Nonethe-
less, SumHeight averaged (non-significantly) more overall commitments and (non-significantly)
fewer heuristic commitments than CBASlack. When these results are combined in Figure 23 and
Figure 24, significant differences arise. These results show that, as compared with SumHeight, a
much larger portion of the CBASlack commitments are heuristic even though exactly the same set
of propagators were used in the experiments. We discuss this in Section 4.9.1.3.

0

20

40

60

80

100

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
%

 o
f C

om
m

itm
en

ts
 th

at
 a

re
 H

eu
ris

tic
 C

om
m

itm
en

ts

Makespan Factor

CBASlackLDS
SumHeightLDS

LJRandLDS

Figure 24. The Mean Percentage of Commitments Made by the
Heuristic Commitment Technique (LDS).

69

4.7 Experiment 2: Scaling with Problem Size

While Experiment 1 used a set of hard instances of job shop scheduling problems, there was no
effort to evaluate the performance of the algorithms as the size of the scheduling problems
increases. In addition, the use of a variety of problem sets of varying difficulty and characteristics
should aid in the differentiation of algorithms [Beck et al., 1997a]. The primary purpose of the
second experiment, then, is to evaluate the scaling behaviour of the algorithms.

4.7.1 Problem Set

Four sizes of problems were selected (5✕ 5, 10✕ 10, 15✕ 15, and 20✕ 20) and 20 problems of each
size were generated with the Taillard random job shop problem generator [Taillard, 1993].8 For
each problem, a lower bound on the makespan was calculated by running the propagators used for
each algorithm. The lower bound is the smallest makespan that the propagators, on their own,
could not show was overconstrained. This lower bound calculation is due to [Nuijten, 1994].

Once the lower bounds were calculated, we applied makespan factors from 1.0 to 1.3 in steps of
0.05. For this problem set, however, we only know a lower bound, not the optimal makespan as
above. Therefore, the makespan factor is a multiplier of that lower bound, not of the optimal, and
we expect most of the problems to be overconstrained at a makespan factor of 1.0. For each size
of problem, we have 120 problems divided into six equal sets based on the makespan factor.

4.7.2 Results

All results for Experiment 2 can be found in Appendix B. Tables in the following sections corre-
spond to the various problem sets: overall – Section B.2.1, 5✕ 5 – Section B.2.2, 10✕ 10 –
Section B.2.3, 15✕ 15 – Section B.2.4, 20✕ 20 – Section B.2.5.

4.7.2.1 Problems Timed-out

Figure 25 and Figure 26 display the fraction of problems in each problem set that timed-out. Sta-
tistically, CBASlack times-out on significantly (p ≤ 0.005) fewer problems than SumHeight, and
SumHeight in turn significantly outperforms LJRand under both the chronological backtracking
and LDS conditions. Most of the significance, as indicated by the graphs, is a result of the larger
problems. In Figure 27 and Figure 28 we, therefore, display the graphs of the fraction of problems
timed-out for the 20✕ 20 problems for chronological backtracking and LDS respectively. Note
that CBASlack is significantly better than LJRand in both conditions while CBASlack is only
superior to SumHeight using chronological backtracking: the difference in percentage of prob-
lems timed-out for LDS is not significant.

Differences between the retraction techniques are similar to the results for Experiment 1. Overall,
LDS times-out on significantly fewer problems than chronological retraction when LJRand is
used as the heuristic. The overall differences between retraction techniques when using Sum-
Height or CBASlack as the heuristic are not significant, and, in fact, there are no significant differ-
ences between chronological backtracking and LDS on any problem set when CBASlack is used.

8. The duration of each activity is randomly selected, with uniform probability from the domain [1, 100]. Further
details, sufficient to generate similar problem sets (varying only based on the random seed) can be found in
[Taillard, 1993].

70

For the 20✕ 20 problems, LDS significantly outperforms chronological backtracking with Sum-
Height and LJRand, while for the 15✕ 15 problems, LDS is significantly better than chronological
backtracking only with LJRand. These results confirm the observation from Experiment 1 that
LDS appears to improve the weaker heuristics (based on their performance with chronological
backtracking) more than the stronger ones.

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

CBASlackChron
SumHeightChron

LJRandChron

Figure 25. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (Chronological Backtracking).

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

CBASlackLDS
SumHeightLDS

LJRandLDS

Figure 26. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (LDS).

71

4.7.2.2 Mean CPU Time

The mean CPU time results are shown in Figure 29 for chronological backtracking and Figure 30
for LDS. These graphs are quite similar to the results for the percentage of problems timed-out as
the CPU time on the unsolved problems tends to dominate the mean results. Therefore, the overall

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

CBASlackChron
SumHeightChron

LJRandChron

Figure 27. The Fraction of the 20✕ 20 Problems at Each Makespan
Factor for which Each Algorithm Timed-out (Chronological

Backtracking).

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

CBASlackLDS
SumHeightLDS

LJRandLDS

Figure 28. The Fraction of the 20✕ 20 Problems at Each Makespan
Factor for which Each Algorithm Timed-out (LDS).

72

CPU results tend to mirror the timed-out results: CBASlack achieves significantly lower mean
CPU time than SumHeight (p ≤ 0.001) which in turn achieves a significantly lower mean CPU
time than LJRand. In terms of comparing the results for different problem sizes, CBASlack signif-
icantly outperforms SumHeight only on the 5✕ 5 and 20✕ 20 problem sets. There is no significant
difference at 15✕ 15 and SumHeight achieves a significantly lower mean CPU time than

0

200

400

600

800

1000

1200

4 6 8 10 12 14 16 18 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Problem Size

CBASlackChron
SumHeightChron

LJRandChron

Figure 29. The Mean CPU Time in Seconds for Each Problem Set
(Chronological Backtracking).

0

200

400

600

800

1000

1200

4 6 8 10 12 14 16 18 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Problem Size

CBASlackLDS
SumHeightLDS

LJRandLDS

Figure 30. The Mean CPU Time in Seconds for Each Problem Set
(LDS).

73

CBASlack on the 10✕ 10 problems. LJRand is significantly worse than CBASlack for all problem
sizes and significantly worse than SumHeight for all sizes except 5✕ 5, where there is no signifi-
cant difference. Again, since the largest difference among the algorithms comes on the 20✕ 20
problems, we display the mean CPU time results in Figure 31 and Figure 32.

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25 1.3

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

CBASlackChron
SumHeightChron

LJRandChron

Figure 31. The Mean CPU Time in Seconds for the 20✕ 20 Problems
at Each Makespan Factor (Chronological Backtracking).

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25 1.3

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

CBASlackLDS
SumHeightLDS

LJRandLDS

Figure 32. The Mean CPU Time in Seconds for the 20✕ 20 Problems
at Each Makespan Factor (LDS).

74

Comparing the retraction techniques, we observe that, overall, LDS with LJRand is significantly
better than chronological backtracking with LJRand. The overall differences with the other two
heuristics are not significant, though they are in favor of LDS over chronological backtracking.
Interestingly, on the 10✕ 10 problems both CBASlack and SumHeight use significantly less CPU
time (p ≤ 0.005) when using chronological backtracking than with LDS. As well, on the 5✕ 5
problems LJRand with chronological backtracking significantly outperforms LJRand with LDS.
On the two larger problem sizes, LDS significantly outperforms chronological retraction with
LJRand while there is no significant difference with the other two heuristics.

With other search statistics, CBASlack makes significantly fewer commitments, significantly
more heuristic commitments, and about the same number of backtracks as SumHeight with both
retraction techniques. Both CBASlack and SumHeight significantly outperform LJRand on these
statistics. Comparing LDS and chronological backtracking, we see significantly fewer backtracks
for LDS, and significantly more commitments and heuristic commitments for LDS (regardless of
heuristic used) than for chronological backtracking. As with our other experiments, it appears that
the magnitude of the improvement in using LDS rather than chronological backtracking is greater
with heuristics that perform worse with chronological backtracking.

4.7.3 Summary

The results of Experiment 2 show that:

• CBASlack significantly outperforms SumHeight which in turn significantly outperforms
LJRand.

• LDS significantly outperforms chronological backtracking.

The primary difference between these results and those of Experiment 1 is that we now see differ-
ences between CBASlack and SumHeight. These differences, though significant in a number of
cases, are not as clear cut as the differences between LJRand and the other two heuristics. On
almost every problem set and every performance heuristic, LJRand is significantly worse than
SumHeight and CBASlack.

4.8 Experiment 3: Bottleneck Resources

In our final experiment, we follow the recommendations of [Hooker, 1996] in crafting problems
with specific characteristics that we believe will affect the performance of the heuristics.

It has long been a practice in industrial scheduling applications to identify the resource for which
there is the greatest number of contending activities. This bottleneck resource would then be
scheduled first before moving to other less utilized resources. Similarly, in the constraint-directed
scheduling research, one of the intuitions behind heuristics, such as the contention-based heuris-
tics we have been investigating, is to identify the bottleneck resource and focus the heuristic com-
mitments on it [Adams et al., 1988; Smith et al., 1989; Sadeh, 1991; Muscettola, 1994]. It is
generally accepted by industrial schedulers that the existence of bottleneck resources makes
scheduling more difficult.9

9. Whether this difficulty can be quantified in the spirit of the phase transition research [Hogg and Williams, 1994;
Gent et al., 1996b] remains as future work (see however [Beck and Jackson, 1997] for some preliminary efforts
in this direction).

75

4.8.1 Problem Sets

The goal in this experiment is to create problems with specific bottleneck resources, and evaluate
the performance of the heuristic commitment techniques and retraction techniques as the number
of bottlenecks in a problem increase.

Our starting point is the 10✕ 10, 15✕ 15, and 20✕ 20 problems, all with makespan factor 1.2, used
in Experiment 2. Recall that the makespan factor is the factor by which a lower bound on the
makespan of each problem is multiplied to generate the makespan of the problem instance. The
makespan factor was chosen so that many, and perhaps all, of the problem instances in the starting
set is not overconstrained. This final choice was made because by adding bottlenecks we are fur-
ther constraining the problem instances and we do not want the problems without bottlenecks to
already be overconstrained.

The bottlenecks were generated for each problem and each problem set independently by examin-
ing the base problem and randomly selecting the bottleneck resources. On each bottleneck
resource, we then inserted five new activities of approximately equal duration to reduce the slack
time on that resource to 0. The five new activities (on each bottleneck resource) are completely
ordered by precedence constraints.

For example, for problem A with one bottleneck we may select resource R2 as the bottleneck. In
the base problem the overall makespan is, perhaps, 200 and the sum of the durations of all activi-
ties on R2 is 120. We insert five new activities, each of which executes on R2 and each with a dura-
tion of 16 time units. The sum of the duration of activities on R2 is 200, the same as the makespan.
This has the effect of reducing the slack time on R2 to 0. To continue the example, when generat-
ing the problem set with three bottlenecks, we take problem A and randomly select three resources
to be bottlenecks. These resources may be R5, R8, and R10.10 For each of these resources five com-
pletely ordered activities are added to reduce the slack time on the resource to 0.

With this technique, problem sets are generated for each problem size. For the 10✕ 10 problems,
six problem sets, each containing 20 problems, were generated with the number of bottlenecks
ranging from 0 to 10 inclusive, in steps of 2. For the 15✕ 15 problems seven problem sets of 20
problems each were generated with the number of bottlenecks ranging from 2 to 14 inclusive, in
steps of 2. Finally for the 20✕ 20 problems, six problem sets of 20 problems each were generated
with the number of bottlenecks ranging from 0 to 20 inclusive, in steps of 4.

4.8.2 Results

Complete results for the algorithms in Experiment 3 can be found in Appendix B, Section B.3.
Tables in the following sections correspond to the various problem sets: 10✕ 10 – Section B.3.1,
15✕ 15 – Section B.3.2, 20✕ 20 – Section B.3.3.

4.8.2.1 10✕ 10 Problems

For the 10✕ 10 problems, the fraction of the problems that each algorithm timed-out on are dis-
played in Figure 33 for the algorithms using chronological backtracking and in Figure 34 for
those algorithms using LDS. Slightly obscured by the plot, in Figure 33, is the fact that Sum-
Height does not time-out on any problems. Regardless of the retraction technique used, statistical

10. R2 may be selected again as a bottleneck. However, R2 is no more likely to be selected than any other resource.

76

analysis indicates that SumHeight times-out on significantly fewer problems than CBASlack
(p ≤ 0.005 for the comparison using chronological backtracking) and LJRand, while CBASlack in
turn times-out on significantly fewer problems than LJRand.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 33. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (10✕ 10 Problems – Chronological

Backtracking).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 34. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (10✕ 10 Problems – LDS).

77

The mean CPU time results are shown in Figure 35 (chronological backtracking) and Figure 36
(LDS). These results are consistent with the timed-out results, as, regardless of retraction tech-
nique SumHeight incurs significantly less mean CPU time than either CBASlack or LJRand while
CBASlack incurs significantly less mean CPU time than LJRand.

0

200

400

600

800

1000

1200

0 2 4 6 8 10

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 35. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – Chronological Backtracking).

0

200

400

600

800

1000

1200

0 2 4 6 8 10

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 36. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – LDS).

78

Comparison of the retraction techniques show that there is no significant difference in terms of the
number of problems timed-out between the algorithms using chronological backtracking and
those using LDS. However, both SumHeight and CBASlack incur a lower mean CPU time when
used with chronological backtracking rather than LDS.

Results with other search statistics are as follows:

• For the algorithms using chronological backtracking, all statistics tested (the number of back-
tracks, the total number of commitments, and the number of heuristic commitments) indicate
that SumHeight significantly outperforms CBASlack and LJRand. CBASlack in turn signifi-
cantly outperforms LJRand. These results are repeated when LDS is used as the retraction
technique except in the case of the number of backtracks. For that statistic, while SumHeight is
significantly better than all other heuristics, there is no significant difference between
CBASlack and LJRand.

• Comparison of the retraction techniques shows that, for the number of backtracks, SumHeight
incurs significantly fewer when used with chronological backtracking than with LDS,
CBASlack shows no significant differences, and LJRand incurs significantly fewer backtracks
with LDS than with chronological backtracking. For both the overall number of commitments
and the number of heuristic commitments, SumHeight and CBASlack make significantly fewer
with chronological backtracking while there is no significant difference for LJRand.

4.8.2.2 15✕ 15 Problems

The fraction of problems in each problem set for which each algorithm was unable to find a solu-
tion (or show that the problem was over-constrained) is shown in Figure 37 for those algorithms
using chronological backtracking and in Figure 38 for those algorithms using LDS.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 37. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (15✕ 15 Problems – Chronological

Backtracking).

79

Statistical analysis mirrors the informal impression of these graphs: SumHeight times-out on sig-
nificantly fewer problems than CBASlack which, in turn, times-out on significantly fewer prob-
lems than LJRand. These results hold in both retraction component conditions.

Comparing the retraction techniques while holding the heuristic commitment technique constant
shows no overall statistically significant differences between chronological backtracking and
LDS. For the problem sets with a low number of bottlenecks (two and four), we see that LDS
solves significantly more problems than chronological backtracking for each heuristic (with the
exception of SumHeight on the problems with four bottlenecks where there is no significant dif-
ference). For problem sets with higher number of bottlenecks (e.g., 12 and 14) we see the reverse:
the algorithms with chronological backtracking time-out on fewer problems; however, these dif-
ferences are not statistically significant.

The results for the mean CPU time for each problem set are displayed in Figure 39 (chronological
backtracking) and Figure 40 (LDS).

These results reflect the timed-out results: with either retraction technique SumHeight incurs sig-
nificantly less mean CPU time than CBASlack which in turn incurs significantly less mean CPU
time than LJRand.

Comparison of retraction techniques shows no overall significant differences in mean CPU time.
Again, however, the pattern of chronological retraction being inferior at low bottlenecks and supe-
rior at high bottlenecks is observed. Chronological backtracking with both CBASlack and LJRand
on the problem set with two bottlenecks incurs significantly more CPU time than the correspond-
ing algorithms using LDS. For problem sets with 12 and 14 bottlenecks, chronological backtrack-
ing with both SumHeight and CBASlack incurs significantly less CPU time than the
corresponding algorithm with LDS.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 38. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (15✕ 15 Problems – LDS).

80

Results with other search statistics are as follows:

• With chronological backtracking, SumHeight makes significantly fewer backtracks than either
LJRand or CBASlack. There is no significant difference between CBASlack and LJRand. With

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 39. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – Chronological Backtracking).

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 40. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – LDS).

81

LDS, SumHeight uses significantly more backtracks than CBASlack; however, LJRand incurs
fewer backtracks than both SumHeight (p ≤ 0.005) and CBASlack.

• In terms of the number of commitments, there is no significant difference between SumHeight
and CBASlack (in either retraction condition) while LJRand makes significantly more commit-
ments than the other algorithms, regardless of retraction technique.

• SumHeight makes significantly fewer heuristic commitments than either of the other algo-
rithms with both LDS and chronological backtracking. CBASlack makes significantly more
heuristic commitments than LJRand using LDS.

• Finally, in the comparison of the retraction techniques we see that the algorithms using chrono-
logical backtracking make significantly more backtracks, significantly fewer commitments,
and significantly fewer heuristic commitments than the corresponding algorithms using LDS.
These results hold regardless of the heuristic.

It may seem inconsistent that SumHeight makes fewer backtracks and heuristic commitments
than CBASlack but not significantly fewer overall commitments. This anomaly can be understood
based on the fact that, for SumHeight, the percentage of the total commitments that are heuristic
commitments is significantly smaller than for CBASlack. While CBASlack backtracks more and
makes more heuristic commitments, because it makes fewer propagated commitments for each
heuristic commitment, the overall number of commitments is not significantly different from that
of SumHeight. Given the differing computational expense of heuristic commitments, propagated
commitments, and backtracking, the existence of such a comparison is one reason we use mean
CPU time as one of our primary search statistics.

4.8.2.3 20✕ 20 Problems

The fraction of problems timed-out for each algorithm on the 20✕ 20 problems are shown in
Figure 41 and Figure 42 for chronological backtracking and LDS respectively. Regardless of the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 41. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (20✕ 20 Problems – Chronological

Backtracking).

82

retraction condition, statistical analysis indicates no significant difference between SumHeight
and CBASlack while both time-out on significantly fewer problems than LJRand.

The mean CPU time results are shown in Figure 43 for chronological backtracking and Figure 44
for LDS. As with the timed-out results, the mean CPU time results indicate that there is no signif-
icant differences between SumHeight and CBASlack, regardless of retraction technique, while

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 42. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (20✕ 20 Problems – LDS).

0

200

400

600

800

1000

1200

0 5 10 15 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandChron
CBASlackChron

SumHeightChron

Figure 43. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – Chronological Backtracking).

83

both SumHeight and CBASlack incur significantly less mean CPU time than LJRand, again,
regardless of retraction technique.

In comparing the retraction techniques themselves, we see that there are no significant differences
between the chronological backtracking algorithms and the LDS algorithms in terms of the frac-
tion of problems timed-out or the mean CPU time. This result holds for each heuristic commit-
ment technique.

Results with other search statistics are as follows:

• In terms of the number of backtracks, there are no significant differences among the heuristics
except when LDS is used as the retraction technique. In that condition, SumHeight and
CBASlack both incur significantly more backtracks than LJRand while there is no significant
difference between SumHeight and CBASlack.

• Regardless of the retraction technique used, CBASlack makes significantly fewer overall com-
mitments than SumHeight or LJRand while SumHeight makes significantly fewer than
LJRand.

• For the number of heuristic commitments, SumHeight makes significantly fewer than all other
heuristics using either chronological backtracking or LDS. Similarly, LJRand makes signifi-
cantly fewer heuristic commitments than CBASlack regardless of retraction technique used.

• Finally, in comparing the retraction techniques, we see that algorithms using chronological
backtracking make significantly more backtracks, significantly fewer commitments, and signif-
icantly fewer heuristic commitments than corresponding algorithms using LDS.

0

200

400

600

800

1000

1200

0 5 10 15 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

LJRandLDS
CBASlackLDS

SumHeightLDS

Figure 44. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – LDS).

84

4.8.3 Summary

The results from Experiment 3 indicate that:

• With the exception of the 20✕ 20 problems, SumHeight outperforms CBASlack and LJRand
while CBASlack in turn outperforms LJRand. On the 20✕ 20 problems there was little differ-
ence between SumHeight and CBASlack while both outperformed LJRand.

• The comparison of chronological backtracking with LDS is less clear. With the exception of
the 10✕ 10 problems, there is no difference in terms of CPU time or the fraction of problems
timed-out. On the 10✕ 10 problems, chronological backtracking is able to achieve a lower
mean CPU time when used with SumHeight or CBASlack. The other statistics show that, typi-
cally, chronological backtracking incurs more backtracks than LDS but fewer overall commit-
ments and fewer heuristic commitments. An exception is observed in the 10✕ 10 results where
SumHeight with chronological backtracking incurs significantly fewer backtracks than Sum-
Height with LDS.

4.9 Discussion

Two goals motivated the three experiments performed in this chapter. The primary goal was a
comparison of heuristic commitment techniques under a rigorous experimental model. The sec-
ondary goal was an investigation of the differences between the chronological backtracking and
LDS retraction techniques. In this section, we look at each of these in turn.

4.9.1 Heuristics

4.9.1.1 LJRand

The most obvious result from the experiments in this chapter is that LJRand does not perform as
well as either of the other two heuristics. This comparison holds regardless of the retraction tech-
nique and across all the experiments. This result contradicts work by [Nuijten, 1994] who showed
that LJRand was able to outperform the ORR/FSS heuristic on the Operations Research library
problems (a subset of which were used in Experiment 1). As noted above, however, for the exper-
iments performed by Nuijten, LJRand was run with a different retraction technique (chronological
backtracking with restart (see Section 2.5.1.2)) than the ORR/FSS heuristic was (chronological
retraction). Based on the experiments here, we attribute Nuijten’s results to the retraction tech-
niques rather than the heuristics.11

4.9.1.2 CBASlack and SumHeight

The comparison between SumHeight and CBASlack is more complicated as we see no significant
difference in Experiment 1, while CBASlack performs better in Experiment 2 and SumHeight
performs better in Experiment 3.

11. The ORR/FSS heuristic does not have a random component; therefore, it cannot be directly used with a retraction
technique like chronological backtracking with restart which depends on such a component to explore different
paths in the search tree. Schemes for adaptation of heuristics such as SumHeight and CBASlack to include a ran-
dom component have been shown to result in gains in overall search performance [Oddi and Smith, 1997]
[Gomes et al., 1998].

85

Recall (Section 4.1.1) that SumHeight and CBASlack are different methods of measuring similar
underlying characteristics of a constraint graph: the contention for a resource. Where SumHeight
measures this contention by aggregating probabilistic demand of each activity, CBASlack identi-
fies the pair of activities that compete most with each other.

The results of our experiments can be understood based on the relative sensitivity of the two heu-
ristics to non-uniformity at the resource level. To understand this concept, it is helpful to examine
the properties of our problem sets. In Experiment 2, the duration of each activity and the sequence
of resources used by each job were randomly generated. It is reasonable to suppose, therefore,
that there is little difference in resource utilization: these problems should have a uniform
resource utilization. In Experiment 3, we augmented the randomly generated problems by select-
ing a subset of resources and adding activities such that their utilization was 100%. A scheduling
problem with a wide ranging resource utilization is said to have a non-uniform resource utiliza-
tion.

Imagine two scheduling problems, Puniform and Pnon-uniform, with a uniform and a non-uniform
resource utilization respectively. Assume that Pnon-uniform was generated from Puniform by the
method used to generate bottleneck problems. Pnon-uniform has a superset of the activities in Puni-

form.

The CBASlack calculations (before any commitments have been made) (see Section 2.3.4) on
Puniform find the biased-slack for each pair of activities. The calculation depends wholly upon the
time-windows of each activity which in turn depend on the precedence constraints within a job:
there are, as yet, no inter-job constraints. When the same calculations are done on Pnon-uniform the
pairs of activities that the problems have in common will have exactly the same biased-slack val-
ues. CBASlack only estimates the contention between pairs of activities and so it will calculate
the same biased-slack value for a pair of activities regardless of the other activities contending for
the same resource. Therefore, the biased-slack value of two activities in Puniform is the same as for
those same two activities in Pnon-uniform. Gradually, as commitments are made, the activities on a
bottleneck resource will tend to have lower biased-slack values; however, for the first few com-
mitments, CBASlack does not detect the non-uniformity. As has been noted elsewhere
[Harvey, 1995], the first few commitments are often critical to finding a solution. SumHeight, in
contrast, immediately focuses on one of the bottlenecks as it aggregates probabilistic demand
information from all activities on the resource. Assuming that it is truly more important to make
decisions on tighter resources, the ability to focus on bottleneck resources, when they exist, is an
explanation of why SumHeight is able to outperform CBASlack on non-uniform problems as in
Experiment 3.

When problems have a uniform resource utilization, however, no bottleneck resources exist. Sum-
Height identifies a critical resource and time point; however, it is likely that other resources and
time points have criticality measurements that are close (or even equal) to the one selected. Only
the activities on the “critical” resource are then examined in order to post a commitment. In con-
trast, CBASlack looks at all pairs of activities. It may well be the case that though the resource uti-
lization is uniform, there are pairs of activities that have a very low biased-slack value. For
example, imagine a pair of activities such as A and B in Figure 45. The wide time windows on
each activity lead to a relatively low contention as measured by SumHeight, while CBASlack will
identify these activities as critical. While SumHeight may identify some other resource as critical
and make a commitment, CBASlack will focus on a critical pair regardless of the resource utiliza-
tion and, therefore, it is likely to make a commitment at a more critical area of the search space
than SumHeight.

86

An underlying assumption in this explanation is that when a resource-level non-uniformity exists,
it is more important to make a commitment on activities that execute on a highly contended-for
resource even though there may be an activity pair with a lower biased-slack value on another
resource. While we believe this assumption to be reasonable, at this time we have no empirical
evidence to support it (without begging the question we are trying to explain).

To lend support to this explanation, we examined the resource uniformity of the problems in
Experiment 2 and Experiment 3. The resource usage of a resource, R, is the fraction of the total
scheduling horizon during which a resource is used by some activity. We represent the resource
usage by RU(R) which can be found by summing the durations of the activities on R and dividing
by the length of the scheduling horizon. Given RU(R) for each resource in a problem, RU(P) is
defined to be the mean resource usage across all resource in problem, P. Assuming that RES(P)
denotes the set of resources in problem P, the standard deviation for the resource usage in a prob-
lem, σ(RU(P)), can be calculated as shown in Equation (19).

 (19)

The standard deviation of resource usage in a problem is a measure of its resource non-uniformity.
The higher the standard deviation, the more varied is the resource usage in the problem.

Figure 46 plots the difference in CPU time between SumHeight and CBASlack (both using chro-
nological backtracking) against the standard deviation of resource usage in each problem. Points
above zero on the y-axis indicate problems where SumHeight incurred greater CPU time than
CBASlack, while those below zero indicate problems where SumHeight incurred less CPU time.
The horizontal axis is the standard deviation of the percent resource utilization for each problem.
A larger standard deviation indicates a larger difference in utilization among resources in a prob-
lem and therefore a greater resource-level non-uniformity.

Figure 46 indicates that on problems with more resource-level non-uniformity, SumHeight tended
to outperform CBASlack. The reverse tends to be true with problems with more uniform resource
usage. These results do not prove that the difference in resource-level uniformity causes the per-
formance difference. The results do, however, indicate a correlation which we see as lending cre-
dence to the resource-level uniformity explanation.

Uniformity and Non-uniformity in Problem Structure

Our explanation of the results of SumHeight and CBASlack is a single instance of a broader con-
cept: a productive tactic of a heuristic commitment technique is the exploitation of non-uniformity

B
R1

A
R1

0 20 40 60

time

80 100

Figure 45. Activities A and B.

σ RU P()()
RU R() RU P()–()2

R RES P()∈
∑

RES P() 1–
--=

87

in problem structure. SumHeight identifies and exploits non-uniformity among resources while
CBASlack identifies and exploits non-uniformity among activity pairs. When non-uniformity at a
resource level exists SumHeight outperforms CBASlack. When such a non-uniformity is lacking
CBASlack performs better.

While we have not seen this intuition about heuristics stated in the literature, as such, we do not
expect its explicit identification to be controversial: it can be seen as underlying much of the
research into heuristics for constraint-directed search (e.g., [Gent et al., 1996a]).

4.9.1.3 Heuristic Commitments versus Implied Commitments

In Experiment 1, where there was no significant difference between of CBASlack and Sum-
Height, we examined the percentage of commitments in the search that were heuristic commit-
ments (Figure 23 and Figure 24). Results showed that a significantly larger percentage of the
commitments for CBASlack are heuristic commitments.

There are two requirements for such a comparison to be meaningful. First, it is important that the
heuristics make the same type of commitment. Clearly, if one heuristic completely sequences a
resource in a single heuristic commitment, it will incur a lower percentage of heuristic commit-
ments than a heuristic that posts a sequencing constraint between a pair of activities. The second
requirement is similar search performance. A search state for a problem is more constrained if it
occurs deep in a search tree (after a number of commitments have been added to the graph) than
early in the tree. A chronological backtracking algorithm that is not performing well is likely to
spend a great deal of time near the bottom of a search tree where each heuristic commitment
results in many implied commitments. In contrast, an algorithm that easily finds a solution spends

-1000

-500

0

500

1000

0 0.05 0.1 0.15 0.2 0.25 0.3

D
iff

er
en

ce
 in

 C
P

U
 T

im
e

(s
ec

s)
: S

um
H

ei
gh

t -
 C

B
A

S
la

ck

Std. Deviation of % Resource Utilization

20x20
15x15
10x10

Bottleneck 20x20
Bottleneck 15x15
Bottleneck 10x10

Figure 46. The Standard Deviation in Resource Usage for Each
Problem in the 10✕ 10, 15✕ 15, and 20✕ 20 Problem Sets of

Experiment 2 and Experiment 3 versus the Difference in CPU Time
in Seconds between SumHeight and CBASlack (Chronological

Backtracking).

88

a relatively small portion of the search at the bottom of the tree and therefore will have a higher
percentage of heuristic commitments.

With these caveats, our results indicate that SumHeight has a much lower percentage of heuristic
commitments than CBASlack. Based on how the heuristics choose a pair of activities to sequence,
this is a reasonable result. CBASlack chooses the activity pair with minimum biased-slack regard-
less of the presence of any other activities competing with the pair. Therefore, after a CBASlack
commitment, it may be the case that few other activities are affected and, therefore, there is little
propagation. SumHeight, on the other hand, selects a pair of activities precisely because they are
part of a larger subset of competing activities. Because SumHeight explicitly looks for areas
where there are a number of activities, it is reasonable to expect that a single commitment will,
though the propagators, lead to a greater number of implied commitments than CBASlack.

Intuitions on Heuristic Performance

A more important consideration of the difference in heuristic commitment percentage is the
meaning, if any, that it has for the quality of the heuristic. Here we present intuitions about the
nature of heuristic commitment techniques. These intuitions are speculative and their investiga-
tion forms the basis for our future work on heuristics.

We believe that there are two characteristics that correlate highly with the success of a heuristic
commitment technique.

1. The Short Dead-end Proof Intuition: the ability of a heuristic to quickly discover that the search
is at a dead-end. Imagine a search that progresses through a series of states to state S. Assume
that there are no solutions in the subtree below S, but that we are unable to prove this at state S.
Some heuristic commitments must be made to explore the subtree below S in order to prove
that S is a dead-end.12 A heuristic that is able, through its heuristic commitments and subse-
quent propagation, to prove a dead-end while exploring a small number of states in the subtree
will be superior to one that must explore a larger subtree.

2. The Few Mistakes Intuition: a high likelihood of making a commitment that leads to a solution.
A heuristic that has a higher likelihood of making a commitment that leads to a solution, that is
one that does not result in a dead-end, is likely to be a higher quality heuristic than one with a
lower probability of making the correct decision.

These two characteristics are independent from the perspective that if either characteristic were
infallible, search performance would be independent of the other characteristic. If a heuristic
never made a commitment that resulted in a dead-end state, the ability to detect such a state is
irrelevant. Similarly, if a search could immediately detect that it was at a dead-end, then the qual-
ity of the commitments is irrelevant: any mistake is immediately detected and repaired.

With real, fallible heuristics, these two characteristics interact: it may be the case that a heuristic
with a high probability of making the right decision results in a relatively large effort in discover-
ing when it has made a mistake. Conversely, a heuristic with a lower probability of making a right
decision may be able to find a shorter proof of a dead-end (on average) and therefore recover from
mistakes quickly. The best heuristic will be the one that minimizes the size of the overall search
tree and this may well be achieved by some trade-off between the two characteristics.

12. We are assuming a provable retraction technique like chronological backtracking.

89

Implications for SumHeight and CBASlack

Returning to SumHeight and CBASlack, it is our intuition that the lower percentage of heuristic
commitments for SumHeight than for CBASlack indicates that SumHeight is able to find shorter
proofs of a dead-end. More commitments in the search tree below an unknown dead-end will be
implied commitments and therefore the size of the subtree that must be investigated will tend to
be smaller.

In Experiments 1 and 2, this ability to find short proofs (if our intuitions are accurate) does not
result in superior performance. A possible explanation for this is a higher probability for
CBASlack to make the correct decision. CBASlack identifies an activity pair, such as the one
shown in Figure 45, where the sequence is almost implied by the existing time windows. Sum-
Height on the other hand selects a pair of activities that may have significantly more overlapping
time windows. We speculate, therefore, that in Experiment 2, the “more obvious” commitment
made by CBASlack has a higher probability of being in a solution than the commitment made by
SumHeight and further, that this higher probability is enough to overcome the shorter-proof char-
acteristics of SumHeight.

In Experiment 3 we believe that the presence of bottleneck resources reduces the probability that
CBASlack will make the correct commitment to such a point that the short proof characteristic of
SumHeight results in superior overall performance. Imagine two problems, P and Pbottleneck, with
the only difference between them being that extra activities are added to resource R1 in Pbottleneck

to make it a bottleneck resource. A heuristic commitment in P can have greater impact on the
activities of R1 without resulting in an eventual dead-end than the same commitment would have
in Pbottleneck. Because CBASlack ignores the presence of a bottleneck, the likelihood that it will
make a correct commitment is smaller in Pbottleneck, where a bottleneck is present, than in P. We
speculate that this reduction in the likelihood that a commitment will be correct can account for
the results of Experiment 3.

It should be noted again that much of this section is speculative. Many of our intuitions do not, as
yet, have strong empirical support, and we are not claiming that our “explanation” for the heuris-
tic comparison is the correct one. We believe that we have expressed a viable explanation that
accounts for the current results; however, it should be regarded primarily as a starting point for
further research.

4.9.2 Retraction Techniques

For Experiments 1 and 2, LDS was clearly superior to chronological backtracking in terms of
ability to solve more problems and the mean CPU time incurred. There was little statistically sig-
nificant overall difference in Experiment 3. One pattern seen in almost all experiments is that LDS
significantly outperforms chronological backtracking on the looser problems (e.g., problems with
higher makespan factor or fewer bottlenecks) while there is no significant difference on the tighter
problems. Our intuition as to the explanation for this pattern is the presence of overconstrained
problems in our problem sets (see Section 4.9.2.1).

In general, these results are consistent with previous work and our expectations. LDS makes
larger jumps in the search space than chronological backtracking, undoing a number of commit-
ments in one backtrack. The larger jumps mean that there will often be more effort for each back-
track of LDS than of chronological backtracking. Often, as in Experiments 1 and 2, the extra
effort pays off in terms of solving more problems in less time. In Experiment 3, however, the extra
effort at each backtrack did not result in better overall performance: the effort incurred by making

90

significantly more commitments (while making fewer backtracks) was not reflected in solving
more problems.

4.9.2.1 The Presence of Overconstrained Problems

LDS significantly outperforms chronological backtracking on the looser problems (e.g., problems
with higher makespan factor or fewer bottlenecks) while there is no significant difference on the
tighter problems. This pattern can be understood by the presence of overconstrained problems in
our problem sets. In an overconstrained problem, an algorithm using LDS will expend more
resources proving a problem is overconstrained than the corresponding algorithm using chrono-
logical backtracking. This is due to the fact that LDS must revisit some search states in perform-
ing a complete search. In our experiments, the problems on which chronological backtracking
outperforms LDS can be attributed to the presence of overconstrained problems. Examples of this
are the problem sets with low makespan factor in Experiment 2 (e.g., makespan factor 1 and 1.05
in Figure 27 and Figure 28) and the problem sets with a high number of bottleneck resources in
Experiment 3 (e.g., sets with 12 and 14 bottlenecks in Figure 37 and Figure 38).

4.9.2.2 Improving Heuristics

In terms of comparing the retraction components, we see that on all the search performance mea-
sures, the LDS algorithms tend to outperform their counterparts using chronological backtrack-
ing. The size of the improvement when using LDS rather than chronological backtracking is also
an interesting statistic. It has been observed [Beck et al., 1997b; Le Pape and Baptiste, 1997] that
when moving from chronological backtracking to LDS, the heuristics that performed worse with
chronological backtracking are improved more than the heuristics that performed better: the dif-
ferences among the heuristics are less with LDS than with chronological backtracking. If we
examine the magnitude of improvement, we also observe this trend. Figure 47 plots the mean dif-
ference in CPU time between LDS algorithms and chronological backtracking algorithms for

0

100

200

300

400

500

600

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
D

iff
er

en
ce

 in
 C

P
U

 T
im

e
(s

ec
s)

: C
hr

on
ol

og
ic

al
 -

 L
D

S

Makespan Factor

LJRand
SumHeight
CBASlack

Figure 47. The Mean Reduction in CPU Time in Seconds When
Using LDS Instead of Chronological Backtracking for Each

Heuristic.

91

each problem set in Experiment 1. The greatest improvement is seen with LJRand which is
improved significantly more (p ≤ 0.005) by using LDS than either SumHeight or CBASlack. No
significant difference in the magnitude of the improvement is observed between CBASlack and
SumHeight.

While the trend of a greater improvement for weaker heuristics has been observed before, it
remains at the level of observation. It may be that some or all of this phenomenon is due to a ceil-
ing effect:13 because LJRand does so poorly with chronological backtracking there is much more
room for improvement when using LDS than is the case for the other, better heuristics. If the
effect is real, rather than an artifact of the experimentation, we do not have and are not aware of
any explanation for it. It remains an interesting observation, but whether it has any implications
for retraction techniques or heuristics remains future work.

It should be noted that despite improving the weaker heuristics more than the stronger ones, LDS
did not change the relative heuristic performance. In many cases where there was a significant dif-
ference among heuristics, that difference was manifest with both chronological backtracking and
LDS. In some cases, a significant difference disappeared; however, we were not able to find
results where there was a significant difference between heuristics with one retraction technique
and the opposite significant difference with the other technique.

4.10 Conclusions

This chapter examined three heuristic commitment techniques across three experiments. The pur-
pose of these experiments was to investigate the analysis of each search state as a basis for heuris-
tic commitment techniques and address criticisms in the literature with respect to the efficacy of
texture-based heuristics.

Our results support the use of texture measurements as a basis for heuristic commitment tech-
niques as the two heuristics (SumHeight and CBASlack) based on an analysis of a characteristic
of the search state outperformed the less informed heuristic (LJRand) across all experiments. The
comparison of SumHeight and CBASlack suggests that an explanation of their relative perfor-
mance depends upon the presence (or absence) of non-uniformities in problem structure. This
result also supports the use of texture-based heuristics as one of the key motivations for texture
measurements is to distill non-uniformities in a search state.

Comparison of chronological backtracking and LDS retraction techniques show that LDS is, in
general, superior to chronological backtracking. The only exception to this is in problem sets with
overconstrained problems, where LDS, due to its larger search space, is inferior.

13. A ceiling effect is when two techniques are judged to be not significantly different due to the fact that they both
perform very well on an experimental problem set. It may be the case that with a more difficult set of problems a
significant difference would be detected. In this context, we speculate that a ceiling effect may contribute to the
smaller improvement of SumHeight over LJRand when using LDS instead of chronological backtracking. Sum-
HeightChron may perform too well on the experimental problem sets to be outperformed by SumHeightLDS to
the same extent that LJRandChron is outperformed by LJRandLDS.

92

93

Chapter 5 The Criticality of Constraints

he goal of this chapter is to develop a measurement for the criticality of constraints together
with practical algorithms for its estimation. Based on the results of Chapter 4, contention is
a successful measurement of criticality of resource constraints in job shop scheduling.

Unfortunately, contention, as we argue in this chapter, has limited applicability: there are con-
straints that exist in real-world scheduling problems for which contention does not appear to pro-
vide a meaningful measure of criticality. Therefore, we generalize from contention to criticality
itself, examine the requirements of a general measure of criticality, and propose the use of the
probability of breakage of a constraint as such a measure. We create three estimation techniques
for the probability of breakage of a constraint and, in this chapter, empirically evaluate each in the
context of job shop scheduling. This initial empirical evaluation provides a basis for analysis of
our new techniques in a well-understood and well-studied problem model. This is important,
before addressing novel constraints in Chapter 6, in order to gain insight into the behavior and
quality of heuristic search techniques based on estimations of the probability of breakage of con-
straints.

5.1 From Contention to Criticality

The heuristic proposed by [Sadeh, 1991] and its variation, SumHeight, investigated in Chapter 4
equate the criticality of a resource constraint with contention. The more intense the competition
for a resource, the higher the contention, and, therefore, the more critical is the constraint. Such a
model of criticality is reasonable for constraints which represent some maximum limit, M, on the
number of variables that can have the same value. Such maximum limit constraints are common,
and extremely important, in scheduling (e.g., in the representation of unary and multi-capacity
resources). However, it is desirable to be able to compare the criticalities of all constraints in our
graph. For example, in scheduling, we encounter minimum and maximum storage constraints on
raw materials, work-in-process, and finished goods inventories as well as unary and multi-capac-
ity resource constraints. Our goal, then, is to be able to estimate and compare the criticalities of all

types of constraints so that, in a search state, we can find the most critical constraint and make a
heuristic commitment to reduce its criticality.

5.1.1 The Criticality of a Constraint

Before proceeding further, it is necessary to be more definitive with respect to our use of the term
criticality for a constraint. [Sadeh, 1991, p. 43] postulates that a critical variable is “one that is
expected to cause backtracking.” Applying the same intuition to constraints, we define a critical
constraint as one that is expected to be unsatisfied given the current search state. This definition is

T

94

both firmly grounded in the context of combinatorial search and widely applicable. The grounding
of criticality in search is due to the fact that the crucial application of constraint criticality is as a
basis for heuristic search techniques. The information that we believe is most useful from that per-
spective is the expectation of breakage. The wide applicability of the definition of criticality is
also important. We do not want to limit, a priori, the types of information that can be used as a
measure of criticality. It is an open question as to what measures of criticality are most effective as
a basis for heuristic search and we do not want to confine the investigation of such measures with
an overly restrictive definition.

5.1.2 Contention and Aggregate Demand

Given this definition of criticality of a constraint, we now return to the contention texture mea-
surement. We claimed above that contention is a measure of criticality for a maximum resource
constraint. It is useful, therefore, to examine precisely what characteristic is estimated by conten-
tion in order to understand how that characteristic correlates with criticality.

It is our belief that contention estimates the true aggregate demand (over time) for a resource.
Given a search state, S, a resource, R, and a resource constraint, RC, expressing that the maximum
capacity of R is M, we can exactly calculate the aggregate demand for R in state S as follows:
remove RC from the scheduling problem and enumerate the set of solutions, SOLS(S), that can be
developed from S. The aggregate demand, AD(R, t, S), for R at some time, t, on the scheduling
horizon can be found by calculating the mean number of activities executing on R at time t over
all solutions, sol ∈ SOLS(S) as shown in Equation (20). NumActs(R, t, sol) is the number of acts
executing on resource R at time t in solution sol.

 (20)

In a scheduling problem where all resource constraints have the same maximum value (such as in
job shop scheduling), an estimate of the aggregate demand can be used directly as a measure of
criticality. The constraint with the highest aggregate demand (at some time point) is the most
likely to be broken. Extending the scheduling problem by allowing multi-capacity constraints pre-
vents the direct comparison of aggregate demand for criticality: obviously an aggregate demand
of three (at some time) on a resource with capacity of one is more critical than an aggregate
demand of 20 (at some time) on a resource with capacity 100. In such a situation, perhaps, the
aggregate demand can be transformed into a measure of criticality by normalizing it with the
capacity of each resource (such an approach is taken in the KBLPS system [Saks, 1992]). It is not
clear, however, that normalization necessarily results in a measure that is well correlated with crit-
icality. Is it truly the case that a resource of capacity two with an aggregate demand (at some time)
of ten is as likely to be broken as a resource of capacity one with an aggregate demand (at some
time) of five? It might be argued that there are more activities that must be scheduled elsewhere in
the former case than in the latter (i.e., eight versus three) and therefore the resource with capacity
two is actually more critical. Further investigation is necessary to evaluate the correctness of this
argument and the intuitions behind normalization. Moving one step further, however, we also
want to be able to estimate the criticality of a minimum constraint. What is the likelihood that the
resource usage, at some time, is less than some minimum capacity, m? Simple normalization of
the aggregate demand with m does not seem to provide a solution.

AD R t S, ,()
NumActs R t sol, ,()

sol SOL S()∈
∑

SOLS S()
---=

95

5.1.3 Requirements for a Measure of Criticality

The above discussion of the use of aggregate demand (and its estimate, contention) as a measure
of criticality for a wider variety of constraints raises the issue of the characteristics that we require
and desire for such a measure. Based on experience with contention, we have identified the fol-
lowing four requirements for any measure of constraint criticality:

1. Wide conceptual applicability – A measure of criticality should be applicable, at a conceptual
level, to a very wide range of constraint types. By conceptual applicability, we are specifically
ignoring issues of practical application. Rather, we want the meaning of the criticality measure
to be reasonable given the intended semantics, if any, of the constraint. For example, in the
above discussion of the use of aggregate demand, it was not clear what meaning it had for a
minimum capacity constraint.

2. Syntactic comparability – At a practical level, we must be able to compare the actual values
representing the criticalities of different constraints. For example, it is not reasonable to base
criticality on the direct comparison of the aggregate demand for resources with different maxi-
mum capacities. We require that a measure of criticality define a completely ordered, closed
interval from which criticality values must be drawn.

3. Semantic comparability – A criticality value of k for one type of constraint must denote the
same level of criticality as a value of k for some other type of constraint. While this is an obvi-
ous requirement from the perspective of wanting to compare criticalities among different types
of constraints, it is not clear, as noted above, that aggregate demand when normalized for
multi-capacity resources meets this requirement.

4. Practical utility – A measure of criticality must have some practical utility as a basis for heuris-
tic commitment techniques. While such utility is not solely a result of the criticality measure-
ment itself, but rather the measure in combination with estimation algorithms, we nonetheless
believe that, in order to ground the research in empirical evidence, a measure of criticality
should be able to form the basis for heuristic commitment techniques that are as good as or bet-
ter than other, non-criticality-based, heuristic approaches.

These requirements represent our starting place for investigations into criticality measures. It may
be the case that further research will add or even remove requirements.

Given the practical goals of this dissertation in terms of applying measures of criticality to con-
straints that exist in real-world scheduling problems, there are also a number of desirable charac-
teristics for a measure of criticality and estimations of such a measure. Ideally, we would like
efficient algorithms to be able to exactly compute our measure of criticality. This desire is not
very likely to be met; therefore, we want efficient algorithms that are able to estimate a measure of
criticality. We expect that the computational complexity of an estimation technique will have to be
traded-off against the accuracy of its estimates. Finally, we would like estimation algorithms to
have a wide applicability across a variety of constraint-types. As discussed below (Section 5.2),
we do not expect that one estimation technique will be applicable to all types of constraint. None-
theless, the ability to apply the same estimation across some subset of constraint-types (provided
it does not have negative implications to computational complexity or accuracy) is desirable.

5.2 Probability of Breakage of a Constraint

Based on the intuitions provided from the analysis of the contention texture measurement and the
requirements identified for a measure of criticality, we propose to measure the criticality of a con-

96

straint by its probability of breakage. In a search state, S, the probability of breakage of constraint,
C, can be calculated by the ratio of the number of complete valuations of the variables that fail to
satisfy C to the total number of complete valuations. Given that, in state S, some variables may
have been assigned values or their domains may have been pruned by previous commitments, the
probability of breakage of C in S can be very different from that of C in S’, S’ ≠ S. Exact calcula-
tion of the probability of breakage of constraint is impractical and we need to look to techniques
for its estimation.

From the perspective of our requirements for a measure of criticality, we note that the probability
of breakage meets the first three: it is widely applicable on a conceptual level, and is both syntac-
tically and semantically comparable. The final requirement, that of practical utility, remains to be
investigated through the implementation of estimation algorithms and experimentation. The bal-
ance of this chapter conducts this investigation.

5.2.1 Estimation of the Probability of Breakage

We do not believe that the formulation of a single, widely applicable estimation for the probability
of breakage of a constraint is likely to be useful in extending the power of heuristic search tech-
niques. Conceptually, the probability of breakage of any constraint, C, in a problem can be found
by removing C from the problem and enumerating all solutions. The ratio of these solutions that
fail to satisfy C to the total number of solutions is the probability of breakage of C. While this for-
mulation is universally applicable, it is not useful in the formation of heuristics for solving the
problem in the first place as it assumes the solutions can be enumerated.

Less general is an estimation of the probability of breakage of a constraint at the generic con-
straint level in the spirit of the texture measurements defined in [Fox et al., 1989] and the κ mea-
surement in [Gent et al., 1996b]. Such an estimate might be based on the number of values in the
domain of a variable, simple estimates of the total number of solutions, and/or the total number of
remaining variable valuations. While heuristics based on these estimates have been shown to be
useful for general CSPs [Gent et al., 1996b], one of the key lessons from early work in the con-
straint programming (CP) community is that such generic techniques are not able to successfully
address the complexities inherent in scheduling problems [Beck et al., 1998]. The CP community
began making significant advances to the power of scheduling techniques through the develop-
ment of specific propagation techniques for different types of constraints found in scheduling
(e.g., [Van Hentenryck, 1989; Caseau and Laburthe, 1995; Caseau and Laburthe, 1996;
Nuijten, 1994; Le Pape, 1994c; Le Pape and Baptiste, 1996]).

Based on this reasoning, the approach we follow is to define the criticality of a constraint as its
probability of breakage and to allow that different types of constraints may require different esti-
mation algorithms. If possible, we would like to find estimation algorithms that both lead to effi-
cient estimation of criticality and are applicable to a number of types of constraints; however, we
do not require such algorithms. The development of estimation algorithms is not necessarily a
straightforward process: we expect different approaches to the estimation of criticality for a con-
straint to display different characteristics in terms of computational complexity and the quality of
estimation. Investigation of such characteristics for a variety of constraints is, therefore, a key
challenge. The eventual goal is to have estimation techniques for the types of constraints relevant
to the problems we wish to solve and so to be able to integrate them all into the dynamic focusing
abilities of a texture-based heuristic commitment technique.

In the following three sections, we begin the investigation of estimation algorithms for the proba-
bility of breakage of a constraint. We present three estimations of the probability of breakage of a

97

unary capacity resource constraint. The first estimation (JointHeight) is the most principled as it
avoids the assumptions of the other two techniques; however, it also incurs a higher complexity
and is not readily generalizable beyond the unary capacity resource constraint. The other two esti-
mations (TriangleHeight and VarHeight) incur the same complexity as SumHeight (Section 4.3)
while being fully generalizable to multi-capacity resource constraints as well as inventory mini-
mum and maximum constraints. We investigate such generalizations in Chapter 6.

5.2.2 The JointHeight Texture

Following the format of the contention texture measurement, given a constraint C, a set of vari-
ables constrained by C, and the individual demand of each variable, we want to calculate the prob-
ability of breakage of the constraint by aggregation of the contributions from individual variables.

The JointHeight algorithm is based on the idea that a unary resource constraint is broken if two
activities execute at the same time point. To calculate the probability that two independent activi-
ties will execute at a time point, we can simply multiply their individual demands (which we
interpret as a measure of probability) for the time point. Activities are independent unless they are
connected by a directed path of precedence constraints, in which case their joint probability is 0.
This suggests that we calculate the probability of breakage, pb, as follows:

Let Ω be an ordered set of activities on the resource, R, and C be the resource capacity
constraint. The function connected(Ai, Aj) is true if there is a directed path of precedence
constraints connecting activity Ai with Aj.

 (21)

 (22)

The JointHeight algorithm is identical to SumHeight until the point where the aggregate curve is
calculated. Where SumHeight sums the individual demand for the resource from each activity at
each time point, JointHeight evaluates each pair of activities on the resource using Equations (21)
and (22).

There are two weaknesses with JointHeight:

1. The time complexity at a single search state is O(mn3) (see below).

2. The formulation depends strongly on the fact that two activities cannot co-occur. It is difficult,
therefore, to see how JointHeight can be efficiently extended to multi-capacity resource and
inventory constraints.

5.2.2.1 Complexity

We cannot use the mechanism used in SumHeight (Section 4.3.3) to find the aggregate curve. At a
single time point, we must examine all pairs of activities on the resource using Equation (22).
This alone incurs a time complexity of O(n2). There are O(n) time points (due to our event repre-

pb C t,() joint Ai A j t, ,()
Ai∀ Ω∈ A∀ j Ω i j<,∈,

∑=

joint Ai A j t, ,() 0 connected Ai A j,()
ID Ai R t, ,() ID A j R t, ,()× otherwise




=

98

sentation) and m resources; therefore, the total complexity at one search state is O(mn3). The
space complexity is the same as SumHeight: O(mn).

5.2.3 The TriangleHeight Texture

TriangleHeight estimates the probability of breakage based on the expected value of the aggregate
demand and a distribution around the expected value. The aggregate curve on a resource as calcu-
lated by SumHeight provides the expected value at each event point. In addition, we can find the
upper bound and lower bound on the aggregate demand (see below, Section 5.2.3.1). By assuming
a triangular distribution around the expected value, the probability of breakage at t can be esti-
mated. Given the lower bound, the upper bound, and the fact that the area of the triangle is 1, the
height of the triangle can be easily found (see Figure 48). For a maximum capacity constraint, M,
the area under the curve to the right of the line representing M is interpreted as the probability that
the maximum capacity constraint will be broken.

For each event point, t, we use the expected value and distribution as in Figure 48. We calculate
the area of the triangle that is greater than the maximum constraint and use it as an estimate of the
probability that the constraint will be broken at t.

The primary disadvantage of TriangleHeight is that we have no justification for a triangular distri-
bution. We expect, therefore, that the estimation of probability will be worse than JointHeight,
and thus that our heuristic decisions based on TriangleHeight will be more error prone than those
based on JointHeight. In addition, for TriangleHeight we have to maintain the upper and lower
bound curves as well as the aggregate curve.

The advantages of this method, however, may outweigh the disadvantages. For example:

1. We can estimate the probability of breakage of a minimum capacity constraint by examining
the area under the curve to the left of the constraint line (see Figure 48).

2. We can generalize this method easily for non-unary capacity resources and inventory con-
straints.

3. We can use the same event-based technique used in SumHeight.

5.2.3.1 Calculating the Bounds on Aggregate Demand

One of the requirements of the TriangleHeight texture is the calculation of upper and lower
bounds on the aggregate demand on a resource. We use an event-based curve to represent each
bound and so, as with the aggregate demand, each activity has an individual contribution to each
bound. All individual contributions are summed, using the same technique as for aggregate
demand in SumHeight (see Section 4.3.3), to form the corresponding bound curve.

LB EX M UB Resource Demand

Area used as estimate
for the probability of
breakage of maximum
capacity constraint.

Figure 48. Calculating the Probability of Breakage at Event t with TriangleHeight.

99

The lower bound contribution to the individual resource demand for activity, A, is 0 unless,
lstA < eftA. In such a situation, A must execute on the resource on the interval [lstA, eftA) and there-
fore the contribution of A is represented by two event points: (lstA, 1) and (eftA, -1).1

For the upper bound, an activity can potentially use a resource at any time point between its earli-
est start time and latest finish time. Therefore, the upper bound contribution of an activity A is rep-
resented by two event points of the form: (estA, 1) and (lftA, -1).

5.2.3.2 Complexity

The upper and lower bound curve can be maintained in much the same way and with the same
complexity as the aggregate demand curve. As in SumHeight, we sort all the individual demand
elements and, with a single pass through the list, calculate the probability of breakage using the
expected value and the triangular distribution. Overall, TriangleHeight has the same complexity
measurements as SumHeight: time complexity of O(mn log n) + O(mn) and space complexity of
O(mn).2

5.2.4 The VarHeight Texture

VarHeight is similar in form to TriangleHeight, but uses a different estimate of the distribution
around the expected value. The probability of breakage is estimated based on the expected value
and the distribution created by the aggregation of the variance of the individual demands.

In considering resource R, a time point t, and an activity A, we can associate a random variable X

with the demand that A has for R at time t. For unary resources the domain of X is {0, 1}. The
expected value for X, EX, assuming a uniform distribution for the start time of A, is ID(A, R, t) as
calculated in Equation (14) (Section 4.3.1). We calculate the variance of X, VX, as follows:

 (23)

Derived as follows:

(1) and by definition.

(2) x can take on only the values in {0, 1} and .

(3) Therefore, .

(4) So .

1. We are assuming that an activity uses one unit of a resource. The bound calculations can be easily extended for
the non-unary case by substituting the amount of the resource used by each activity.

2. This complexity is for the creation of the texture curves. A heuristic based on the texture measurement may incur
a higher complexity in forming a commitment.

VX EX 1 EX–()×=

VX EX
2

EX()2
–= EX

2
x

2
p x()∑=

p x() ID A R t, ,()=

EX
2

x
2
p x()∑ xp x()∑ EX= = =

VX EX
2

EX()2
– EX EX()2

– EX 1 EX–()×= = =

100

Given this definition, we can calculate EXi and VXi for all activities, Ai, at time point t. We would
now like to aggregate these individual measures to find a measure of the total expected value and
variance at event t. To do this we use the following two theorems:

Theorem 1. The expected value of a sum of random variables is the sum of their expected val-
ues.

Theorem 2. If f and g are independent random variables on the sample space S, then
V(f + g) = V(f) + V(g), where V(x) is the variance of random variable x.

Proofs of these theorems can be found in statistics texts (e.g., [Bogart, 1988] p. 573 and p. 589,
respectively).

These theorems allow us to sum the expected values and variances from each activity, provided
we make the following assumption:

Egregious Assumption 1. The random variables associated with each activity are mutually
independent.

This assumption is false. We will be sequencing these activities by posting precedence constraints
and therefore their random variables will become increasingly interdependent. Reality notwith-
standing, we make this assumption and form the aggregate expected value and variance by sum-
ming the constituent expected values and variances.

The aggregate expected value and variance form a distribution that can be used to represent the
aggregate demand for resource R at time point t. By comparing this distribution with the capacity
of R at t we can find an estimate for the probability that the capacity constraint will be broken at t.
To do this we will make our second assumption:

Egregious Assumption 2. The aggregate random variable is normally distributed around the
expected value.

Given this assumption (which, based on anecdotal simulation evidence appears more well-
founded than our first), we can compare the expected value and the standard deviation of the ran-
dom variable with the capacity at t. This is illustrated in Figure 49. The area under the curve
greater than the maximum capacity constraint is used as an estimate of the probability of break-
age.

The disadvantages of the VarHeight method center around the assumptions. Since these assump-
tions do not actually hold, we expect that VarHeight, like TriangleHeight, will be inferior to
JointHeight in terms of the quality of its heuristic commitments. Another disadvantage is that
because of the shape of the individual variance curve over time, we need to use six event points in
our individual activity curve representation. Furthermore, each event must contain not only the

EX M

Area used as estimate
for the probability of
breakage of maximum
capacity constraint

Resource Demand

Figure 49. Calculating the Probability of Breakage at Event t with VarHeight.

101

expected value and variance, but also the incoming and outgoing slope of these curves at that
event. In addition to the four points in Expression (16) (Section 4.3.1), we add the following two
points to the individual activity curve (calculation of the expected values and variances is left as
an exercise to the reader, based on Equations (14) and (23)):

 (24)

The advantages of VarHeight are the same as those of TriangleHeight: we can generalize it easily
to minimum constraints, we can generalize it beyond unary capacity resource constraints, and we
can use the same event-based formulation as used with SumHeight.

5.2.4.1 Complexity

As in SumHeight, we sort all the individual demand elements and, with a single pass through the
list, calculate the probability of breakage using the expected value and variance curves. Var-
Height, therefore, has the same complexity as SumHeight and TriangleHeight: time complexity of
O(mn log n) + O(mn) and space complexity of O(mn).

5.3 Empirical Studies

The purpose of the experimental studies in this chapter are to evaluate the three estimation algo-
rithms for the probability of breakage. Before evaluating the heuristics on a wider variety of con-
straints, we use the job shop scheduling problem as an evaluation tool in order to ensure that the
generalization of contention to the probability of breakage does not seriously damage the perfor-
mance of texture-based heuristic commitment techniques for scheduling.

5.3.1 Instantiations of the ODO Framework

With the exception of the heuristic commitment techniques, the components of the ODO frame-
work strategy are identical to those used in the experiments in Chapter 4. In particular, the termi-
nation criteria (20 minute time limit) and machine characteristics are identical (see Section 4.4).

Heuristic Commitment Techniques. We use three new heuristic commitment techniques in our
experiments: JointHeight, VarHeight, and TriangleHeight. Each of these heuristics are based on
their correspondingly named probability of breakage estimations. The heuristic commitment algo-
rithm that makes commitments on the basis of the estimations is identical to that used with Sum-
Height in Section 4.3: the critical activities are the top two unsequenced contributors to the
resource and the time point with highest probability of breakage. We post a sequencing constraint
between the two selected activities according to the MinimizeMax, Centroid, and Random heuris-
tic (see Section 4.3.2).

To provide a basis of comparison for the three new heuristic commitment techniques, we also
include SumHeight and CBASlack as described in Chapter 4.

Table 5 displays a summary of the strategies that we experiment with below.

t5
est min lst eft,()+

2
---= t6

lft max lst eft,()+
2

--=,

102

5.4 Experiment 1: Operations Research Library

The experiments to evaluate the new texture-based heuristics are identical to those run in
Chapter 4 (see Section 4.6). In particular, the same problem sets are used.

5.4.1 Results

Complete results for Experiment 1 can be found in Section B.1 of Appendix B.

5.4.1.1 Problems Timed-out

Figure 50 and Figure 51 display the fraction of problems in each problem set that each algorithm
was not able to solve or show to have no solution within the 20 minute time limit. Figure 50 shows
the results for the algorithms that used chronological backtracking and Figure 51 shows the
results for the algorithms using LDS.

With chronological backtracking, there are, overall, no significant differences in terms of the
number of problems solved among VarHeight, CBASlack, JointHeight, and SumHeight. Triangle-
Height solves significantly fewer problems than each of the other heuristics.3

The results when LDS is used as the retraction technique are that VarHeight, JointHeight, and Tri-
angleHeight all time-out on significantly more problems than SumHeight (p ≤ 0.005, for the Tri-
angleHeight comparison). There are no significant overall differences among the other heuristics.

3. Unless otherwise noted, statistical tests are performed with the bootstrap paired-t test [Cohen, 1995] with
p ≤ 0.0001.

Strategy
Heuristic

Commitment
Technique

Propagators Retraction Technique

JointHeightChron JointHeight Alla

a. Temporal propagation, Edge-finding Exclusion, Edge-finding Not-First/Not-Last, CBA

Chronological backtracking

VarHeightChron VarHeight All Chronological backtracking

TriangleHeightChron TriangleHeight All Chronological backtracking

SumHeightChron SumHeight All Chronological backtracking

CBASlackChron CBASlack All Chronological backtracking

JointHeightLDS JointHeight All LDS

VarHeightLDS VarHeight All LDS

TriangleHeightLDS TriangleHeight All LDS

SumHeightLDS SumHeight All LDS

CBASlackLDS CBASlack All LDS

Table 5. Summary of Experimental Scheduling Algorithms.

103

When we compare the algorithms using chronological backtracking to those using LDS, we see
that only TriangleHeight is significantly better with LDS than with chronological backtracking.
The other heuristics show a non-significant improvement when using LDS rather than chronolog-
ical backtracking.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.05 1.1 1.15 1.2 1.25

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

TriangleHeightChron
CBASlackChron

JointHeightChron
SumHeightChron
VarHeightChron

Figure 50. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (Chronological Backtracking).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.05 1.1 1.15 1.2 1.25

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

TriangleHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS
VarHeightLDS

Figure 51. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (LDS).

104

5.4.1.2 Mean CPU Time

The mean CPU time for each problem set are shown in Figure 52 and Figure 53 for algorithms
using chronological backtracking and LDS, respectively.

0

200

400

600

800

1000

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

TriangleHeightChron
CBASlackChron

JointHeightChron
SumHeightChron
VarHeightChron

Figure 52. The Mean CPU Time in Seconds for Each Problem Set
(Chronological Backtracking).

0

200

400

600

800

1000

1 1.05 1.1 1.15 1.2 1.25

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

TriangleHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS
VarHeightLDS

Figure 53. The Mean CPU Time in Seconds for Each Problem Set
(LDS).

105

The CPU results with chronological backtracking mirror the results for the number of problems
timed-out: no significant differences among the heuristics except for TriangleHeight. All other
heuristics are significantly better (lower CPU time) than TriangleHeight. These results are also
seen when LDS is used as the retraction technique, with the only difference being that in addition
to the significant differences between TriangleHeight and all other heuristics, VarHeight uses sig-
nificantly (p ≤ 0.005) less CPU time than JointHeight.

In the comparison of retraction techniques, we see significantly lower CPU times for LDS only
with TriangleHeight. All other heuristics also incur a lower CPU time with LDS, but not signifi-
cantly.

5.4.1.3 Other Search Performance Statistics

The other performance measurements tend to reflect the results demonstrated above and in Exper-
iment 1 of the previous chapter.

• The mean number of backtracks indicates no significant differences among the heuristics
except TriangleHeight which is significantly worse than all others. The algorithms using LDS
make significantly fewer backtracks than those using chronological backtracking.

• JointHeight and TriangleHeight make significantly more commitments than CBASlack. In
addition, TriangleHeight makes significantly more commitments than VarHeight. In comparing
the retraction techniques, the tendency is for those algorithms with chronological backtracking
to make fewer commitments; however, these differences are not significant. The only signifi-
cant difference is with JointHeight which make significantly more commitments (p ≤ 0.005)
with chronological backtracking than LDS.

• TriangleHeight also makes significantly more heuristic commitments than any of the other
heuristics, while there are no significant differences among the other heuristics. As with overall
commitments, the trend with heuristic commitments is that those algorithms using LDS make
more than those using chronological backtracking. None of these differences are significant
except the one with CBASlack (p ≤ 0.005) which follows this trend (i.e., fewer heuristic com-
mitments with chronological backtracking than with LDS).

5.4.2 Summary

The results for Experiment 1 indicate that:

• TriangleHeight is significantly worse than all other heuristics.

• There are few differences among SumHeight, VarHeight, JointHeight, and CBASlack.

• The comparison of the retraction techniques indicate that, on almost all problem sets, LDS out-
performs chronological backtracking. However, this difference is only statistically significant
when TriangleHeight was used as the heuristic commitment component.

5.5 Experiment 2: Scaling with Problem Size

As with Experiment 1, the same problem sets and experiments in Experiment 2 of Chapter 4 are
used again here (see Section 4.7).

106

5.5.1 Results

All results for Experiment 2 can be found in Appendix B. Tables in the following sections corre-
spond to the various problem sets: overall – Section B.2.1, 5✕ 5 – Section B.2.2, 10✕ 10 –
Section B.2.3, 15✕ 15 – Section B.2.4, 20✕ 20 – Section B.2.5.

5.5.1.1 Problems Timed-out

The number of problems that each algorithm timed-out on are displayed in Figure 54 and
Figure 55. The former displays the results for the algorithms using chronological backtracking
while the latter, the results for the algorithms using LDS.

The results in Figure 54 show that TriangleHeight solves significantly fewer problems than all
other algorithms. JointHeight, while being significantly better than TriangleHeight and showing
no significant differences from SumHeight or VarHeight, is significantly worse than CBASlack.
While SumHeight is significantly worse than CBASlack (p ≤ 0.005), there is no significant differ-
ence between VarHeight and CBASlack, or between VarHeight and SumHeight. Turning to the
LDS results in Figure 55, TriangleHeight is again significantly worse than all other algorithms,
CBASlack solves more problems than JointHeight (p ≤ 0.005), and there are no other significant
differences.

Figure 54 and Figure 55 indicate that the largest differences among the algorithms occur at the
largest problems sizes. Therefore, Figure 56 displays the number of problems timed-out for each
makespan factor of the 20✕ 20 problems for the algorithms in the chronological backtracking con-
dition. The same results for the algorithms in the LDS condition are shown in Figure 57.

For the 20✕ 20 problems with chronological backtracking, CBASlack solves significantly more
problems than all other algorithms while TriangleHeight solves significantly fewer problems than
all other algorithms. Among JointHeight, VarHeight, and SumHeight there are no significant dif-

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

TriangleHeightChron
JointHeightChron
SumHeightChron
VarHeightChron
CBASlackChron

Figure 54. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (Chronological Backtracking).

107

ferences. With the LDS retraction technique, TriangleHeight is again significantly worse than all
other algorithms, but there are no other significant differences.

The comparison between the retraction techniques shows that, overall, for the texture-based algo-
rithms, those using LDS were able to solve significantly (p ≤ 0.005) more problems than the cor-

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

TriangleHeightLDS
JointHeightLDS
SumHeightLDS
VarHeightLDS
CBASlackLDS

Figure 55. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (LDS).

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

TriangleHeightChron
JointHeightChron
SumHeightChron
VarHeightChron
CBASlackChron

Figure 56. The Fraction of the 20✕ 20 Problems at Each Makespan
Factor for which Each Algorithm Timed-out (Chronological

Backtracking).

108

responding algorithms using chronological backtracking. The difference for CBASlack, as
discussed in the previous chapter, is not significant.

When just considering the 20✕ 20 problems, the same pattern of significant differences is
observed (p ≤ 0.0005): the texture-based algorithms all solve significantly more problems with
LDS than with chronological backtracking and there are no significant differences when
CBASlack is used.

5.5.1.2 Mean CPU Time

The mean CPU times in seconds for each algorithm are shown in Figure 58 (chronological back-
tracking) and Figure 59 (LDS). When using either chronological backtracking or LDS, the statis-
tical differences among the algorithms are the same: CBASlack achieves a significantly lower
mean CPU time than all other algorithms (p ≤ 0.005 for the comparison between CBASlack and
VarHeight) while TriangleHeight has a significantly higher mean CPU time than all other algo-
rithms. There are no significant differences among the other three texture-based algorithms.

The CPU time results for the 20✕ 20 problems for the algorithms using chronological backtrack-
ing and those using LDS are presented in Figure 60 and Figure 61, respectively. The statistical
results for the chronological backtracking algorithms for mean CPU time on the 20✕ 20 problems
match those of the overall statistical results: CBASlack achieves a significantly lower mean CPU
time than all other algorithms while TriangleHeight incurs a significantly higher mean CPU time
than all other algorithms. There are no significant differences among the other algorithms. The
LDS results are similar with the only variation being that there are no significant differences in
mean CPU time among CBASlack, VarHeight, and SumHeight.

Direct statistical comparison of the retraction techniques on the overall mean CPU time factor
shows that LDS achieves significantly lower mean CPU time (p ≤ 0.0005) than chronological
backtracking for all algorithms except SumHeight and CBASlack. For the 20✕ 20 problems, these

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

TriangleHeightLDS
JointHeightLDS
SumHeightLDS
VarHeightLDS
CBASlackLDS

Figure 57. The Fraction of the 20✕ 20 Problems at Each Makespan
Factor for which Each Algorithm Timed-out (LDS).

109

differences are repeated with the addition of SumHeight incurring significantly (p ≤ 0.005) more
mean CPU time with chronological backtracking than with LDS.

0

200

400

600

800

1000

1200

4 6 8 10 12 14 16 18 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Problem Size

TriangleHeightChron
JointHeightChron
SumHeightChron
VarHeightChron
CBASlackChron

Figure 58. The Mean CPU Time in Seconds for Each Problem Set
(Chronological Backtracking).

0

200

400

600

800

1000

1200

4 6 8 10 12 14 16 18 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Problem Size

TriangleHeightLDS
JointHeightLDS
SumHeightLDS
VarHeightLDS
CBASlackLDS

Figure 59. The Mean CPU Time in Seconds for Each Problem Set
(LDS).

110

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25 1.3

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

TriangleHeightChron
JointHeightChron
SumHeightChron
VarHeightChron
CBASlackChron

Figure 60. The Mean CPU Time in Seconds for the 20✕ 20 Problems
at Each Makespan Factor (Chronological Backtracking).

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25 1.3

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

TriangleHeightLDS
JointHeightLDS
SumHeightLDS
VarHeightLDS
CBASlackLDS

Figure 61. The Mean CPU Time in Seconds for the 20✕ 20 Problems
at Each Makespan Factor (LDS).

111

5.5.1.3 Other Search Performance Statistics

The other search performance statistics reflect the trends seen in the ones presented so far:
CBASlack tends to be superior to all other algorithms, TriangleHeight tends to be inferior to all
other algorithms, and LDS outperforms CBASlack. Exceptions to this trend are:

• Regardless of retraction technique, VarHeight, SumHeight, and JointHeight each use signifi-
cantly fewer heuristic commitments than CBASlack.

• With LDS, JointHeight uses significantly (p ≤ 0.005) fewer mean backtracks than CBASlack,
SumHeight, and VarHeight. VarHeight uses significantly fewer mean backtracks than Sum-
Height (p ≤ 0.005).

• For each heuristic, chronological backtracking makes significantly fewer commitments and
significantly fewer heuristic commitments than the corresponding algorithms using LDS.

5.5.2 Summary

The results of Experiment 2 indicate that:

• CBASlack tends to outperform the texture-based heuristics regardless of retraction condition.
Differences were slight or non-existent on the smaller problems, but were manifest in the larger
problems.

• The algorithm based on the TriangleHeight texture estimation algorithm is inferior to all the
other algorithms tested.

• There is little difference in performance among VarHeight, SumHeight, and JointHeight.

• Algorithms using LDS outperform their counterparts using chronological backtracking.

5.6 Experiment 3: Bottleneck Resources

The final experiment in this chapter is a repeat of Experiment 3 in Chapter 4 with the new heuris-
tic commitment techniques (see Section 4.8).

5.6.1 Results

Complete results for the algorithms in Experiment 3 can be found in Appendix B, Section B.3.

5.6.1.1 10✕ 10 Problems

The fraction of each problem set for which each algorithm timed-out can be found in Figure 62
(for the algorithms using chronological backtracking) and Figure 63 (for the algorithms using
LDS). With chronological backtracking, SumHeight and JointHeight both time-out on signifi-
cantly fewer problems (p ≤ 0.005) than all other algorithms while there is no significant pair-wise
difference. There are no significant differences among VarHeight, TriangleHeight, and CBASlack
when chronological backtracking is used. With LDS, SumHeight times-out on significantly fewer
problems (p ≤ 0.005) than all other heuristics, including JointHeight, while TriangleHeight times-
out on significantly more problems (p ≤ 0.005) than all other heuristics. Of the remaining pairs of
algorithms, JointHeight is superior to CBASlack (p ≤ 0.005) while there are no differences
between VarHeight and JointHeight or between VarHeight and CBASlack.

112

The mean CPU time results for the 10✕ 10 problems are displayed in Figure 64 for the algorithms
using chronological backtracking and in Figure 65 for those using LDS. In both retraction condi-
tions, SumHeight incurs a significantly lower mean CPU time than any other heuristic.
JointHeight incurs the second lowest mean CPU time, significantly lower (p ≤ 0.005) than all

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 62. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (10✕ 10 Problems – Chronological

Backtracking).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 63. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (10✕ 10 Problems – LDS).

113

other heuristics (except SumHeight) with chronological backtracking and significantly lower
(p ≤ 0.005) than all other heuristics (except SumHeight and VarHeight) with LDS. Of the remain-
ing algorithms, there are no significant differences between CBASlack and VarHeight, regardless
of retraction condition; TriangleHeight incurs a significantly higher mean CPU time than
CBASlack (p ≤ 0.001), again regardless of retraction condition; and the only difference between

0

200

400

600

800

1000

1200

0 2 4 6 8 10

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 64. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – Chronological Backtracking).

0

200

400

600

800

1000

1200

0 2 4 6 8 10

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 65. The Mean CPU Time in Seconds for Each Problem Set
(10✕ 10 Problems – LDS).

114

VarHeight and TriangleHeight is that the former incurs a significantly lower mean CPU time
(p ≤ 0.005) when using LDS.

Comparing the retraction conditions on the basis of time-outs indicates that the only significant
difference is when TriangleHeight is used as the heuristic. In that condition, chronological back-
tracking times-out on significantly fewer problems (p ≤ 0.005) than LDS. With mean CPU time,
chronological backtracking incurs less mean CPU time (p ≤ 0.005) than LDS with both
JointHeight and TriangleHeight as well as with SumHeight and CBASlack as noted in Chapter 4.

The other search statistics indicate:

• In terms of the number of backtracks, the only significant differences are that SumHeight
makes significantly fewer backtracks (p ≤ 0.0005) than all other heuristics while JointHeight
makes significantly fewer backtracks (p ≤ 0.0005) than all other heuristics except SumHeight.
These results hold regardless of retraction condition.

• Regardless of retraction condition, SumHeight makes significantly fewer overall commitments
while TriangleHeight makes significantly more (p ≤ 0.0005) than all other algorithms. With
chronological backtracking, the only other difference is that JointHeight makes significantly
fewer (p ≤ 0.001) overall commitments than VarHeight. In the LDS condition, JointHeight
makes fewer overall commitments than CBASlack and VarHeight (p ≤ 0.005) while CBASlack
makes significantly fewer commitments (p ≤ 0.005) than VarHeight.

• Turning to the heuristic commitment results, we see that regardless of retraction condition,
SumHeight makes significantly fewer than all other heuristics, while JointHeight makes signif-
icantly fewer than all other heuristics except SumHeight. There are no other significant differ-
ences among the heuristics.

• Finally, to evaluate the retraction techniques, we examine them when used with the VarHeight,
TriangleHeight, and JointHeight heuristic commitment techniques.4 There are no significant
differences between chronological backtracking and LDS in terms of the number of back-
tracks. For the overall commitments, we observe that the chronological backtracking algo-
rithms make significantly fewer than the LDS algorithms (p ≤ 0.0005). For the heuristic
commitment results, we see that the only significant differences are with TriangleHeight and
JointHeight where the use of chronological backtracking results in significantly fewer heuristic
commitments (p ≤ 0.0005).

5.6.1.2 15✕ 15 Problems

Figure 66 shows the number of problems timed-out in each problem set for each algorithm that
uses chronological backtracking. The same data for the LDS algorithms is displayed in Figure 67.

SumHeight solves significantly more problems than any other heuristic in both retraction condi-
tions. There are no other significant differences among the other heuristics, and no significant dif-
ferences between chronological backtracking and LDS when the heuristic is held constant.
Looking more closely at the individual problem sets, we see that LDS tends to outperform chro-
nological backtracking on the problems with few bottlenecks while the opposite is true on prob-
lems with a large number of bottlenecks.

The mean CPU time for each algorithm and each problem set are shown in Figure 68 (chronolog-
ical backtracking) and Figure 69 (LDS). These results also indicate that SumHeight performs sig-

4. For the statistical comparison of the retraction techniques with SumHeight and CBASlack see Section 4.8.2.1.

115

nificantly better than each of the other algorithms regardless of retraction condition. There are no
significant differences among the other heuristics using chronological backtracking; however,
with LDS, TriangleHeight incurs a significantly higher (p ≤ 0.005) mean CPU time than both
CBASlack and JointHeight.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 66. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (15✕ 15 Problems – Chronological

Backtracking).

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 67. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (15✕ 15 Problems – LDS).

116

There are no overall differences in mean CPU time between chronological backtracking and LDS.
As we observed in previous experiments, chronological backtracking incurs significantly more
CPU time than LDS on the problem sets with few bottlenecks. In contrast, for problem sets with
many bottlenecks, chronological backtracking incurs significantly less CPU time.

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 68. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – Chronological Backtracking).

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 69. The Mean CPU Time in Seconds for Each Problem Set
(15✕ 15 Problems – LDS).

117

The other search statistics tend to be consistent with the results that we have observed to this
point: SumHeight performs better than all other heuristics, and while there is no overall difference
among retraction techniques, LDS performs better on the problems with few bottlenecks and
worse on the problems with many. Exceptions to these trends are:

• In terms of the number of backtracks, CBASlack makes significantly more backtracks than any
of the other heuristics in both retraction conditions while SumHeight makes significantly more
backtracks than JointHeight and TriangleHeight with LDS and significantly fewer than all
other heuristics with chronological backtracking. All algorithms using chronological back-
tracking make significantly more backtracks than the corresponding algorithm using LDS.

• With chronological backtracking, SumHeight makes significantly fewer commitments than all
other heuristics. CBASlack makes significantly fewer commitments than all other heuristics
except SumHeight. With LDS the results are the same except for JointHeight which makes sig-
nificantly fewer commitments than all other heuristics. The comparison of retraction tech-
niques indicates that chronological backtracking algorithms make significantly fewer
commitments than LDS algorithms.

• For heuristic commitments using chronological backtracking, CBASlack makes significantly
more than all other heuristics while SumHeight makes significantly fewer (p ≤ 0.005). For the
LDS algorithms, this pattern repeats with the exception that JointHeight makes significantly
fewer heuristic commitments than all heuristics but SumHeight. As with overall commitments,
in terms of heuristic commitments, the LDS algorithms make significantly more than the chro-
nological backtracking algorithms.

5.6.1.3 20✕ 20 Problems

The fraction of problems in each problem set of the 20✕ 20 problems for which each algorithm
timed-out are shown in Figure 70 and Figure 71. The results for the algorithms using chronologi-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 70. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (20✕ 20 Problems – Chronological

Backtracking).

118

cal backtracking are displayed in the former figure and the results for the LDS algorithms are dis-
played in the latter. The only significant differences in these graphs surround the TriangleHeight
heuristic commitment technique. When chronological backtracking is used, TriangleHeight
times-out on significantly more problems (p ≤ 0.005) than SumHeight, CBASlack, and
JointHeight. In the LDS condition, TriangleHeight times-out on significantly more problems
(p ≤ 0.005) than CBASlack and JointHeight. There are no other significant differences in terms of
the number of problems timed-out.

The mean CPU time results are displayed in Figure 72 for the chronological backtracking algo-
rithms and in Figure 73 for the algorithms using LDS. Regardless of retraction technique, Trian-
gleHeight incurs a higher mean CPU time (p ≤ 0.005) than SumHeight and CBASlack. In
addition, when LDS is used, CBASlack incurs a lower mean CPU time than JointHeight and Var-
Height (p ≤ 0.005). There are no other significant differences for mean CPU time.

There are no significant differences in either the fraction of problems timed-out or the mean CPU
time between algorithms using chronological backtracking and algorithms using LDS.

The other search statistics indicate:

• For the number of backtracks, the only significant difference among heuristics using chrono-
logical backtracking is that both SumHeight and CBASlack make significantly more
(p ≤ 0.0005) backtracks than JointHeight. The results are more varied with LDS as we observe
that JointHeight makes significantly fewer backtracks than all other heuristics. There is no sig-
nificant difference between TriangleHeight and VarHeight; however, both incur significantly
fewer backtracks than SumHeight and CBASlack (p ≤ 0.005).

• In terms of the overall commitments, TriangleHeight makes significantly more commitments
(p ≤ 0.0005) than all other heuristics except VarHeight, while CBASlack makes significantly
fewer commitments than all other heuristics. The only other significant difference in both
retraction conditions is that JointHeight makes significantly fewer overall commitments than

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 71. The Fraction of Problems in Each Problem Set for which
Each Algorithm Timed-out (20✕ 20 Problems – LDS).

119

VarHeight (p ≤ 0.005). In the LDS condition, in addition, the SumHeight makes significantly
more overall commitments than JointHeight.

• Turning to the heuristic commitments, CBASlack makes significantly more than all other heu-
ristics regardless of retraction condition. When LDS retraction is used, JointHeight makes

0

200

400

600

800

1000

1200

0 5 10 15 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightChron
VarHeightChron
CBASlackChron

JointHeightChron
SumHeightChron

Figure 72. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – Chronological Backtracking).

0

200

400

600

800

1000

1200

0 5 10 15 20

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Number of Bottleneck Resources

TriangleHeightLDS
VarHeightLDS
CBASlackLDS

JointHeightLDS
SumHeightLDS

Figure 73. The Mean CPU Time in Seconds for Each Problem Set
(20✕ 20 Problems – LDS).

120

fewer heuristic commitments than all other heuristics, while with chronological backtracking
JointHeight only makes fewer heuristic commitments than CBASlack and SumHeight.

• In comparing the retraction techniques in the context of VarHeight, TriangleHeight, and
JointHeight,5 we observe that each of the chronological backtracking algorithms make signifi-
cantly more backtracks than the LDS algorithms, while making significantly fewer overall
commitments and heuristic commitments.

5.6.2 Summary

Overall, Experiment 3 indicates:

• SumHeight is as good as or better than all other algorithms regardless of retraction condition.
While JointHeight also performs well on the 10✕ 10 problems, it is not significantly different
on the larger problem sizes. There are few significant differences among the other heuristics.

• There is little overall difference among the retraction techniques. However, looking at the indi-
vidual problem sets, LDS tends to outperform chronological backtracking on those sets with
few bottlenecks while the reverse is true for the sets with many bottlenecks.

5.7 Discussion

The central purpose of the experiments in this chapter is to compare heuristics built around proba-
bility of breakage estimations to each other and to the top heuristics from Chapter 4 in the context
of job shop scheduling. We, therefore, focus discussion on these heuristics.6

5.7.1 The Practical Utility of the Probability of Breakage

Our criterion of the practical utility requires that estimations of a measure of criticality should
result in heuristic search techniques that perform as well as or better than existing techniques. In
Experiments 1 and 2, both VarHeight and JointHeight perform as well as SumHeight. However,
SumHeight outperforms each of the estimates of probability of breakage in Experiment 3. Over-
all, then, in the context of job shop scheduling, the VarHeight and JointHeight estimates for the
probability of breakage criticality measurement partially satisfy the requirement of practical util-
ity.

A further critical aspect of the practical utility of the probability of breakage measurement is the
context in which it is applied. The experiments in this chapter speak only to the practical utility of
the probability of breakage measure in job shop scheduling. Given that the probability of break-
age measure meets our first three requirements and so can be applied more readily beyond job
shop scheduling, such an application must be done to further evaluate its practical utility. We turn
to such an application, in the next chapter.

5. See Section 4.8.2.3 for a comparison of the retraction techniques in the context of SumHeight and CBASlack.

6. A secondary purpose, the comparison of retraction techniques, showed that LDS performs either as well as or
better than chronological backtracking. The only exception to this is when a problem set contains overcon-
strained problems, in which case the larger search space of LDS results in poorer results.

121

5.7.2 Probability of Breakage versus Aggregate Demand

One explanation of the results of Experiment 3 is that VarHeight and JointHeight are not as sensi-
tive to resource-level non-uniformities as SumHeight. In terms of the underlying measures of crit-
icality, this may imply that there is structural information that is captured by aggregate demand
that is not identified by the probability of breakage. For example, aggregate demand uses the mag-
nitude of a resource level in its measure of criticality. In the exact calculation of aggregate demand
(Section 5.1.2), a state where a unary resource and time point have a demand of 20 has more
impact on the aggregate demand curve than a state where the demand is two. In the probability of
breakage calculation, such states are equally weighted: the constraint is broken in both.

The existence of structural information captured by aggregate demand, but not by the probability
of breakage, is a speculative point. Other factors such as the accuracy and computational com-
plexity of estimation algorithms, and how well a measurement of criticality correlates with true
criticality likely play complex and interdependent roles in the overall heuristic search perfor-
mance. The unraveling of such factors, together with the deeper analysis of the information exam-
ined by a measure of criticality and estimated by a texture measurement, remain key areas of
future work.

5.7.3 Estimations of Probability of Breakage

Three estimations of probability of breakage were presented in this chapter: JointHeight, Trian-
gleHeight, and VarHeight. Of the three, we believe that JointHeight is the most accurate estimator
of the probability of breakage as its formulation does not require the assumptions made for Trian-
gleHeight and VarHeight. If it is true that JointHeight is a better estimator, we would expect algo-
rithms using JointHeight to outperform those using the other probability of breakage estimators.

Our experimental results indicate that TriangleHeight tends to perform worse than JointHeight,
while VarHeight performs about the same. This supports our contention that, as an estimator of
probability of breakage, TriangleHeight is inferior to JointHeight. The VarHeight results suggest
that either VarHeight is as good an estimator as JointHeight or that the lower computation com-
plexity of VarHeight makes up for the lower accuracy in estimation vis-a-vis JointHeight.

We have no independent evidence of the accuracy of the probability of breakage estimation algo-
rithms. Evidence could be found by an exhaustive calculation of the probability of breakage of
each constraint (in necessarily small problems) and an analysis of how the actual values are pre-
dicted by each estimation algorithm. Such an analysis remains for future work.

5.8 Conclusions

In this chapter, we examined the creation of a general notion of constraint criticality as well as
measurements of such criticality. While the use of contention/aggregate demand has been shown
to provide a strong practical basis for such a measure, particular aspects of the aggregate demand
prevent easy generalization. We define requirements for a measure of the criticality of a con-
straints and suggest the use of the probability of breakage of a constraint as such a measure. We
created three estimation techniques for probability of breakage and evaluated each on job shop
scheduling problems. The justification for using the job shop problems first, before attempting to
use the wider applicability of the new texture measurement estimation techniques, was to assess
whether the extension of contention weakened the power of the texture measurements as a basis
for heuristic commitment techniques.

122

Our empirical results indicate that while on many problems at least two of the new techniques
(VarHeight and JointHeight) were competitive with the contention-based heuristic commitment
technique (SumHeight), on the problem sets where SumHeight seemed best able to exploit the
problem structure, the probability of breakage estimation techniques are unable to perform as
well. While we have ideas to account for these results, they remain at the level of hypotheses that
question basic assumptions with respect to texture measurements and deeper questions surround-
ing heuristic search (see for example the discussion in Section 4.9.1.2).

123

Chapter 6 Scheduling with Inventory

n this chapter, we examine the application of constraint-directed scheduling technology to the
inventory scheduling problem. Our focus continues to be the use of texture-based heuristic
commitment techniques and so a key part of the work in this chapter surrounds the extension

of texture measurements to inventory constraints. This extension is achieved by the formulation of
the individual impact of an activity on the probabilistic inventory level followed by the aggrega-
tion of individual impacts on each inventory and resource. The aggregate curves are used to esti-
mate the probability of breakage of both resource and inventory constraints, and to identify the
most critical constraint and time point. Once the most critical constraint is identified, we generate
and post a heuristic commitment to reduce the criticality. In order to include inventory constraints
within the scope of constraint-directed scheduling techniques, it is necessary to define their repre-
sentation and propagation characteristics. The second component of this chapter, therefore, is a
presentation of the inventory constraint representation together with the creation of propagation
techniques.

The chapter is organized as follows: in the following section we define the inventory scheduling
problems addressed in this chapter and provide an overview of our approach to this problem. We
then present our inventory representation, including algorithms for the calculation of upper and
lower bounds on inventory levels. Section 6.3 turns to the commitments that are made on invento-
ries during search, and Section 6.4 details the extension of texture measurements to the inventory
minimum and maximum constraints. Two inventory propagators are described in Section 6.5, and
the scheduling strategies with which we experiment are presented in Section 6.6. Our empirical
studies and results compose Section 6.7 through Section 6.11. Finally, we discuss our results and
conclude the chapter in Section 6.12 and Section 6.13 respectively.

6.1 Introduction

The management of inventory, its storage, production, and consumption, represents the core func-
tion of a manufacturing organization, be it a diversified global manufacturing enterprise or a sin-
gle factory work-center. Manufacturing is primarily concerned with the transformation of raw
materials into finished goods. The economic viability of a manufacturer depends on the efficiency
with which this transformation can be achieved.

There are a wide variety of constraints concerning inventory, only a subset of which will be
addressed in this chapter. In general, the inventory scheduling problem is to produce some amount
of finished goods, given a set of process plans and a schedule of raw material supply events. The
activities in a process plan may produce and consume inventory at varying rates and in different
amounts. There may be multiple process plans that produce the same inventory. The solver, there-

I

124

fore, must instantiate the correct mix of process plans and schedule production and consumption
activities to meet the demands while satisfying the inventory and resource constraints. In addition
to these constraints, we may have some of the following:1

• compatibility constraints between inventories specifying that they may not share a storage
facility or plant location.

• spoilage and curing constraints specifying maximum and minimum lengths of time that an
inventory can exist before being used in a subsequent manufacturing step.

• multiple storage facilities with specific spatial relations to other storage and machine resources
(e.g., tank4 may only feed mixer1 or mixer8).

• capacity constraints that vary over the scheduling horizon.

6.1.1 Motivation and Problem Definition

In manufacturing, activities may produce and/or consume inventory that must be stored before
consumption and after production, subject to minimum and maximum limits on the amount of
each inventory that can be stored at any time. Scheduling, then, must take into account not only
the temporal and resource constraints, but also these minimum and maximum inventory con-
straints.

An inventory problem can be defined as follows, given:

• A set of process plans. Each process plan defines a temporally connected set of activities for
the production of a particular inventory or set of inventories. Each activity has a duration,
resource requirements, and, perhaps, inventory requirements.

• A set of resources. Each resource has maximum capacity specifying the number of activities
that can simultaneously execute on the resource. This maximum may vary across the schedul-
ing horizon.

• A set of inventories. Each inventory has both a minimum and maximum storage capacity, spec-
ifying, respectively, the smallest and largest amount of the inventory that can exist at any time.
The capacity constraints may vary, independently, across the scheduling horizon with the only
requirement being that the minimum can not be greater than the maximum at any time point. A
non-zero amount of each inventory may be present at the beginning of the scheduling horizon.

• A set of supply and demand events. Each event indicates a time interval during which an exter-
nal force will instantaneously add (supply) a specific amount of inventory to or remove
(demand) it from the plant.

Find:

• An instantiation of process plans and an assignment of start times and resources to each instan-
tiated activity such that all resource, inventory, and temporal constraints are satisfied. It is, in
addition, desirable to minimize inventory levels (while satisfying the minimum constraints).

The inventory problem encompasses the Generalized Resource Constrained Project Scheduling
Problem [Herroelen and Demeulemeester, 1995] while adding inventory production and con-
sumption, inventory constraints, and the need to instantiate the to-be-scheduled activities.

1. This list of constraints should in no way be interpreted as an exhaustive description of the inventory-related con-
straints found in manufacturing organizations. Its purpose is to provide a general sense of the issues surrounding
inventory scheduling.

125

6.1.1.1 Restrictions on the Problem in this Chapter

The above description of inventory scheduling contains many characteristics that have not been
systematically addressed in the scheduling literature. Indeed, the necessity of instantiating process
plans blurs the line between scheduling and planning (see Chapter 7). The problem model
addressed in this dissertation will therefore be simpler than the above description. We have taken
the job shop scheduling model as our starting place, and have defined a problem model such that
inventory production, consumption, and storage are added to the job shop.

The problem consists of a set of jobs each of which consists of a set of activities. The first activity
in the job consumes the raw material inventory corresponding to the job, and the final activity pro-
duces the finished goods inventory corresponding to the job. Therefore, we have in the model, one
raw material inventory and one finished goods inventory for each job. If we were to place the sup-
ply of all raw materials at time 0 and the demand for all finished goods at the end of the horizon,
we would have a job shop problem. We add to this job shop model the following characteristics:

• Each activity in a job may consume one or more of the raw material inventories in the problem.
The number of consumptions in a job is an independent variable and can range from 1 (in the
job shop model) to the product of the number of activities and the number of raw materials.
The latter extreme is formed when all activities consume all raw materials.

• Each production and consumption is instantaneous: production occurs at the end time of the
activity, consumption at the start time.

• There are multiple supply events for each raw material. These events are spread over the sched-
uling horizon.

• There is a minimum constraint on each inventory. This constraint is constant across the sched-
uling horizon.2

• There is a maximum constraint on each inventory. This constraint is constant across the sched-
uling horizon.

6.1.2 Overview of Approach

The approach to inventory scheduling in this dissertation is to represent the minimum and maxi-
mum inventory constraints so that heuristics based on texture measurements can be applied. The
goal, from a heuristic perspective, is to be able to estimate the probability of breakage of all
resource and inventory constraints in order to identify the most critical constraint overall. We then
focus on that constraint and make a commitment to reduce its criticality. If the constraint is a
resource constraint, we will use the sequencing heuristics presented in Chapter 4 (see
Section 4.3.2.2). If the critical constraint is an inventory constraint we assert an inventory com-
mitment, discussed in Section 6.3.

Propagators are also a critical component of a scheduling algorithm and we define two novel
propagators for inventory constraints. These propagators, respectively, enable the inference of
new temporal constraints on activities that produce and consume inventory, and allow inference
that a particular consumer must consume inventory produced by a particular producer (see
Section 6.5).

2. See Section 6.12.4 for a discussion of relaxing this assumption.

126

6.2 Inventory Representation

Our inventory representation is a generalization of the resource representation used in the previ-
ous chapters. Each activity has one or more inventory requirements represented as a variable that
takes the value of an inventory. For each requirement, there is an amount variable corresponding
to the amount of the inventory that the activity produces or consumes. Consumption is assumed to
take place instantaneously at the start of an activity while production occurs instantaneously at the
end of an activity. The inventory constraints are represented analogously to resource capacity con-
straints. Each inventory defines a maximum constraint corresponding to the highest inventory
level allowable at any time point, and a minimum constraint corresponding to the lowest inventory
level allowable. Unlike the cumulative constraint representation, we do not represent the inven-
tory usage as activities with duration (see Section 2.6.2).

InventoryChunks. A key piece of the inventory representation is the explicit modeling of Inven-
toryChunks. These data structures represent the physical inventory that is produced by a single
producer and consumed by a set of consumers. The size of an InventoryChunk is represented by a
domain variable constrained to be equal to the amount produced by the producer and greater-than-
or-equal-to the sum of the amounts consumed by the consumers.

When a producing activity is instantiated, a corresponding InventoryChunk is also created on the
inventory which is produced. The consuming activities are not, initially, linked to any Inventory-
Chunk. As shown in Figure 74, while a producer is limited to producing a single InventoryChunk
(of any one type of inventory), a consumer can consume from multiple InventoryChunks, and an
InventoryChunk can be consumed by multiple consumers. Therefore, at any point in the search, a
consumer may be consuming some portion of its input from one InventoryChunk, ic1, another
portion from another InventoryChunk, ic2, and not yet have the rest of its consumption linked
with any InventoryChunk. We refer to consumers with some portion of their consumption not yet
linked to an InventoryChunk as loose consumers.

In the balance of this section, we present the calculation of the upper and lower bounds on inven-
tory level. The bounds are used as part of the procedures for inventory termination, inventory
dead-end detection, and inventory bound propagation. After presentation of the bound calculation,
we present the termination criteria for inventory.

p1 c1

c2

Figure 74. Example InventoryChunks, Their Producers, and Their Consumers.

Chunk1

Produces

Consumed-by

c3

c4

p2

Chunk2

127

6.2.1 Calculating the Inventory Bounds

The criteria for an upper bound on the inventory level is that, at each time point, the upper bound
must be equal to or greater than the maximum possible inventory level given any assignment of
start times to the activities on the inventory. Similarly, for the lower bound it is necessary to guar-
antee that, at each time point, the lower bound is less than or equal to the minimum possible
inventory level. In particular, note that it is possible for the lower bound to be negative in the situ-
ation where consumption may out-strip production.

6.2.1.1 Calculating the Upper Bound

A naive upper bound on the inventory level can be found by assuming all the production activities
execute at their earliest possible start times and all the consumption activities execute at their lat-
est possible start times. In the presence of “meets” constraints, such a calculation can be signifi-
cantly strengthened. With a meets constraint between a producer and a consumer, some amount of
the inventory is produced and consumed instantaneously. For example, as shown in Figure 75,
with a starting inventory of 20 units, one producer contributing 100 units, one consumer consum-
ing 80 units, and a meets constraint between the producer and consumer, the naive upper bound is
much higher than the actual inventory level.

We represent the upper bound curve with a list of events, ordered by time. This representation is
the same as that used for the texture measurements curves (Section 4.3.3). Each event is com-
posed of an amount and a time point. For consumption events the amount is negative while for
production events, the amount is positive. The events on the upper bound curve come from two
sources: loose consumers and InventoryChunks.

Loose Consumers. If a consumer has some portion of the amount it consumes that is not yet
linked to any InventoryChunk, then, to calculate the upper bound, the amount that is unlinked is
assumed to be consumed at the latest start time of the consuming activity. The inventory event that
is placed on the upper bound curve is, therefore, a consumption event with the amount equal to the
unlinked amount of the consumer, and the time equal to the latest start time of the consumer. Note
that it is only the amount of consumption which is unattached that is assumed to be consumed at
the latest start time. If a consumer also has some of its consumption linked to an InventoryChunk,
that portion is treated independently.

Inv

P1 C1

Figure 75. The Naive Upper Bound and the Actual Upper Bound When a
Producer and Consumer are Linked with a Meets Constraint.

0 100

Level

time

20

100

120

40
Actual upper bound

Naive upper bound

128

InventoryChunks. An InventoryChunk maintains links to a single producer and a set of consum-
ers. As part of the producer/consumer commitment (see Section 6.3.1), a temporal constraint is
used to link a producer and consumer that share an InventoryChunk. If all temporal constraints
among the producer and consumers sharing an InventoryChunk are precedence constraints, then
the upper bound events consist of one event per activity. For the producer, the event is a produc-
tion event with time point equal to the earliest finish time of the activity and amount equal to the
total amount of inventory produced by the activity. Each consumer on the InventoryChunk has an
event with an amount equal to the amount of the InventoryChunk that is consumed and a time
point equal to the latest start time of the consumer.

If some of the temporal constraints between the producer and some consumers in an Inventory-
Chunk are meets constraints, the calculation of the upper bound contribution from the Inventory-
Chunk is slightly different. All consumers with precedence constraints still contribute as
described above. The difference is that the producer event and the events from the consumers that
meet the producer are merged into a single event. The event has a time point equal to the earliest
finish time of the producer and an amount equal to the difference between the amount produced
and the sum of the amounts consumed by those consumers constrained to meet the producer. This
special treatment of meets constraints achieves a much tighter upper bound as illustrated in
Figure 75. Note that if a consumer is linked to multiple InventoryChunks, it is treated indepen-
dently on each InventoryChunk.

The pseudo-code for the upper bound calculation is displayed in Figure 76. After all events for an
inventory are added to the (sorted) event list, an algorithm runs through the list and calculates the
aggregate upper bound curve as is done with the texture measurements curves (Section 4.3.3).

Complexity. The worst case complexity for calculation of the upper bound occurs when all con-
sumers are attached to all InventoryChunks and each have some unlinked consumption. In such a
case the loop starting at line 1 has an O(n2) time-complexity and the loop starting at line 15 has an

Figure 76. Pseudo-code for the Calculation of the Upper Bound on the Inventory Level for
Inventory I.

1: for each InventoryChunk of Inventory I
2: producerAmt = total amount of I produced by the producer
3: for each consumer of the InventoryChunk
4: if consumer meets the producer
5: producerAmt -= amount of InventoryChunk consumed by the consumer
6: else
7: new-event.time = consumer.lst
8: new-event.amount = -amount of InventoryChunk consumed by the con-

sumer
9: event-list.insert(new-event)
10:
11: producer-event.time = producer.eft
12: producer-event.amount = producerAmt
13: event-list.insert(producer-event)
14:
15: for each loose consumer on Inventory I
16: new-event.time = consumer.lst
17: new-event.amount = -amount of consumer not linked to any InventoryChunk
18: event-list.insert(new-event)

129

O(n) time-complexity (with n equal to the number of activities on an inventory). The overall
worst-case complexity, however, comes from the sorting of the list of events. In our worst-case
scenario there can be O(n2) events on this list: each producer has one event and each consumer
has one event for each InventoryChunk. The sorting of the event list therefore incurs a worst-case
time complexity of O(n2 log n). In practice, the average complexity can be reduced by caching
information and incrementally updating the bound, as is done in ODO. Also, as we demonstrate in
Section 6.3.1 our heuristic commitment technique will tend to minimize the number of Inventory-
Chunks to which a single consumer is linked.

6.2.1.2 Calculating the Lower Bound

As with the upper bound calculation, a naive approach to the lower bound would result in a much
looser bound than is possible using the InventoryChunks. The naive calculation would represent
all consumers as consuming at their earliest start time and all producers producing at their latest
finish time. This ignores the temporal constraints due to inventory commitments between a pro-
ducer and consumers. Our implementation of the lower bound calculation, therefore, follows the
upper bound calculation structure. Again, the contributors for the lower bound inventory events
are the loose consumers and the InventoryChunks.

Loose Consumers. The loose consumers also contribute events to the lower bound. The event has
a time equal to the earliest start time of the consumer and an amount equal to the amount of the
consumer that has not yet been linked to an InventoryChunk.

InventoryChunks. An InventoryChunk will never have a set of consumers whose amounts sum
to greater than the amount produced by the producer. Therefore, the lower bound contribution
from an InventoryChunk can never be less than 0. Given a producer and a set of consumers on the
same InventoryChunk, the producer and each consumer will be temporally linked with at least a
precedence constraint. Therefore, while the producer may have a window of possible start times,
it is not possible for any of the consumers to occur before the producer. The lower bound contri-
bution from an InventoryChunk up to (but not including) the latest finish time of the producer
must be 0. It can not be lower, as no consumer can execute before the producer, and it can not be
higher, as the producer can, by definition, produce at its latest finish time. Therefore, the initial
lower bound event from an InventoryChunk has a time equal to the latest finish time of the pro-
ducer. The amount of this event is the difference between the amount produced by the producer
and the sum of the amounts from all consumers that can execute at the latest finish time of the pro-
ducer. The rest of the consumers each contribute events at their earliest start times with amounts
equal to the amount of the inventory that they consume.

Figure 77 presents the pseudo-code for the lower bound calculation. As with the upper bound, we
do not show that the event list is then run through to complete the aggregate lower bound curve.

Complexity. By the same arguments applied to the upper bound calculation, the worst-case com-
plexity for the lower bound is incurred by the sorting and maintenance of the event-list. As with
the upper bound calculation, this time-complexity is O(n2 log n).

6.2.2 Inventory Termination

One of the requirements of the inventory constraint representation is a set of termination criteria.
The inventory termination criteria are conditions under which it can be guaranteed that the con-
straints on an inventory will be satisfied in all subsequent search states.

130

The inventory termination in ODO uses the upper and lower bounds to evaluate two conditions:

1. Is the lower bound greater than or equal to the minimum constraint at all time points?

2. Is the upper bound less than or equal to the maximum constraints at all time points?

If both conditions are satisfied on an inventory, then no further commitments are required to guar-
antee that the inventory constraints are satisfied.

Note that this use of the inventory bounds allows us to pursue a least commitment approach. It is
not necessarily the case that we need to assign start times to all producer and consumer activities.
We simply have to satisfy the termination criteria, which may leave significant windows of start
times for the activities.

6.3 Inventory Commitments

As remarked in Chapter 2, previous work on inventory scheduling uses common scheduling com-
mitments (e.g., start time assignment) and depends on propagation to detect dead-ends and prune
alternatives for inventory activities. With the ability to detect a critical inventory (described in
Section 6.4), however, it is not clear that start time assignments address the root of the criticality.
For example, if a minimum inventory constraint is critical, we could find a producer and assign it
to its earliest start time. Conversely, we could assign a consumer to its latest start time. However,
it is not the start times of the activities that are at issue. The minimum constraint is critical because
there is a danger that some consumer will be scheduled such that no producer can occur before it
to supply its required inventory. The problem is not the start times, but the lack of a commitment
ensuring the ordering of a producer-consumer pair. The commitment, then, could consist of a pre-
cedence constraint specifying that the producer will occur before the consumer as well as a con-
straint specifying that some amount of the inventory produced by the producer is consumed by the
consumer.

Figure 77. Pseudo-code for the Calculation of the Lower Bound on the Inventory Level
for Inventory I.

1: for each InventoryChunk of Inventory I
2: producerAmt = total amount of I produced by the producer
3: for each consumer of the InventoryChunk
4: if consumer.est <= producer.lft
5: producerAmt -= amount of InventoryChunk consumed by the consumer
6: else
7: new-event.time = consumer.est
8: new-event.amount = -amount of InventoryChunk consumed by the con-

sumer
9: event-list.insert(new-event)
10:
11: producer-event.time = producer.lft
12: producer-event.amount = producerAmt
13: event-list.insert(producer-event)
14:
15: for each loose consumer on Inventory I
16: new-event.time = consumer.est
17: new-event.amount = -amount of consumer not linked to any InventoryChunk
18: event-list.insert(new-event)

131

Such a commitment is consistent with our least commitment approach: producers can be matched
to multiple consumers and consumers can be matched to multiple producers and no start times
need be assigned. However, simply matching consumers with producers does not guarantee that
the termination criteria for an inventory (or a dead-end) will be met. It may be the case that we
have to further constrain the linked producer-consumer pairs to execute within a certain time
interval of each other. For example, with an inventory maximum constraint of 0, each producer
must end precisely at the start of each of its consumers. In the worst case, in fact, it may be neces-
sary to actually assign start times to some subset of activities in order to guarantee the satisfaction
of inventory constraints. Such a case is displayed in Figure 78. Both producer-consumer pairs
must execute 10 time units apart (perhaps because of resource commitments); however, they must
be further constrained to ensure the inventory maximum constraint is satisfied.

To address such situations in a least commitment approach, we propose three types of commit-
ments to reduce inventory criticality: producer/consumer commitments, producer/consumer inter-
val commitments, and start time commitments.3

6.3.1 Producer/Consumer Commitments

We use the notation (P → C, 25) to indicate a producer/consumer commitment between P and C.
Specifically, this notation indicates that C must start at or after the end of P and that 25 units of the
inventory produced by P are consumed by C. P is not constrained to only produce 25 units of
inventory, nor is C constrained only to consume 25 units: each may be linked with other consum-
ers and producers, respectively. When all of the inventory that is produced (respectively, con-
sumed) by an activity has been matched to a corresponding consumer (respectively, producer) via
producer/consumer constraints, we say that the activity’s inventory has been completely matched.
Note that in a solution, a producer does not necessarily have to be completely matched since some
of the inventory it produces may remain in storage at the end of the scheduling horizon. A con-
sumer, however, must be completely matched: there is no way to store negative inventory levels.4

3. See Section 6.6 for a description of the entire heuristic commitment technique that mixes resource and inventory
commitments based on texture measurements.

4. Starting inventory is represented as being produced by an activity with a duration of 0 and a start time of 0.
Therefore, even if there is starting inventory, all consumers must be completely matched in a solution.

P1

P2 C2

Figure 78. An Example of the Need to Assign Some Start Times to Ensure
Satisfaction of Inventory Constraints.

50

50

Existing commitments: (P1 → C1, 50), (P2 → C2, 50),

C1
10

10

etP1 + 10 =stC1, etP2 + 10 =stC2

Inv Max = 50

132

The scheme adopted here is that in a search state, S, where an inventory, I, is critical and there
exists a consumer, c, of the inventory that has not been completely matched, we assert a producer/
consumer commitment of the following form:

(p → c, min(amount-unmatched(p, S), amount-unmatched(c, S)) (25)

Where:

• p is a producer of I,

• amount-unmatched(a, S) is the amount of inventory produced (or consumed) by a that has not
been matched with a corresponding consumer (or producer) in state S,

• and amount-unmatched(p, S) > 0.

If, through a complete retraction technique, we derive that the producer/consumer commitment
results in a dead-end, we post the alternative commitment ¬ (p → c, min(amount-
unmatched(p, S), amount-unmatched(c, S)). This alternative commitment is a no-good and has the
effect of removing from consideration any heuristic commitment between p and c until a state, S’

is reached such that:

min(amount-unmatched(p, S’), amount-unmatched(c, S’)) <
min(amount-unmatched(p, S), amount-unmatched(c, S) (26)

The possibility of a heuristic commitment between p and c in state S’ is a necessary condition for
the completeness of the inventory branching scheme. For example, in Figure 79, we discover,
based on backtracking to state S, that the commitment (P1 → C2, 50) does not lead to an overall
solution. We cannot, however, discard any producer/consumer commitment between P1 and C2.
As shown in state S’, the commitment (P1 → C2, 25) is necessary in a solution. This commitment
does not contradict the no-good discovered in state S and satisfies Expression (26).

This branching scheme is similar to the “schedule versus postpone” branching scheme for start
time assignments used in [Le Pape et al., 1994]. It is not immediately clear, however, that the
branching scheme we propose results in a complete search, assuming we use a complete retrac-
tion algorithm (e.g., chronological backtracking).

6.3.1.1 The Completeness of the Producer/Consumer Branching Scheme

To demonstrate the completeness of the proposed branching scheme (when used with a complete
retraction technique) it is necessary to show that a dead-end will never be improperly derived.
Clearly, if the set of asserted commitments leads to a state that breaks one or more of the problem
constraints, we have found a true dead-end. More interesting is a state, S, such that there exists a
consumer, c, that is not completely matched, but all the possible producer/consumer commitments
contradict a no-good (of the form described above). The proposed branching scheme detects a
dead-end at S. It is not obvious, however, that some combination of inventory transfers that do not
match our branching scheme will not lead to a solution. For example, Figure 80 shows a situation

133

P1

P2

C1

Figure 79. A Situation Where Consideration of a Commitment in Between P1 and
C2 in State S’ is Necessary for Completeness.

100

25 50

75

C2

State S

Assume that in all solutions
below S, C1 must precede
P2, but that search has not
yet discovered this implied
commitment.

Search below State S S

(P1 → C2, 50) ¬ (P1 → C2, 50)

Implied: (P1 → C1, 50)

Implied: (P2 → C1, 25)

(P1 → C1, 75)
S’

Implied: (P1 → C2, 25)

Implied: (P2 → C2, 25)

Dead-end: C1 must precede P2
in all solutions

Figure 80. Given Two No-goods (1 and 2), Will the Third also Result in a Dead-end?

c

Produces

Consumed-by

p1

Chunk1
50 50

cp2

Chunk2
50 50

1) no-good

2) no-good

c

p1

Chunk1
50

p2

Chunk2
50

25

storage

25

25

25
3) no-good?

134

where c has 50 units of unmatched inventory and two producers, p1 and p2, each produce 50 units.
The commitments that transfer 50 units of inventory to c from either of p1 or p2 have already been
discovered to result in dead-ends. Perhaps, however, two commitments that transfer lesser
amounts (and will not be found by our branching scheme, e.g., (p1 → c, 25), (p2 → c, 25)) will
lead to a solution. In this section, we show that this can not be the case: we derive a valid dead-
end.

Definitions

• Let NOGOODS(S) be the set of asserted producer/consumer no-goods at state S.

• Let P(c, S) be the set of producers such that:

∀ pi∈ P(c, S) ¬(pi → c, min(amount-unmatched(pi, S), amount-unmatched(c, S))
∈ NOGOODS(S) (27)

Let us examine the cardinality of P(c, S).

|P(c, S)| = 0. If P(c, S) is empty, clearly we are at a dead-end: we have a consumer, c, that is not
completely matched, yet we have no producers with which it can be matched regardless of the
derived no-goods.

|P(c, S)| = 1. Let p be the only element of P(c, S). Clearly, amount-unmatched(c, S) ≥
min(amount-unmatched(p, S), amount-unmatched(c, S)). Imagine that a producer/consumer com-
mitment transferring some smaller amount of inventory than specified in our branching scheme is
consistent. That commitment would necessarily transfer an amount, A* < min(amount-
unmatched(p, S), amount-unmatched(c, S)). We would be left in a state where c still is not com-
pletely matched. We could again commit to transferring a smaller amount; however, in order to
meet the requirements of c, we would eventually have to transfer a total of min(amount-
unmatched(p, S), amount-unmatched(c, S)). Since multiple transfers of inventory between the
same producer and consumer are identical (with respect to the problem constraints) to a single
transfer, the multiple transfer must lead to the same dead-end that was found when the no-good
was derived. Either we end in a state where c has some unmatched consumption or in a state after
the assertion of a producer/consumer commitment that results in a dead-end. Both options are
dead-ends.

|P(c, S)| > 1. Assume we have a state that is not a dead-end, such that the producers in P(c, S) sup-
ply inventory to c at amounts that do not contradict the asserted no-goods. By the existence of the
producer/consumer constraints each producer pi ∈ P(c, S) must produce its inventory at or before
the start time of c. Therefore, at the start time of c, some of the accumulated inventory is con-
sumed by c and some is left in storage. All the inventory required by c is in storage at or before the
time c starts. The same type of inventory is produced by each producer; therefore, when c con-
sumes the inventory, it is irrelevant which producer actually produced it. Therefore, of the inven-
tory from each producer that is in storage at the start of c, we are free to define the amounts
consumed by c. Without changing either start times or inventory levels (and so retaining our con-
sistent state) we can specify that for at least one producer, p* ∈ P(c, S), the amount transferred
from p* to c is min(amount-unmatched(p*, S), amount-unmatched(c, S)). However, we have

135

already discovered that this commitment leads to a dead-end. We have a contradiction. It is not the
case that some set of transfers of less inventory than our branching scheme can lead to a solution
if the commitments in our branching scheme are all no-goods.

Summary. We have shown that a complete branching rule for the producer/consumer commit-
ments need not consider all possible inventory transfers between the producer and consumer to
remain complete. In fact, at a search state, S, there is only a single commitment for each producer,
p, and consumer, c, that need be considered: (p → c, min(amount-unmatched(p, S), amount-
unmatched(c, S)).

6.3.1.2 The Temporal Component of a Producer/Consumer Commitment

As noted above, the standard temporal constraint that forms part of the producer/consumer com-
mitment is a precedence constraint that enforces the relationship that the consumer must start at or
after the end of the producer. In some cases, however, we can derive that the consumer must start
exactly at the end time of the producer. Consider the case where a producer, p, produces 100 units
of inventory, a consumer, c, consumes 75 units, and the maximum inventory constraint is 50 units.
Regardless of inventory level due to other producers and consumers, it must be the case, if p and c

participate in the same producer/consumer commitment, that c consumes exactly when p pro-
duces. Otherwise, the inventory maximum constraint will be broken. Under such circumstances,
the temporal component of a producer/consumer commitment is a meets constraint which
enforces that the start time of c is equal to the end time of p.

6.3.2 Producer/Consumer Interval Commitments

It is not the case that a state in which each consumer is completely matched is necessarily a solu-
tion or a dead-end. It may be that commitments to further constrain the start time domains of
activities are necessary to find a solution. Rather than immediately assigning start times to activi-
ties, we again follow a least-commitment approach by constraining the time interval that is
allowed between a producer and a consumer that already participate in a producer/consumer rela-
tionship.

When all consumers are completely matched, however, it can not be the case that an inventory
minimum constraint is violated. Since all consumers have been paired with producers that supply
sufficient inventory and are constrained to execute before the consumer, in any assignment of start
times that obeys the existing temporal constraints, the inventory minimum constraint must be sat-
isfied. It is possible, however, for an inventory maximum constraint to be broken in such a situa-
tion. In particular, imagine a critical inventory maximum constraint on an inventory that neither is
at a dead-end nor meets the inventory termination criteria, but has no consumers that have not
been completely matched. The critical inventory maximum constraint indicates that there is a rel-
atively high probability that the inventory maximum constraint will be broken. To reduce this crit-
icality, we can constrain a producer-consumer pair to execute closer together: we can limit the
allowed time interval between the end of the producer and the start of the consumer. The intuition
behind this commitment is that when a producer and consumer execute closer together in time, the
average inventory level over time is decreased. This decrease is likely to reduce the criticality of
the inventory maximum constraint.

The actual commitment made is to constrain the interval between producer and consumer to be
equal to or less than the middle value of the current domain of possible interval lengths. If such a
commitment is retracted, we can post the opposite commitment: constraining the temporal inter-

136

val to be greater than the middle value in the domain. For example, if the maximum interval
between the end of a producer and the start of a consumer is 100 time units, the heuristic commit-
ment is to constrain the interval to be less than or equal to 50 time units. On backtracking, this is
reversed to constrain the interval to be greater than 50 time units. Since the interval between pro-
ducer and consumer must be either less than or equal to its middle domain value, or greater than
it, clearly this branching scheme results in a complete search (when used with a complete retrac-
tion technique).

6.3.3 Start Time Commitments

Finally, it may be the case that even if all consumers are completely matched and all producer-
consumer pairs are constrained to occur within a constant time of each other, the search state is
still neither a dead-end nor a solution. In such a state, it is necessary to assign start times to at least
some of the activities.

6.4 Texture Measurements for Inventory

As with the existing work on texture measurements, our goal in each search state is to identify the
constraint that is most in danger of being broken and focus our heuristic commitment technique
on reducing this danger. Incorporation of inventory constraints into this scheduling scheme
requires:

1. The ability to estimate the criticality of inventory minimum and maximum constraints.

2. The ability to compare the criticality of inventory constraints with resource capacity con-
straints.

3. The ability to make heuristic commitments that will tend to reduce the criticality of the most
critical constraint, regardless of the type of constraint.

In the previous section we discussed the commitments that we can make in order to reduce criti-
cality of inventory minimum and maximum constraints. Previous chapters have examined com-
mitments to reduce the criticality of resource capacity constraints. Here, therefore, we address the
first two components of the incorporation of inventory constraints through the adaptation of the
VarHeight texture measurement estimation technique for inventory constraints.

6.4.1 Adapting VarHeight to Inventory

Recall (Section 5.2.4) that the VarHeight texture measurement represents both the expected value
and the variance of an activity’s individual demand for a resource. The individual demand is then
aggregated (based on assumptions discussed in Chapter 5) and the overall probability of breakage
of the resource constraint is estimated by examining the area under the normal distribution deter-
mined by the aggregate expected value and aggregate variance. The proportion of the area of the
distribution that lies to the right of the maximum constraint is used as an estimate of the probabil-
ity that the constraint will be broken at that time point.

In extending the VarHeight texture estimation technique from resource to inventory constraints,
we modify the individual demand curve that an activity has for an inventory. The procedure for
the aggregation of individual inventory demands is identical to the aggregation of individual
resource demands (see Section 5.2.4).

137

6.4.1.1 Individual Demand

An activity that produces or consumes inventory makes a positive or negative contribution to the
level of that inventory. Assuming that each of the remaining start times is equally likely to be
assigned, we can generate an activity’s individual demand. ID(A, I, t) is (probabilistically) the
amount of inventory I, produced (consumed) by activity A, at time t. (Recall that as defined in
Section 2.1.3.2 for activity A, estA is the earliest start time, lstA is the latest start time, eftA is the
finish time, lftA is the latest finish time, and STDA is the domain of A’s start time variable.)

If A is a production activity, ID is calculated as follows, for all eftA ≤ t ≤ lftA:

 (28)

If A is a consumption activity, ID is calculated the same way, relative to the start time window.
That is, for all estA ≤ t ≤ lstA:

 (29)

Where AMTA(I) is the total amount of inventory I that A produces or consumes. If A is a con-
sumer, AMTA(I) < 0.

6.4.1.2 Variance of the Individual Demand

In considering inventory I, a time point t, and an activity A, we can associate a random variable X

with the contribution (positive or negative) that A has to I at time t. The domain of X is {0,
AMTA(I)}. The expected value for X, EX, assuming a uniform distribution for the start time of A,
is ID(A, I, t) as calculated in Equation (28) or Equation (29). We calculate the variance of X, VX,
as follows:

 (30)

Derived as follows:

1. and by definition.

2. x can take on only the values 0 and AMTA(I) therefore:

 (31)

ID A I t, ,() AMT A I()
t ef tA– 1+

ST DA

---------------------------×=

ID A I t, ,() AMT A I()
t estA– 1+

ST DA

---------------------------×=

VX EX AMT A I() EX–()×=

VX EX
2

EX()2
–= EX

2
x

2
p x()∑=

EX
2

0 p 0()×() AMT A I()2
p AMT A I()()×()+ AMT A I()2

p AMT A I()()×= =

138

3. So:

 (32)

Given this definition, we can calculate EXi and VXi for all activities, Ai, at time point t.

6.4.1.3 Event-based Representation of Individual Demand

Recall from Expression (16) (Section 4.3.1) and Expression (24) (Section 5.2.4) that the individ-
ual curves representing VarHeight on a resource used six (t, ID) event points. Given the simpler
shape of the inventory curves, we reduce the number of event points to five pairs {t0, …, t4} to
represent the ID curves on inventory.

If activity A is a producer, the five event pairs used are those defined in Expression (33). For con-
sumers, where AMTA(I) < 0, the event pairs in Expression (34) are used.

 (33)

 (34)

The individual demand curves for the activities in Figure 81 are displayed in Figure 82. I1 is the
aggregate demand curve: the expected value of the demand. It is used, with the variance curve, to
find the probability of breakage of the minimum and maximum constraints at each time point.

6.4.2 Aggregating Demand

The aggregation of the individual demands on inventory is done exactly as the aggregation on
resources described in Section 5.2.4. In particular, note that the aggregation depends on two
assumptions:

VX EX
2

EX()2
–=

AMT A I()2
p AMT A I()()× AMT A I()2

p AMT A I()()2×–=

AMT A I() p AMT A I()()× AMT A I() AMT A I() p AMT A I()()×–()×=

EX AMT A I() EX–()×=

i 0 4,[]∈ ti, eft
i

4
--- lft eft–()×+

AMT A I()
STD

i

4
--- AMT A I()× STD 1–

STD
-----------------------×+, 

 =

i 0 4,[]∈ ti, est
i

4
--- lst est–()×+

AMT A I()
STD

i

4
--- AMT A I()× STD 1–

STD
-----------------------×+, 

 =

B2

C3

A1

0 30 60 90
time

120

Figure 81. Activities A1, B2, and C3 Producing or Consuming Inventory I1.

(I1, 100)

(I1, 50)

(I1, 150)

139

1. The random variables representing the individual demand associated with each activity are
mutually independent.

2. The aggregate random variable is normally distributed around the expected value.

Both of these assumptions are suspect; however, as with the VarHeight texture measurement on
resources, we will make them in order to estimate the probability of breakage of inventory con-
straints as illustrated in Figure 83. The area under the curve greater than the maximum capacity
constraint is used as an estimate of the probability of breakage of the maximum constraint, and
the area under the curve less than the minimum capacity constraint is used as an estimate of its
probability of breakage.

Complexity. We can use the same technique as with resource texture measurements of storing the
incoming and outgoing slopes at each point in the individual curves and sorting the individual
time points into a single list. In a single pass the probability of breakage curves can be generated.
This process has complexity of O(mn log n) + O(mn). The space complexity is O(mn), as we
maintain an individual demand curve for each activity.

-150

-100

-50

0

50

100

0 20 40 60 80 100 120

D
em

an
d

Time

A1
B2
C3
I1

Figure 82. Inventory Curves for the Activities Shown in Figure 81.

EX M

Area used as estimate
for the probability of
breakage of maximum
capacity constraint

Inventory Demand

Area used as estimate
for the probability of
breakage of minimum
capacity constraint

m

Figure 83. Calculating the Probability of Breakage at Event t with VarHeight.

140

6.5 Propagators for Inventory

Two propagators for inventory constraints are used in this dissertation. In the first, inventory
bound propagation, the upper and lower bounds on the inventory levels (Section 6.2.1) are used to
detect dead-ends and to derive new unary temporal constraints on the producing and consuming
activities. The second propagator, producer/consumer propagation, uses the temporal characteris-
tics of the producers and consumers to detect dead-ends and to infer new producer/consumer con-
straints.

6.5.1 Inventory Bound Propagation

Inventory bound propagation is based on the comparison of the upper and lower bound on inven-
tory levels with the minimum and maximum inventory constraints. Based on such a comparison, it
is possible, in some cases, to detect a dead-end due to the inventory levels or to infer new unary
temporal constraints on production and consumption activities.

6.5.1.1 Dead-end Detection

Given the calculation of the lower and upper bounds on inventory levels, a straightforward dead-
end detection technique is to compare the bounds with the inventory constraints. If, at any point
on the scheduling horizon the upper bound is less than the minimum inventory constraint, we can
clearly derive a dead-end: no combination of commitments will result in a higher inventory level
and that level is less than the minimum inventory constraint. Similarly, if the lower bound on the
inventory level is ever greater than the maximum constraint, we can infer a dead-end.

Complexity. Once the inventory bounds have been calculated as described above, inventory
bound dead-end detection can be done in time O(m), where m is the number of inventories in the
problem. The inventory bound calculation algorithm can be augmented so that the maximum
point on the upper bound curve and the minimum point on the lower bound curve are cached each
time the bound is recalculated. Assuming that the inventory constraints are constant across the
horizon, it is only necessary to examine the minimum point on the lower bound and the maximum
point on the upper bound curve to detect such a dead-end.

6.5.1.2 Inventory Bound Propagation of the Minimum Inventory Constraint

When propagating the minimum inventory constraint, we make use of the upper bound on the
inventory level. The basic calculation of the upper bound (as described in Section 6.2.1) is to have
all producers executing at their earliest start time and all consumers executing at their latest start
time. (Recall that the presence of a meets constraint between a producer and a consumer is treated
as a special case.)

Imagine a time point, t, and a producer, p, such that eftp ≤ t < lftp. Assume that the upper bound at
t is UB(t). Inventory bound propagation on the minimum constraint compares that value UB(t) –
AMTp(I) with the minimum constraint at time t. If the value is less than the minimum constraint,
we can infer that p must produce its inventory at or before time t and therefore we have derived a
new temporal constraint on p. (If p happens to be in a meets relationship with a set of consumers
then the value subtracted from the upper bound is the amount produced by p less the amount con-
sumed by all the consumers that it meets.)

141

Similarly, imagine a consumer, c, that does not take part in any meets constraints with producers
of inventory I, such that, estc ≤ t < lstc. If the value UB(t) + AMTc(I) (recall that AMTc(I) < 0) is
less than the minimum constraint, then c must consume its inventory after t.

Complexity. At worst, at each event point we must examine each activity on the inventory. Given
that there can be O(n2) event points (Section 6.2.1), this leads to an overall time-complexity of
O(n3). In practice, however, this is a large over-estimate since it is unlikely that each consumer
consumes from each producer. In addition, there are a number of average time optimizations in
place that significantly reduce the run-time over a naive implementation (e.g., the activities are
sorted in descending order of |AMTA(I)| so that when comparisons of activity A fail to break the
minimum constraint at time point t, we know that none of the other activities will break it either
and so can move to the next time point).

6.5.1.3 Inventory Bound Propagation of the Maximum Inventory Constraint

Inventory bound propagation for the maximum inventory constraint is analogous to that for the
minimum inventory constraint. Using the lower bound on the inventory level at a time point,
LB(t), and a producing activity, p, such that eftp ≤ t < lftp, the bound propagation compares the
value LB(t) + AMTp(I) to the maximum constraint. If the value is greater than the maximum con-
straint, we derive that p must produce after time t. When a producer is linked to consumers via the
InventoryChunk representation, a slight variation to the above is required. The amount added to
the lower bound is not simply AMTp(I), but rather AMTp(I) less all the consumers of that Invento-
ryChunk that can consume at t.

For a consumer, c, attached to an InventoryChunk produced by activity p, we examine the time
points, t, such that, max(lftp, estc) ≤ t < lstc. If LB(t) less the amount consumed from the Invento-
ryChunk by c is greater than the maximum constraint, c must consume at or before t. Finally, for a
loose consumer, we examine the time points, t, such that estc ≤ t < lstc, and compare the lower
bound less the amount of unmatched consumption to the maximum inventory.

Complexity. The time-complexity of the maximum constraint propagation is the same as for the
minimum constraint propagation: O(n3) when each activity needs to be examined at each time-
point. In practice, again, the average time complexity is much lower.

6.5.2 Producer/Consumer Propagation

Producer/consumer propagation simply examines the available consumers for each producer and
the available producers for each consumer.

6.5.2.1 Dead-end Detection

If there are no producers that can (temporally) supply a consumer or if the total amount of inven-
tory from the possible producers is less than that consumed by the consumer, we can derive a
dead-end.

Note that producer/consumer dead-end detection is not subsumed by inventory bound dead-end
detection. The situation displayed in Figure 84 is a case where inventory bound dead-end detec-
tion does not identify a dead-end that producer/consumer dead-end detection does. Due to the
matching production and consumption amounts, it appears that the inventory minimum will never
be broken. However, because the inventory produced by P1 has been constrained to be consumed

142

by C1, C2 will have no inventory to consume. To resolve this situation, the commitment (P1 → C1,
50) must be retracted and replaced with (P1 → C2, 50) and (P2 → C1, 50).

6.5.2.2 Propagation

Producer/consumer propagation is a simple extension of the dead-end detection. If, rather, than
finding no possible producers for a consumer, one is found, then a producer/consumer commit-
ment is inferred. Similarly, if there is only one possible consumer and a producer can not place all
its inventory in storage, a producer/consumer commitment is inferred.

6.5.2.3 Complexity

The time-complexity of the producer/consumer dead-end detection and propagation, together, is
O(mn log n). On each of the m inventories, the n activities contributing to each inventory are
sorted on a list in ascending order. Producers are sorted based on their minimum start time while
consumers are sorted based on their maximum finish time. A single iteration through this list then
keeps track of both the number of producers with some unmatched production and the total
amount of the unmatched inventory. If the unmatched inventory drops below zero or if a consumer
has no unmatched producers before it, we have a dead-end. If a consumer has only one unmatched
producer preceding it, we infer a new producer/consumer commitment.

6.6 Inventory Scheduling Strategies

Based on the texture measurements and propagators presented above, we can now specify the
scheduling strategies used to address inventory scheduling problems.

6.6.1 Propagators

To evaluate the inventory propagation techniques, we use two sets of propagators, one including
the inventory propagators, and one including only the inventory dead-end detection. The schedul-
ing problems (described in Section 6.7) contain unary capacity resources; therefore, the propaga-
tors used in the previous chapters are also used.

Specifically, the two sets of propagators consist of the following, in order:

1. temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, CBA, inventory
dead-end detection, inventory bound propagation, and producer/consumer propagation

2. temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, CBA, and inven-
tory dead-end detection

P1 P2 C1

Figure 84. An Example of a Dead-end that Inventory Bound Dead-end
Detection Does Not Find but Producer/Consumer Dead-end Detection Does.

50 5050 50

Existing commitment: (P1 → C1, 50)

C2

143

We refer to the former set of propagators as the Inventory propagators and the latter set as the
Non-Inventory propagators.

6.6.2 A Texture-based Heuristic Commitment Technique

The aggregate texture curves of inventories allow us to estimate the probability of breakage of
inventory minimum and maximum constraints over time. The model of a texture-based heuristic
commitment technique used to this point has not been changed by the addition of the new texture
measurements. The heuristic does the following:

1. Calculates texture measurements on all resource and inventory constraints.

2. Identifies the most critical constraint and time point, defined to be the constraint and time point
with the highest probability of breakage. Ties are broken arbitrarily.

3. Generates a commitment to reduce the criticality of the most critical constraint.

The heuristic commitment that is generated depends on which type of constraint is judged as most
critical. Therefore, the different types of commitments are interleaved throughout the scheduling
process based on the texture information.

The texture measurement used in this chapter is the VarHeight texture as it was the best of the eas-
ily extendible texture measurement-based heuristics in the previous chapter.

6.6.2.1 Resource Commitment

The commitment made when a resource constraint is the most critical constraint is the same as
that used in Chapter 4 and Chapter 5: the two activities which contribute the most individual
demand to the critical resource and time point, and that are not already connected by a path of
temporal constraints are sequenced.

The heuristics to determine which sequence is selected are the same as those used in previous
chapters: MinimizeMax, Centroid, and Random (see Section 4.3.2.2).

6.6.2.2 Minimum Inventory Commitment

When a minimum inventory constraint is found to be most critical, we are in danger of going
below minimum inventory level. The heuristic, therefore, identifies all consumers that can con-
sume at or before the critical time point, and selects the one with the largest unmatched inventory.
The activity is, heuristically, the most critical consumer.

Having the most critical consumer, c, we then examine all producers that can supply that con-
sumer. These producers must have an earliest finish time less than or equal to the latest start time
of the critical consumer, and also must have some unmatched inventory. The producer, p, chosen
to participate in a heuristic producer/consumer commitment with c, is the one that minimizes the
value lstc – eftp. The justification for this heuristic is that it will tend to minimize inventory levels
if the producer and consumer are able to execute close together in time. The commitment posted
is a producer/consumer commitment between p and c as described in our branching scheme
(Section 6.3.1).

A number of more complex techniques for selecting the producer/consumer pair were investi-
gated such as minimizing the temporal pruning resulting from the producer/consumer commit-
ment, minimizing the difference in amounts being produced and consumer, and various
combinations. The simple heuristic used in our experiments proved to be as good as (and often
better than) these more sophisticated heuristics.

144

6.6.2.3 Maximum Inventory Commitment

When a maximum inventory constraint is critical, we have the choice of three types of commit-
ments to be made: producer/consumer, producer/consumer interval, and start time assignment
(see Section 6.3). Following the least commitment strategy, the heuristic we use will make com-
mitments in the following order:

1. A producer/consumer commitment unless all consumers on the critical inventory are com-
pletely matched.

2. A producer/consumer interval commitment unless all producer-consumer pairs on the critical
inventory already have a singleton domain for their interval.

3. A start time assignment.

Each of these commitment choices have their own sub-heuristics.

Producer/Consumer Heuristic

When a maximum inventory constraint is critical, the heuristic identifies the producer, p, with the
largest unmatched inventory that can produce at or before the critical time point. The consumers
whose latest start times are greater than the earliest finish time of p are evaluated and, as with the
inventory minimum heuristic, the consumer, c, that minimizes lstc – eftp is chosen.

Producer/Consumer Interval Heuristic

If all consumers are completely matched, there are no possible producer/consumer commitments
to be made. However, since the inventory maximum constraint is critical, we still need to post a
commitment that will tend to reduce the inventory level at the critical time point, t*. The commit-
ment that is posted is a producer/consumer interval commitment which constrains the time-inter-
val between the end of the producer and the start of the consumer to be equal to or less than the
current middle value in the domain representing the interval. We post this commitment because
we are attempting to lower the inventory level, and by shortening the amount of time between the
production and consumption of the inventory, we will tend to lower the inventory level.

The producer-consumer pair, p and c, is heuristically selected such that the inventory transferred
from p to c is the maximum of all producer-consumer pairs that meet the requirement that
eftp ≤ t* ≤ lstc. This selection will choose a pair of activities that are likely to transfer the most
inventory (via storage) at the critical time point.

Start Time Assignment Heuristic

Finally, if all the producer-consumer intervals have a singleton value, no further producer/con-
sumer interval commitments are possible. However, it still may be the case that the inventory
maximum constraint is not guaranteed to be satisfied. In this situation, we assign start times to
activities.

Our start time assignment follows the “schedule earliest versus postpone” branching scheme for
start time assignments used in [Le Pape et al., 1994]. All activities that are not already assigned a
start time are ordered in ascending order of earliest start time with ties broken by ascending order
of latest start time. A commitment results from selecting the first element on the list and assigning
its earliest start time. If a dead-end is found and a start time assignment is undone, a no-good is
posted specifying the activity and the start time that failed. The activity then can not take part in a
start time commitment until propagation results in a new earliest start time for the activity.

145

We refer to this start time commitment as the EorP heuristic for “earliest-or-postpone.”

6.6.3 Non-texture-based Inventory Heuristic Commitment Techniques

Without a technique to evaluate and compare the criticality of inventory and resource constraints,
there does not appear to be a principled way to interleave the types of heuristic commitments
made during scheduling. How does a heuristic judge that it should post a resource sequencing
commitment rather than a producer/consumer commitment? If we are to make commitments on
both inventories and resources, it appears that we are required to specify a static ordering such as
making all heuristic commitments on inventory first, then switching heuristics to make resource
commitments. This is the technique used in the set of non-texture based inventory heuristic com-
mitment techniques.

The heuristic commitment technique is as follows:

1. If there are any unmatched consumers, post a producer/consumer commitment.

2. Otherwise, if there are unsequenced activities on a resource, make a commitment on activities
on a resource.

3. Finally, if all possible commitments on resource activities have been made, assign start times.

Different techniques can be used in each of these three steps.

6.6.3.1 Producer/Consumer Commitment Heuristic

The non-texture-based producer/consumer heuristic arbitrarily selects consumers in descending
order of their amount of unmatched consumption. An upstream producer is identified (following
the minimization of the lstc – eftp value as in the texture-based heuristic) and a producer/consumer
commitment is posted.

We refer to this heuristic as GreedyInv.

6.6.3.2 Resource Commitment Heuristics

When making a commitment on a resource, after all consumers have been completely matched,
any of the techniques used for job shop scheduling can be used. In particular, we use SumHeight,
CBASlack, and EorP. For SumHeight, texture measurements are maintained on the resources but
not on the inventories. After the producer/consumer heuristic has matched all consumers, Sum-
Height is then used to estimate the criticality of all resources and to sequence the top two activi-
ties on each resource, exactly as done in the job shop problems in Chapter 5.

6.6.3.3 Start Time Assignment Heuristics

Both SumHeight and CBASlack sequence activities on the resources. It is possible, however, to
reach a search state such that all consumers are completely matched and all activities on the
resources are sequenced, yet the termination criteria on one or more inventories are not met. In
such a search state, start time assignments are necessary.5

The start time assignment heuristic used after all producer/consumer commitments, producer/con-
sumer interval commitments, and resource sequencing commitments have been made is the EorP
heuristic described above (Section 6.6.2.3).

5. When the EorP heuristic is used as the resource commitment heuristic (Section 6.6.3.2), no separate start time
assignment heuristic is needed.

146

6.6.4 Scheduling Without Inventory Heuristics

As noted in Chapter 2, the existing work on inventory scheduling does not directly make heuristic
commitments on the inventory activities. Rather, it uses more standard scheduling heuristics, and
allows propagation to constrain the inventory levels and detect dead-ends. To provide a basis of
comparison for our inventory heuristics against heuristics typical of those in the literature, we use
the resource assignment heuristics and start time assignment heuristics discussed in the previous
section. We run one of our resource heuristics (SumHeight, CBASlack, and/or EorP) and allow
the inventory propagation to maintain the inventory constraints.

6.6.5 A Note on Early Termination

All of the heuristic commitment techniques discussed above may require the assignment of start
times when applied to inventory scheduling problems. Recall, however, the inventory termination
criteria presented in Section 6.2.2. If a state is reached such that all inventory bounds are within
the minimum and maximum constraints, and all resources are completely sequenced, the algo-
rithm terminates with success: a solution has been found.

6.6.6 Instantiations of the ODO Framework

We have presented a number of novel heuristic commitment techniques and propagators in this
chapter. In particular, as described in Section 6.6.1, we have two sets of propagators: Inventory
and Non-Inventory. We have also introduced three general classes of heuristic commitment tech-
niques that can be applied to inventory scheduling.

The first class consists of the texture-based inventory heuristics whose defining characteristic is
the calculation of texture measurements on both inventory and resource constraints in order to
compare constraint criticality and find a commitment that will tend to decrease that criticality. In
the case where all producers and consumers are matched and the activities on each resource are
sequenced, it is necessary to assign start times. The sole instance of this heuristic commitment
class used in this chapter is the VarHeight heuristic described in Section 6.6.2 which uses the
EorP heuristic, if necessary, to assign start times.

The second class of heuristic commitment techniques is one in which the producer/consumer
commitments are made before transitioning to a second heuristic commitment component to
sequence the activities on each resource, followed (possibly) by a third heuristic to assign start
times. The only non-texture heuristic to make producer/consumer commitments is the GreedyInv
heuristic described in Section 6.6.3. It is followed, in our experiments, by one of SumHeight,
CBASlack, or EorP. Since it may be necessary to assign start times, SumHeight and CBASlack
are each followed by EorP.

The final class of heuristic commitment technique is composed of heuristics which simply make
commitments on the resources and leave the inventory propagation to maintain the inventory con-
straints. In this chapter, the instances of this class are identical to the instances of the above class
except that they do not use the GreedyInv heuristic to make inventory commitments.

The scheduling strategies instantiated in the ODO framework and used in the experiments in this
chapter are summarized in Table 6. Note that this is not a fully crossed experimental design.
Because our central interest is the evaluation of heuristics, it was decided that experimentation
with all possible combinations of the heuristics and propagators presented in this chapter was not

147

warranted. We have selected a subset of the strategies so that we can briefly evaluate the useful-
ness of the inventory propagation techniques and, more importantly, investigate the inventory heu-
ristics.

6.7 Problem Generation

Given the relative lack of inventory problems in the literature, our approach to the generation of
problem instances is to start as simply as possible by adding inventory requirements to the job
shop scheduling model. While these one-stage problems introduce new constraints among process
plans based on requirements to consume inventory, there are no requirements for chains of pro-
duction and consumption, for example, where one process plan produces an inventory that is
required by a subsequent process plan. To add such production/consumption chains, we combine
pairs of one-stage problems into two-stage problems.

Class Algorithm
Heuristic

Commitment
Technique

Propagators
Retraction
Technique

Texture-based
Heuristics

VarHeight VarHeight, EorP Non-inventorya

a. Temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, CBA, and inventory dead-end detection.

Chronological
Backtracking

VarHeightProp VarHeight, EorP Inventoryb

b. Temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, CBA, inventory dead-end detection,
inventory bound propagation, and producer/consumer propagation.

Chronological
Backtracking

Non-texture-
based Heuris-
tics

GreedySum-
Height

GreedyInv, Sum-
Height, EorP

Non-inventory
Chronological
Backtracking

GreedySum-
HeightProp

GreedyInv, Sum-
Height, EorP

Inventory
Chronological
Backtracking

Greedy-
CBASlackProp

GreedyInv,
CBASlack, EorP

Inventory
Chronological
Backtracking

GreedyEorPProp GreedyInv, EorP Inventory
Chronological
Backtracking

Non-inventory
Heuristics

SumHeightProp SumHeight, EorP Inventory
Chronological
Backtracking

CBASlackProp CBASlack, EorP Inventory
Chronological
Backtracking

CBASlack CBASlack, EorP Non-inventory
Chronological
Backtracking

EorPProp EorP Inventory
Chronological
Backtracking

Table 6. The Algorithms Used in the Inventory Experiments.

148

6.7.1 One-Stage Inventory Problems

As noted above, the goal with the one-stage inventory problems is to add the necessity for inven-
tory reasoning to the job shop scheduling problem model. Given a square, n✕ n job shop problem,
we calculate the lower bound on the makespan as described by [Taillard, 1993]. The scheduling
horizon, then, is based on a makespan factor multiplied by the lower bound calculation. As in
other chapters of this dissertation, the makespan factor is varied in our experiments.

We introduce inventory by associating a single raw material inventory and a single finished goods
inventory with each process plan. This gives the problem a total of 2n inventories: n raw materials
and n finished goods. The minimal inventory addition to the job shop problem is to specify that
the first activity in each process plan consumes the corresponding raw material and the final activ-
ity produces the corresponding finished good. We can then specify supply events for each raw
material and demand events for each finished good.

This minimal addition does not, however, significantly change the job shop problem since there is
no search required to make inventory commitments: there is only a single consumer for each raw
material and only a single producer for each finished good. To further modify the underlying
problem, we specify that a number, c, of the existing activities in each process plan consume one
of the raw material inventories. Figure 85 displays a single process plan from a 5✕ 5 problem with
c equal to 4, meaning that, on average, all but one activity in the process plan consumes a raw
material inventory. The activities that consume and the raw materials that are consumed are ran-
domly selected with uniform probability and so, as shown in Figure 85, it is possible for one
activity to consume multiple inventories (e.g., B4 consumes RM0 and RM1) and also for more
than one activity in a process plan to consume the same inventory(e.g., B1 and B4 both consume
RM1). The only restriction on a specific activity is that each consumption must be of a different
inventory. As a result of this generation of consumption, the maximum value for c is n2, when
each activity in a process plan consumes each raw material inventory in the problem. The value of
c is one of the key independent variables in our experiments.

Figure 85. A Process Plan from a One-Stage 5✕ 5 Inventory Problem.

B2 B3 B4 B5
R3 R4 R1 R5B1

R2

(RM1, 176) (FG1, 234)

Process Plan with Initial Consumption and Production

B2 B3 B4 B5
R3 R4 R1 R5B1

R2

(RM1, 176) (FG1, 234)

Process Plan with Subsequent Consumption Added (c = 4)

(RM3, 21)
(RM0, 1021)
(RM1, 250)

149

6.7.1.1 Supply and Demand Events

After all the inventory consumption has been generated, it is necessary to generate both the
amount and time of the supply and demand events. The raw materials must be introduced into the
problem formulation via supply events, while the finished goods must have corresponding
demand events.

The amount of a raw material RMi supplied is found by summing the amount of all consumers of
RMi. The amount of RMi produced by supply events is then calculated by multiplying this sum by
a supply factor. For all the problems examined in this chapter, we set the supply factor to be 1.2
meaning that 20% more inventory than necessary is supplied to the problem. Future work will
examine the manipulation of the supply factor.

The time of the supply events for RMi is determined by calculating, maxST(RMi), the latest time
that a consumer of RMi can begin execution. This time is found by calculating the minimum tail
[Carlier and Pinson, 1994] of all consumers of RMi and subtracting that value (weighted by the
makespan factor) from the length of the scheduling horizon as shown in Equation (35).

 (35)

The supply of raw material is created via five supply events (each contributing an approximately
equal amount of inventory) whose times are evenly distributed on the temporal interval
[0, maxST(RMi)].

There is a single demand event for each finished good. It occurs at the end of the horizon and
demands the total amount of a finished good produced in the problem.

Recall that the motivation for the one-stage problems is to control the inventory complexity. By
having multiple supply events and multiple consumers for each raw material, we introduce the
need to schedule consuming activities so as to meet supply events. This introduces new dependen-
cies (via competition for raw materials) among activities in the problem. In the same spirit, our
goal is to limit the inventory complexity by not requiring any search for the finished goods inven-
tories: since there is a single producer and a single demand event for each finished good, they do
not add extra complexity to the one-stage problem.

6.7.1.2 Inventory Constraints

The final aspect of a one-stage problem generation is the inventory constraint levels. For all inven-
tories, the minimum constraint is an inventory level of 0.

For a finished good, FGi, the maximum constraint is equal to the total amount of the FGi pro-
duced in the problem. Given a single producer and a single demand event for each finished good,
this form of a maximum constraint will not constrain the problem. At any time in the horizon, a
producing activity can execute and create the finished good, and it can then remain in storage until
the demand event at the end of the horizon.

For a raw material, RMi, the maximum constraint is equal to 0.75 times the total amount of RMi

produced by supply events. This maximum does constrain the problem: at most three supply
events can occur before a consumption must take place. (Recall that the five supply events are
temporally distributed and each supplies approximately 20% of the inventory for a raw material).

maxST RM i() horizon mkspFactor minTail RM i()×–=

150

As above, our motivation is to limit the inventory complexity in a one-stage problem to the raw
materials.

6.7.2 Two-Stage Inventory Problems

Two-stage inventory problems are generated by combining two one-stage problems. There are
three components to the combination process: inventory, resource, and temporal combination.

6.7.2.1 Inventory Combination

Given the two problems, P1 and P2, the production originally done by the supply events in P2 is
replaced with production done by existing activities in P1. For example, for RM12 in P2, rather
than having five supply events producing RM12, there are now five activities from P1 that produce
RM12, in the quantities originally produced by the supply events. The activities that produce each
raw material are chosen randomly with uniform probability from the activities in P1. The only
restriction is that intermediate inventory is produced by five different activities; however, a single
activity may produce more than one inventory.

The finished goods production from P1 and P2 remain the same as does the raw material supply
and consumption from P1. In particular, the time of the supply events for the raw materials from
P1 remains unchanged.

More specifically, let us examine a process plan, P1PPi, originally in problem P1 and another
P2PPj originally from P2. The activities in P1PPi consume raw materials from P1 as before and the
final activity in P1PPi still produces the finished good P1FGi. The demand event for P1FGi from P1
is also present in the combined problem (though its timing is changed, see Section 6.7.2.3). The
only difference in the activities from the original problem is that some of them now produce inter-
mediate inventories that are then consumed by activities originally in P2. The supply events for
the P1 raw materials are still present in the combined problem.

For the activities in P2PPj, all consumption and production remains the same as in P2. The only
difference is that the supply events for the raw materials no longer exist as their production has
been taken over by activities from P1.

6.7.2.2 Resource Combination

Rather than doubling the resources, as is done with the inventories, the combination process only
uses the resources from P1. The activities from P2 are randomly assigned to execute on a P1
resource with the usual job shop restriction that each activity in a process plan executes on a dif-
ferent resource.

6.7.2.3 Temporal Combination

The only change in the temporal characteristics of the problems is the calculation of the end of the
horizon and the timing of the demand events for the finished goods inventories.

For two-stage problems, we find the lower bound on resource usage by summing the durations of
the activities on each resource. This lower bound is then multiplied by the makespan factor to gen-
erate the length of the scheduling horizon. Each demand event is scheduled to occur at the end of
the horizon regardless of whether the finished good inventory originally came from P1 or P2.

151

6.7.2.4 Summary

The combination of two n✕ n problems results in a single problem with n resources, 4n inventories
(n raw materials, n intermediate inventories, and 2n finished goods), and 2n process plans each
with n activities. There are 5n supply events (five for each raw material in P1) and 2n demand
events (one for each finished good in P1 and P2).

The resource combination in particular requires that the original problems must have the same
number of resources. In practice, we only combine an n✕ n problem with another n✕ n problem.

6.8 Empirical Evaluation

The primary goal of the experiments in this chapter is to evaluate the use of the texture-based
inventory heuristic commitment techniques. Before addressing this goal, however, it is necessary
to evaluate the usefulness of the inventory propagators proposed in this chapter. Therefore, in
Experiment 1 we evaluate their use in three different experimental conditions depending on the
heuristic commitment technique that is used.

Experiment 2 turns directly to the evaluation of inventory heuristics by using the same set of prop-
agators for all problems. We use two problem sizes (5✕ 5 and 10✕ 10) in separate experimental
conditions and hold the makespan factor for all problems constant at 1.2 while varying the aver-
age number of inventories consumed by activities in each process plan. The makespan factor was
chosen based on the results of Chapter 4 that most of the random job shop problems are soluble at
such a factor. The goal here (as discussed in Section 4.5.4) is to generate sets of problems with
different levels of difficulty. Given that most of the underlying job shop problems at makespan
factor 1.2 are soluble, we expect to observe the easy-hard-easy pattern as we increase the number
of consumers per process plan. With a low number of consumers, a solution will be relatively eas-
ily found while at a high number of consumers, a proof that the problem is overconstrained will be
easily found. Between these extremes we will see the more difficult problems.

In Experiment 3, we make two further manipulations to the problem sets. First, we move to two-
stage problems in order to test algorithm performance when there are more complex producer-
consumer relationships in the problems. Second, we vary the makespan factor while holding the
number of consumers per process plan constant. The number of consumers is set at a level that,
based on Experiment 2, represents a point in the parameter space with relatively difficult prob-
lems. The makespan factor is varied between 1.0 and 1.5 in order to examine the performance of
the algorithms as the tightness of the resource constraints vary.

6.9 Experiment 1: Inventory Propagators

In Experiment 1, we examine a subset of the heuristic commitment techniques with and without
the inventory propagators. Our goal is to evaluate the usefulness of the propagators. Further
experiments then compare the heuristic commitment techniques.

We use the following six instantiations of the ODO framework in Experiment 1 (see Table 6 for a
full description): VarHeight, VarHeightProp, GreedySumHeight, GreedySumHeightProp,
CBASlack, and CBASlackProp.

The problems in Experiment 1 are one-stage 10✕ 10 problems with the independent variable being
the number of consumptions per process plan. The independent variable takes on the following

152

values: 5, 10, 15, 20, 25. For each value of the independent variable and for each problem size,
twenty problem instances are generated. The makespan factor for all problems is 1.2. This value
was chosen so that we could be confident that the underlying job shop problems (without inven-
tory constraints) are not overconstrained. Overconstrained problems, if any, arise from the inven-
tory constraints or the combination of the inventory and temporal constraints. This ensures that
reasoning about inventory is necessary in solving the problems.

6.9.1 Results

Tables with all results from Experiment 1 can be found in Appendix C Section C.1.

The proportion of problems that each algorithm timed-out on for each problem set is shown in
Figure 86. The mean CPU time for each algorithm across the problem sets is shown in Figure 87.
While there is some overlap, the algorithms using inventory propagation tend to cluster in the
lower parts of each graph indicating better performance (i.e., timing out on fewer problems and
using less mean CPU time).

Statistical analysis6 indicates that the algorithms that use inventory propagation time-out on sig-
nificantly fewer problems than the corresponding algorithms that do not use propagation. The
CPU results echo the timed-out results as, again, all algorithms using inventory propagators incur
significantly less mean CPU time than their counterparts without inventory propagation.

On all other search statistics evaluated (number of backtracks, number of heuristic commitments,
and number of commitments) the algorithms using inventory propagators perform better. The dif-

6. As in the previous chapters, we measure statistical significance with the boot-strap paired-t test [Cohen, 1995]
with p ≤ 0.0001 (unless otherwise noted).

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

of Consumers/Process Plan

CBASlack
CBASlackProp

GreedySumHeight
GreedySumHeightProp

VarHeight
VarHeightProp

Figure 86. The Fraction of Problems Timed-out for Each Problem
Set and Algorithm.

153

ferences are all highly significant except for the total number of commitments where the differ-
ence is not significant for CBASlack and is significant at p ≤ 0.001 for GreedySumHeight.

These results indicate that the use of inventory propagators is beneficial to the overall problem
solving effort both in terms of expanding the number of problems for which a solution can be
found and in terms of reducing the effort to finding a solution. While there is still work to be done
in the evaluation of these propagators and the conditions under which they contribute to the over-
all problem solving, we leave this to future work. These results are consistent with the results
regarding propagation techniques in the literature and, as our primary focus in this dissertation is
the use of heuristics, we do not investigate the use of inventory propagators further in this disser-
tation.

6.10 Experiment 2: One-Stage Problems

6.10.1 Algorithms

We now turn to the examination of the heuristics for inventory scheduling. All algorithms used in
Experiment 2 use the Inventory propagators as the results from Experiment 1 show them to be
worthwhile.

We are primarily interested in evaluating the use of texture measurement-based heuristics that cal-
culate the criticality of both resource and inventory constraints. The VarHeightProp algorithm (see
Table 6) is the only algorithm that uses such a heuristic in Experiment 2. For comparison to Var-
HeightProp, we use algorithms with both non-texture inventory heuristics (GreedySumHeight-
Prop, GreedyCBASlackProp, and GreedyEorPProp), and non-inventory heuristics
(SumHeightProp, CBASlackProp, and EorPProp). The latter class of heuristics are typical of

0

200

400

600

800

1000

1200

5 10 15 20 25

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

of Consumers/Process Plan

CBASlack
CBASlackProp

GreedySumHeight
GreedySumHeightProp

VarHeight
VarHeightProp

Figure 87. The Mean CPU Time in Seconds for Each Problem Set
and Algorithm.

154

those found in the literature: scheduling commitments are made based on the resource require-
ments and depend on the inventory propagation to maintain the inventory constraints.

6.10.2 Problems

The problems used in this experiment are one-stage inventory scheduling problems generated as
described in Section 6.7.1. Two sizes of problems are used: 5✕ 5 and 10✕ 10. The makespan factor
for all problems is held constant at 1.2 and the primary independent variable is c, the number of
consumers per process plan. Given the differing problem sizes, rather than directly manipulating
c, we manipulate c/n2, the proportion of the maximum possible consumers for each process plan
(see Section 6.7.1). For our experiments, c/n2 varies from 0.2 to 0.8 in steps of 0.2.7 For each
value of c/n2 and for each problem size, twenty problems are generated.

6.10.3 Results

Full results from Experiment 2 can be found in Section C.2 of Appendix C. More specifically, the
results from the 5✕ 5 problems can be found in Section C.2.1 while the results from the 10✕ 10
problems are in Section C.2.2.

6.10.3.1 5✕ 5 Problems

For the 5✕ 5 problems the percentage of problems timed-out for each algorithm is shown in
Figure 88 while the mean CPU time in seconds is displayed in Figure 89. Note that the scales of
the vertical axes in these graphs are set to better show the results.

7. In the 5✕ 5 problems these values correspond to c values of 5 to 20 in steps of 5. In the 10✕ 10 problems the c val-
ues are 20 to 80 in steps of 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Portion of Maximum Possible Consumers/Process Plan

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 88. The Fraction of Problems Timed-out for Each Problem
Set and Algorithm.

155

The similarity in performance among a number of the algorithms obscures the results and so fur-
ther description is in order. In Figure 88, VarHeightProp does not time out on any of the problems.
All algorithms using non-texture-based inventory heuristics (GreedySumHeightProp, Greedy-
CBASlackProp, and GreedyEorPProp) achieve identical performance and so the plots of their
results coincide on the plot that ends at (0.8, 0.3). The plots of SumHeightProp and CBASlack-
Prop also coincide on all problem sets except 0.4. The final plot, starting at (0.2, 0.05) represents
the data for the EorPProp algorithm. In Figure 89, the algorithms using the non-texture-based
inventory heuristics again achieve identical performance and so coincide (within a few hundredths
of a second) on the plot ending at (0.8, 360.2). This identical performance is discussed below
(Section 6.12).

In our statistical analysis, we examined the differences between VarHeightProp and all other algo-
rithms, and the pair-wise differences between each algorithm using non-texture-based heuristics
and its counterpart using non-inventory heuristics (e.g., GreedySumHeightProp versus Sum-
HeightProp). VarHeightProp times-out on significantly fewer problems than all of the algorithms
using non-texture-based inventory heuristics (p ≤ 0.0005) and on significantly fewer problems
than EorPProp. There are no significant differences among VarHeightProp, SumHeightProp, and
CBASlackProp. In terms of CPU time, however, VarHeightProp incurs significantly less CPU
time than all other algorithms (p ≤ 0.005) except SumHeightProp where there is no significant dif-
ference. There are no significant differences in mean CPU time among the other pairs of algo-
rithms examined.

The other search statistics reveal that VarHeightProp makes significantly fewer backtracks and
heuristic commitments (p ≤ 0.005) than all other algorithms. In terms of the total number of com-
mitments, VarHeight makes significantly fewer than all other algorithms (p ≤ 0.005) except
CBASlackProp and SumHeightProp where there are no significant differences. In comparing the
algorithms using non-texture-based heuristics with their counterparts using non-inventory heuris-
tics the only significant differences (all at p ≤ 0.005) are that:

0

50

100

150

200

250

300

350

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Portion of Maximum Possible Consumers/Process Plan

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 89. The Mean CPU Time in Seconds for Each Problem Set
and Algorithm.

156

• GreedyEorPProp makes significantly fewer heuristic commitments than EorPProp.

• SumHeightProp makes significantly fewer total commitments than GreedySumHeightProp.

• CBASlackProp makes significantly fewer total commitments than GreedyCBASlackProp.

6.10.3.2 10✕ 10 Problems

For the 10✕ 10 problems, the timed-out results are presented in Figure 90 while the mean CPU
time results are in Figure 91. Again, there is similar performance among a number of the algo-
rithms, obscuring some of the results.

In Figure 90, all the algorithms using the non-texture-based inventory heuristic achieve the same
results and coincide on the plot beginning at (0.2, 0.5). In Figure 91, we again observe that the
algorithms using the non-texture inventory heuristics achieve identical performance within a few
hundredths of a second and coincide on the plot beginning at (0.2, 601.0). The results for the other
algorithms are clear in both graphs.

Statistically, VarHeightProp times-out on significantly fewer problems than SumHeightProp,
CBASlackProp, and EorPProp while showing no significant difference when compared to the
algorithms using non-texture-based inventory heuristics. In comparing the corresponding pairs of
algorithms, we see that each non-texture-based inventory heuristic times-out on significantly
fewer problems than its non-inventory heuristic counterpart (p ≤ 0.0005).

Turning to the CPU time results, the statistical analysis reveals that VarHeightProp incurs signifi-
cantly less CPU time than each of the algorithms using non-inventory heuristics (p ≤ 0.0005).
Examining the corresponding pairs of non-texture heuristics versus non-inventory heuristics, we
observe that each algorithm using a non-texture inventory heuristic incurred significantly less
CPU time than the corresponding one using non-inventory heuristics.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Portion of Maximum Possible Consumers/Process Plan

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 90. The Fraction of Problems Timed-out for Each Problem
Set and Algorithm.

157

The other search statistics indicate that VarHeightProp makes significantly fewer backtracks and
fewer heuristic commitments than each of the non-inventory heuristics (p ≤ 0.0005). These results
are also seen for the number of overall commitments except for the comparison between Var-
HeightProp and CBASlackProp which shows no significant difference. There are no significant
differences on these other statistics between VarHeightProp and any of the non-texture-based
inventory heuristics. The heuristic commitment and overall commitment statistics show that each
of the algorithms using non-texture-based inventory heuristics outperforms its non-inventory heu-
ristic counterpart (p ≤ 0.001 for the overall commitments). In terms of the number of backtracks,
the only other significant difference is that GreedyEorPProp incurs significantly fewer than EorP-
Prop.

6.10.4 Summary

The results of Experiment 2 indicate that:

• The non-inventory heuristics (SumHeightProp, CBASlackProp, and EorPProp) do not, in gen-
eral, perform as well as the algorithms that take into account the inventory constraints when
making heuristic commitments.

• The algorithms using the non-texture-based inventory heuristics (GreedySumHeightProp,
GreedyCBASlackProp, and GreedyEorPProp) achieve identical performance including mean
CPU time results within a few hundredths of a second of each other. We discuss the reasons for
this below (Section 6.12).

• The performance of the VarHeightProp is as good as or better than all other algorithms.

0

200

400

600

800

1000

1200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Portion of Maximum Possible Consumers/Process Plan

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 91. The Mean CPU Time in Seconds for Each Problem Set
and Algorithm.

158

6.11 Experiment 3: Two-Stage Problems

Experiment 3 uses two-stage problems as described in Section 6.7.2. These problems introduce
more inventory complexity than the one-stage problems used above. Again our primary goal is the
evaluation of the inventory heuristics. We use the same algorithms used in Experiment 2.

The experiment problems are again divided into two experimental conditions corresponding to the
size of the original one-stage problems. We refer to each set by the size of the original problems.
Each problem in the 5✕ 5 problem set is generated from the combination of two one-stage 5✕ 5
problems while each 10✕ 10 problem results from the combination of two one-stage 10✕ 10 prob-
lems.

In all problems, the proportion of possible consumers (c/n2) is held constant at 0.4.8 The primary
independent variable for these problems is the makespan factor which is varied from 1.0 to 1.5 in
steps of 0.1. Recall that the makespan factor is multiplied by the resource lower bound to give the
end of the horizon in each problem. For each makespan factor and each problem size, twenty two-
stage problems are generated.

6.11.1 Results

Full results from Experiment 2 can be found in Section C.3 of Appendix C: the results from the
5✕ 5 problems can be found in Section C.3.1 while the results from the 10✕ 10 problems are in
Section C.3.2.

6.11.1.1 5✕ 5 Problems

Results of the 5✕ 5 experiments are shown in Figure 92 and Figure 93. The former graph displays
the proportion of problems for which each algorithm timed-out while the latter displays the mean
CPU time for each algorithm. As in Experiment 2, the algorithms using non-texture-based inven-
tory heuristics produce very similar results. In both Figure 92 and Figure 93, the plots correspond-
ing to them coincide except for the results for makespan factors 1.3 and 1.5.

Statistical analysis indicates that VarHeightProp times-out on significantly fewer problems and
incurs significantly less mean CPU time than all other algorithms. The only significant difference
comparing the non-texture-based inventory heuristics to their non-inventory heuristic counterparts
is that GreedyCBASlackProp incurs significantly less mean CPU time than CBASlackProp
(p ≤ 0.005).

The other search statistics, in general, agree with the timed-out and CPU results:

• In terms of the number of backtracks, VarHeightProp makes significantly fewer than all other
heuristics, and each of the non-texture-based inventory heuristics makes significantly fewer
backtracks than its corresponding non-inventory heuristic (p ≤ 0.005 for GreedySumHeight-
Prop versus SumHeightProp).

• VarHeightProp makes significantly fewer overall commitments than all non-texture-based
inventory heuristics and than EorPProp. Interestingly, GreedyCBASlackProp and GreedySum-
HeightProp make significantly more overall commitments than CBASlackProp and Sum-

8. Each 5✕ 5 problem, therefore, has 10 consumptions per process plan while each 10✕ 10 problem has 40.

159

HeightProp respectively. There are no other significant differences for the overall commitment
results.

• Turning to the heuristic commitments, VarHeightProp again makes significantly fewer than all
other algorithms while each of the non-texture-based inventory heuristics makes significantly
fewer heuristic commitments than its corresponding non-inventory heuristic (p ≤ 0.0005).

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 92. The Fraction of Problems Timed-out for Each Problem
Set and Algorithm.

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3 1.4 1.5

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 93. The Mean CPU Time in Seconds for Each Problem Set
and Algorithm.

160

6.11.1.2 10✕ 10 Problems

The proportion of problems in each problem set that the algorithms time-out on is shown in
Figure 94. All algorithms except VarHeightProp exhibit identical performance on the problems at
makespan 1.0, but diverge at higher makespan factors. In general, the algorithms using non-inven-
tory heuristics do poorly on all problem sets from makespan factor 1.1 to makespan factor 1.5.
The algorithms using non-texture-based inventory heuristics also perform poorly on problem sets
with low makespan factors (1.1 and 1.2), but improve as the makespan factor increases (we dis-
cuss reasons for this below). VarHeightProp times-out on fewer problems than each of the other
algorithms on all problem sets.

The mean CPU time for each algorithm and problem set is shown in Figure 95. The results, here,
mirror those in Figure 94. VarHeightProp incurs lower mean CPU time than all other algorithms
across all problem sets. The other algorithms perform close to the same on the problem sets with
low makespan factor, but diverge at higher makespan factors. As above, the algorithms with non-
texture-based heuristics appear to improve (relative to the non-inventory heuristic algorithms)
with the higher makespan factors.

Statistical analysis reveals that VarHeightProp times-out on significantly fewer problems and
incurs significantly less mean CPU time than all other algorithms. In addition, VarHeightProp
makes significantly fewer backtracks and significantly fewer heuristic commitments than all other
heuristics. In terms of overall commitments, however, VarHeightProp significantly outperforms
only GreedyCBASlackProp (p ≤ 0.0005), CBASlackProp (p ≤ 0.005), GreedySumHeightProp,
and SumHeightProp.

In comparing the non-texture-based heuristics with their non-inventory heuristic counterparts, we
see that the former significantly outperform the latter (p ≤ 0.005) in terms of the number of prob-
lems timed-out, the mean CPU time, the number of backtracks, and the number of heuristic com-
mitments. For overall commitments, the only significant difference between these pairs of

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 94. The Fraction of Problems Timed-out for Each Problem
Set and Algorithm.

161

algorithms is that GreedySumHeightProp makes significantly fewer overall commitments than
SumHeightProp.

6.11.2 Summary

In summary, Experiment 3 indicates that:

• VarHeightProp outperforms all the other algorithms.

• The algorithms using non-texture-based inventory heuristics tend to outperform their non-
inventory counterparts. This performance difference is especially clear on problems with
higher makespan factors.

6.12 Discussion

The experiments in this chapter were primarily concerned with the evaluation of heuristics for
inventory scheduling and in validating the use of inventory propagation techniques. We look at
each of these goals before briefly examining the relaxation of the requirement that inventory con-
straints remain constant across the scheduling horizon.

6.12.1 Inventory Heuristics

Experiments 2 and 3 show that the use of texture-based heuristics results in as good as or better
performance than non-texture-based inventory heuristics and non-inventory heuristics. In particu-
lar, when the inventory relationships among activities are made more complex (as in the two-stage
problems of Experiment 3), the algorithm using a texture-based heuristic significantly outper-
forms all other algorithms on all problem sets tested. We interpret these experimental results as

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3 1.4 1.5

M
ea

n
C

P
U

 T
im

e
(s

ec
s)

Makespan Factor

GreedyEorPProp
EorPProp

GreedyCBASlackProp
CBASlackProp

GreedySumHeightProp
SumHeightProp
VarHeightProp

Figure 95. The Mean CPU Time in Seconds for Each Problem Set
and Algorithm.

162

positive evidence toward the use of texture-based heuristics in constraint-directed scheduling
algorithms.

6.12.1.1 Dynamic Focus on Critical Constraints

Recall that the motivation for a measure of criticality that can be applied to a wide range of con-
straints is that, at each search state, we want to be able to identify the most critical constraint,
regardless of constraint type, and focus our heuristics to reducing the criticality. It is not only the
ability to estimate criticality that leads to high-quality heuristic search, but also the ability to
dynamically focus on the most critical constraint at each search state.

The contributions of the dynamic focus ability are particularly evident in Experiment 3. As we
argue below (Section 6.12.1.3), as the makespan factor increases the relative criticality of the
resource and inventory constraints changes. While the resource constraints are, on average, more
critical for low makespans, the inventory constraints are, on average, more critical for high
makespans. Throughout this change in relative criticalities VarHeightProp outperforms all other
algorithms. We interpret these results as clear support for our approach to scheduling via texture
measurement-based heuristic search. The ability to not only identify the constraints that are more
critical at the beginning of the problem but also in every search state allows the texture-based heu-
ristics to achieve high-quality search on problems with varying characteristics.

6.12.1.2 The Probability of Breakage as a Measure of Criticality

In Chapter 5, the results on job shop scheduling problems indicated that the probability of break-
age measure of criticality only partially meets the requirement of practical utility. We speculated
(Section 5.7.2) that the aggregate demand may represent information important to the search that
is not present in probability of breakage measurement of criticality.

In this chapter, we see that when inventory constraints are modeled, the wider applicability of
probability of breakage (i.e., the fact that it meets the first three of our requirements for a measure
of criticality (see Section 5.1.3)) results in superior overall performance. Therefore, in the pres-
ence of both inventory and resource constraints, the probability of breakage meets the requirement
of practical utility.

6.12.1.3 Simple Inventory Heuristics

Experiments 2 and 3 demonstrated that taking inventory into account when making heuristic deci-
sions even with a greedy heuristic leads to better overall search performance than when the heu-
ristics focus solely on resource constraints and allow propagators to maintain the inventory
constraints. This is an important point in view of the fact that the few scheduling strategies in the
literature that address inventory problems tend to account for inventory via inventory propagators
alone. They do not make the information in the inventories and inventory constraints part of the
heuristic decision making process. Our results show that even a simple inventory heuristic like the
GreedyInv heuristic can lead to improved performance.

The manipulation of makespan factor in Experiment 3 provides an interesting basis on which to
compare the non-texture-based inventory heuristics and the non-inventory heuristics. For low val-
ues of the makespan factor, there is little slack on each resource, and therefore the criticality of the
resource constraints is high. When the makespan is larger, however, there is more slack time on
each resource. The resource constraints are easier to satisfy and therefore the inventory constraints
become, relatively, more critical.

163

On this basis, then, we would predict that a heuristic that focuses on resource constraints will tend
to perform well for problem sets with low makespan factors while at larger factors, heuristics that
put more effort toward the inventory constraints will be superior. These are precisely the results
we see: the non-inventory heuristics perform well at makespan factors 1.0 and 1.1 (especially on
the 5✕ 5 – Figure 93) and very poorly on the problem sets with makespan factors 1.4 and 1.5. The
non-texture-based inventory heuristics, in contrast, improve with higher makespan factors.

We take these results to indicate that the ability to even statically focus on inventory constraints
results in better heuristic search when inventory constraints are more critical. Of course, as noted
in the previous section, one of the key advantages of texture-based heuristics such as VarHeight-
Prop is that they dynamically focus on whatever constraint is most critical at a search state

6.12.1.4 The Performance of the Non-Texture-Based Inventory Heuristic

Finally, there is another characteristic of our experimental results concerning heuristics that
deserves explanation. In many of the problem sets, the performance of the algorithms using the
non-texture-based inventory heuristics was identical within a few hundredths of a second in mean
CPU time. Given that each algorithm (GreedySumHeightProp, GreedyCBASlackProp, and
GreedyEorPProp) uses very different resource heuristics, the identical results are curious. Deeper
analysis of the problem solving revealed that each of the algorithms was almost completely
dependent on the GreedyInv heuristic. Recall that these algorithms use the GreedyInv heuristic to
form producer/consumer commitments. The GreedyInv heuristic demonstrated one of two behav-
iors in many of the experimental problems.

1. The GreedyInv heuristic was able to find a set of producer/consumer commitments that could
be extended to an overall solution with no further backtracking regardless of the resource heu-
ristic used.

2. The GreedyInv heuristic was not able to find a set of consistent producer/consumer commit-
ments at all.

In the first case, identical performance was achieved by each algorithm in solving the problem
while in the second, identical performance was achieved in failing to solve the problem.

6.12.2 Inventory Propagators

Experiment 1 compared a number of algorithms with and without inventory propagation tech-
niques. Regardless of the heuristic (or type of heuristic) used, the algorithms using inventory
propagators outperformed those that did not use them. This result is not surprising given the liter-
ature which shows significant advantages in the use of propagation techniques in constraint-
directed scheduling.

6.12.3 Appropriateness of the Experimental Problems

Our interpretation of the experimental results in this chapter relies on the appropriateness of the
experimental problem sets. These problems were designed to test the quality of reasoning about
both resource and inventory constraints in the same problem. If these problem sets do not test
such reasoning abilities, the results we have observed must be attributed to other causes.

There are two main patterns we observe in our results that lend support to our claim that our prob-
lem sets are appropriate for their purpose. The first, shown explicitly in Experiment 1, is that
inventory propagation techniques significantly contribute to the overall search performance. That

164

we observed such results indicates that reasoning about inventory constraints is part of what is
necessary to perform well on the problem sets.

The second pattern in our results is the one noted above in regards to the behavior of the non-tex-
ture-based inventory heuristics and the non-inventory heuristics as the makespan factor of the
problems is varied. In problem sets where the resource constraints were tight (low makespan) the
non-inventory heuristics performed as well as or better than the non-texture-based inventory heu-
ristics while with looser resource constraints (high makespan) the opposite performance compari-
son is observed. This pattern indicates that reasoning about both resource and inventory
constraints is necessary (in different problem sets) to achieve high search performance.

Finally, it must be noted that no problem sets including inventories and inventory constraints have
been found in the literature. While this does not speak directly to the appropriateness of the prob-
lems generated in this chapter, it does prevent comparison among problems generated by other
researchers. Comparison, both of the problems themselves and of any algorithmic performance
differences among problem sets, is a valuable tool in the evaluation of the problem sets and algo-
rithms. Further work, with problem sets of widely varying parameters, is required to allow such
comparison.

6.12.4 Allowing Varying Inventory Constraints

One of the assumptions for the inventory propagators and texture measurements presented in this
chapter is that the inventory constraints are constant across the scheduling horizon. This is not
necessarily the case in a real work scheduling environment where it may be desirable to build
inventory levels (i.e., increase the minimum constraint) in anticipation of a surge in demand.

Varying inventory constraints do not pose a major problem to the techniques described here.
Recall that both the texture measurements and inventory algorithms are based around an ordered
list of events corresponding either to the estimated inventory levels, or their upper or lower
bounds. Varying inventory constraints can be incorporated by adding events to these lists corre-
sponding to the times at which the inventory constraint changes. Since the algorithms evaluate the
constraint value at each event point, the added events are all that is required. The complexity of
these algorithms will now not only depend on the number of producers and consumers of each
inventory, but also on the number of times that the inventory constraints change over the horizon.

6.13 Conclusions

In this chapter, we applied one of the extended texture measurements introduced in the previous
chapter (VarHeight) to the problem of scheduling with inventory production, consumption, and
storage constraints. In addition to the creation of a constraint-based representation of inventory
requirements, we also formulated two inventory propagators and a number of heuristics for inven-
tory scheduling, both texture-based and non-texture-based.

Our experimental results validate the use of the two inventory propagators presented in this chap-
ter. It was empirically shown that significantly better overall search performance can be achieved
by the use of texture-based heuristics. Texture measurements dynamically evaluate the criticality
of both resource and inventory constraints at each search state, and allow the heuristic to focus on
the constraint that is most critical. Heuristic commitments can then be formulated to expressly
address and reduce the criticality.

165

Chapter 7 Scheduling with Alternative

Activities

he final characteristic of realistic scheduling problems investigated in this dissertation is
the existence of activity alternatives. Typically, there are choices to be made in scheduling
among alternative resources on which to run an activity or among alternative process plans

(also called “routings”) of an order through a factory. While this characteristic is ubiquitous in
industry, there has been little examination of such alternatives in the constraint-directed schedul-
ing literature. In this chapter, we present a unified representation of activity alternatives that
addresses both alternative resources and alternative process plans. We show how the representa-
tion is incorporated into the constraint-directed scheduling framework developed in this disserta-
tion, and demonstrate how to extend existing heuristics and propagators to reason directly about
activity alternatives. Experimental results validate our approach and explore a number of varia-
tions in scheduling techniques.

7.1 Introduction

The scheduling problems we have investigated in this dissertation have had a static activity defini-
tion: each activity has to be scheduled on its specified resource in order to arrive at a solution. We
now expand the scope of constraint-directed scheduling techniques to deal with the case where
not only does the scheduler have a choice of when to execute an activity, but also the choice of not
to execute it at all.

Note that in this chapter we do not represent and reason about inventory production, consumption,
or storage as we did in Chapter 6. From an empirical perspective this limitation allows us to nar-
row the focus of this chapter to concentrate on the central problem of representation and reason-
ing about alternatives. In future work, then, our techniques can be broadened by the application to
inventories. In addition, from a practical perspective, the dependence of the inventory propagation
techniques on the availability of bounds on inventory level presents some problems in application
to alternative inventory reasoning. We return to this point in Chapter 8.

7.1.1 Motivation and Problem Definition

It is not uncommon in a realistic scheduling problem to have a number of choices that are not typ-
ically represented in constraint-directed scheduling approaches. In particular, there are two exten-
sions of typical research scheduling models that we examine in this chapter: alternative resources
and alternative process plans.

Alternative Resources. Given a facility in need of scheduling (e.g., a chemical plant) and diffi-
culty in creating schedules due to high competition for a resource, the company may attempt to

T

166

reduce contention by purchasing an additional resource that can run the same activities as the cur-
rent bottleneck resource. Using our chemical plant example, additional reaction vessels may be
purchased to both expand the capacity of the plant and to loosen the scheduling problem. The
existence of an alternative resource, however, introduces the need to decide which activities will
be performed on which resource. If the alternatives are truly identical, then it may be possible to
represent the alternatives with a single multi-capacity resource1 [Nuijten, 1994]. However, in
many cases the resources are not truly identical: one resource may incorporate new technology
and so is able to process activities more quickly, produce higher quality inventory, etc.

Alternative Process Plans. Depending on the flexibility of the production facility, it may be the
case that there are multiple ways to achieve the same goal. The different ways may result from
flexibility in the sequence of activities, separate processes that result in the same goal, or choices
within a process plan. Figure 96 displays four alternative process plans (PP1, …, PP4). The label
in the upper-left corner of each activity represents the activity’s resource requirement while the
lower-right label is the name of the activity. Thus, activities with the same name (e.g., A3 in PP1
and A3 in PP2) are the same. The first two process plans, PP1 and PP2, are simply different order-
ings of the same activities. The third process plan, PP3, is a completely different recipe while the
fourth, PP4, is a variation on the third: the first and last activities are identical, but the middle ones
are different. Only one of the alternative process plans needs to be executed. Therefore, the sched-
uling problem not only consists of deciding when to execute the activities but which of the alter-
native process plans will be executed.

In this chapter, we show how problems with alternative resources and alternative process plans
can be represented and reasoned about with alternative activities.

1. Even with identical resources, however, this is not always possible. If the activities leave some residue on the
resource there may be the requirement that the resource is cleaned out between incompatible activities. When a
clean-out is required, it is difficult to model the alternatives as a single resource as it is necessary to specify the
single real resource where the clean-out will occur. The investigation (and minimization) of clean-outs and their
generalization, changeovers, forms an important area of future work in constraint-directed scheduling.

Figure 96. Four Alternative Process Plans.

A1 A2 A3 A4 A5
R4 R5 R1 R3 R2

B1 B2 B3 B4
R1 R3 R5 R4

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

A1A2A3 A4A5
R4R5

R1 R3R2

C1 C5
R4 R3

PP1

PP2

PP3

PP4

167

7.1.2 Overview of Approach

Our approach to scheduling alternative activities is to represent and directly reason about the fact
that an activity present in the problem definition may not be present in a final schedule. To do this,
we introduce the notion of an activity’s probability of existence (PEX), informally defined to be
the probability that an activity will be present in the final solution (assuming such a solution
exists). PEX is a real number value on the interval [0, 1] with the standard probability interpreta-
tion. Each activity has a PEX variable that can be manipulated during the scheduling process. In
addition, the temporal network is modified so that PEX values and temporal values are propagated
among activities. One of the key components of this extension is a modification of the temporal
graph to explicitly represent alternative activities.

While detailed explanations are presented below, a general idea of the representational approach
can be seen in Figure 97. The alternative process plans (and sub-process plans) from Figure 96
have been modified by the incorporation of Xor nodes in the temporal graph.

7.2 Probability of Existence

The probability of existence (PEX) for an activity is the estimated probability at a point in the
search that an activity will be present in a final solution to the problem. The PEX value of an
activity is in the range [0, 1] with 1 indicating that an activity will certainly be part of the solution
and 0 indicating that it certainly will not.

7.2.1 Desired Functionality

Given a PEX variable on each activity, we need a method of maintaining consistent PEX values
among activities related by temporal constraints. Furthermore, given PEX values of less than one
during the search, we also need to maintain the temporal aspects of the network correctly, given
that some of the activities may later be removed. The small example in Figure 98 serves to illus-
trate these two challenges. The figure represents a single process plan with a choice of activities:

Figure 97. Modification of the Temporal Network to Directly Model the Alternatives
Implicit in Figure 96.

A1 A2 A3 A4 A5
R4 R5 R1 R3 R2

B1 B2 B3 B4
R1 R3 R5 R4

C2 C3
C4

C5

R1 R2
R5

R3

A1A2A3 A4A5
R4R5

R1 R3R2
XOR

XOR

XOR XORC1
R4

168

either A1 can be followed by A2, A3, A4, and then A5 or A1 can be followed by A6, A7, and then
A5. The duration of each activity is indicated by the number in its lower left corner.

Assuming that A1 and A5 must be executed, we assign their PEX values to 1. Further, assuming
that there is no information indicating which alternative path is preferred, we split the probability
of existence equally between the two choices. Therefore, A2, A3, A4, A6, and A7 have initial PEX
values of 0.5. The PEX propagation must ensure that if we were to make an arbitrary PEX assign-
ment, such as assigning the PEX value of A3 to 1, the PEX values of the other related activities
would be appropriately reset. In our example, the PEX variables of A2 and A4 should also be set
to 1, and the PEX variables of A6 and A7 should be set to 0. Note that we are working within the
options provided by the original definition of the process plan. While it may be logically (or even
physically) possible to execute A3 without A2, the process plan defines one path from A1 to A5
that includes A3. Therefore, if A3 is to be executed (which is indicated by assigning its PEX vari-
able to 1), then the other activities in that single path (A2 and A4) must also be executed. Simi-
larly, the activities in an alternative path (A6 and A7) must not be executed.

The second challenge is the maintenance of temporal information in the graph. Returning to the
original starting point with Figure 98 (i.e., before assigning the PEX of A3 to 1), the standard tem-
poral propagation algorithm (which does not take into account the possibility that an activity in
the network may later be removed) would derive the start time window of A1 to be [0, 45]. The
latest start time of A1 is found by the calculation of the longest path from A1 to A5 which happens
to include A6 and A7. If A1 were to start at time point 46, and A6 and A7 were to be executed, A5
would end at time point 101, which is after the end of the horizon. The difference in this graph,
however, is the presence of the alternative path from A1 to A5. It is possible for A1 to start at time
46 if the path going through A2, A3, and A4 is chosen. In fact, with this choice, A1 can consis-
tently start as late as time point 55. Clearly, then, we need to modify the temporal propagation (or
the temporal network) to account for the possibility that some activities may not be present in the
final solution.

Actually, the challenge is slightly greater as we would also like to be able to do the following.
Assume that the two alternatives in Figure 98 are still possible and further assume that through
some other scheduling decision the earliest start time of A1 is increased to 46. We would like our
temporal propagation to be able to detect that such a change makes one of the alternative paths
inconsistent: there is no way that A6 and A7 can execute consistently if A1 starts at time point 46
or later. In other words, we would like our temporal propagation to be able to find implied PEX
commitments. In this case the derived PEX commitment sets the PEX variables of A6 and A7 to 0.

Figure 98. A Process Plan with a Choice of Activities. The duration of each activity is
shown in the lower left corner of the activity.

A6

A5

A3

A1

A4A2

A7

10 5 5

15 10

25 5

Horizon [0, 100]

XOR XOR

169

7.2.2 Limitations on the PEX Implementation

Each activity in the temporal graph has a PEX variable; however, the variable is not a true domain
variable in the usual CSP sense. It is not the case, under our interpretation of PEX, that in a final
solution the variable can take on any value in the [0, 1] domain: in a solution, all PEX values must
be either 0 or 1. In addition, during search we always want the PEX variable to have a single value
representing the current estimated probability of existence, rather than a domain of values as is
typical of true domain variables.

The semantics of our interpretation of PEX place a number of requirements on the PEX variables
during search. The reasoning behind these requirements will be clear as the propagation and
search techniques are described below:

• At each search state, a PEX variable has a value on the domain [0, 1].

• In a constructive search, if, in search state, A, a PEX variable is set to either 0 or 1, that value
must be maintained in all search states below A. If the search backtracks to a state before A,
then the assignment of the PEX variable is undone as with normal domain variables.

• If a PEX variable has not been assigned to either 1 or 0, it varies during search on the domain
[0,1] according to the PEX propagation algorithm presented below.

In addition, there are a number of limitations that we have placed on the PEX representation in
order to simplify the implementation for our model of alternative activities. Relaxation of these
limitations form a significant topic for future work. See Chapter 8 for further discussion.

• As noted above, all PEX variables must have a value of 0 or 1 in a final solution.2

• The only commitments that can directly be made on a PEX variable are to assign it to either 0
or 1. PEX propagation will then reset the PEX values of other activities to a value on the [0, 1]
interval. For example, this limitation prevents a heuristic commitment technique from posting a
constraint that a particular PEX variable has a value of 0.75.

• Each choice that remains to an alternative is equally likely: we assume that we do not have any
external knowledge that biases the choices at a XorNode. For example, for an activity with
three possible alternative resources, the PEX value of each (assuming the activity itself must
execute) is 0.33. If one of the alternatives is removed, the two remaining alternatives each have
a PEX value of 0.5.

7.3 Adding PEX to the Temporal Network

In this section, we present the PEX representation and discuss extensions to the temporal activity
network to incorporate PEX variables and propagation. The following two sections then present,
respectively, the details of PEX propagation (Section 7.4) and the details of temporal propagation
within the modified temporal network (Section 7.5).

2. This is not necessarily the case with a different interpretation of PEX. For example, in a situation where the dura-
tion of an activity is linked to the amount of inventory it produces, PEX can be interpreted as the portion of the
full act that will be executed. For example, if a basic activity produces 30 units of inventory by running for 10
hours, a PEX of 0.5 would represent an activity that runs for 5 hours and produces 15 units of inventory. While
alternative interpretations and uses for the PEX variable exist, in this dissertation we will limit ourselves to the
probability of existence interpretation and so have adopted that as the name of the concept.

170

7.3.1 Extending the Temporal Graph

Figure 99 shows the TemporalNode class hierarchy that was created to replace the existing Activ-
ity class. Note that the Activity class is now a sub-class of AndNode. The TemporalGraph has
multiple instances of AndNodes, XorNodes, and Activities connected via temporal constraints. In
terms of temporal and PEX propagation, an Activity is identical to an AndNode.

7.3.1.1 AndNode

The AndNode has start time and end time temporal variables just as an Activity does. There are
two semantic components in the AndNode corresponding to the functionality of the AndNode in
temporal and PEX propagation. From a PEX perspective, all the TemporalNodes linked to an
AndNode exist in a solution if the AndNode exists. Similarly, if one of the non-XorNodes directly
linked to an AndNode exists in a solution, then the AndNode must exist. In terms of PEX values,
therefore, all non-XorNodes directly connected to an AndNode must have the same PEX value as
the AndNode itself. Since all the nodes an AndNode is connected to are either going to be present
in a solution, or all the nodes, including the AndNode itself, are going to be removed, it is valid to
perform standard temporal propagation. Figure 100 displays an AndNode connected via prece-
dence constraints to a number of activities. In a consistent network all the displayed nodes must
have the same PEX values. In terms of temporal propagation, the AndNode must end before the
minimum latest starting time of A4 and A7, and must start after the maximum earliest end time of
A1, A6, and A3.

Figure 99. Extensions to the Activity Hierarchy to Implement PEX Functionality.

TemporalNode

XorNodeAndNode

Activity

Figure 100. A Sample Temporal Sub-graph with an AndNode.

A6

A3

A1
A4

A7

5

5
15

25

5

AND

171

7.3.1.2 XorNode

As the name indicates, the logical semantics of a XorNode are such that if the XorNode itself is
present in the final solution then one and only one of the nodes directly connected upstream to the
XorNode can also be present. Similarly, one and only one of the nodes directly connected down-
stream can be present. Also, if a node directly connected upstream (or downstream) to a XorNode
exists in a solution, so must the XorNode. From a PEX propagation perspective, these semantics
mean that, in a consistent network, the PEX value of the XorNode is equal to the sum of the PEX
values from the nodes directly connected upstream and the XorNode PEX value must also be
equal to the sum of the PEX values from the nodes directly connected downstream.3

As noted above, for the purposes of this dissertation, we further limit the XorNode behaviour by
specifying that all nodes directly connected upstream (or downstream) must have equal PEX val-
ues. If a XorNode has a PEX value of x, k upstream and l downstream links, the PEX value of
each directly connected upstream node must be x/k and the PEX value of each directly connected
downstream node must be x/l. The only exception to the rule of even division is when the
upstream or downstream node has a PEX variable assigned to 0 or 1. If a neighboring (wolog)
upstream node already has a PEX value of 0, it is not included in PEX propagation: the PEX value
at the XorNode is simply divided among the upstream nodes whose previous PEX was greater
than 0. Similarly, if the neighboring (wolog) upstream node has a PEX value of 1, all the other
directly linked upstream nodes must have a value of 0 and so no division is done: the XorNode
acts as if it only has a single upstream node.

Figure 101 represents a small temporal graph with XorNodes, X1, X2, and X3. This graph, for
example, might be used to represent an alternative resource problem. Assuming that the PEX vari-
able of X1 and X3 have been set to 0.5 due to propagation from the rest of the network (not
shown), the rest of the temporal nodes have the PEX values shown (above or below each node).

From a temporal perspective, the fact that only one of the upstream and one of the downstream
links are to be present in a solution (if the XorNode itself is present) means that temporal propaga-
tion is different from that of the AndNode. A XorNode must end before the maximum latest start
time of all the nodes directly connected downstream while it must start after the minimum earliest
end time of all activities connected upstream. Assuming that the nodes between X1 and X3 must

3. The OPIS scheduler used a similar, though more restrictive, implementation of a XorNode to represent alterna-
tive resources [LePape and Smith, 1987].

Figure 101. A Temporal Graph with XorNodes.

A6

A5

A3

A1
A7

5

15

10

25

5

Horizon [0, 100]

X1
X2

X3

0.5

0.25

0.25

0.50.5

0.167

0.167

0.167

172

be scheduled within a scheduling horizon of [0, 100], Table 7 displays the start and end time win-
dows of each node.

7.3.1.3 Illegal Temporal Networks

We have extended our temporal network representation to allow definition of AndNodes and Xor-
Nodes. Not all temporal networks that are expressible are valid networks, however. The basic
requirement for legality is that for any XorNode, X, in the graph with k upstream and l down-
stream links (k, l > 1), there must be:

• a corresponding XorNode, X-, upstream of X with k downstream links, and

• a corresponding XorNode, X+, downstream of X with l upstream links.

Figure 102 displays a number of illegal temporal graphs, while Figure 103 displays a number of
legal ones.

Temporal network B in Figure 102 deserves additional explanation. Clearly network B breaks our
basic requirement for corresponding linkage of XorNodes. The first XorNode has 3 downstream
links while there are no other XorNodes in the network with 3 upstream links. Intuitively, the rea-
son that this network is illegal is an ambiguity for PEX values. What should the PEX values be for
the middle three activities? Starting from the upstream activity, we would assign a PEX of 1 to it
and to the first XorNode. Following the PEX propagation rules for XorNodes we would then
assign each of the middle three activities a PEX value of 0.33. Consider, however, starting from

Node Start Time Domain End Time Domain

X1 [0 90] [0 90]

A6 [0 70] [25 95]

A1 [0 80] [15 95]

A3 [0 90] [5 95]

X2 [5 95] [5 95]

A5 [5 90] [15 100]

A7 [5 95] [10 100]

X3 [10 100] [10 100]

Table 7. The Time Windows for the Activities in Figure 101.

Figure 102. Examples of Illegal Temporal Networks.

X

X

Activity XorNode

A: No matching XorNode

X

B: Unequal XorNode Linkage

X

X

173

the last node and doing the PEX propagation upstream. The final XorNode will have a PEX of 1.
The two nodes directly connected to the final XorNode (i.e., the penultimate XorNode and the
bottom activity) would then be assigned a PEX of 0.5 each and then propagating from the penulti-
mate XorNode, the top two middle activities would have a PEX of 0.25 each. The ambiguity over
the PEX values is the reason that network B is illegal and therefore the reason for the “matching
links” requirement for XorNodes in a legal temporal network.

7.4 Propagating PEX

The basic PEX propagation algorithm is achieved through the PEX propagation behaviour at each
temporal node. As described above, at an AndNode (or Activity), A, all the non-XorNodes
directly linked to A must have the same PEX value as A. Therefore, when PEX propagation enters
an AndNode, the local PEX value can be modified and the new local value is propagated to all
neighboring nodes. For XorNodes, the sum of the PEX values for all nodes directly connected
upstream must be equal to the sum for all nodes directly connected downstream which in turn
must be equal to the PEX value of the XorNode.

To present the PEX propagation algorithms, we distinguish two cases. The first, initial propaga-
tion, begins with a temporal network where all PEX values are unassigned, and consistently
assigns all the PEX variables in the network. The second case is where consistent PEX values
exist for all activities and then some change is made (i.e., a commitment is asserted). A change
may modify the PEX values, and so we need to re-propagate and recreate the consistent network.

7.4.1 Initial Propagation

An unspoken assumption through our discussion above is that any temporal node that either has
no upstream links or no downstream links must have a PEX value of 1. Clearly, given our tempo-
ral networks, if a node has either no upstream or no downstream links it cannot be subject to a
XorNode and therefore must be present in the final solution.

Figure 103. Examples of Legal Temporal Networks.

X A

X X

X XX X

X X

X XX

X

X

X X

X XX

X A

Activity XorNode AndNode

174

As indicated in the previous section, a requirement of a legal temporal network is that, regardless
of starting with all nodes with no upstream links or all nodes with no downstream links, the PEX
values assigned to each node in the network will be uniquely determined. Therefore, we can sim-
ply choose one of these options. We have arbitrarily chosen to perform the initial propagation by
assigning all nodes with no upstream links to a PEX of 1 and then propagating downstream.

Pseudo-code for the initial propagation algorithm is given in Figure 104. Lines 7, 11, and 20 make
use of active nodes and active links. An active link is a binary temporal constraint such that the
PEX value of each of its nodes is not assigned to 0. An active node is a node connected via an
active link.

Recall that a topological sort (line 4) in an acyclic, directed network is an ordering of the nodes
such that if there is a path from node Y to node X in the graph then Y < X in the sort order
[Roberts, 1984]. In our case, the topological sort establishes that if Y is upstream of X in the tem-
poral graph, then Y < X in the sort order. In the loop beginning at line 5, therefore, we are guaran-
teed that all upstream nodes already have their PEX values assigned.

The complexity of the initial propagation given n nodes and m temporal constraints is O(max(m,
n)). The first loop (line 1) may visit each activity O(n), the topological sort (implemented with a
depth-first search) is O(max(m, n)) as all nodes and constraints must be visited, and the final loop
(line 5) is also O(max(m, n)).

There is the possibility that the original temporal network will contain unary PEX constraints that
assign or limit the PEX value of an internal node. Rather than incorporating the unary PEX con-
straints into the initial propagation, we perform the algorithm in Figure 104 and then transition to
the incremental propagation for each of the unary PEX constraints. It is likely that the complexity
and/or average run time of the initial propagation algorithm can be improved by taking into
account unary PEX constraints during the initial propagation. We have not investigated such an
initial propagation algorithm.

Figure 104. Pseudocode for the Initial PEX Propagation Algorithm.

1: for each temporal node with no upstream links
2: assign PEX = 1
3:
4: create downstream topological sort of temporal nodes
5: for each temporal node with unassigned PEX in sort order
6: if the node is an AndNode OR Activity
7: upstreamNode = any directly connected, active upstream node
8: set PEX = downstreamPEXValue(upstreamNode)
9: if the node is an XorNode
10: set PEX = 0
11: for upstreamNode = all directly connected, active upstream nodes
12: set PEX += downstreamPEXValue(upstreamNode)
13:
14:
15: procedure downstreamPEXValue(Node node)
16:
17: if the node is an AndNode OR Activity
18: return PEX
19: if the node is an XorNode
20: return (PEX / number active downstream links)

175

7.4.2 Incremental Propagation

Incremental PEX propagation starts with a consistent network with respect to the PEX values and
some change to a PEX value in the network. The change is represented by the addition of a new
unary PEX constraint. Recall that we limit the new PEX constraints to be assignments of PEX
variables to either 0 or 1.

7.4.2.1 Example of Incremental PEX Propagation

Before presenting the algorithm, it is useful to examine an example, especially to understand the
requirement for “cascading” PEX propagation. Figure 105 presents a temporal network. Assum-
ing X1 and X7 both have an initial PEX value of 1 and that, after initial propagation, we add the
unary PEX constraint stating that the PEX value of activity A1 is 1, Table 8 shows the PEX values
of a subset of nodes from Figure 105 both before and after the constraint is added to the graph and
incremental PEX propagation is performed.

To make these reassignments, a number of cascading PEX propagations must be performed.
Beginning at A1, we assign its PEX value to 1, and then search upstream and downstream for a
pair of XorNodes. The graph in Figure 105 shows that the XorNodes can be nested: the alternative
represented by X3 and X4 is nested within the alternative represented by X2 and X6 which in turn
is nested within the alternative represented by X1 and X7. The initial step of the PEX propagation
is to identify the inner-most XorNodes relevant to the node whose PEX is being assigned. Having
identified these nodes (X3 and X4, in this case) we propagate from A1 upstream to X3 and down-
stream to X4. This propagation assigns a PEX value of 1 to both X3 and X4. We propagate this
PEX downstream along all paths from X3 to X4 following the same rules as with initial propaga-
tion. In this case the propagation sets the PEX of A2 to 0.

This is the initial application of incremental PEX propagation. If, in the initial state, the PEX val-
ues of X3 and X4 had already been 1, we would be finished PEX propagation at this point. How-
ever, the propagation has reset the PEX values of X3 and X4, and therefore we need to continue
the propagation. We call this continuation a cascade of PEX propagation. The cascade is, how-
ever, relatively straightforward as the only difference from the first round of incremental propaga-

Figure 105. An Example of Cascading PEX Propagation.

X

X2

X8 X9

X4 X5
X3

X6

Activity

XorNode

X1

X7

Arbitrary
Legal
Subgraph

A1

A2

A4

176

tion is the nodes that form the starting point. Rather than starting with A1, we now start with the
inner-most XorNodes from the previous iteration. In our example, we begin with X3 and identify
the inner-most XorNode upstream which is X2. Also starting from X4, we identify the inner-most
downstream XorNode which is X6.4 As with the initial iteration, we now reset the PEX values of
the identified XorNodes (both to 1 in this case) and PEX propagate downstream from X2 to X6.
The second iteration of PEX propagation will correctly reassign the PEX value of X5 (to 1), the
PEX values of the activities between X4 and X5 (both to 0.5), and the PEX values of all nodes
along any path from X2 to X9 (all to 0). One more cascade of PEX propagation is necessary to
arrive at our final PEX values. The final cascade sets the PEX values of all nodes in the “Arbitrary
Legal Subgraph” to 0.

7.4.2.2 The Details

Figure 106 and Figure 107 present the pseudo-code for the incremental PEX propagation algo-
rithm. As introduced above, the main components of this procedure are the identification of the
inner-most enclosing XorNodes followed by the reassignment of PEX within the subgraph
between the identified XorNodes.

Identifying the Enclosing XorNodes. The technique for identifying the upstream enclosing Xor-
Node is analogous to that used in identifying the downstream XorNode. The only difference, of
course, is a reversal of direction of the constraints. Therefore, we will present the downstream
identification routine. The basic purpose of the routine is to find the closest downstream XorNode
that encloses the starting node (e.g., downFrom in Figure 106). There are a number characteris-
tics of the downstream XorNode and a legal temporal graph that are used in this identification.

4. Note that the inner-most XorNode downstream of X4 is not X5 because the X3-X4 alternative is not nested within
the X4-X5 alternative. We return to this slight intricacy below.

Node Initial PEX Values PEX Values After Commitment

X1 1.0 1.0

X2 0.5 1.0

A4 0.25 0

X8 0.25 0

X9 0.25 0

X3 0.25 1.0

A1 0.125 1.0

A2 0.125 0

X4 0.25 1.0

X5 0.25 1.0

X6 0.5 1.0

X7 1.0 1.0

Table 8. The PEX Values for a Subset of the Nodes in Figure 105.

177

Figure 106. High-level Pseudocode for the Main Procedure of the Incremental PEX
Propagation Algorithm.

1: procedure incrementalPEX(Node upFrom, Node downFrom)
2: (upXor, upTopoSort) = findUpstreamXor(upFrom)
3: (downXor, downTopoSort) = findDownstreamXor(downFrom)
4:
5: propagatePEXUpstream(upFrom, upTopoSort)
6: propagatePEXDpdownstream(downFrom, downTopoSort)
7:
8: propagatePEXBetweenXors(upXor, downXor)
9:
10: return upXor, downXor

Figure 107. Pseudocode for Identifying the Downstream XorNode during PEX
Propagation.

1: procedure findDownstreamXor(Node node)
2: nestCount = 0
3: if (node is a XorNode with multiple active downstream links)
4: nestCount = 1
5:
6: downXor = recursiveFindDownstreamXor(node, topoSort)
7: return downXor, topoSort
8:
9:
10:
11: procedure recursiveFindDownstreamXor(Node node, NodeList topoSort)
12: if node has already been visited
13: return NULL
14: else if identifyDownstreamXor(node)
15: topoSort.push(node)
16: return node
17: else
18: for downNode = each downstream neighbor
19: downXor = recursiveFindDownstream(downNode, topoSort)
20:
21: topoSort.push(node)
22: return downXor
23:
24:
25:
26: procedure identifyDownstreamXor(XorNode node)
27: found = FALSE
28: if (node has multiple active upstream links)
29: if (nestCount == 0)
30: found = TRUE
31: else if (node has multiple active downstream links)
32: nestCount--
33: else if (node has multiple active downstream links)
34: nestCount++
35:
36: return found

178

1. The downstream XorNode must have multiple active upstream links. This requirement is to
avoid identifying a XorNode that originally enclosed the alternative, but due to search commit-
ments no longer represents an alternative. Imagine that given the graph in Figure 105, some
commitment has assigned all the nodes between X3 and X5, inclusive, to PEX values of 0. Fur-
ther imagine a subsequent commitment that sets the PEX value of activity A4. The inner-most
XorNodes in this state are X1 and X7. Because the alternative represented by X2 and X6 has
already been determined, X2 and X6 are no longer enclosing XorNodes for A4.

2. Any path downstream from a node must pass through its enclosing downstream XorNode (if it
has one). This is due to the construction of a legal temporal network.

3. Any downstream path from a node may contain XorNodes that include further alternatives. In
the second iteration of our example PEX propagation routine (when identifying the enclosing
XorNode downstream of X4 in Figure 105), the alternative represented by X4 and X5 is con-
tained within the path from X4 to X6 and so to identify X6 as the correct downstream XorNode,
we must be able to deal with such a situation.

Using these three characteristics, the pseudo-code presented in Figure 107 identifies the down-
stream XorNode from the passed-in node. This code returns the downstream XorNode together
with a topological sort of the nodes between the passed in node and the XorNode. The find-
DownsteamXor function does the initial call to recursiveFindDownstreamXor which
implements a depth-first search until the downstream XorNode is identified. The identify-
DownstreamXor procedure manages the counting of XorNodes in order to ensure the one iden-
tified is truly the inner-most enclosing XorNode.

Propagating PEX to the XorNodes. Once the enclosing pair of XorNodes has been identified,
PEX propagation is done using the topological sorts created during the search for the XorNodes.5

Given the downstream topological sort, we can simply follow the algorithm in Figure 104 to prop-
agate between the node that has been assigned a PEX value and the downstream XorNode.

Regardless of the temporal network, when we reach the downstream XorNode we are guaranteed,
by the definition of an enclosing XorNode, that the PEX value propagated to the XorNode will be
equal to the value assigned to the original node by the new PEX constraint. If the value is 0, the
PEX value at the XorNode remains unchanged. If the value is 1, the PEX value of the XorNode is
set to 1 regardless of its previous value.6

Propagating PEX between the XorNodes. The final step, assuming there is no PEX cascade, is
to re-propagate the values for the network between the two enclosing XorNodes. This, again, is
simply done using the pseudo-code in Figure 104.

Identifying a Cascade. After an iteration of PEX propagation, it is necessary to decide if a cas-
cade of PEX propagation should occur. The simple criterion to establish the necessity of a cascade
is the change in the PEX value of the enclosing XorNodes. If the PEX value of the enclosing Xor-
Nodes is greater than it was before the propagation, it is necessary to perform a cascade of PEX
propagation.

5. As the upstream propagation is symmetrical we will again, without loss of generality, discuss only the down-
stream propagation.

6. If its previous value was less than 1, a cascade of PEX propagation will later be triggered.

179

7.4.2.3 Complexity

At worst, PEX propagation will require O(n) cascades where n is the number of temporal nodes in
the graph, since, in the extreme case, there can be O(n) nested alternatives. Each cascade incurs a
worst-case complexity of O(max(n, m)) by the same arguments used for initial propagation com-
plexity. Therefore, the overall worst-case complexity is O(max(n2, nm)).

7.5 Temporal Propagation with PEX

There are three differences in temporal propagation when XorNodes are present in the network.

1. Propagation through a XorNode is different than propagation through an Activity since a Xor-
Node represents a different temporal relationship.

2. As with normal temporal propagation, it is possible to derive a dead-end in the search by emp-
tying the domain of a variable during temporal propagation. When there are nodes with
PEX < 1 in the graph, such a state may not be a dead-end, but rather may indicate an implied
PEX commitment.

3. Temporal propagation needs to be performed after PEX propagation.

7.5.1 Temporal Propagation through a XorNode

The temporal propagation through a XorNode is straightforward given the temporal semantics of
a XorNode. A XorNode enforces the temporal relationship that it must start at the same time as or
after the end time of at least one of its upstream neighbors, and it must end at the same time as or
before the start time of at least one of its downstream neighbors. During downstream propagation
therefore the XorNode sets the lower-bound on its start time domain based on the minimum earli-
est finish time of its upstream neighbors. This start time is then propagated further downstream.
Similarly, during upstream propagation the upper-bound on the end time of a XorNode is set
based on the maximum latest start time of its downstream neighbors and this value is further prop-
agated upstream.

Another perspective from which to view the temporal relationship enforced by the XorNodes is to
examine the pairs of XorNodes. A pair of XorNodes that correspond to an alternative enforce a
minimum interval of time between themselves. This minimum interval corresponds to the length
of the shortest path between them (where path length is computed as the sum of the minimum
durations of the temporal nodes on the path).

7.5.2 Deriving Implied PEX Commitments from Temporal Propagation

In standard temporal propagation algorithms, if it is discovered that a variable’s domain has been
emptied, a dead-end is derived. When PEX variables are present, emptying a domain may not be a
dead-end. Rather it may indicate that a particular PEX variable must have a value of 0.

When a domain is emptied in temporal propagation, the PEX value of the temporal node with the
emptied domain is examined. If the PEX value is less than 1, the node is marked to indicate that
the PEX value has been determined to be 0 and temporal propagation does not continue from that
node. After temporal propagation, a separate propagation algorithm examines all the temporal
nodes to determine if any have been marked to indicate the derivation of an implied PEX con-
straint. If such a temporal node is found, a new unary PEX constraint is asserted, and the usual
PEX propagation and the temporal propagation that follows PEX propagation (see below) is done.

180

If the domain of a temporal node with PEX of 1 is emptied, a dead-end is derived as in the stan-
dard temporal propagation. To see why this is the case, imagine emptying the start time domain of
an activity, A, with a PEX value of 1. By definition, it cannot have any enclosing XorNodes.
Assume that the presence of some activity, B, with a PEX value of less than 1 caused the empty
domain. The temporal propagation from B to A must occur through one of the XorNodes enclos-
ing B. If that propagation empties A, then it must be the case that not only B but all its alternatives
are inconsistent with A. Therefore, it is a true dead-end. Note that this reasoning holds even if
activity B is nested inside a number of alternatives: the temporal propagation from B to A must
pass through the outer-most XorNodes enclosing B. This XorNode, X, must have a PEX value of
1. Since all the alternatives of X are inconsistent with A, we have a true dead-end.

7.5.3 Temporal Propagation After PEX Propagation

After the PEX propagation described in Section 7.4, possibly including a cascade of PEX propa-
gation, temporal propagation must be performed to re-establish a temporally consistent network.

Returning to our example in Figure 105, recall that a PEX commitment assigned activity A1 a
PEX value of 1. This resulted in three cascades of PEX propagation with the following three sets
of enclosing XorNode pairs: X3-X4, X2-X6, and X1-X7.

Following PEX propagation, temporal propagation must be performed once for each PEX propa-
gation cascade. Starting from the first cascade, temporal propagation must proceed upstream from
the first upstream XorNode (e.g., X3) and downstream from the first downstream XorNode (X4).
It is then necessary to perform temporal propagation upstream from the second upstream Xor-
Node (X2), downstream from the second downstream XorNode (X6) and finally from the third
pair of XorNodes (X1 and X7). These cascades of temporal propagation must be done for each
cascade of PEX propagation to ensure a temporally consistent network.

Figure 108 presents an example of a network where a cascade of temporal propagation is neces-
sary to ensure consistency. Assume that a newly posted PEX constraint assigns the PEX variable
of activity A1 to 1. Due to the temporal relationship already enforced by the XorNodes X1 and X2,
there is no need for propagation upstream from X1 or downstream from X2; these nodes already
enforce an interval of at least 10 time units between them. However, the PEX propagation also
assigns activity A3 to a PEX value of 0. This means that the time gap between X3 and X4 must
now be increased to at least 10 time units. While A3 was still a possible activity, 5 time units was
a consistent interval of separation between X3 and X4; however, now the gap must be at least 10

Figure 108. An Example of Cascading Temporal Propagation.

X

X3

X2X1

X4

Activity XorNode

X5
X6

Arbitrary
Legal
Subgraph

A1

A2

10

15

A35

Arbitrary
Legal
Subgraph

Arbitrary
Legal
Subgraph

181

time units to incorporate A1. So while it was not necessary to temporally propagate from the first
pair of XorNodes, it is necessary to temporally propagate from the second pair and possibly also
the third pair (X5 and X6). It is also possible to create temporal graphs where propagation is
required from arbitrary pairs of the XorNodes in the PEX propagation cascade.

Note that while the temporal propagation occurs after all PEX cascades have been completed, it is
necessary, during PEX propagation, to record the pairs of enclosing XorNodes for later use by
temporal propagation. This is achieved with a queue of XorNode pairs populated during PEX
propagation and used during temporal propagation.

7.5.4 A Note on Temporal Propagation Algorithms

These techniques for temporal propagation in the presence of PEX variables rely on non-PEX
temporal propagation algorithms. The ODO shell has a variety of temporal propagation algo-
rithms all of which have the same worst-case complexity, but vary in average-time performance.
Rather than using the temporal propagation algorithm that appears relatively standard in the tem-
poral network research [Cesta and Oddi, 1996; Dechter et al., 1991], we use an algorithm that per-
forms upstream and downstream propagation separately and makes use of the GOR algorithm
[Cherkassky et al., 1994] for the incremental construction of the depth-first search tree.

The PEX and temporal propagation algorithms depend on identification of the “direction” of tem-
poral constraints: it must be known whether a constraint is an upstream or a downstream con-
straint. The standard temporal propagation algorithms in other scheduling systems do not appear
to make the distinction between upstream and downstream constraints at a node, and furthermore,
this distinction becomes suspect with more complex binary temporal constraints. For example, if
A2 must execute while A1 is executing, is A1 upstream or downstream of A2? The question arises
therefore about incorporating these propagation techniques into other systems.

For most of the PEX and temporal propagation presented above, the distinction between upstream
and downstream constraints is not crucial to the correctness of the algorithm, but rather reduces
the average run-time complexity. For example, to find the upstream and downstream XorNodes
from a temporal node we follow any path upstream and then follow any path downstream. If we
did not make the distinction between upstream and downstream constraints, the XorNodes could
still be found; however, it might be the case that all the constraints at a node had to be followed in
order to identify the enclosing XorNodes. Recall that in a legal network, we are guaranteed that
any path of temporal constraints from a node must pass through one of its enclosing XorNodes.
The algorithm therefore would simply find the first XorNode on each path and stop when the Xor-
Nodes found were different nodes.

The logical semantics of a XorNode, however, requires a distinction between the upstream and
downstream constraints. In a final solution, a XorNode must enforce the condition that only one
of its upstream neighbors exists (that is, has a PEX value of 1) and only one of its downstream
neighbors exists. It seems, therefore, that to incorporate PEX into the standard temporal network
algorithms, it will be necessary to add some notion of upstream and downstream constraints.
However, it is only the XorNode that must make that distinction. Therefore, it is believed that the
changes to the standard propagation techniques can be encapsulated within the behaviour of the
XorNodes.

182

7.6 Incorporating PEX in Scheduling Heuristics

With the ability to represent and propagate the fact that some temporal nodes may not be present
in a final schedule, it is necessary to extend the heuristic search techniques to allow direct reason-
ing about an activity’s probability of existence.

7.6.1 Texture-based Heuristics

The obvious extension is to expand the type of commitments that a heuristic can make to include
setting the PEX variable of an activity. This, indeed, is the basic extension to existing heuristics.
Texture-based heuristics, as have been developed in this dissertation, are based on an analysis of
the constraint graph to identify the critical points where a commitment should be made, followed
by a commitment that attempts to decrease that criticality. PEX values represent potentially
important search information and therefore should be embedded in the texture measurements to
ensure that they are taken into account in the estimation of criticality at a search state.

The PEX variables affect texture-based heuristics in two ways. First, it is desirable to incorporate
the PEX variables into the underlying texture measurement estimation technique. The criticality
of an activity may be very different if it has a 0.125 probability of executing than if it has a 0.5
probability. Second, once textures have been calculated, the presence of PEX variables expands
the types of heuristic commitments that can be made. Rather than sequencing the most critical
pair of activities, perhaps setting the PEX variable of one of the activities to 0 is a better heuristic
commitment.

7.6.1.1 Adding PEX to Texture Curves

The sole modification to texture measurements to incorporate PEX variables is to apply a vertical
scaling factor to the individual activity demand. If the PEX value of activity A is 0.5, the individ-
ual demand at any time point t, estA ≤ t < lftA, is half what the demand would be if the PEX value
was equal to 1. This modification fits with our semantic interpretation of individual demand to be
the probabilistic demand of an activity at a time point. Because we interpret a PEX value as an
activity’s probability of existence, an activity that has only a 50% likelihood of existing has half
the probabilistic demand of an identical activity that will definitely exist. This is the same way
that the probability of existence of an activity is taken into account in the KBLPS scheduler
[Fox, 1999].

Recall that the individual demand (Section 4.3.2.1), ID(A,R,t), is (probabilistically) the amount of
resource R, required by activity A, at time t. It was calculated in Equation (14) (Chapter 4, p. 56).
The modification to this calculation that incorporates PEX, IDPEX(A,R,t) simply multiplies by
APEX, the PEX value of activity A:

 (36)

Clearly, when the PEX value is equal to 1, IDPEX is equal to ID.

This modification of texture measurements represents a generalization of the work presented in
Chapter 4 and Chapter 5. Two factors achieve this generalization:

IDPEX A R t, ,() APEX I× D A R t, ,()=

183

1. Recall that the four variations on texture measurements (SumHeight, VarHeight, JointHeight,
and TriangleHeight) calculate the individual demand curve in exactly the same way. The differ-
ence among the variations concerns the method of aggregation of the individual curves. The
change to the texture measurement calculation resulting from the incorporation of PEX is lim-
ited to the calculation of the individual demand curve of each activity. Therefore, reasoning
about PEX can be done with each of the texture measurement variations.

2. In the standard job shop problem all activities have a PEX value of 1. In the modified calcula-
tion of individual activity demand, the demand of an activity with a PEX value of 1 is identical
to the individual demand curve presented in Chapter 4. Therefore, when applied to job shop
scheduling problem, the texture measurements (and heuristic commitments) that incorporate
PEX will be identical to the texture measurements that do not incorporate PEX.

7.6.1.2 New Heuristic Commitments

Independent of the texture measurement used, the basic texture algorithm remains the same (with
IDPEX replacing ID) up to the point where a commitment is chosen. That is, the individual
demands are calculated and aggregated, and the resource and time point with highest criticality is
identified. In non-PEX texture-based heuristics, the two most critical activities on the critical
resource that were not already sequenced were then identified. This identification was done on the
basis of the highest individual demand for the resource at the critical time point (Section 4.3.2.1).
A commitment sequencing these two activities was then created and asserted (Section 4.3.2.2).

To incorporate PEX values, we follow the same intuition as in our non-PEX, texture-based heuris-
tics: make a commitment that will tend to most reduce the criticality of the most critical resource.
Given, the most critical resource, R*, and the most critical time point, t*, we identify the activity
on R* with the highest individual demand at t*. If the most critical activity has a PEX value of 1,
it must execute on R* and so the heuristic commitment is the same as in our non-PEX heuristics.
The critical activity is sequenced with the next most critical activity that also has a PEX of 1.

Consider the situation where the most critical activity has a PEX value of less than 1. The most
critical activity on R*, therefore, has alternatives and the greatest reduction in the criticality of R*

at t* will result in choosing to execute one of those alternatives rather than the critical activity.
Because we follow a least commitment approach, rather than explicitly choosing one of those
alternatives, we simply choose not to execute the critical activity by posting a heuristic commit-
ment setting its PEX value to 0.

Note that such a commitment will increase the PEX value of the alternatives to our critical activ-
ity. However, those alternatives must be executing on resources of equal or less criticality than R*.
(Recall that R* and t* are the most critical resource and time point at this problem state).

More formally, then, the procedure for generation of heuristic commitment techniques in the pres-
ence of PEX values is as follows. We identify three activities:

1. The activity, A, with PEX value, APEX, 0 < APEX < 1, and with the highest individual demand
for the critical resource, R*, at the critical time point, t*, of all activities with PEX values
between 0 and 1.

2. The pair of activities, B and C, that are not currently sequenced, with PEX values BPEX = 1 and
CPEX = 1, and with the highest individual demand for the critical resource at the critical time
point of all activities with a PEX value of 1. Without loss of generality, assume that the individ-
ual demand of activity B at the critical time point is greater than or equal to the individual
demand of C at the critical time point.

184

We then determine the heuristic commitment as displayed in Figure 109. The heuristic commit-
ment is found by comparing the individual demand for A at t* with that of B. If the individual
demand of A is higher, then it is the most critical activity. Since A has a possibility of not existing,
the heuristic decision to reduce criticality is to remove it from the schedule by setting its PEX
value to 0. On the other hand if B has the higher individual demand, then it is necessary to
sequence B and C to attempt to reduce criticality. We use the same sequencing heuristics pre-
sented in Chapter 4 (Section 4.3.2.2).

If the heuristic PEX commitment is retracted via a complete retraction technique, we soundly post
its opposite, setting the PEX value of A to 1. Similarly, if the sequencing commitment is retracted,
we post the opposite sequence.

The texture-based heuristics investigated in this chapter are SumHeightPEX and VarHeightPEX,
modifications, respectively of the SumHeight and VarHeight heuristics to take into account the
PEX variables.

7.6.2 Other Heuristics

To form a basis of comparison for the quality of the texture-based heuristics for PEX, we can
modify other heuristics to incorporate the PEX variables. Here we present the modifications to
CBASlack and LJRand heuristic.

7.6.2.1 CBASlackPEX

Recall that the CBASlack heuristic (Section 2.3.4) identifies the pair of activities on the same
resource that are not sequenced and that have the minimum biased-slack measurement. These two
activities are sequenced to preserve the maximum amount of slack. To adapt the CBASlack heu-
ristic to activities with PEX values, we follow the intuition that a commitment should preserve the
maximum amount of slack.

The adaptation first specifies that the biased-slack measurement is calculated only for activity
pairs such that both activities have a PEX value greater than 0. The following three conditions
then apply to the activity pair:

1. If both activities have a PEX value of 1, follow the CBASlack heuristic and post the sequenc-
ing constraint that preserves the most slack.

2. If one activity, A, has a PEX value of 1 and the other, B, has a PEX value of less than 1, the
greatest amount of slack will be preserved by setting the PEX value of B to 0. B will be com-
pletely removed from competition with A thereby maximizing the resulting slack between the
critical activity pair.

3. If both activities have a PEX value of less than 1, the greatest amount of slack will be preserved
by setting the PEX value of the activity with the longest duration to 0. Again, by removing the
activity with maximum duration, we maximize the resulting slack between the critical activity
pair.

Figure 109. Pseudocode for Determining Heuristic Commitment.

1: if (IDPEX(A, R*, t*) >= IDPEX(B, R*, t*)) || (B or C do not exist))
2: commitment = assign APEX to 0
3: else if (IDPEX(B, R*, t*) > IDPEX(A, R*, t*)) || (A does not exist))
4: commitment = heuristically-sequence(B, C)

185

If any of these commitments is retracted, we can post its opposite (the other sequence for case 1 or
setting the PEX value to 1 in cases 2 and 3) to guarantee a complete search.

7.6.2.2 LJRandPEX

Recall that the LJRand heuristic (Section 2.3.5), finds the smallest earliest finish time of all the
unscheduled activities and then identifies the set of activities which are able to start before this
time. One of the activities in this set is selected randomly and scheduled at its earliest start time.
When backtracking, the alternative commitment is to update the earliest start time of the activity
to the minimum earliest finish time of all other activities on that resource.

Our modification of LJRand to incorporate PEX variables, LJRandPEX, performs the following
steps:

1. Find the smallest earliest finish time of all activities with PEX greater than 0.

2. Identify the set of activities with PEX values greater than 0 that can start before the minimum
earliest finish time.

3. Randomly select an activity, A, from this set.

4. Assign A to start at its earliest start time and assign its PEX variable, APEX, to 1.

The alternative commitment, should backtracking undo the commitment on activity A, is to
update the earliest start time of A to the minimum earliest finish time of all other activities with
PEX > 0, on the same resource as A. Note that the alternative does not contain a PEX commit-
ment, which means that subsequent heuristic and implied commitments can still assign APEX to
either 1 or 0. This ensures completeness of the search. With chronological backtracking, if the
commitment on activity A is undone, it has been derived that A cannot start at its earliest start time
in any schedule. The alternative then is that A starts later or that A does not execute at all. For a
complete search we need to preserve these two alternatives when backtracking.

7.6.3 The Information Content of Heuristic Commitment Techniques

One of the key differences among the heuristics that incorporate PEX is the extent of that incorpo-
ration. The texture-based heuristics use the PEX value to calculate the underlying individual
demand of an activity and so it has a deep impact on the heuristic commitments that are made.
LJRandPEX and CBASlackPEX in contrast only use the PEX variable as a three-value variable:
0, 1, or neither-0-nor-1. In their heuristic commitment process, these heuristics do not use the fact
that one activity may have a PEX value of 0.125 while another a PEX value of 0.5. We expect
that, because the texture-based heuristics take into account the information represented by the
value of the PEX variable, that they will outperform heuristics that do not use that information.

While it is hard to see how the PEX value could be more deeply incorporated into the LJRand
heuristic, in case 3 of the CBASlackPEX heuristic we may choose to set to 0 the PEX value of the
activity that maximizes the product of the duration and PEX value. We do not incorporate the
PEX value more deeply into the CBASlackPEX heuristic, in this dissertation, in order to explic-
itly evaluate the usefulness of maintaining PEX values as described. If CBASlackPEX performs
as well as (or better) than the texture-based heuristics, we will be able to simplify the PEX repre-
sentation to the three values required by CBASlackPEX. It may be that much of the propagation
infrastructure presented in this chapter can then be discarded without reducing the quality of the
heuristic commitment technique.

186

7.7 Incorporating PEX in Propagators

The power of propagators is well-recognized in the constraint-directed scheduling literature. It
appears likely, therefore, that the use of propagators in problems with PEX variables will lead to
improved search performance. One difficultly in the application of existing propagation tech-
niques to problems with PEX variables, is that propagators derive sound commitments based on
the temporal relations among sets of activities that must execute. To maintain the soundness of a
propagator’s commitments, we must take into account the fact that those activities with a PEX
value of less than 1 will not necessarily execute. In this section we examine each of the propaga-
tors used for job shop scheduling in Chapter 4 and Chapter 5 to determine if they can be extended
to activities with a PEX value of less than 1.

7.7.1 Constraint Based Analysis

Constraint-Based Analysis (CBA) (Section 2.4.1) examines pairs of activities to determine if a
sequence between them is implied by their current time windows. If such a sequence is found, a
new precedence constraint is posted.

Assume that CBA has examined activities A and B, and determined that the sequence A before B

is implied by the activity time windows. Clearly, if the activities examined both have a PEX value
of 1, the CBA commitment can be asserted. If one of the activities, say A, has a PEX value of less
than 1, however, posting a new precedence constraint will have two effects.

1. The temporal network will now be illegal. There will now be a path from A that does not
include its enclosing XorNodes.

2. Temporal propagation may remove some possible start times from the domain of activity B. It
may be that later in the search it is decided that A will not execute. In such a case, the possible
start times removed from B as a result of the CBA implied commitment need to be re-inserted
into the domain of B.

While it may be possible to get around both of these problems, we see no clear way forward. As a
result, while we will continue to use CBA on all activities with a PEX value of 1, we do not
include the other activities in our CBA propagation.

7.7.2 Edge-finding

Two types of edge-finding (exclusion (Section 2.4.2) and not-first/not-last (Section 2.4.3)) have
been used in this dissertation. Recall that the reasoning in edge-finding is based on examining the
set of activities on a resource and deriving new temporal constraints that enforce new upper and
lower bounds on the end and start times of activities.

Clearly, edge-finding can be used with activities with a PEX value of 1. Imagine the situation,
however, where all activities on a resource but one, A, have a PEX value of 1.

1. If edge-finding derives a dead-end, we can soundly infer that activity A cannot execute and
therefore set APEX to 0.

2. If edge-finding derives new unary temporal constraints on A, they can be soundly asserted.
Clearly if A is to execute, it must be consistent with the rest of the activities that must execute
on the same resource. Therefore, any unary temporal constraints on A are sound: they must be
true if A is to execute and if A does not execute they do not affect any other activities. (Note

187

that the temporal propagation via XorNodes guarantees that a unary temporal constraint on an
activity with a PEX value less than 1 will not over-constrain the temporal network).

3. If edge-finding derives any unary temporal constraints on activities other than A, they must be
discarded. Since it is possible for A not to execute, and since the temporal constraints are
derived on the assumption that A would execute, we cannot soundly constrain the activities that
have PEX values of 1.

This reasoning leads to the PEX-edge-finding algorithms presented in Figure 110. Note that this
function uses the usual edge-finding algorithms as sub-routines (line 2). Given that the standard
edge-finding worst-case complexity is O(n2), where n is the number of activities on a resource, the
PEX-edge-finding worst-case complexity is O(n3). It is possible that this time-complexity can be
improved by clever implementation. It is certainly the case that the average time performance can
be improved by specializing the code for PEX-edge-finding rather than simply using the existing
edge-finding code as a sub-routine. These optimizations remain for future work.

7.8 Empirical Evaluation

The empirical evaluation of the PEX techniques, in this dissertation, focuses on problems with
alternative process plans, and problems with both alternative process plans and alternative
resources. The PEX techniques presented are applicable, without extension, to both types of prob-
lems as an activity with alternative resources is simply treated as a nested alternative within a pro-
cess plan.

7.8.1 Experimental Design

The primary purpose of the experimental evaluation is to determine the efficacy of using PEX val-
ues as part of the information underlying heuristic commitments. As noted above, among the heu-
ristic commitment techniques, only SumHeightPEX and VarHeightPEX use the actual value of
the PEX variable in each search state to inform its decision making. An important component of
the empirical evaluation is to determine if using the extra information represented by PEX values

Figure 110. Pseudocode for PEX-Edge-Finding.

1: procedure PEXEdgeFinding
2: list-of-commitments = EdgeFinding
3: if list-of-commitments is not empty
4: return list-of-commitments
5:
6: for each activity A such that 0 < APEX < 1
7: temporarily set APEX = 1
8: tmp-list = EdgeFinding
9: for each commitment in tmp-list
10: if dead-end
11: list-of-commitments.insert(set APEX to 0)
12: else if new commitment on activity A
13: list-of-commitments.insert(commitment)
14: else
15: discard commitment
16: reset APEX
17:
18: return list-of-commitments

188

results in better heuristic commitments and overall search performance. A second purpose is the
evaluation of the PEX edge-finding techniques. Given the relatively high time-complexity of the
propagators, we want to evaluate their efficacy in terms of overall search performance.

Two of the obvious interesting parameters for alternative process plan problems is the number of
alternatives in each process plan and the size of the overall scheduling problems. In Experiment 1
we look at the former independent variable while examining the latter in Experiment 2. Both
experiments use a fully crossed design with makespan factor as the second independent variable.

The overall pattern we expect in Experiment 1 is that as the number of alternatives increases, the
requirement for direct reasoning about the alternatives will become more important to good algo-
rithmic performance. For Experiment 2, we focus on a more global factor of difficulty: the prob-
lem size. Our primary interest is to see how the algorithms with higher complexity components
(such as PEX-edge-finding) are able to scale in terms of problem solving ability in relation to the
lower complexity algorithms.

In our final experiment, Experiment 3, we incorporate alternative resources into the alternative
process plan problem sets from Experiment 1 (see Section 7.10.1.1 for a detailed description of
this incorporation). We allow activities to have up to six alternative resources. The primary impact
of the addition of alternative resources is to greatly increase the range of PEX values across the
activities in the problem. As with the increase in the number of alternatives per process plan, we
expect the increase in the range of PEX values to favour the heuristics that make detailed use of
them in their heuristic commitment techniques.

7.8.2 Instantiations of the ODO Framework

The eight algorithms used in the experiments are summarized in Table 9.

The general model for the experiments in this chapter matches the model used throughout the dis-
sertation. Each algorithm is run until it finds a solution or until a 20 minute CPU time limit has
been reached in which case failure is reported. The machine for all experiments is a Sun Ultra-
Sparc-IIi, 270 Mhz, 128 M memory, running SunOS 5.6.

7.8.3 Statistical Analysis

As we have done throughout this dissertation, we measure statistical significance with the boot-
strap paired-t test [Cohen, 1995] with p ≤ 0.0001 (unless otherwise noted).

Our interest in these experiments is the comparison of the four heuristic commitment techniques
(SumHeightPEX, VarHeightPEX, CBASlackPEX, and LJRandPEX) and an evaluation of the effi-
cacy of PEX-edge-finding. The statistical analysis therefore compares the four heuristics with
each other in two conditions: with and without PEX-edge-finding. To address the question of the
usefulness of PEX-edge-finding, we also compare its use in four conditions corresponding to each
of the heuristics. A summary of these groups is shown in Table 10.

189

7.9 Alternative Process Plans

7.9.1 Experiment 1: Scaling with the Number of Alternatives

7.9.1.1 Problems

We expect that the number of alternatives in each process plan will have an impact on the search
performance. To examine algorithm performance under varying numbers of alternatives, we con-
structed four problem sets with varying maximum numbers of alternatives in each process plan.
To illustrate this construction we use a problem set with a maximum of three alternatives.

Each problem begins with an underlying job shop problem. All problems in this experiment have
10 activities per process plan and 10 resources. For a problem with a maximum of three alterna-
tives per process plan, we generate 30 jobs of 10 activities each. These 30 jobs are then trans-
formed into 10 process plans with alternatives. For each job we randomly choose the number of
alternatives, k, it will have uniformly from the interval [0, 3]. We then combine randomly chosen
portions of the next k jobs with our original job to produce a single process plan with k alterna-
tives. The combination process randomly chooses the to-be-combined portion and the location in
the original process plan where the alternative is to be inserted. The only requirements are that
each path between a pair of XorNodes representing an alternative must have the same number of

Algorithm
Heuristic Commitment

Technique
Propagators

Retraction
Technique

SumHeightPropPEX SumHeightPEX Alla

a. Temporal propagation, PEX edge-finding exclusion, PEX edge-finding not-first/not-last, and CBA.

Chronological
Backtracking

SumHeightPEX SumHeightPEX
Non-PEX

Propagatorsb

b. Temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, and CBA.

Chronological
Backtracking

VarHeightPropPEX VarHeightPEX All
Chronological
Backtracking

VarHeightPEX VarHeightPEX
Non-PEX
Propagators

Chronological
Backtracking

CBASlackPropPEX CBASlackPEX All
Chronological
Backtracking

CBASlackPEX CBASlackPEX
Non-PEX
Propagators

Chronological
Backtracking

LJRandPropPEX LJRandPEX All
Chronological
Backtracking

LJRandPEX LJRandPEX
Non-PEX
Propagators

Chronological
Backtracking

Table 9. The Eight Algorithms Used in the Alternative Process Plan Experiments.

190

activities and that number must be greater than 1.The latter requirement avoids problem structures
that are better categorized as alternative resources (see Section 7.10 and Section 7.11.4) while the
former requirement avoids situations where an entire ten-activity process plan can have a two-
activity alternative. Such a situation would lead to scheduling problems with essentially a single
easy decision to make (choose the shorter process plan). We prefer to generate harder problems
and so avoid such situations. Figure 111 illustrates the combination of three process plans into a
single process plan with two alternatives.

Sets of problems with a maximum of one, three, five, and seven alternatives per process plan were
generated. Each set contains 20 problems. For each problem the job lower bound was calculated
taking into account the alternatives. This calculation finds the shortest path (where path length is
determined by the sum of the durations of activities on a path) in each job. We then use a
makespan factor spanning 1.0 to 1.5 (in steps of 0.1) to generate a total of six problem sets of 20
problems each for each number of alternatives.

One of the results of this method of problem generation is that a solution to a problem will have
exactly the same number of executing activities as the underlying job shop problem. Regardless of
the number of alternatives, the final solutions for the problems in this experiment have 100 execut-
ing activities. Prior to scheduling, however, each problem has a different number of activities
depending on the randomly chosen number and size of alternatives. Table 11 shows the character-
istics of the problem sets in terms of the number of activities in the problem definition.

7.9.1.2 Results

Complete results of Experiment 1 can be found in Section D.1 of Appendix D. In particular the
results for each problem size can be found in the following sections of Appendix D: Overall –
Section D.1.1, One Alternative – Section D.1.2, Three Alternatives – Section D.1.3, Five Alterna-
tives – Section D.1.4, Seven Alternatives – Section D.1.5.

Comparison Group Purpose

SumHeightPropPEX,
VarHeightPropPEX,
CBASlackPropPEX,
LJRandPropPEX

Compare heuristics when used with PEX-edge-finding.

SumHeightPEX,
VarHeightPEX,
CBASlackPEX,
LJRandPEX

Compare heuristics when used without PEX-edge-finding.

SumHeightPropPEX,
SumHeightPEX

Evaluate PEX-edge-finding with SumHeightPEX heuristic.

VarHeightPropPEX,
VarHeightPEX

Evaluate PEX-edge-finding with VarHeightPEX heuristic.

CBASlackPropPEX,
CBASlackPEX

Evaluate PEX-edge-finding with CBASlackPEX heuristic.

LJRandPropPEX,
LJRandPEX

Evaluate PEX-edge-finding with LJRandPEX heuristic.

Table 10. The Groups of Algorithms Used in the Statistical Tests.

191

The proportion of the problems in each set for which each algorithm times-out is shown in
Figure 112. Slightly obscured by the graph is the result that SumHeightPropPEX and VarHeight-
PropPEX do not time-out on any problems across all problem sets, and that there is no difference
between CBASlackPropPEX and CBASlackPEX. Statistical analysis indicates that regardless of
the use of PEX-edge-finding, the algorithms using VarHeightPEX, SumHeightPEX, and
CBASlackPEX each time-out on significantly fewer problems than the corresponding algorithm

Figure 111. Generating a Single Process Plan with Two Alternatives.

A1 A2 A3 A4 A5
R4 R5 R1 R3 R2

B2 B3 B4 B5
R3 R4 R1 R5

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

B1
R2

Original Process Plans

A1 A2 A3

A4 A5

R4 R5 R1

R3 R2

B2
B3 B4

R3 R4 R1

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

Process Plans After First Combination (B1 and B5 are discarded)

XOR XOR

A1 A2 A3

A4 A5

R4 R5 R1

R3 R2

B2 B3 B4
R3 R4 R1

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

Final Process Plans (After Second Combination)

XOR
XOR

XOR XOR

Problem Set (Maximum
Number of Alternatives)

Number of Activities Per Problem

Minimum Mean Maximum

1 116 131.6 156

3 142 171.8 200

5 172 204.7 251

7 167 224.2 280

Table 11. The Characteristics of the Problems in Experiment 1.

192

using LJRandPEX. With PEX-edge-finding there are no significant differences among Sum-
HeightPropPEX, VarHeightPropPEX, and CBASlackPropPEX, while without PEX-edge-finding
the only significant difference not involving LJRandPEX is that CBASlackPEX times-out on sig-
nificantly fewer problems than SumHeightPEX (p ≤ 0.0005). In terms of the usefulness of PEX-
edge-finding, SumHeightPropPEX, VarHeightPropPEX, and LJRandPropPEX time-out on signif-
icantly fewer problems than SumHeightPEX, VarHeightPEX, and LJRandPEX respectively.
There is no significant difference in performance between CBASlackPEX and CBASlack-
PropPEX.

Figure 112 indicates that the greatest differences among the algorithms are on the problem set
with seven alternatives. The proportion of problems timed-out for each makespan factor of that
problem set is shown in Figure 113. Statistical analysis indicates that, independent of the use of
PEX-edge-finding, LJRandPEX times-out on significantly more problems than each of the other
heuristics and there are no significant differences among the three other algorithms. In terms of
the propagation, SumHeightPropPEX outperforms SumHeightPEX (p ≤ 0.005), VarHeight-
PropPEX outperforms VarHeightPEX (p ≤ 0.0005), LJRandPropPEX significantly outperforms
LJRandPEX, and there is no difference between CBASlackPropPEX and CBASlackPEX.

Turning to mean CPU time, Figure 114 displays the mean CPU time across all problem sets while
Figure 115 displays the same data for the seven-alternative problems. Overall, there is no signifi-
cant difference between SumHeightPropPEX and VarHeightPropPEX. Both algorithms use sig-
nificantly less mean CPU time than CBASlackPropPEX, which in turn uses significantly less
mean CPU time than LJRandPropPEX. When PEX-edge-finding is not used, there is no differ-
ence among SumHeightPEX, VarHeightPEX, and CBASlackPEX, but all three are significantly
better than LJRandPEX.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Max # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 112. The Fraction of Problems in Each Problem Set for
which Each Algorithm Timed-out.

193

Holding the heuristic component constant, we see that SumHeightPropPEX, VarHeightPropPEX,
and LJRandPropPEX all incur a lower mean CPU time than their corresponding non-PEX-edge-
finding algorithms, while there is no difference between CBASlackPropPEX and CBASlackPEX.

Figure 115 echoes the overall results: while there is no difference between SumHeightPropPEX
and VarHeightPropPEX, both are significantly better than CBASlackPropPEX which in turn is

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Makespan Factor

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 113. The Fraction of Problems with Seven Alternatives for
which Each Algorithm Timed-out.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7

M
ea

n
C

P
U

 (
se

cs
)

Max # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 114. The Mean CPU Time in Seconds for Each Problem
Set.

194

significantly better than LJRandPropPEX. Without PEX-edge-finding, the differences among
SumHeightPEX, VarHeightPEX, and CBASlackPEX heuristics disappear while all are still better
than LJRandPEX. PEX-edge-finding proves to significantly reduce CPU time when used with
SumHeightPEX, VarHeightPEX, and LJRandPEX, but not with CBASlackPEX.

Other Search Statistics

Other search statistics reveal the following results:

• VarHeightPropPEX makes significantly fewer backtracks (p ≤ 0.001), commitments
(p ≤ 0.005), and heuristic commitments (p ≤ 0.0005) than SumHeightPropPEX. SumHeight-
PropPEX makes significantly fewer backtracks, commitments, and heuristic commitments than
CBASlackPropPEX which in turn makes significantly fewer backtracks, commitments, and
heuristic commitments than LJRandPropPEX.

• VarHeightPEX, SumHeightPEX, and CBASlackPEX each make significantly fewer back-
tracks, commitments, and heuristic commitments than LJRandPEX. In addition, VarHeight-
PEX makes significantly fewer backtracks (p ≤ 0.005) and heuristic commitments (p ≤ 0.005)
than SumHeightPEX. The only other significant differences are in the overall commitments,
where VarHeightPEX makes significantly fewer than (p ≤ 0.005) SumHeightPEX which in
turn makes significantly fewer than CBASlackPEX (p ≤ 0.005).

• With each heuristic, the use of PEX-edge-finding results in significantly fewer backtracks and
heuristic commitments (p ≤ 0.0005 when CBASlackPEX is the heuristic). In terms of total
commitments, LJRandPropPEX is not significantly different from LJRandPEX, while the dif-
ference is significant for the other three heuristic commitment techniques (p ≤ 0.005 for
CBASlackPropPEX versus CBASlackPEX).

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3 1.4 1.5

M
ea

n
C

P
U

 (
se

cs
)

Makespan Factor

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 115. The Mean CPU Time in Seconds for the Problems with
Seven Alternatives at Each Makespan Factor.

195

7.9.1.3 Summary

Experiment 1 indicates that:

• The LJRandPEX heuristic when used with or without PEX-edge-finding performs significantly
worse than the other heuristics across all the problem sets.

• While there is no significant difference in terms of the number of problems timed-out among
SumHeightPropPEX, VarHeightPropPEX, and CBASlackPropPEX, all other search statistics
indicate VarHeightPropPEX and SumHeightPropPEX perform significantly better than
CBASlackPropPEX.

• There is little performance difference among VarHeightPEX, SumHeightPEX, and CBASlack-
PEX.

• PEX-edge-finding improves scheduling performance when used with the VarHeightPEX, Sum-
HeightPEX, and LJRandPEX heuristics. No such improvement was found with CBASlackPEX
heuristic.

7.9.2 Experiment 2: Scaling with Problem Size

The purpose of Experiment 2 is to examine the scaling behaviour of the algorithms as the problem
size gets larger, but the number of alternatives remains fixed.

7.9.2.1 Problems

The problems used in this experiment are generated in the same way as the problems in Experi-
ment 1. The difference is that rather than changing the maximum number of alternatives in differ-
ent problem sets, we hold that parameter fixed at five while varying the size of the underlying job
shop problem. All problems in Experiment 1 had a 10✕ 10 underlying job shop problem. For this
experiment, we look at problems whose underlying job shop problems are of sizes 5✕ 5, 10✕ 10,
15✕ 15, and 20✕ 20. The problem set from Experiment 1 with five alternatives is used again in
Experiment 2. As with Experiment 1, we use the job lower bound and varying makespan factors
to create six sets of 20 problems each at each problem size.

To be more specific, in generating a 20✕ 20 problem, we start with 100 jobs each with 20 activities
and 20 resources. These are combined, as discussed above, into a problem with 20 process plans
with alternatives. A solution to such a problem contains 400 activities with PEX value equal to 1.

Due to the problem generation, different problem instances of the same size problems have
slightly varying numbers of activities. Table 12 shows the characteristics of the problem sets.

Problem Set (Size of
Underlying Jobshop Problem)

Number of Activities Per Problem

Minimum Mean Maximum

5✕ 5 36 61.7 85

10✕ 10 172 204.7 251

15✕ 15 356 430.9 524

20✕ 20 652 738.8 857

Table 12. The Characteristics of the Problems in Experiment 2.

196

7.9.2.2 Results

Complete results of Experiment 2 can be found in Section D.1 of Appendix D. In particular the
results for each problem size can be found in the following sections of Appendix D: Overall –
Section D.1.1, 5✕ 5 – Section D.1.2, 10✕ 10 – Section D.1.3, 15✕ 15 – Section D.1.4, 20✕ 20 –
Section D.1.5.

The proportion of problems timed-out for each algorithm is shown in Figure 116. SumHeight-
PropPEX and VarHeightPropPEX time-out on significantly fewer problems than CBASlack-
PropPEX which in turn times-out on significantly fewer problems than LJRandPropPEX. Without
PEX-edge-finding, the results are slightly different as CBASlackPEX times-out on significantly
(p ≤ 0.001) fewer problems than SumHeightPEX which in turn times-out on significantly fewer
problems than LJRandPEX. VarHeightPEX times-out on significantly fewer problems than
LJRandPEX, but there are no significant differences between VarHeightPEX and SumHeightPEX
or between VarHeightPEX and CBASlackPEX. CBASlackPropPEX shows no significant differ-
ence when compared to CBASlackPEX while SumHeightPropPEX, VarHeightPropPEX, and
LJRandPropPEX time-out on significantly fewer problems than their respective non-PEX-edge-
finding algorithms.

Focusing on the 20✕ 20 problems, we see the fraction of each problem set that times-out in
Figure 117. The only significant differences here are that the LJRandPEX algorithms are signifi-
cantly worse than the other algorithms with or without PEX-edge-finding (p ≤ 0.005) and Sum-
HeightPropPEX is significantly better than SumHeightPEX.

Turning to the mean CPU time results, the overall results are shown in Figure 118 while the
results for the 20✕ 20 problem set are shown in Figure 119. For the overall results, SumHeight-
PropPEX and VarHeightPropPEX each incur significantly less CPU time than CBASlack-
PropPEX which in turn incurs significantly less CPU time than LJRandPropPEX. Without PEX-

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 116. The Fraction of Problems in Each Problem Set for
which Each Algorithm Timed-out.

197

edge-finding, however, CBASlackPEX uses significantly less CPU time than SumHeightPEX
(p ≤ 0.0005) which in turn uses significantly less CPU time than LJRandPEX. There are no signif-
icant overall differences between VarHeightPEX and SumHeightPEX, or between VarHeightPEX
and CBASlackPEX. Evaluation of PEX-edge-finding shows, overall, that using it results in signif-
icantly lower CPU time with SumHeightPEX, VarHeightPEX, and LJRandPEX, but not with
CBASlackPEX.

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Problem Size

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 117. The Fraction of the 20✕ 20 Problems at Each Makespan
Factor for which Each Algorithm Timed-out.

0

200

400

600

800

1000

1200

4 6 8 10 12 14 16 18 20

M
ea

n
C

P
U

 (
se

cs
)

Problem Size

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 118. The Mean CPU Time in Seconds for Each Problem
Set.

198

The results for the 20✕ 20 problems show that regardless of the use of PEX-edge-finding, there
are no significant differences among SumHeightPEX, VarHeightPEX, and CBASlackPEX while
all three are significantly better than LJRandPEX (p ≤ 0.0005). Use of PEX-edge-finding exhibits
lower mean CPU time for SumHeightPEX and LJRandPEX (p ≤ 0.005 for LJRandPEX condi-
tion), but shows no significant difference for VarHeightPEX or CBASlackPEX.

Other Search Statistics

A summary of the other search statistics is as follows:

• SumHeightPropPEX and VarHeightPropPEX each make significantly fewer backtracks, com-
mitments, and heuristic commitments than both CBASlackPropPEX and LJRandPropPEX.
There are no significant differences in these statistics between CBASlackPropPEX and
LJRandPropPEX, or between SumHeightPropPEX and VarHeightPropPEX.

• VarHeightPEX makes significantly fewer backtracks (p ≤ 0.001) and heuristic commitments
(p ≤ 0.005) than SumHeightPEX while making significantly fewer backtracks, commitments,
and heuristic commitments than either CBASlackPEX or LJRandPEX. SumHeightPEX and
CBASlackPEX each make significantly fewer backtracks and heuristic commitments than
LJRandPEX. In addition, SumHeightPEX makes fewer commitments than either CBASlack-
PEX or LJRandPEX. There are no other significant differences among the non-PEX-edge-find-
ing algorithms.

• The algorithms using PEX-edge-finding all make significantly fewer backtracks and heuristic
commitments than their counterparts that do not use the propagator. In terms of total commit-
ments, however, the only significant difference is that CBASlackPropPEX makes significantly
fewer than CBASlackPEX.

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3 1.4 1.5

M
ea

n
C

P
U

 (
se

cs
)

Makespan Factor

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 119. The Mean CPU Time in Seconds for the 20✕ 20
Problems at Each Makespan Factor.

199

7.9.2.3 Summary

The results of Experiment 2 indicate that:

• With PEX-edge-finding, the algorithms using the VarHeightPEX and SumHeightPEX heuris-
tics outperform the one using CBASlackPEX which in turn outperforms the one using LJRand-
PEX.

• Without PEX-edge-finding, however, the relative performance changes: CBASlackPEX out-
performs SumHeightPEX which in turn outperforms LJRandPEX. VarHeightPEX shows few
significant differences with either SumHeightPEX or CBASlackPEX while significantly out-
performing LJRandPEX.

• PEX-edge-finding typically results in better overall performance when used with SumHeight-
PEX, VarHeightPEX, and LJRandPEX. There is little difference between CBASlackPropPEX
and CBASlackPEX.

7.10 Combining Alternative Process Plans and Alternative
Resources

In our final experiment, we look at problems containing both alternative process plans and alter-
native resources.

7.10.1 Experiment 3: Scaling with the Number of Alternatives

7.10.1.1 Problems

All problems for this experiment are transformations of the problems used in Experiment 1 above.
In those problems, each activity has only one resource alternative and a single possible duration.

Alternative resources were added to each activity by randomly generating the total number of
resource alternatives by following the distribution shown in Table 13. The original resource
requirement and duration on that resource are preserved in the new problem. In addition, the new
resource alternatives (if any) are randomly chosen with uniform probability from among all the
other resources in the problem. The duration of the activity on each new alternative resource is
generated by multiplying the activity’s original duration by a randomly chosen factor in the
domain [1.0, 1.5] and then rounding to the nearest integer value.

Number of Alternative Resources for an Activity Probability

1 0.03125

2 0.5

3 0.25

4 0.125

5 0.0625

6 0.03125

Table 13. The Distribution of Alternative Resources for the Problems in Experiment 3.

200

These transformations result in problems such that:

• The original job lower bound calculated in Experiment 1 is still a valid lower bound. All alter-
native resources require the activity to have at least as large a duration as in the original prob-
lem; therefore, the shortest path in a job, including resource alternatives, remains the same.

• There is likely to be widely varying PEX values between activities. The theoretical range on
the PEX value of an activity, A, at the beginning of a problem with seven alternatives is shown
in Expression (37) (below). The minimum PEX value is possible for an activity that represents
one of six possible resource alternatives while the original activity (without resource alterna-
tives) was nested inside the seven process plan alternatives. Widely ranging PEX values repre-
sent non-uniformities in problem structure: an activity with a high PEX value is far more likely
to execute than an activity with a low PEX value. We would expect, therefore, that heuristics
that reason explicitly about the PEX value (i.e., SumHeightPEX and VarHeightPEX as
opposed to the other heuristic commitment techniques) will be able to make higher quality
commitments.

 (37)

7.10.1.2 Results

Complete results of Experiment 3 can be found in Section D.1 of Appendix D. In particular the
results for each problem size can be found in the following sections of Appendix D: Overall –
Section D.1.1, One Alternative – Section D.1.2, Three Alternatives – Section D.1.3, Five Alterna-
tives – Section D.1.4, Seven Alternatives – Section D.1.5.

The fraction of problems in each problem set that each algorithm timed-out on is displayed in
Figure 120. These results indicate, regardless of the use of PEX-edge-finding, that SumHeight-
PEX outperforms VarHeightPEX which is better than LJRandPEX which in turn outperforms
CBASlackPEX. In addition, each heuristic times-out on significantly fewer problems when using
PEX-edge-finding than without it.

The results for mean CPU time are displayed in Figure 121. These results are consistent with the
timed-out results on all accounts. Comparing heuristics shows that SumHeightPEX has a signifi-
cantly lower mean CPU time than VarHeightPEX. VarHeightPEX incurs significantly less CPU
time than LJRandPEX which in turn has a significantly lower mean CPU time than CBASlack-
PEX. The PEX-edge-finding results indicate that each heuristic incurs a significantly lower mean
CPU time when PEX-edge-finding is used.

Other Search Statistics

The other search statistics evaluated (number of backtracks, number of commitments, and number
of heuristic commitments) agree in the relative ranking of the performance of each heuristic:
regardless of the PEX-edge-finding condition, SumHeightPEX significantly outperforms Var-
HeightPEX which significantly outperforms LJRandPEX which in turn significantly outperforms
CBASlackPEX. The only exception to this pattern is in comparing the number of heuristic com-
mitments made by LJRandPEX and CBASlackPEX where there is no significant difference.

1
3
--- 2

8–× APEX 1≤ ≤

201

All heuristics exhibited significantly fewer backtracks and fewer heuristic commitments when
used with PEX-edge-finding. Interestingly, VarHeightPEX, CBASlackPEX, and LJRandPEX all
made significantly more overall commitments when using PEX-edge-finding than when not using
it. There is no significant difference in overall commitments between PEX-edge-finding condi-
tions when SumHeightPEX is the heuristic commitment technique.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

F
ra

ct
io

n
of

 P
ro

bl
em

s
T

im
ed

-o
ut

Max # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 120. The Fraction of Problems in Each Problem Set for
which Each Algorithm Timed-out.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

M
ea

n
C

P
U

 (
se

cs
)

Max # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

VarHeightPEX
VarHeightPropPEX

Figure 121. The Mean CPU Time in Seconds for Each Problem
Set.

202

7.10.1.3 Summary

Experiment 3 strongly indicates that, independent of the propagator condition, SumHeightPEX
outperforms VarHeightPEX which outperforms LJRandPEX which in turn outperforms
CBASlackPEX. In addition, PEX-edge-finding results in better performance regardless of the
heuristic used.

7.11 Discussion

Our discussion of the experiments in this chapter first looks at the two goals of the experiments:
evaluation of the heuristics and evaluation of PEX-edge-finding. We then turn to broader issues
raised by these experiments.

7.11.1 Heuristics

Overall, while SumHeightPEX and VarHeightPEX outperform CBASlackPEX with PEX-edge-
finding, especially in Experiment 3, their comparison without PEX-edge-finding is less clear-cut.
In Experiment 1 there are few differences, in Experiment 2, CBASlackPEX is superior to Sum-
HeightPEX, while in Experiment 3 SumHeightPEX is superior to VarHeightPEX which is supe-
rior to CBASlackPEX. LJRandPEX is outperformed by all other heuristics (regardless of the use
of PEX-edge-finding) in Experiments 1 and 2, but outperforms CBASlackPEX (again regardless
of the use of PEX-edge-finding) in Experiment 3.

Experiment 3 clearly demonstrates the result of exploiting the extra information represented by
the PEX values in the texture measurement upon which the heuristic commitment technique is
based. The widely ranging PEX values represent a non-uniformity in the problem structure that is
successfully exploited by the SumHeightPEX and VarHeightPEX heuristics. In the other experi-
ments, though the range of PEX values is not as wide, SumHeightPropPEX and VarHeight-
PropPEX are still the best scheduling algorithms of the ones tested.

The comparison between CBASlackPEX and SumHeightPEX is interesting:

• Experiment 1 shows no difference regardless of the use of PEX-edge-finding.

• Experiment 2 shows that CBASlackPEX is better than SumHeightPEX without PEX-edge-
finding, but worse with PEX-edge-finding.

• Experiment 3 shows that CBASlackPEX is much worse than SumHeightPEX both with and
without PEX-edge-finding.

These results demand an explanation both for why CBASlackPEX performs so poorly in Experi-
ment 3 and why it performs so well in Experiments 1 and 2.

7.11.1.1 Why is CBASlackPEX So Good?

We know, based on the results of Chapter 4, that on some job shop scheduling problem sets with-
out resource-level non-uniformities, CBASlack is able to outperform SumHeight. No such non-
uniformities were examined in this chapter as our primary interest was the evaluation of reasoning
about alternatives. One possibility as to reasons for the good performance of CBASlackPEX
returns to our reasoning for Chapter 4: no resource-level non-uniformity exists for our experimen-
tal problem sets therefore the heuristic that does not specifically look for such non-uniformity
achieves better overall performance.

203

A second explanation for the good quality of CBASlackPEX is the quality of the underlying
biased-slack heuristic. When there are no resource-level non-uniformities, a heuristic based on the
identification of minimum-slack activity pairs and the subsequent commitment to maintain as
much slack as possible, has been shown to perform well in job shop scheduling. Some of the qual-
ity of that heuristic is maintained when PEX is added. Again, in the absence of resource-level
non-uniformities, a heuristic that identifies the pair of activities with the smallest time in which
they may be sequenced and seeks to maximize that time (through a PEX commitment or a
sequencing commitment) seems to be a reasonable heuristic to establish both a selection of activ-
ity alternatives and a sequencing of activities that satisfies the resource constraints.

7.11.1.2 Why is CBASlackPEX So Bad?

As discussed below (Section 7.11.3), one explanation for the superior performance of Sum-
HeightPEX as compared to CBASlackPEX is the extra information that the former incorporates
into its heuristic decision making. Another possible (and not incompatible) explanation, that in
addition may help to explain the relative results of CBASlackPEX and LJRandPEX, is that the
ability of biased-slack calculation to identify critical activity pairs is degraded by the presence of
PEX values.

In the original CBASlack heuristic, only activity pairs for which CBA propagation has not
inferred a sequence are examined to find the pair with minimum biased-slack. When at least one
member of an activity pair has a PEX value of less than 1, however, the CBA propagator cannot
infer a sequence and therefore, regardless of the activity time windows, the biased-slack of the
activity pair is evaluated. Activity pairs with little overlap or even disjoint time windows will tend
to have a very low biased-slack and therefore the heuristic will tend to focus on such activity
pairs. To take the extreme case of an activity pair with disjoint time windows, the activities are not
actually competing with each other for a resource reservation and so can hardly be a truly critical
pair, yet they have a very small biased-slack. Furthermore, the commitment to set the PEX value
of one of the activities to 0, is made on the intuition that, if such a commitment is not made, there
is a high likelihood that the two activities will later over-capacitate the resource. But this cannot
be the case with disjoint activities, and the likelihood that an activity pair with a small overlap will
lead to an over-capacity is relatively small.

This reasoning points to a modification of the CBASlackPEX heuristic to calculate the biased-
slack only for those activity pairs that would not have an implied sequence if they both had a PEX
value of 1. Such a modification remains as future work.

7.11.1.3 SumHeightPEX and VarHeightPEX

In the experiments in this chapter, VarHeightPEX achieves equal or better performance than all
other non-texture-based heuristics tested. Given the wider applicability of the VarHeight texture
measurement, as demonstrated in Chapter 6, these results confirm the practical utility of the prob-
ability of breakage measure of criticality.

A comparison of the performance VarHeightPEX and SumHeightPEX shows that, in the first two
experiments in this chapter, VarHeightPEX achieved about the same level of performance as Sum-
HeightPEX. In fact, on a few performance statistics (e.g., the number of backtracks in Experiment
2) VarHeightPEX performs significantly better than SumHeightPEX. In Experiment 3, however,
SumHeightPEX is significantly better on all performance measures. These results parallel the
results seen in Chapter 5: on the randomly generated problems VarHeight and SumHeight per-
formed at about the same level while when specific structure was added in the form of resource-

204

level non-uniformities, SumHeight performed significantly better. In this chapter, the added struc-
ture is the widening of the range of PEX values resulting from the addition of alternative
resources to the alternative process plan problems.

As in Chapter 5 (see Section 5.7), these performance differences raise a number of questions. Is it
the case that the aggregate demand estimation carried out by SumHeightPEX reveals useful struc-
tural information that is not found by the probability of breakage estimation of VarHeightPEX? It
was argued in Section 5.7 that SumHeight makes more use of the magnitude of the possible
resource over-capacity than VarHeight. Given the importance of the PEX values in scaling the
magnitude of the individual demands, it may be the case that making deeper use of the aggregate
magnitude allows SumHeightPEX to be more sensitive to the PEX values than VarHeightPEX.

As we also noted in Chapter 5, the existence of structural information captured by aggregate
demand, but not by the probability of breakage, is a speculative point. Other factors such as the
accuracy and computational complexity of estimation algorithms, and how well a measurement of
criticality correlates with true criticality likely play complex and interdependent roles in the over-
all heuristic search performance. The unraveling of such factors, together with the deeper analysis
of the information examined by a measure of criticality and estimated by a texture measurement,
remain key areas of future work.

7.11.2 PEX-Edge-Finding

Through almost all experiments and experimental conditions, PEX-edge-finding was shown to be
beneficial to the overall problem solving ability of an algorithm. The only exception is when the
CBASlackPEX heuristic is used: little difference was seen between the CBASlackPEX algorithm
with or without PEX-edge-finding except in Experiment 3 where PEX-edge-finding proved bene-
ficial.

In general, these results are as expected. Given the significant increase in the performance of
scheduling algorithms with the use of edge-finding propagators [Nuijten, 1994], we expect that
some gain is likely with the PEX-edge-finding variation.

Our intuitions as to why PEX-edge-finding (and indeed propagation, in general) should improve
search performance rests on two impacts of propagation. First, propagation techniques reduce the
search space by removing search alternatives that would otherwise have to be searched through.
Second, and more central to this dissertation, is the idea that propagators improve the search infor-
mation upon which heuristics are based. PEX-edge-finding improves both the information repre-
sented in the PEX values (by pruning inconsistent activity alternatives) and the information
represented in the time windows of activities (because it infers unary temporal constraints on
activities with PEX values of less than one). SumHeightPEX benefits from both improvements.
The former is reflected in the PEX values of the remaining activities while the latter is represented
in the individual activity demand which, of course, depends on the time window as well as on the
PEX value of each activity.

The results of the CBASlackPEX heuristic do not match our expectations as there is little if any
benefit from the use of PEX-edge-finding in the first two experiments. While we have no clear
explanation for these results, at least two possibilities can be suggested.

1. CBASlackPEX does not use PEX values. As discussed above (Section 7.6.3), CBASlackPEX
does not make direct use of the PEX values in forming its heuristic commitments. Rather it
treats the PEX variable as three-valued: 0, 1, or neither. Since PEX-edge-finding improves

205

information represented in the PEX values (when alternatives are removed), perhaps
CBASlackPEX does not benefit because it does not make use of this extra information.

2. A CBASlackPEX commitment results in less propagation. In the job shop problems in
Chapter 4, we observed that a relatively large percentage of the CBASlack commitments were
heuristic commitments as compared to those for SumHeight. We argued (Section 4.9.1.3) that
this arose from the fact that SumHeight tended to make a commitment where many activities
were competing for a resource and time point while CBASlack simply looked for the most
tightly constrained pair of activities. The subsequent propagation from a heuristic commitment
therefore would tend to be higher when SumHeight is used. The same pattern can be seen here
as shown in Figure 122. Using the results from Experiment 1, we see that SumHeightPropPEX
and VarHeightPropPEX make a significantly smaller percentage of heuristic commitments than
CBASlackPropPEX. While a CBASlackPEX algorithm using PEX-edge-finding incurs the
computational cost, the benefits are not apparent because the heuristic commitments do not
result in significant propagation.

7.11.3 Exploiting Non-uniformities of Problem Structure

As noted in Section 7.6.3, of all heuristics described and tested in this chapter, only SumHeight-
PEX and VarHeightPEX make use of the actual value of the PEX variables in each search state.
One explanation for the dramatic difference in relative heuristic quality between the first two
experiments and the third is the fact that the non-uniformity in PEX values is much greater in the
third experiment. Just as the SumHeight heuristic exploits the non-uniformity at the resource-level
in job shop problems (Experiment 3 of Chapter 4), SumHeightPEX exploits the non-uniformities
among PEX values. This explanation supports the central thesis of this dissertation that the analy-
sis of the constraint graph to reveal dynamic information can then be used for high-quality heuris-
tics.

0

5

10

15

20

1 2 3 4 5 6 7

M
ea

n
%

 o
f C

om
m

itm
en

ts
 th

at
 a

re
 H

eu
ris

tic
 C

om
m

itm
en

ts

Max # of Alternatives per Process Plan

LJRandPropPEX
CBASlackPropPEX

SumHeightPropPEX
VarHeightPropPEX

Figure 122. The Mean Percentage of Commitments in Each
Problem Set Made by the Heuristic Commitment Technique for

Experiment 1.

206

7.11.4 Alternative Resources

The experimental evaluation of the techniques presented in this chapter focuses on problems with
alternative process plans, and problems with both alternative process plans and alternative
resources. Exactly the same techniques, however, are also applicable to scheduling problems with
alternative resources but without alternative process plans. Each activity with resource alternatives
can be transformed into a set of alternative activities (subject to a pair of XorNodes) such that
there is one activity for each resource alternative.

A separate evaluation of the PEX techniques performed in collaboration with other researchers
[Davenport et al., 1999], examines such problems. While these experiments (and the non-PEX
techniques for alternative resources) are not part of this dissertation, the results do speak to the
efficacy of the PEX techniques and so we briefly examine them here.

In addition to the PEX techniques (PEX-edge-finding and VarHeightPEX), [Davenport
et al., 1999] examines techniques for alternative resource problems that decompose the problem
into two phases. In the first phase, the resource assignments are made for each activity based on
texture measurement information about each of the resource alternatives. The second phase then
treats the problem as a pure scheduling problem and sequences activities as discussed in
Chapter 4. While the PEX techniques are motivated by the intuition that high-quality heuristic
commitments require representation and analysis of the dynamic information at each search state,
the non-PEX techniques are more motivated by the intuition that the computational cost of repre-
senting and reasoning about such search knowledge can be prohibitively high. It may be more
useful, therefore, to make a different trade-off between the quality of heuristic commitments, and
the computational overhead of representing and reasoning about the information upon which the
heuristic commitments are made.

The experimental results for backtrack-free search indicate that the PEX-based techniques result
in substantially higher quality solutions. In some problems, the PEX techniques are able to find
solutions more than 20% closer to the optimal than any other techniques. As expected, however,
the cost of representing and reasoning about PEX can sometimes be prohibitive. In the largest
problems (e.g., 800 activities with each activity having eight alternative resources), the PEX rep-
resentation requires about 7200 temporal nodes (activities and XorNodes). This problem size
proved too large in terms of memory requirements to successfully complete the experiments. The
non-PEX techniques, however, are able to generate solutions to such large problems ranging from
50% to 120% above the lower bound for the problems.

Detailed discussion of the non-PEX techniques as well as the experimental results are beyond the
scope of this dissertation. See [Davenport et al., 1999] for a full description.

7.12 Conclusion

In this chapter, we introduced the notion of the probability of existence (PEX) of an activity and
used it to expand constraint-directed scheduling representation and reasoning to account for alter-
native activities: an activity present in the original problem definition does not necessarily have to
be scheduled to achieve a solution.

The modeling of PEX required extensions to the constraint representation of activities and of the
temporal network. Algorithms for the propagation of PEX values are created along with modifica-
tions to temporal propagation to account for the fact that an activity might not exist in a final solu-

207

tion. In addition, heuristic commitment techniques and two edge-finding propagators are extended
to account for PEX values.

Experimental results indicated that incorporating PEX values into the texture measurements upon
which the heuristic commitment techniques are based results in significantly higher quality com-
mitments and better overall search performance. Performance differences are especially large
when there is a wide range of PEX values in a problem. Experimental results also validated the
use of PEX-edge-finding which, in most cases, leads to significantly better overall search perfor-
mance.

208

209

Chapter 8 Conclusions and Future Work

8.1 Contributions

8.1.1 Major Contributions

The major contributions of this dissertation concern the analysis of scheduling algorithms, the
demonstration of the importance of the knowledge of problem structure in heuristic search, and
the extension of constraint-directed scheduling, in general, via the use of the criticality of con-
straints. This extension is specifically demonstrated in the context of scheduling with inventory
and scheduling with alternative activities.

8.1.1.1 Analysis and Categorization of Scheduling Algorithms

We performed an analysis of algorithms in order to determine the main factors contributing to
their ability to solve scheduling algorithms. This analysis was based on the ODO framework and
its categorization of the three key components of constraint-directed scheduling algorithms: heu-
ristic commitment techniques, propagators, and retraction techniques. By adopting such a compo-
nent-based view of existing scheduling algorithms, we were able to rigorously examine claims of
superior scheduling performance among sets of algorithms. More importantly, our conceptual
(and implementational) model of scheduling algorithms enabled us to isolate and vary specific
components (e.g., heuristic commitment techniques) while holding all other components constant.
This allowed us to attribute specific algorithmic performance claims to components rather than to
the global scheduling algorithm. This is a significant step as it allows a deeper, more detailed
understanding of scheduling algorithms, the analysis of their performance on scheduling prob-
lems, and the investigation of underlying reasons for such performance.

8.1.1.2 The Importance of Problem Structure in Heuristic Search

Based on our analysis of scheduling algorithms, we focused specifically on heuristic commitment
techniques for constraint-directed scheduling. The central hypothesis we investigated, and were
able to demonstrate, was that as a problem becomes more complex, knowledge of the problem
structure has a dominant role in guiding heuristic search to a solution. This hypothesis is origi-
nally due to early work of Simon [Simon, 1973], and has been re-examined from a constraint per-
spective by Fox et al. [Fox, 1983; Fox et al., 1989; Sadeh, 1991] and from the perspective of
phase transition in combinatorial search in the work of [Gent et al., 1996b].

In particular, we were able to demonstrate that knowledge of the problem structure leads to supe-
rior heuristic search performance in three specific classes of problems: job shop scheduling,
scheduling with inventory, and scheduling with alternative activities.

210

In the context of job shop scheduling, we showed that higher quality heuristic search is attained
by the dynamic identification of critical resource constraints. When experimental problems were
manipulated to specifically insert resource-level non-uniformities (i.e., bottlenecks), the heuristic
that specifically identified and exploited such non-uniformities was shown to provide significantly
better overall scheduling performance.

In scheduling problems with representation of inventory storage, production, and consumption,
we demonstrated that the best overall heuristic search performance is achieved by a texture-based
heuristic that measures the criticality of both inventory and resource constraints in each problem
state. Such heuristics are able to dynamically focus attention on the most critical constraint,
regardless of type. Furthermore, as we increased the complexity of the inventory relationships
among activities in the experimental problems, the magnitude of superiority of the texture-based
heuristic also increased.

Finally, we examined problems where the activities in the original problem definition did not nec-
essarily have to execute in a solution. In such problems, we explicitly represented estimates of the
probability that an activity in the original problem definition would exist in a final schedule. We
demonstrated that heuristics incorporating the structural information represented by the probabil-
ity estimates are able to significantly outperform other, less knowledge-based, heuristics. As with
the inventory problems, in the alternative activity problems we were able to demonstrate that the
performance of the structurally sensitive heuristics rises as the complexity of choices among alter-
native activities increases.

8.1.1.3 The Criticality of Constraints

Though the original intent of constraint-directed scheduling was to enable reasoning about any
type of constraint represented in the problem [Fox, 1983], to date, the analysis of problem struc-
ture via the use of texture measurements has focused primarily on resource constraints. To widen
the scope of application of principled constraint-directed heuristic techniques and focus more on
the original intent of constraint-directed scheduling, we introduced a more general concept of crit-
icality that is applicable to any type of constraint. We discussed the possibility of different mea-
surements of the criticality of a constraint and suggested four requirements for any such
measurement. We presented the probability of breakage of a constraint as a measure of constraint
criticality and showed that it meets our requirements. Three estimation techniques for the proba-
bility of breakage were introduced and incorporated into the texture-based heuristic commitment
techniques of ODO. It was demonstrated that heuristic commitment techniques based on two of
the estimates are able to perform as well as contention, the more narrowly defined measure of crit-
icality used in previous texture-based heuristic techniques.

8.1.1.4 Scheduling with Inventory

We extended the ODO representation of constraint-directed scheduling problems to represent the
consumption and production of inventory as well as minimum and maximum constraints on
inventory storage capacity. Based on this expanded representation, we also extended the estima-
tion techniques for the probability of constraint breakage to inventory constraints. This extension
enables the estimation of the criticality of both resource and inventory constraints, and the integra-
tion of inventory constraint reasoning into the overall texture-based heuristic approach of ODO.
Specifically, the ability to estimate the criticality of both resource and inventory constraints allows
the construction of heuristics that are able to dynamically and opportunistically reason about the
most critical constraint in a problem state, regardless of whether the constraint is a resource or
inventory constraint. It was demonstrated that such heuristic commitment techniques are able to

211

outperform non-integrated heuristics as well as heuristics that do not directly reason about inven-
tory constraints at all.

8.1.1.5 Scheduling with Alternate Activities

We extended the ODO framework to include the representation of alternative activities. With such
an extension, the set of problems that can be represented and solved within ODO is expanded to
include problems with alternative resources and alternative process plans. The representation of
alternative activities greatly refines the concept of the probability of existence (PEX) of an activity
first used in the KBLPS scheduling system [Saks et al., 1993; Fox, 1999]. Further, we introduced
techniques for the propagation of PEX values through a temporal network, and modified the tem-
poral propagation techniques to account for the possibility that an activity may not execute in a
final schedule. Finally, the resource criticality texture measurements were generalized to take into
account activities that may not exist in the final schedule. Heuristics based on these texture mea-
surements are able to dynamically identify the most critical resource constraint in a problem state
taking into account activities that must execute as well as activities that have a non-zero probabil-
ity of execution. The incorporation of the magnitude of the probability of existence of each activ-
ity together with the opportunistic, dynamic focusing abilities leads to significantly better overall
search performance.

8.1.2 Other Contributions

Other contributions of this dissertation include:

• The creation of two new propagation techniques for inventory scheduling. Experiments
showed a significant positive impact when inventory propagation is used.

• The extension of two existing propagators (edge-finding exclusion and edge-finding not-first/
not-last) so that they may be soundly applied to problems with alternative activities. Empirical
results indicated a significant positive benefit from the use of the modified propagators.

• The object-oriented re-implementation of the ODO constraint-directed scheduling framework.

8.2 Future Work

Throughout this dissertation we have briefly commented on aspects of the research that remain for
future work. In this section, we provide a more detailed treatment of the avenues of research sug-
gested by the work in this dissertation.

8.2.1 Heuristics for Constraint-Directed Search

Given that the central thesis of this dissertation concerns the formulation of heuristic commitment
techniques for scheduling, it is not surprising that a number of areas of future work involve basic
issues about heuristic commitment techniques for use in constraint-directed search and schedul-
ing. In this section, we look at some of these basic issues before turning to more specific issues
related to scheduling.

8.2.1.1 Problem Structure and Criticality

The hypothesis explored in this dissertation is that as problems become more complex, knowledge
of the problem structure becomes the dominant factor in achieving successful heuristic search
behavior. The approach we have taken is to use texture measurements to distill problem structure

212

into a measure of criticality of individual constraints. While we have shown this approach to be
successful in terms of significantly improving heuristic search performance in a variety of types of
scheduling problems, there are a number of issues that remain to be explored.

Is Constraint Criticality the Appropriate Distillation of Problem Structure?

From the original formulation of texture measurements [Fox et al., 1989], the intuition has been
that high-quality heuristics arise from the identification of a critical point on which a heuristic
commitment technique should focus its effort. Criticality, whether with respect to a variable
[Sadeh, 1991] or a constraint (Chapter 5), means expectation of failure. In a search state, variables
which we expect to have an empty domain or constraints which we expect to be unsatisfied, are
judged to be critical.

The intuition behind identifying and focusing on critical variables and constraints is, essentially,
the fail-first principle [Haralick and Elliot, 1980]: decisions where failure is likely should be
examined early in the search so that they do not later lead to exponential backtracking. The fail-
first principle, however, has recently been called into question by work in CSP that shows that
improving a heuristic’s ability to identify where failure is likely can result in lower quality heuris-
tic commitments and higher overall search cost [Smith and Grant, 1997]. Clearly, this work needs
to be extended in the context of CSP, scheduling, and heuristic search in general. Is it the case that
the same results can be found in constraint-directed scheduling? Given the pervasiveness of the
fail-first principle, finding alternative intuitions for heuristic quality and overall search perfor-
mance is a critical area for future research in heuristic search.1

Is the Focus on Individual Constraints Appropriate?

As noted, the texture-based heuristics in this dissertation use problem structure to estimate the
criticality of individual constraints. While previous work has looked at analogs for criticality of
activities, variables, and values [Fox et al., 1989; Sadeh, 1991], there has been little work that
investigates the notion of criticality of larger components of a constraint-based search problem.

To focus specifically on scheduling, for example, perhaps there is information in the structure of
the constraint subgraph involving a subset of resources that indicates that the subgraph containing
several constraints is critical in some way. Alternatively, perhaps, a particular sub-interval of the
scheduling horizon tends to have more overall contention for resources. Higher level measures of
criticality may allow heuristics to focus on sub-problems, reducing computational complexity
while perhaps maintaining or improving search performance. Such considerations are especially
relevant to very large-scale scheduling problems where some sort of abstraction or decomposition
of the problem is necessary as even algorithms with O(n2) time-complexity in a search state are
prohibitively expensive when run on the full problem.

What Other Aspects of Problem Structure can be Exploited?

The texture measurements investigated in this dissertation, including the implicit texture measure-
ment underlying the CBASlack heuristic (see Section 4.9.1.2), are all loosely based on the notion
of variables competing to be assigned to values that are in conflict from the perspective of con-
straints in the problem state.

1. Some preliminary ideas regarding such intuitions are discussed in Section 4.9.1.3.

213

Given the abstract form of a constraint-based search problem (i.e., assignment of values to vari-
ables such that all constraints are satisfied), it may be that such competition represents the funda-
mental structural aspect of constraint-based problem search problems. However, it has been
shown that the overall graph structure (e.g., graph shape such as trees [Freuder, 1982] and other
characteristics such as measures of the number of constraints, variables, and values [Gent
et al., 1996b]), can have significant impact on heuristic search performance.

While we continue to believe that the conceptual competition among variables is a fundamental
structural component in constraint-based problems, the identification and exploitation of other
structural information is an interesting direction for future research.

Can Non-uniformities of Problem Structure be Better Exploited?

In each of the experimental chapters of this dissertation, we showed that high quality heuristics
can be based on the exploitation of non-uniformities in the structure of a search state. Texture
measurements are algorithms that can help reveal these non-uniformities. We showed improved
overall search performance based on the exploitation of non-uniformities in the context of job
shop scheduling (Chapter 4), scheduling with inventory (Chapter 6), and scheduling with activity
alternatives (Chapter 7).

An important question suggested by these results is: Can we design texture measurements to
explicitly search for non-uniformities on a variety of levels? In Chapter 4, we showed a difference
between non-uniformities at a resource-level and those at the level of activity pairs. Given more
expressive problem domains with inventories, alternative process plans, etc., there are many
potential sources of non-uniformity. In such problems, we should not have to rely on only one
type of non-uniformity (e.g., resource bottlenecks) to inform our heuristics. Rather we should be
able to formulate texture measurement techniques to analyze non-uniformities at a variety of lev-
els and reveal the non-uniformities most likely to result in high quality heuristic commitments.

There are two general approaches to such texture measurements:

1. Extend the notion of constraint criticality to a variety of levels and focus on the most critical
constraint in a search state regardless of the level. For example, we may be able to adapt the
CBASlack heuristic to provide an estimate of the probability of breakage of the binary con-
straint on each activity pair. These estimates can then be compared with estimates of the prob-
ability of breakage of the resource constraints (perhaps with the VarHeight texture) in order to
identify the most critical constraint regardless of type.

2. Calculate measures of criticality at a variety of levels and use a measure of the non-uniformity
at each level to guide selection of the heuristic commitment technique. Such a technique can be
viewed as a meta-texture measurement: by comparing the non-uniformities of a number of tex-
ture measurements at different levels, the meta-technique is able to dynamically identify the
most non-uniform level at each search state. A prosaic example of such a meta-texture mea-
surement is a technique for job shop scheduling that calculates both SumHeight and CBASlack
at each search state. By comparing a measure of the variance of the biased-slack values of the
activity pairs with the variance of criticality among the resources, the technique could dynami-
cally choose which heuristic to use.

It is unclear, a priori, if either of these approaches will necessarily lead to superior performance.
The former approach is more in the spirit of the work done in this dissertation as it extends a mea-
sure of criticality to a wider space of constraint types. However, the latter approach, in using a
measure of variance of criticality, exploits additional structural information, that we have shown

214

(Section 4.9.1.2) to be relevant to search performance. Investigation of these approaches remains
for future work.

8.2.1.2 The Quality versus Cost Trade-off

A critical component of our investigation of texture measurements and texture-based heuristics is
the practicality of such techniques. While an extremely expensive texture measurement may lead
to a search that minimizes the size of the overall search tree, it would not be useful in any practical
sense: too much effort would be expended at each search state.

Overall, the goal for heuristic search techniques is the minimization of the time and effort
expended to solve a problem. Given the theoretical difficulty of scheduling in general, a heuristic
needs to balance the computational expense of finding a commitment at a search state with the
quality of that commitment. The trade-off embodied by the texture measurement-based heuristics
investigated in this dissertation is to spend a low-polynomial effort (e.g., O(n2) or O(n3)) at each
search state to find high-quality commitments that will tend to quickly converge on a solution.
The hope is that the exponential expense of visiting a large portion of the search space will be
avoided. In contrast, other heuristics try to spend small effort at each search space (e.g., linear or
constant time) in order to cover more search states. A central issue, then, is the cost of the heuris-
tic commitments versus their quality in terms of being able to find a solution while visiting rela-
tively few search states.

In this dissertation, we have addressed the cost versus quality trade-off by running our experi-
ments with a CPU time bound, reporting mean CPU times, and, in some cases, investigating the
algorithms when the size of the problems is varied. Nonetheless, deeper analysis of the scaling
behaviour and of the quality versus cost trade-off is necessary. For example, the modeling of alter-
native activities with the use of PEX variables results in an explosion in the number of activities in
a problem representation. While the information in the extra activities contributes greatly to the
quality of heuristic decisions and, in our experiments in Chapter 7, to the overall search perfor-
mance, for larger problems, the overhead of the extra activities may be prohibitive. Indeed, for the
alternative resource problems examined in [Davenport et al., 1999], the PEX techniques were not
able to solve some of the larger problems due to memory exhaustion.

Investigation of the applicability of high-knowledge heuristics in very large problems, creation of
techniques for improving the scaling behaviour of such heuristics without significantly reducing
the quality of commitments, and achievement of a better understanding of the quality versus cost
trade-off all remain as interesting future research.

8.2.2 Models of Scheduling

The expansion of constraint-directed scheduling techniques to more realistic scheduling problems
is one of the key motivations for the work in this dissertation. The two main characteristics of
realistic scheduling problems that we examined are the presence of inventory and the presence of
alternative activities. Each characteristic, their combination, and other models of scheduling prob-
lems suggest further research issues.

8.2.2.1 Scheduling with Inventory

The inventory problems examined in this dissertation are characteristic of batch environments:
inventory is consumed at the start of an activity and produced at its end. While there are signifi-
cant industrial applications for such functionality (e.g., in the pharmaceutical industries), there is

215

also a need to represent and reason about activities in a more continuous environment. The char-
acteristics of such continuous scheduling problems include:

• Activities produce and consume inventory at varying rates over their entire duration.

• Rate-matching may be required between activities in a producer/consumer relationship to
ensure that inventory constraints are satisfied.

• Durations of activities may vary depending on the rates at which inventory is produced and/or
consumed.

To our knowledge, such inventory constraints have not been addressed in the constraint-directed
scheduling literature.

8.2.2.2 Scheduling with Alternative Activities

Representation and reasoning about alternative activities opens a number of areas of future
research. While we have shown that the use of PEX variables can lead to superior scheduling per-
formance, there are a number of issues surrounding the scaling of the PEX approach that need to
be addressed. In particular, the increase in the number of activities in the representation of a prob-
lem results in scaling issues as discussed in [Davenport et al., 1999]. Investigation of reduction of
these scaling problems and, perhaps, methods to reduce the alternative activities that actually need
to be represented form important future tasks. Given the positive impact of the PEX-edge-finding
propagator, techniques to reduce its average and worst-case time-complexity will also contribute
to overall scheduling performance and help to combat scaling issues.

The PEX approach to alternative activities scheduling problems can be viewed as a bottom-up
approach. Alternative activities are fully represented in the scheduling problem and choosing
alternatives is fully integrated into the scheduling algorithm. In contrast, a top-down approach to
scheduling with alternatives can be seen in number of places in the AI research literature [Wagner
et al., 1997; Wagner et al., 1998; Kott and Saks, 1998; Sadeh et al., 1998; Davenport et al., 1999].
In such systems, high-level and, in some cases, domain dependent, knowledge and heuristics are
brought to bear on the problem of pruning alternatives before the actual scheduling takes place.
While these techniques avoid many of the scaling problems of the PEX approach, the heuristics
are not informed by as much detailed information as the PEX heuristics. As a result, the quality of
the heuristic decisions and overall solution tends to be inferior to the PEX solution [Davenport
et al., 1999] in those problems where the PEX approach is not overwhelmed by the size of the
required representation. Obviously, there is a trade-off here in terms of the effort required to rep-
resent and reason about the detailed alternative information and the quality of the heuristic deci-
sions that can be made. Further research is required to better understand this trade-off and,
perhaps, to find ways to combine the top-down approach with the bottom-up approach. For exam-
ple, it may be that better overall performance can be achieved by making some of the alternative
choices based on high-level information and allowing the rest of them to be decided during the
scheduling process.

Reasoning about activity alternatives either with a PEX-based formulation or with a more top-
down approach blurs the distinction between scheduling and planning. One of the major assump-
tions about the alternative scheduling problems addressed in this dissertation is that all possible
activities are known before scheduling begins. Imagine, however, a problem with demands for a
number of finished goods and a number of process plans with which each can be produced. Each
finished good process plan may require a number of other inventories to be produced and these
inventories, in turn, have alternative process plans which themselves require further inventories to
be executed. This cascade of process plans terminates eventually with raw material supply events.

216

The problem now begins to look more like planning (with scheduling constraints) than schedul-
ing. A set of goals must be achieved; however, actions to achieve goals potentially conflict with
one another and may introduce further sub-goals.

The combination of scheduling and planning techniques to address such problems has been begun
in work such as [Saks, 1992; Kott and Saks, 1998; Sadeh et al., 1998]; however, much remains to
be investigated.

8.2.2.3 Alternative Activities and Inventory

While the modeling of alternative process plans in this dissertation originally arose out of the need
to represent multiple recipes for the production of an inventory, we have not addressed scheduling
with both inventory and activity alternatives in the same problem. Such a combination presents a
number of challenging issues for future work. For example, recall that inventory bound propaga-
tion (and, indeed, the cumulative constraint propagation due to [Simonis and Cornelissens, 1995])
required that the upper and lower bounds on the inventory levels must be known. If activities
which produce and consume an inventory may not necessarily exist in a final solution, the bounds
on inventory levels will be much weaker, reducing the efficacy of the propagator. Other issues sur-
rounding what commitments are valid on producers and consumers with PEX values of less than 1
and the incorporation of PEX into the inventory texture measurements also remain to be explored.

8.2.2.4 Scheduling with Multi-capacity Resources

The resources in the scheduling problems investigated in this dissertation were unary capacity
resources. An interesting area for future application of texture measurement-based heuristic com-
mitment techniques is to multi-capacity resources: resources that can execute more than one activ-
ities at a time point. While there has been work looking at the extension of propagators to multi-
capacity resources [Nuijten and Aarts, 1997; Caseau and Laburthe, 1996] there has been little
work that has examined heuristic techniques for such resources with the notable exception of
[Cesta et al., 1998].

Two of the texture measurements proposed in this dissertation for the estimation of the probability
of breakage of unary resource constraints (TriangleHeight and VarHeight) are directly applicable
to multi-capacity resource constraints. Issues to be investigated include the type of heuristic com-
mitments to be made based on the texture information and termination criteria for the multi-
capacity resources.

8.2.2.5 Scheduling and Optimization

Scheduling is not simply the satisfaction of constraints but also the optimization of various cost
functions stemming from sources through-out an enterprise. In this dissertation, we have focussed
on heuristic techniques for the satisfaction of constraints rather than for the optimization. There
are simple techniques for the application of satisfaction technology to optimization problems (i.e.,

repeated resolving with a new constraint specifying that a solution must be found with lower cost
than the best solution found so far) and there has been work done on the biasing of texture mea-
surements by the cost information [Sadeh, 1991].

The structural approach taken in this dissertation suggests the representation of cost information
as part of the constraint graph and the formulation of heuristic techniques informed by satisfaction
information and cost information. Such a combination of information sources may be done based
on an approach similar to [Sadeh, 1991] or based on higher level reasoning where the cost and sat-
isfaction information are independently measured and combined at the level of the heuristic com-

217

mitment technique. Trade-offs among these approaches as well as their application to
sophisticated optimization functions characteristic of real world problems remain to be investi-
gated.

8.3 Conclusion

The central thesis of this dissertation is that an understanding of the structure of a problem leads
to high-quality heuristic problem solving performance in constraint-directed scheduling. Explora-
tion of this thesis has a history in the artificial intelligence literature [Simon, 1973; Fox, 1983;
Fox et al., 1989; Sadeh, 1991] and this dissertation is a continuation of such investigations. Our
methods for gaining an understanding of problem structure focus on texture measurements: algo-
rithms that implement dynamic analyses of each search state. Texture measurements distill struc-
tural information from the constraint graph which is then used as a basis for heuristic decision
making. Empirical results indicate that under a number of conditions in a variety of types of
scheduling problems, superior search performance is achieved from texture measurement-based
heuristic commitment techniques over simpler, less knowledge-intensive heuristics.

In particular, in this dissertation:

• We created and investigated a number of new texture measurements and texture measurement-
based heuristics. The texture measurements are able to achieve a deeper understanding of the
problems structure resulting in novel knowledge-based heuristic commitment techniques that
outperform existing heuristics.

• We expanded the scope of problems that can be addressed, in general, by constraint-directed
scheduling techniques. Specifically, we demonstrated representation and generic solutions
techniques for scheduling with inventories and scheduling with alternative activities.

218

219

Appendix A Index of Important Terms

Term Location

Aggregate Demand page 94

Alternative Process Plan Scheduling page 33 and page 166

Alternative Resource Scheduling page 31, page 165, and page 206

AndNode page 170

CBA see Constraint-Based Analysis

CBASlack page 15

CBASlackPEX page 184

Chronological Backtracking page 23

Commitment page 41

Constraint Graph page 5, page 37, and page 41

Constraint Satisfaction Problem page 5

Constraint-Based Analysis page 18 and page 186

Contention page 94

Criticality page 93

CSP see Constraint Satisfaction Problem

dur(S) page 9

duri page 9

Edge-finding Exclusion page 19 and page 186

Edge-finding Not-first/Not-last page 20 and page 186

efti page 9

est(S) page 9

esti page 9

Heuristic Commitment Techniques page 10 and page 39

ID(A, R, t) page 11 and page 56

IDPEX page 182

Individual Demand see ID(A, R, t)

Inventory Scheduling Problem page 28 and page 124

Job Shop Scheduling Problem page 8 and page 55

JointHeight page 97

220

LDS see Limited Discrepancy Search

lft(S) page 9

lfti page 9

Limited Discrepancy Search page 25

LJRand see Randomized Left-Justified Heuristic

LJRandPEX page 185

lsti page 9

ODO Framework page 37

ODO Policy page 38

ORR/FSS page 11 and page 45

PEX see Probability of Existence

Probability of Breakage page 95

Probability of Existence page 167

Propagators page 18, page 39, page 140, and page 186

Randomized Left-Justified Heuristic page 16

Resource Bottlenecks page 74

Restart page 24

Retraction Techniques page 22 and page 39

SOLVE page 46

STDi page 9

STi page 9

SumHeight page 56

SumHeightPEX page 183

Texture Measurements page 44, page 123, and page 182

Time-outs page 62

TriangleHeight page 98

VarHeight page 99 and page 136

VarHeighttPEX page 183

XorNode page 171

Term Location

221

Appendix B Detailed Results for the Experiments

in Chapter 4 and Chapter 5

In this appendix we provide tables of results for each of the experiments in Chapter 4 and
Chapter 5. Because the chapters use the same set of experiments, with different but overlapping
algorithms, we choose to combine the results into a single appendix.

B.1 Experiment 1

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 0.95 0.75 0.25 0.20 0.00 0.00

LJRandLDS 0.90 0.20 0.05 0.00 0.00 0.00

CBASlackChron 0.50 0.20 0.05 0.00 0.00 0.00

CBASlackLDS 0.50 0.05 0.00 0.00 0.00 0.00

SumHeightChron 0.35 0.25 0.05 0.10 0.00 0.00

SumHeightLDS 0.40 0.05 0.00 0.00 0.00 0.00

JointHeightChron 0.40 0.25 0.10 0.00 0.00 0.00

JointHeightLDS 0.55 0.10 0.05 0.00 0.00 0.00

TriangleHeightChron 0.60 0.35 0.30 0.20 0.05 0.10

TriangleHeightLDS 0.65 0.15 0.00 0.00 0.00 0.00

VarHeightChron 0.40 0.15 0.10 0.05 0.00 0.00

VarHeightLDS 0.45 0.05 0.00 0.00 0.00 0.00

Table B.1. Experiment 1: Fraction of Problems Timed-out.

222

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 1172.31 902.07 417.22 241.69 47.80 1.71

LJRandLDS 1092.76 342.87 113.32 6.79 2.10 1.62

CBASlackChron 685.55 265.46 85.53 3.61 3.81 3.85

CBASlackLDS 645.43 82.21 12.60 3.93 3.62 3.69

SumHeightChron 604.37 319.34 90.25 127.28 55.35 1.83

SumHeightLDS 569.47 113.12 16.90 3.19 2.45 2.06

JointHeightChron 685.54 398.33 155.20 42.38 3.68 3.86

JointHeightLDS 702.33 157.78 71.17 5.13 3.83 4.27

TriangleHeightChron 781.20 535.39 388.35 249.67 70.90 121.96

TriangleHeightLDS 916.95 250.33 108.47 20.26 7.34 6.27

VarHeightChron 625.40 216.87 121.79 77.16 9.32 1.95

VarHeightLDS 602.16 74.11 8.20 3.78 2.66 2.24

Table B.2. Experiment 1: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 17916.10 11279.50 4996.85 2158.20 277.95 2.90

LJRandLDS 11004.25 2357.75 431.65 7.25 0.75 0.30

CBASlackChron 8592.40 2080.30 476.85 0.10 0.00 0.00

CBASlackLDS 5253.25 124.10 3.35 0.20 0.00 0.00

SumHeightChron 5898.10 2143.95 642.00 1180.00 315.70 0.15

SumHeightLDS 4636.50 341.50 26.50 1.10 0.45 0.25

JointHeightChron 6298.70 3153.10 987.05 449.15 0.10 0.10

JointHeightLDS 3557.60 131.85 34.45 0.65 0.05 0.05

TriangleHeightChron 8298.65 5191.35 2966.60 2114.00 541.50 589.35

TriangleHeightLDS 8520.95 715.10 160.20 15.25 4.00 2.30

VarHeightChron 5623.75 1397.75 949.80 678.35 77.20 0.10

VarHeightLDS 4214.20 167.70 6.30 1.35 0.65 0.20

Table B.3. Experiment 1: Mean Number of Backtracks.

223

Makespan Factors

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 632030.90 355228.55 138393.35 63349.60 8317.25 1478.10

LJRandLDS 884110.40 314582.25 110333.70 6897.15 2174.55 1732.55

CBASlackChron 257096.15 69079.10 18061.70 1092.75 1054.60 1030.15

CBASlackLDS 359378.95 39194.40 4118.25 1310.35 1054.60 1030.15

SumHeightChron 284642.65 91840.75 18587.15 26122.35 7765.70 908.65

SumHeightLDS 384581.70 70865.10 10954.45 1781.10 1279.35 1028.70

JointHeightChron 296081.50 152016.15 33164.95 20500.35 967.30 883.50

JointHeightLDS 297666.90 38863.75 14545.10 1422.10 985.85 938.60

TriangleHeightChron 314407.85 149825.40 79109.70 55540.70 8353.80 17199.70

TriangleHeightLDS 541786.65 127583.55 51561.25 8757.75 3098.00 2549.30

VarHeightChron 286907.80 63704.85 22499.30 15568.00 2422.25 861.80

VarHeightLDS 385622.10 41533.85 4596.95 1864.90 1211.95 983.35

Table B.4. Experiment 1: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 35866.25 22619.95 10106.45 4461.00 695.45 143.00

LJRandLDS 48933.00 18936.10 6598.50 514.05 199.00 163.90

CBASlackChron 17376.95 4588.10 1567.15 736.95 817.80 852.50

CBASlackLDS 38241.45 8377.60 1795.65 788.30 817.80 852.50

SumHeightChron 11839.15 4371.70 1410.70 2510.95 827.20 228.10

SumHeightLDS 20501.20 6216.60 1189.50 309.35 273.25 269.60

JointHeightChron 12644.95 6388.85 2120.90 1076.00 228.25 262.90

JointHeightLDS 15836.70 3579.60 1722.75 261.95 237.65 275.55

TriangleHeightChron 16636.55 10456.75 6037.50 4352.90 1243.35 1358.10

TriangleHeightLDS 29603.70 10440.90 5226.45 1173.70 518.95 429.60

VarHeightChron 11288.65 2883.75 2026.70 1528.90 360.55 241.65

VarHeightLDS 18733.85 4192.55 610.15 354.15 296.65 268.45

Table B.5. Experiment 1: Mean Number of Heuristic Commitments.

224

B.2 Experiment 2

B.2.1 Overall Results

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25

LJRandChron 5.68 7.03 8.56 9.98 10.51 10.60

LJRandLDS 5.78 7.13 8.33 9.64 10.47 10.69

CBASlackChron 7.80 23.28 49.29 66.61 76.31 81.23

CBASlackLDS 10.83 24.51 51.81 64.97 76.31 81.23

SumHeightChron 4.40 6.26 10.85 17.46 23.02 29.39

SumHeightLDS 5.02 8.84 14.15 19.68 23.85 30.40

JointHeightChron 4.36 6.12 12.78 16.34 26.07 33.66

JointHeightLDS 5.33 9.61 14.99 19.43 26.47 33.68

TriangleHeightChron 5.34 7.55 9.67 11.88 17.33 20.87

TriangleHeightLDS 5.31 8.75 10.95 14.62 18.24 21.26

VarHeightChron 4.15 6.60 12.27 19.44 24.07 30.78

VarHeightLDS 4.86 9.08 14.28 21.13 26.09 30.39

Table B.6. Experiment 1: Mean Percentage of Heuristic Commitments.

Problem Size

Algorithm 5 10 15 20

LJRandChron 0.00 0.05 0.49 0.74

LJRandLDS 0.00 0.04 0.32 0.59

CBASlackChron 0.00 0.00 0.14 0.43

CBASlackLDS 0.00 0.00 0.10 0.41

SumHeightChron 0.00 0.00 0.14 0.55

SumHeightLDS 0.00 0.00 0.14 0.45

JointHeightChron 0.00 0.00 0.19 0.54

JointHeightLDS 0.00 0.00 0.15 0.44

TriangleHeightChron 0.00 0.00 0.38 0.76

TriangleHeightLDS 0.00 0.00 0.23 0.61

VarHeightChron 0.00 0.00 0.13 0.54

VarHeightLDS 0.00 0.00 0.11 0.44

Table B.7. Experiment 2 Overall: Fraction of Problems Timed-out.

225

Problem Size

Algorithm 5 10 15 20

LJRandChron 0.05 83.45 611.48 905.18

LJRandLDS 0.07 51.96 430.32 779.41

CBASlackChron 0.04 1.02 207.18 559.44

CBASlackLDS 0.05 1.93 174.11 542.19

SumHeightChron 0.06 0.79 233.99 693.50

SumHeightLDS 0.06 1.60 219.66 613.32

JointHeightChron 0.06 1.15 282.48 685.41

JointHeightLDS 0.07 2.24 238.60 603.96

TriangleHeightChron 0.06 1.71 502.26 927.92

TriangleHeightLDS 0.07 6.35 332.96 840.38

VarHeightChron 0.06 0.83 201.18 688.19

VarHeightLDS 0.06 1.30 213.30 587.55

Table B.8. Experiment 2 Overall: Mean CPU Time in Seconds.

Problem Size

Algorithm 5 10 15 20

LJRandChron 0.71 1786.84 3423.08 1634.89

LJRandLDS 2.68 909.67 1248.08 521.65

CBASlackChron 0.33 8.91 1322.34 1160.19

CBASlackLDS 0.70 29.07 899.16 431.15

SumHeightChron 0.23 5.69 1307.50 1306.44

SumHeightLDS 0.50 17.81 914.20 517.29

JointHeightChron 0.23 6.58 1440.39 1196.31

JointHeightLDS 0.52 19.01 712.78 299.53

TriangleHeightChron 0.36 20.84 2712.12 1760.55

TriangleHeightLDS 0.85 95.05 1208.59 618.39

VarHeightChron 0.23 4.94 1081.49 1245.58

VarHeightLDS 0.54 11.04 841.72 450.99

Table B.9. Experiment 2 Overall: Mean Number of Backtracks.

226

Problem Size

Algorithm 5 10 15 20

LJRandChron 117.71 50040.29 134340.77 83750.09

LJRandLDS 151.10 41215.21 240421.00 290963.65

CBASlackChron 84.41 759.41 52401.93 56436.91

CBASlackLDS 88.70 1539.82 72814.64 152319.51

SumHeightChron 82.52 760.41 75895.08 102212.40

SumHeightLDS 86.51 1530.21 105905.96 207047.68

JointHeightChron 82.39 794.08 83001.96 94682.91

JointHeightLDS 86.21 1640.57 86221.82 120648.86

TriangleHeightChron 84.46 1230.36 107269.03 92024.03

TriangleHeightLDS 93.01 4759.56 142179.84 247036.61

VarHeightChron 82.71 708.28 67481.51 101032.77

VarHeightLDS 87.71 1157.54 102591.03 189910.15

Table B.10. Experiment 2 Overall: Mean Number of Commitments.

Problem Size

Algorithm 5 10 15 20

LJRandChron 18.36 3647.13 6964.90 3424.19

LJRandLDS 23.25 3014.11 13531.25 14658.27

CBASlackChron 25.02 259.86 3395.77 3836.01

CBASlackLDS 25.72 311.55 5435.21 15717.15

SumHeightChron 15.89 89.42 2749.25 2761.29

SumHeightLDS 16.28 127.92 4212.67 8439.11

JointHeightChron 16.35 103.39 3039.41 2584.19

JointHeightLDS 16.77 143.02 3600.96 5153.57

TriangleHeightChron 14.08 100.57 5526.99 3634.79

TriangleHeightLDS 14.84 295.44 6891.36 11648.28

VarHeightChron 15.87 91.41 2305.49 2652.26

VarHeightLDS 16.34 112.29 3799.50 7623.74

Table B.11. Experiment 2 Overall: Mean Number of Heuristic Commitments.

227

B.2.2 5✕ 5 Results

Problem Size

Algorithm 5 10 15 20

LJRandChron 15.46 10.26 6.79 4.91

LJRandLDS 15.75 10.59 7.17 5.33

CBASlackChron 31.65 44.66 38.72 26.44

CBASlackLDS 31.89 43.94 38.06 27.45

SumHeightChron 20.62 15.88 7.93 3.65

SumHeightLDS 20.71 16.37 9.09 4.97

JointHeightChron 21.22 18.31 9.54 4.59

JointHeightLDS 21.37 18.21 10.54 6.07

TriangleHeightChron 17.95 11.57 6.39 4.21

TriangleHeightLDS 17.87 11.58 7.01 4.66

VarHeightChron 20.57 16.68 8.49 3.89

VarHeightLDS 20.67 16.79 9.31 5.22

Table B.12. Experiment 2 Overall: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LJRandLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JointHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JointHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TriangleHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TriangleHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.13. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out.

228

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 0.04 0.07 0.05 0.05 0.05 0.05 0.05

LJRandLDS 0.05 0.16 0.06 0.06 0.06 0.06 0.06

CBASlackChron 0.03 0.04 0.04 0.04 0.05 0.05 0.05

CBASlackLDS 0.04 0.05 0.05 0.04 0.05 0.04 0.05

SumHeightChron 0.04 0.06 0.06 0.06 0.06 0.06 0.06

SumHeightLDS 0.05 0.06 0.05 0.06 0.06 0.06 0.06

JointHeightChron 0.04 0.06 0.06 0.07 0.07 0.07 0.08

JointHeightLDS 0.05 0.07 0.06 0.06 0.07 0.07 0.08

TriangleHeightChron 0.05 0.06 0.06 0.06 0.07 0.07 0.07

TriangleHeightLDS 0.05 0.08 0.06 0.07 0.07 0.07 0.08

VarHeightChron 0.05 0.06 0.06 0.07 0.07 0.07 0.07

VarHeightLDS 0.05 0.07 0.06 0.07 0.06 0.07 0.07

Table B.14. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 1.25 2.80 0.45 0.15 0.20 0.10 0.05

LJRandLDS 3.30 14.30 0.65 0.15 0.20 0.10 0.05

CBASlackChron 0.90 1.25 0.15 0.00 0.00 0.00 0.00

CBASlackLDS 2.15 2.55 0.20 0.00 0.00 0.00 0.00

SumHeightChron 0.85 0.65 0.00 0.10 0.00 0.00 0.00

SumHeightLDS 2.05 1.30 0.00 0.15 0.00 0.00 0.00

JointHeightChron 0.80 0.75 0.00 0.05 0.00 0.00 0.00

JointHeightLDS 2.00 1.60 0.00 0.05 0.00 0.00 0.00

TriangleHeightChron 0.95 1.10 0.15 0.20 0.10 0.00 0.00

TriangleHeightLDS 2.55 2.95 0.15 0.20 0.10 0.00 0.00

VarHeightChron 0.85 0.65 0.05 0.05 0.00 0.00 0.00

VarHeightLDS 2.05 1.55 0.10 0.10 0.00 0.00 0.00

Table B.15. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks.

229

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 96.80 146.20 121.15 114.90 114.85 114.75 115.35

LJRandLDS 112.10 325.00 134.65 121.55 126.00 119.85 118.55

CBASlackChron 87.30 102.50 91.75 83.00 77.55 75.20 73.60

CBASlackLDS 98.65 118.55 94.35 83.00 77.55 75.20 73.60

SumHeightChron 86.35 98.95 89.00 84.00 77.70 72.95 68.70

SumHeightLDS 96.40 112.00 89.05 88.80 77.70 72.95 68.70

JointHeightChron 85.75 98.45 91.05 83.95 75.90 72.75 68.90

JointHeightLDS 95.60 114.50 91.05 84.80 75.90 72.75 68.90

TriangleHeightChron 89.40 101.70 89.35 85.80 79.05 75.10 70.80

TriangleHeightLDS 105.55 137.70 90.30 90.05 81.55 75.10 70.80

VarHeightChron 85.90 99.15 89.00 84.55 78.85 73.05 68.45

VarHeightLDS 95.15 119.55 91.25 87.70 78.85 73.05 68.45

Table B.16. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 8.90 20.30 18.80 18.55 19.95 20.40 21.60

LJRandLDS 12.10 45.60 20.10 19.80 22.00 21.00 22.15

CBASlackChron 2.95 10.95 18.20 26.75 34.10 39.50 42.70

CBASlackLDS 4.30 14.40 18.30 26.75 34.10 39.50 42.70

SumHeightChron 2.90 8.75 12.10 17.90 20.40 23.60 25.60

SumHeightLDS 4.10 10.10 12.10 18.05 20.40 23.60 25.60

JointHeightChron 2.95 9.25 12.55 17.60 20.65 24.50 26.95

JointHeightLDS 4.15 11.05 12.55 17.55 20.65 24.50 26.95

TriangleHeightChron 3.00 8.70 10.35 13.35 18.15 21.30 23.70

TriangleHeightLDS 4.90 12.70 10.20 13.05 18.00 21.30 23.70

VarHeightChron 2.90 8.55 12.05 18.65 19.65 23.75 25.55

VarHeightLDS 4.10 10.55 11.95 18.85 19.65 23.75 25.55

Table B.17. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments.

230

B.2.3 10✕ 10 Results

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 8.54 14.26 15.46 16.08 17.33 17.80 18.73

LJRandLDS 10.56 14.96 15.15 16.07 17.30 17.54 18.66

CBASlackChron 3.41 10.74 19.97 32.71 44.09 52.61 58.01

CBASlackLDS 4.40 11.70 19.72 32.71 44.09 52.61 58.01

SumHeightChron 3.36 8.91 13.75 21.72 26.66 32.52 37.42

SumHeightLDS 4.36 9.05 13.74 21.25 26.66 32.52 37.42

JointHeightChron 3.43 9.51 13.93 21.19 27.45 33.82 39.23

JointHeightLDS 4.44 9.72 13.93 21.00 27.45 33.82 39.23

TriangleHeightChron 3.38 8.60 11.76 15.98 23.27 28.64 34.03

TriangleHeightLDS 4.54 8.70 11.51 15.13 22.54 28.64 34.03

VarHeightChron 3.37 8.80 13.74 22.36 25.38 32.78 37.57

VarHeightLDS 4.42 9.01 13.37 22.13 25.38 32.78 37.57

Table B.18. Experiment 2, 5✕ 5 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 0.00 0.35 0.00 0.00 0.00 0.00 0.00

LJRandLDS 0.05 0.20 0.00 0.00 0.00 0.00 0.00

CBASlackChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JointHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JointHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TriangleHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TriangleHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightChron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightLDS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.19. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out.

231

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 10.37 489.29 34.63 47.06 1.77 0.54 0.52

LJRandLDS 80.77 277.60 2.55 0.88 0.82 0.60 0.53

CBASlackChron 0.47 2.45 0.92 0.80 0.83 0.80 0.89

CBASlackLDS 0.94 8.22 1.01 0.78 0.83 0.81 0.90

SumHeightChron 0.35 2.06 0.68 0.61 0.63 0.60 0.61

SumHeightLDS 0.74 6.58 1.27 0.69 0.67 0.62 0.62

JointHeightChron 0.40 2.60 1.01 0.94 0.95 1.02 1.11

JointHeightLDS 0.89 8.55 2.02 1.10 0.95 1.05 1.11

TriangleHeightChron 0.43 4.40 2.86 1.87 0.78 0.79 0.85

TriangleHeightLDS 1.18 35.61 2.52 1.75 1.20 1.11 1.06

VarHeightChron 0.38 1.75 0.73 0.80 0.69 0.69 0.74

VarHeightLDS 0.76 4.37 1.10 0.73 0.70 0.69 0.76

Table B.20. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 254.10 10509.50 732.40 983.30 28.20 0.35 0.05

LJRandLDS 1905.40 4447.55 12.50 1.20 0.80 0.20 0.05

CBASlackChron 9.50 47.35 5.45 0.05 0.00 0.00 0.00

CBASlackLDS 22.75 176.30 4.40 0.05 0.00 0.00 0.00

SumHeightChron 4.55 31.30 2.45 0.80 0.60 0.10 0.05

SumHeightLDS 12.55 104.55 6.70 0.45 0.30 0.05 0.05

JointHeightChron 4.90 36.00 3.95 1.15 0.00 0.05 0.00

JointHeightLDS 13.30 110.10 9.05 0.55 0.00 0.05 0.00

TriangleHeightChron 5.75 73.50 40.95 22.85 1.30 0.95 0.55

TriangleHeightLDS 21.10 613.40 24.05 3.90 1.35 1.05 0.50

VarHeightChron 4.55 24.75 2.45 2.75 0.05 0.00 0.05

VarHeightLDS 11.65 61.55 3.75 0.25 0.05 0.00 0.05

Table B.21. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks.

232

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 4941.80 293603.90 20090.50 29010.75 1181.90 728.60 724.60

LJRandLDS 36776.15 244851.00 3096.90 1129.55 1083.00 820.55 749.30

CBASlackChron 520.20 1898.65 740.85 565.05 542.85 527.60 520.65

CBASlackLDS 821.80 6751.80 1033.10 580.95 542.85 527.60 520.65

SumHeightChron 477.00 2052.00 720.40 604.60 536.30 480.10 452.50

SumHeightLDS 805.55 6382.55 1341.15 668.15 563.65 488.70 461.75

JointHeightChron 484.90 2239.65 792.30 601.25 515.30 478.00 447.15

JointHeightLDS 810.60 6924.30 1578.45 718.95 515.30 489.25 447.15

TriangleHeightChron 506.60 3310.75 2145.15 1051.00 560.35 542.10 496.60

TriangleHeightLDS 1070.75 26297.50 2276.00 1407.15 883.10 756.30 626.15

VarHeightChron 477.30 1725.35 691.05 633.60 511.40 475.85 443.40

VarHeightLDS 779.25 4181.05 1079.70 603.15 522.75 475.85 461.00

Table B.22. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 513.75 21078.20 1551.30 2054.90 146.60 91.80 93.35

LJRandLDS 4058.60 16295.80 286.35 127.75 129.20 104.70 96.40

CBASlackChron 21.50 176.80 219.15 287.85 341.35 378.65 393.75

CBASlackLDS 53.10 501.35 227.25 285.40 341.35 378.65 393.75

SumHeightChron 9.85 89.75 71.65 81.85 110.80 123.90 138.15

SumHeightLDS 25.20 270.75 113.65 95.10 121.00 129.45 140.30

JointHeightChron 10.65 103.05 78.30 102.55 121.20 147.05 160.95

JointHeightLDS 26.95 300.45 130.20 110.40 121.20 151.00 160.95

TriangleHeightChron 12.20 168.10 130.05 111.05 84.50 94.15 103.95

TriangleHeightLDS 41.70 1343.90 142.20 151.45 128.65 129.95 130.20

VarHeightChron 10.00 78.80 69.65 98.90 113.90 125.10 143.50

VarHeightLDS 24.50 186.00 92.55 99.80 115.15 125.10 142.95

Table B.23. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments.

233

B.2.4 15✕ 15 Results

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 4.95 7.88 9.96 11.25 12.30 12.61 12.89

LJRandLDS 6.10 7.95 10.45 11.84 12.19 12.71 12.89

CBASlackChron 3.35 13.49 33.83 51.40 63.10 71.82 75.64

CBASlackLDS 5.04 10.58 30.85 50.54 63.10 71.82 75.64

SumHeightChron 1.72 5.03 11.14 14.55 21.44 26.34 30.92

SumHeightLDS 2.57 5.65 11.08 15.14 22.29 26.85 31.01

JointHeightChron 1.91 5.80 11.16 18.03 24.01 31.03 36.21

JointHeightLDS 2.90 5.59 10.37 17.19 24.01 31.21 36.21

TriangleHeightChron 1.93 5.03 7.54 11.85 15.44 17.86 21.33

TriangleHeightLDS 2.84 4.77 6.92 11.63 15.39 18.14 21.39

VarHeightChron 1.72 5.13 10.85 17.24 22.69 26.56 32.59

VarHeightLDS 2.50 5.41 10.71 17.58 22.68 26.56 32.10

Table B.24. Experiment 2, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 0.20 1.00 1.00 0.70 0.40 0.15 0.00

LJRandLDS 0.25 0.95 0.70 0.35 0.00 0.00 0.00

CBASlackChron 0.05 0.45 0.40 0.10 0.00 0.00 0.00

CBASlackLDS 0.05 0.40 0.25 0.00 0.00 0.00 0.00

SumHeightChron 0.00 0.25 0.50 0.10 0.10 0.05 0.00

SumHeightLDS 0.05 0.55 0.35 0.00 0.00 0.00 0.00

JointHeightChron 0.05 0.30 0.60 0.25 0.05 0.05 0.00

JointHeightLDS 0.05 0.50 0.50 0.00 0.00 0.00 0.00

TriangleHeightChron 0.05 0.70 0.70 0.50 0.35 0.15 0.20

TriangleHeightLDS 0.05 0.90 0.60 0.05 0.00 0.00 0.00

VarHeightChron 0.00 0.25 0.50 0.10 0.00 0.05 0.00

VarHeightLDS 0.00 0.45 0.30 0.00 0.00 0.00 0.00

Table B.25. Experiment 2, 15✕ 15 Problems: Fraction of Problems Timed-out.

234

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 270.93 1200.09 1200.16 894.84 511.63 199.91 2.80

LJRandLDS 417.52 1164.30 892.92 487.20 38.47 8.07 3.73

CBASlackChron 71.21 619.05 567.49 171.62 6.67 6.82 7.43

CBASlackLDS 108.40 661.52 408.49 18.66 7.28 6.98 7.41

SumHeightChron 20.86 567.25 630.91 208.04 142.10 63.76 5.03

SumHeightLDS 69.65 787.14 620.32 44.45 7.34 4.71 3.99

JointHeightChron 70.33 607.58 779.60 336.20 68.80 74.70 40.13

JointHeightLDS 124.04 796.09 667.78 56.69 9.84 8.87 6.90

TriangleHeightChron 63.47 922.59 864.20 668.52 439.84 275.39 281.81

TriangleHeightLDS 78.71 1142.03 805.84 236.50 35.45 15.99 16.20

VarHeightChron 16.01 435.71 664.70 205.45 17.50 64.35 4.53

VarHeightLDS 96.73 734.73 587.24 57.20 7.91 4.45 4.84

Table B.26. Experiment 2, 15✕ 15 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 1809.15 7542.30 6514.35 4692.35 2466.05 936.40 0.95

LJRandLDS 2514.25 3673.60 1795.65 716.85 32.80 2.85 0.55

CBASlackChron 490.40 4071.45 3706.95 987.15 0.35 0.05 0.00

CBASlackLDS 765.10 3820.45 1694.00 14.05 0.40 0.15 0.00

SumHeightChron 134.50 3218.90 3571.75 1185.50 647.95 384.40 9.50

SumHeightLDS 437.70 3804.05 2081.60 71.60 3.05 0.90 0.50

JointHeightChron 398.30 3260.65 4065.75 1591.15 308.20 321.35 137.35

JointHeightLDS 554.40 2895.90 1491.15 45.60 1.45 0.85 0.10

TriangleHeightChron 347.60 5365.20 4740.50 3580.55 2303.45 1368.45 1279.10

TriangleHeightLDS 380.80 5114.55 2483.20 436.30 31.25 7.75 6.30

VarHeightChron 95.70 2385.85 3612.25 1059.70 66.25 347.60 3.05

VarHeightLDS 558.70 3389.90 1868.05 71.20 3.20 0.55 0.45

Table B.27. Experiment 2, 15✕ 15 Problems: Mean Number of Backtracks.

235

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 75041.85 322515.35 269275.90 169136.60 76866.90 25333.80 2215.00

LJRandLDS 156407.45 644276.45 543594.90 302841.85 26494.15 6238.30 3093.90

CBASlackChron 16979.60 158992.80 147837.00 37756.15 1806.40 1749.40 1692.15

CBASlackLDS 33906.55 265835.05 193566.80 10558.75 2254.45 1888.75 1692.15

SumHeightChron 7344.05 207740.40 207824.30 61161.35 29110.40 15860.15 2224.90

SumHeightLDS 24893.75 359935.55 323037.05 24928.70 4060.80 2439.60 2046.25

JointHeightChron 20071.15 194098.20 241894.60 100282.90 9246.50 11957.00 3463.35

JointHeightLDS 38984.05 282683.10 254651.35 20003.15 3082.25 2447.05 1701.80

TriangleHeightChron 18467.85 253020.30 187792.95 130776.55 82505.30 44632.80 33687.45

TriangleHeightLDS 28752.65 468912.35 360811.60 106484.90 16655.65 7266.20 6375.55

VarHeightChron 6331.30 163033.65 227737.15 51691.80 6320.95 15572.15 1683.60

VarHeightLDS 35742.65 342046.80 302199.25 29862.00 4171.40 2114.45 2000.65

Table B.28. Experiment 2, 15✕ 15 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 3624.40 15127.15 13104.30 9506.65 5104.25 2072.40 215.15

LJRandLDS 9078.00 32128.20 30888.25 19809.95 1980.35 543.80 290.20

CBASlackChron 985.50 8379.05 8008.00 2804.65 1052.10 1211.05 1330.05

CBASlackLDS 2275.25 16147.20 14573.10 1416.40 1090.45 1214.05 1330.05

SumHeightChron 267.00 6465.90 7230.70 2513.00 1497.50 1009.60 261.05

SumHeightLDS 1000.20 12221.55 13564.80 1613.90 431.45 345.15 311.65

JointHeightChron 795.80 6552.20 8230.40 3333.10 843.05 915.60 605.75

JointHeightLDS 1510.75 10480.50 10776.80 1344.45 366.40 380.55 347.25

TriangleHeightChron 694.45 10768.40 9566.30 7270.60 4745.10 2910.40 2733.65

TriangleHeightLDS 1212.60 19112.20 18088.75 7035.85 1372.90 699.10 718.15

VarHeightChron 189.40 4801.00 7312.80 2273.35 324.60 944.15 293.15

VarHeightLDS 1202.00 10820.15 11540.90 1971.40 400.10 311.15 350.80

Table B.29. Experiment 2, 15✕ 15 Problems: Mean Number of Heuristic Commitments.

236

B.2.5 20✕ 20 Results

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 3.53 5.02 5.27 6.70 8.13 9.15 9.72

LJRandLDS 4.61 5.01 6.07 7.42 8.45 9.13 9.53

CBASlackChron 3.11 5.08 19.57 36.27 58.75 69.51 78.72

CBASlackLDS 4.52 6.55 19.59 33.65 55.43 67.96 78.72

SumHeightChron 1.30 3.10 4.04 6.70 10.55 14.80 15.05

SumHeightLDS 1.96 3.51 5.41 8.55 12.42 15.61 16.16

JointHeightChron 1.58 3.29 5.04 6.70 12.65 15.95 21.60

JointHeightLDS 2.30 4.01 5.85 8.93 13.63 17.36 21.68

TriangleHeightChron 1.36 4.30 5.36 6.01 7.74 9.65 10.29

TriangleHeightLDS 2.00 4.14 5.53 6.86 8.85 10.19 11.47

VarHeightChron 1.33 2.86 3.87 7.11 10.16 15.49 18.62

VarHeightLDS 1.92 3.23 5.02 8.55 11.52 16.07 18.85

Table B.30. Experiment 2, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 0.25 1.00 1.00 1.00 0.90 0.80 0.25

LJRandLDS 0.30 1.00 1.00 1.00 0.75 0.10 0.00

CBASlackChron 0.00 0.80 0.95 0.85 0.35 0.05 0.00

CBASlackLDS 0.05 1.00 1.00 0.75 0.10 0.00 0.00

SumHeightChron 0.00 0.95 1.00 0.90 0.65 0.20 0.15

SumHeightLDS 0.00 0.95 1.00 0.90 0.30 0.00 0.00

JointHeightChron 0.05 0.95 1.00 1.00 0.50 0.20 0.05

JointHeightLDS 0.05 1.00 1.00 0.80 0.20 0.00 0.00

TriangleHeightChron 0.05 1.00 1.00 1.00 0.90 0.80 0.60

TriangleHeightLDS 0.05 1.00 1.00 1.00 0.70 0.45 0.10

VarHeightChron 0.00 0.95 1.00 1.00 0.45 0.20 0.20

VarHeightLDS 0.00 0.95 1.00 0.70 0.35 0.05 0.00

Table B.31. Experiment 2, 20✕ 20 Problems: Fraction of Problems Timed-out.

237

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 356.16 1200.23 1200.33 1200.36 1109.01 962.37 307.82

LJRandLDS 531.95 1200.34 1200.34 1200.31 971.20 300.69 51.06

CBASlackChron 23.39 1071.23 1162.51 1043.70 487.44 91.53 36.25

CBASlackLDS 75.06 1200.18 1200.44 977.04 259.68 46.75 36.16

SumHeightChron 9.61 1146.96 1200.24 1104.60 817.95 321.06 254.09

SumHeightLDS 39.64 1180.06 1200.27 1130.60 587.41 112.71 42.54

JointHeightChron 74.99 1165.00 1200.28 1200.28 680.88 383.25 93.21

JointHeightLDS 135.31 1200.33 1200.56 1003.28 496.24 151.69 40.31

TriangleHeightChron 69.17 1200.25 1200.20 1200.23 1116.39 980.19 728.99

TriangleHeightLDS 108.30 1200.32 1200.38 1200.21 991.67 764.99 416.79

VarHeightChron 6.34 1145.16 1200.25 1200.25 694.20 313.76 257.40

VarHeightLDS 21.21 1164.07 1200.31 998.08 545.31 147.82 36.04

Table B.32. Experiment 2, 20✕ 20 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 936.55 2713.75 2328.50 2023.20 1719.70 1327.65 394.85

LJRandLDS 1299.40 1018.35 570.50 405.55 285.70 65.60 6.45

CBASlackChron 70.65 2805.95 2496.90 1906.90 750.75 90.20 0.00

CBASlackLDS 225.05 2086.65 482.95 184.00 37.10 2.30 0.00

SumHeightChron 20.85 2558.85 2403.00 1959.15 1331.80 473.20 398.20

SumHeightLDS 93.95 1775.95 948.65 551.35 221.65 24.15 5.35

JointHeightChron 158.45 2298.05 2194.60 2049.35 1060.45 527.40 85.90

JointHeightLDS 227.05 1073.35 453.15 252.00 76.60 13.65 0.90

TriangleHeightChron 166.85 2668.65 2532.20 2241.75 1908.30 1680.35 1125.75

TriangleHeightLDS 245.85 1684.35 984.30 640.90 416.95 250.35 106.05

VarHeightChron 12.10 2466.35 2303.70 2104.30 1044.40 464.35 323.85

VarHeightLDS 47.50 1636.85 824.00 440.45 174.35 30.65 3.10

Table B.33. Experiment 2, 20✕ 20 Problems: Mean Number of Backtracks.

238

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 51274.10 169415.15 121536.00 101663.95 73483.10 52231.15 16647.15

LJRandLDS 87265.00 433612.45 473296.15 480260.30 407814.20 129362.25 25135.20

CBASlackChron 3503.70 130323.70 118853.15 91817.70 38772.95 7800.95 3986.20

CBASlackLDS 7873.10 299797.90 369620.70 296847.95 78554.10 9556.60 3986.20

SumHeightChron 3232.95 187801.40 179760.85 162333.80 109716.10 40752.00 31889.70

SumHeightLDS 9781.40 345452.65 428115.30 400692.80 211395.90 39058.60 14837.10

JointHeightChron 12140.95 194896.75 178460.45 153327.50 77036.00 38187.85 8730.85

JointHeightLDS 21036.05 248643.35 247893.90 198186.10 95463.05 27106.05 6213.50

TriangleHeightChron 9767.65 161200.45 120778.45 121404.45 105888.25 74017.00 51111.95

TriangleHeightLDS 17087.00 328627.60 365528.30 372444.55 305347.10 226552.70 113669.00

VarHeightChron 2639.80 197394.80 188131.45 180858.90 85846.30 31420.70 20937.45

VarHeightLDS 5953.00 343588.30 406770.25 336066.30 179637.25 46557.40 10798.55

Table B.34. Experiment 2, 20✕ 20 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 1876.55 5482.20 4752.80 4180.85 3630.20 2911.30 1135.45

LJRandLDS 3689.60 16528.70 22154.35 26042.90 24193.15 8331.20 1668.00

CBASlackChron 139.30 6123.10 6061.15 5264.00 3562.75 2733.90 2967.90

CBASlackLDS 513.40 18188.10 38665.10 36480.10 10087.80 3117.65 2967.90

SumHeightChron 39.70 5161.95 4894.35 4038.40 2848.85 1216.60 1129.15

SumHeightLDS 198.75 9573.10 15322.55 18633.85 11364.40 2702.60 1278.50

JointHeightChron 316.85 4636.50 4480.40 4229.40 2357.20 1423.35 645.60

JointHeightLDS 597.45 7177.45 10062.75 9790.25 5701.50 2032.35 713.25

TriangleHeightChron 332.65 5385.30 5149.30 4599.30 3951.55 3532.65 2492.80

TriangleHeightLDS 618.90 10086.90 14850.10 18087.40 16236.05 13898.90 7759.70

VarHeightChron 22.20 4975.85 4687.05 4336.35 2314.90 1228.90 1000.60

VarHeightLDS 97.40 8720.15 14683.15 15670.05 9883.65 3331.50 980.25

Table B.35. Experiment 2, 20✕ 20 Problems: Mean Number of Heuristic Commitments.

239

B.3 Experiment 3

B.3.1 10✕ 10 Results

Makespan Factor

Algorithm 1.0 1.05 1.1 1.15 1.2 1.25 1.3

LJRandChron 2.76 3.33 4.16 4.25 5.63 6.66 7.55

LJRandLDS 3.44 3.82 4.68 5.42 6.03 6.69 7.21

CBASlackChron 1.79 4.68 5.20 9.19 30.95 58.70 74.54

CBASlackLDS 2.91 5.83 10.49 14.62 25.78 58.01 74.54

SumHeightChron 0.83 2.76 3.03 2.65 3.38 5.39 7.49

SumHeightLDS 1.35 2.74 3.58 4.73 6.01 7.44 8.94

JointHeightChron 1.03 2.40 2.57 2.91 4.65 7.12 11.45

JointHeightLDS 1.56 2.90 4.09 5.31 6.80 9.56 12.26

TriangleHeightChron 0.77 3.62 4.68 4.14 4.40 5.86 5.98

TriangleHeightLDS 1.47 3.06 4.08 4.88 5.40 6.21 7.49

VarHeightChron 0.55 2.55 2.69 2.75 3.79 6.48 8.42

VarHeightLDS 0.93 2.49 3.62 4.81 6.54 8.18 9.99

Table B.36. Experiment 2, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments.

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 0.00 0.05 0.40 0.75 0.75 0.30

LJRandLDS 0.00 0.00 0.05 0.60 0.90 0.50

CBASlackChron 0.00 0.00 0.05 0.20 0.20 0.00

CBASlackLDS 0.00 0.00 0.00 0.25 0.40 0.25

SumHeightChron 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightLDS 0.00 0.00 0.00 0.00 0.05 0.05

JointHeightChron 0.00 0.00 0.00 0.00 0.10 0.00

JointHeightLDS 0.00 0.00 0.00 0.15 0.30 0.10

TriangleHeightChron 0.00 0.00 0.00 0.40 0.40 0.05

TriangleHeightLDS 0.00 0.00 0.00 0.30 0.75 0.50

VarHeightChron 0.00 0.00 0.05 0.15 0.30 0.05

VarHeightLDS 0.00 0.00 0.00 0.30 0.45 0.25

Table B.37. Experiment 3, 10✕ 10 Problems: Fraction of Problems Timed-out.

240

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 1.77 140.66 566.15 982.47 976.22 421.77

LJRandLDS 0.82 4.37 109.15 810.72 1106.72 710.95

CBASlackChron 0.83 4.14 67.26 390.57 418.97 109.48

CBASlackLDS 0.83 1.66 14.99 407.83 694.60 454.51

SumHeightChron 0.63 1.06 5.19 69.81 52.75 14.65

SumHeightLDS 0.67 1.49 7.16 161.93 266.06 99.14

JointHeightChron 0.95 1.47 17.36 185.42 321.17 50.68

JointHeightLDS 0.95 2.48 12.48 298.94 585.32 276.26

TriangleHeightChron 0.78 3.70 36.89 588.04 760.16 242.40

TriangleHeightLDS 1.20 4.26 24.06 529.08 1006.54 699.60

VarHeightChron 0.69 2.17 89.09 382.99 529.98 138.43

VarHeightLDS 0.70 1.84 7.93 456.30 796.65 383.37

Table B.38. Experiment 3, 10✕ 10 Problems: Mean CPU Time in Seconds.

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 28.20 2547.15 8478.00 12868.70 10818.20 4418.40

LJRandLDS 0.80 18.45 784.60 7429.45 9900.50 6695.10

CBASlackChron 0.00 58.50 979.35 5621.70 5988.70 1445.40

CBASlackLDS 0.00 4.60 154.15 5707.75 9225.20 5723.40

SumHeightChron 0.60 6.20 65.35 970.55 678.95 170.25

SumHeightLDS 0.30 4.30 43.00 1904.00 3166.05 1063.25

JointHeightChron 0.00 6.55 217.40 2198.95 3562.00 543.60

JointHeightLDS 0.00 4.90 54.75 2734.35 5297.35 2483.80

TriangleHeightChron 1.30 46.60 494.45 7415.40 8292.30 2506.90

TriangleHeightLDS 1.35 19.30 157.30 4923.75 9254.25 6525.75

VarHeightChron 0.05 23.45 1324.40 5091.35 6275.00 1477.55

VarHeightLDS 0.05 4.75 40.05 5000.05 8068.20 3692.45

Table B.39. Experiment 3, 10✕ 10 Problems: Mean Number of Backtracks.

241

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 1181.90 60063.60 358707.85 725282.40 818502.10 360083.00

LJRandLDS 1083.00 5311.55 119602.95 852255.25 1155480.60 690050.20

CBASlackChron 542.85 1860.10 20543.55 189578.40 221784.20 58515.70

CBASlackLDS 542.85 1395.35 12858.95 260329.70 411942.15 244692.40

SumHeightChron 536.30 995.75 4225.30 57178.25 41906.60 11613.45

SumHeightLDS 563.65 1531.20 6748.30 126720.15 200946.05 74231.35

JointHeightChron 515.30 966.05 9421.65 119322.75 203894.25 33353.50

JointHeightLDS 515.30 1635.75 8107.55 179440.45 350824.40 161005.20

TriangleHeightChron 560.35 2683.10 22244.95 402450.70 535954.55 189788.00

TriangleHeightLDS 883.10 3845.75 21476.15 443670.30 851184.35 561926.80

VarHeightChron 511.40 1445.25 28997.40 221487.85 365213.70 111845.75

VarHeightLDS 522.75 1770.30 7168.75 351584.75 672579.60 329784.95

Table B.40. Experiment 3, 10✕ 10 Problems: Mean Number of Commitments.

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 146.60 5175.65 17010.35 25763.20 21645.20 8837.95

LJRandLDS 129.20 404.60 5421.45 29833.90 31488.95 16506.95

CBASlackChron 341.35 366.15 2164.15 11353.10 12016.55 2888.80

CBASlackLDS 341.35 321.00 1171.40 15443.25 23368.80 12826.75

SumHeightChron 110.80 80.30 193.40 1977.75 1364.25 338.50

SumHeightLDS 121.00 120.25 359.60 4826.45 7042.45 2283.85

JointHeightChron 121.20 89.95 502.75 4436.60 7129.50 1085.20

JointHeightLDS 121.20 149.25 504.10 7254.10 12687.15 5465.55

TriangleHeightChron 84.50 147.35 1033.85 14856.70 16592.20 5012.45

TriangleHeightLDS 128.65 234.90 946.40 15915.50 23785.00 14987.35

VarHeightChron 113.90 112.95 2702.15 10211.35 12562.00 2954.05

VarHeightLDS 115.15 134.80 426.65 13263.25 20230.85 8408.05

Table B.41. Experiment 3, 10✕ 10 Problems: Mean Number of Heuristic Commitments.

242

B.3.2 15✕ 15 Results

Number of Bottlenecks

Algorithm 0 2 4 6 8 10

LJRandChron 12.30 8.73 5.30 3.63 2.60 2.05

LJRandLDS 12.19 8.16 5.31 3.65 2.66 2.07

CBASlackChron 63.10 31.06 16.07 7.24 5.08 4.04

CBASlackLDS 63.10 30.03 15.00 7.03 5.72 4.38

SumHeightChron 21.44 9.06 6.40 3.99 3.12 2.00

SumHeightLDS 22.29 9.01 6.29 4.03 3.39 2.28

JointHeightChron 24.01 9.99 6.01 3.95 3.21 2.20

JointHeightLDS 24.01 10.15 6.93 4.66 3.60 2.44

TriangleHeightChron 15.44 7.13 5.63 3.86 3.06 2.01

TriangleHeightLDS 15.39 7.05 5.12 3.61 2.88 2.11

VarHeightChron 22.69 8.69 6.14 4.10 3.37 2.02

VarHeightLDS 22.68 8.41 6.42 3.94 3.02 2.19

Table B.42. Experiment 3, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments.

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 0.90 1.00 1.00 1.00 1.00 0.90 0.55

LJRandLDS 0.50 0.95 1.00 1.00 1.00 0.90 0.75

CBASlackChron 0.35 0.95 1.00 1.00 0.90 0.60 0.35

CBASlackLDS 0.00 0.65 1.00 1.00 1.00 0.70 0.60

SumHeightChron 0.25 0.50 0.90 0.95 0.65 0.35 0.15

SumHeightLDS 0.00 0.40 0.90 0.95 0.85 0.55 0.35

JointHeightChron 0.35 0.95 1.00 1.00 0.85 0.60 0.45

JointHeightLDS 0.00 0.55 1.00 1.00 0.90 0.85 0.65

TriangleHeightChron 0.70 0.95 1.00 1.00 0.85 0.70 0.45

TriangleHeightLDS 0.25 0.70 1.00 1.00 0.95 0.75 0.60

VarHeightChron 0.65 0.90 1.00 1.00 0.85 0.60 0.35

VarHeightLDS 0.10 0.60 0.90 1.00 1.00 0.80 0.65

Table B.43. Experiment 3, 15✕ 15 Problems: Fraction of Problems Timed-out.

243

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 1084.03 1200.15 1200.14 1200.08 1200.08 1080.21 723.41

LJRandLDS 732.11 1150.32 1200.16 1200.18 1200.14 1080.40 907.94

CBASlackChron 529.94 1172.72 1200.11 1200.08 1155.93 844.02 528.71

CBASlackLDS 108.55 974.89 1200.15 1200.10 1200.12 874.11 728.58

SumHeightChron 323.60 867.76 1109.13 1145.69 888.05 550.07 323.51

SumHeightLDS 92.30 690.64 1148.73 1197.91 1079.38 776.67 532.07

JointHeightChron 509.57 1140.61 1200.18 1200.06 1055.29 880.94 625.03

JointHeightLDS 95.87 858.71 1200.18 1200.18 1150.65 1039.56 835.70

TriangleHeightChron 860.39 1141.43 1200.12 1200.12 1115.70 912.94 650.05

TriangleHeightLDS 495.33 996.21 1200.24 1200.16 1152.45 986.20 798.05

VarHeightChron 804.58 1091.03 1200.12 1200.10 1126.58 922.56 605.40

VarHeightLDS 299.28 876.35 1138.85 1200.17 1200.12 968.48 837.33

Table B.44. Experiment 3, 15✕ 15 Problems: Mean CPU Time in Seconds.

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 5340.80 5938.95 5823.70 5654.35 5439.15 4595.25 2873.20

LJRandLDS 1028.20 1906.10 2123.55 2687.65 3154.65 3022.55 2734.40

CBASlackChron 2613.90 5902.05 6435.65 6721.50 6192.20 4453.35 2678.95

CBASlackLDS 81.15 2252.60 3713.35 5279.45 5578.00 4101.15 3454.15

SumHeightChron 1653.00 4366.80 5701.55 5578.55 4331.15 2534.75 1451.85

SumHeightLDS 161.30 1909.10 3474.55 4462.90 4244.30 3142.90 2163.75

JointHeightChron 2386.70 5416.15 5561.45 5502.35 4523.15 3472.60 2399.25

JointHeightLDS 74.05 1206.70 1847.30 2367.80 2570.60 2603.65 2172.85

TriangleHeightChron 4108.15 5236.45 5282.15 5100.95 4514.70 3367.30 2325.10

TriangleHeightLDS 924.30 2079.45 2552.00 2786.75 2931.00 2541.35 2324.95

VarHeightChron 3760.25 5261.10 5229.25 5382.95 5035.65 3841.75 2401.30

VarHeightLDS 500.50 1873.95 2405.10 3439.20 3854.85 3117.30 2946.00

Table B.45. Experiment 3, 15✕ 15 Problems: Mean Number of Backtracks.

244

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 218018.10 348004.55 373239.50 415959.50 452760.20 439076.15 312087.50

LJRandLDS 473876.60 723194.90 742052.35 721181.10 663025.15 573075.20 458852.30

CBASlackChron 94207.40 245729.45 282536.15 311654.10 284094.05 204779.70 133729.10

CBASlackLDS 53391.80 447845.40 558729.35 483931.60 416003.45 285535.55 221669.05

SumHeightChron 91089.85 281061.90 351226.40 393083.20 291164.70 182027.25 104050.45

SumHeightLDS 50756.90 366355.45 595528.75 557427.05 453595.10 318974.65 197801.30

JointHeightChron 129612.30 340604.15 343280.75 344416.00 308169.00 253734.20 174211.85

JointHeightLDS 31519.35 275561.10 377653.05 372771.20 348471.70 305001.90 229453.10

TriangleHeightChron 199454.30 305561.95 359197.55 406550.15 404112.70 328297.25 267448.90

TriangleHeightLDS 245182.65 492953.50 596648.10 594104.35 564066.10 459712.35 362983.45

VarHeightChron 168938.20 284734.00 333716.65 419334.75 412962.55 335791.45 228844.90

VarHeightLDS 159534.65 446445.20 596557.60 595169.45 564775.30 426232.20 352132.25

Table B.46. Experiment 3, 15✕ 15 Problems: Mean Number of Commitments.

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 10774.00 11937.20 11691.05 11338.20 10898.10 9203.65 5751.90

LJRandLDS 26040.80 32291.10 26536.60 19494.25 15807.00 12029.70 8300.20

CBASlackChron 5951.40 12277.00 13245.90 13646.80 12542.30 8982.85 5388.55

CBASlackLDS 9114.25 56723.70 50280.75 35324.80 26871.40 15212.10 10236.50

SumHeightChron 3425.75 8829.85 11457.35 11190.95 8687.95 5082.30 2907.45

SumHeightLDS 2641.55 15101.95 22155.65 18406.05 14228.10 8806.25 5596.95

JointHeightChron 4904.20 10912.15 11180.60 11049.40 9089.65 6970.40 4811.20

JointHeightLDS 2106.60 14836.40 19167.60 15992.70 13183.85 9462.00 6925.50

TriangleHeightChron 8287.60 10521.65 10602.65 10222.15 9044.55 6746.80 4655.40

TriangleHeightLDS 10919.45 18373.00 19450.60 14310.30 12156.25 8852.60 6731.50

VarHeightChron 7609.05 10582.60 10507.50 10799.90 10098.10 7699.55 4811.10

VarHeightLDS 6668.05 17504.05 19710.15 17530.70 15963.70 11451.50 8244.15

Table B.47. Experiment 3, 15✕ 15 Problems: Mean Number of Heuristic Commitments.

245

B.3.3 20✕ 20 Results

Number of Bottlenecks

Algorithm 2 4 6 8 10 12 14

LJRandChron 5.36 3.49 3.26 2.81 2.48 2.01 1.55

LJRandLDS 5.92 4.50 3.58 2.71 2.43 1.98 1.56

CBASlackChron 19.23 5.33 4.76 4.42 4.50 3.65 2.75

CBASlackLDS 20.13 13.21 9.01 7.18 6.45 4.48 3.33

SumHeightChron 4.57 3.69 3.39 2.87 2.98 2.37 2.08

SumHeightLDS 5.98 4.44 3.73 3.31 3.09 2.46 2.30

JointHeightChron 5.17 3.37 3.32 3.29 2.94 2.47 2.06

JointHeightLDS 7.46 5.75 5.15 4.35 3.76 2.83 2.38

TriangleHeightChron 4.62 3.56 2.99 2.55 2.32 1.92 1.54

TriangleHeightLDS 4.94 3.86 3.30 2.42 2.21 1.78 1.68

VarHeightChron 5.11 3.93 3.32 2.65 2.48 2.13 1.77

VarHeightLDS 4.86 4.05 3.29 2.95 2.84 2.50 2.01

Table B.48. Experiment 3, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments.

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 0.90 1.00 1.00 1.00 0.85 0.50

LJRandLDS 0.75 1.00 1.00 1.00 0.85 0.60

CBASlackChron 0.35 1.00 1.00 1.00 0.65 0.30

CBASlackLDS 0.10 1.00 1.00 1.00 0.75 0.35

SumHeightChron 0.65 1.00 1.00 1.00 0.50 0.20

SumHeightLDS 0.30 1.00 1.00 1.00 0.70 0.35

JointHeightChron 0.50 1.00 1.00 1.00 0.70 0.35

JointHeightLDS 0.20 1.00 1.00 1.00 0.80 0.35

TriangleHeightChron 0.90 1.00 1.00 1.00 0.70 0.35

TriangleHeightLDS 0.70 1.00 1.00 1.00 0.80 0.35

VarHeightChron 0.45 1.00 1.00 1.00 0.70 0.40

VarHeightLDS 0.35 1.00 1.00 1.00 0.80 0.45

Table B.49. Experiment 3, 20✕ 20 Problems: Fraction of Problems Timed-out.

246

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 1109.01 1200.29 1200.26 1200.27 1030.87 687.01

LJRandLDS 971.20 1200.31 1200.27 1200.27 1037.68 721.82

CBASlackChron 487.44 1200.20 1200.22 1200.20 860.48 393.16

CBASlackLDS 259.68 1200.48 1200.31 1200.19 952.27 481.55

SumHeightChron 817.95 1200.24 1200.23 1200.27 791.31 334.25

SumHeightLDS 587.41 1200.37 1200.34 1200.31 928.86 471.57

JointHeightChron 680.88 1200.33 1200.29 1200.32 936.34 442.41

JointHeightLDS 496.24 1200.72 1200.63 1200.53 1012.03 536.10

TriangleHeightChron 1116.39 1200.34 1200.29 1200.35 907.90 455.15

TriangleHeightLDS 991.67 1200.41 1200.50 1200.45 961.81 536.50

VarHeightChron 694.20 1200.33 1200.26 1200.20 942.14 513.08

VarHeightLDS 545.31 1200.39 1200.26 1200.38 962.43 644.40

Table B.50. Experiment 3, 20✕ 20 Problems: Mean CPU Time in Seconds.

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 1719.70 2113.15 2097.90 2219.60 1790.55 1126.90

LJRandLDS 285.70 452.75 577.35 963.70 1111.35 956.40

CBASlackChron 750.75 2143.55 2482.30 2529.70 1789.30 755.30

CBASlackLDS 37.10 344.20 890.90 2056.05 1785.70 849.30

SumHeightChron 1331.80 2327.70 2330.95 2333.80 1507.90 600.35

SumHeightLDS 221.65 875.60 1238.10 1591.80 1402.45 738.35

JointHeightChron 1060.45 2112.45 2106.00 1871.00 1452.15 648.30

JointHeightLDS 76.60 360.35 477.75 651.10 764.40 460.10

TriangleHeightChron 1908.30 2058.90 1962.95 1906.45 1386.15 643.60

TriangleHeightLDS 416.95 730.75 785.85 923.45 881.95 613.95

VarHeightChron 1044.40 2009.20 2040.45 2090.95 1605.75 840.35

VarHeightLDS 174.35 632.85 843.05 1185.35 1213.35 910.65

Table B.51. Experiment 3, 20✕ 20 Problems: Mean Number of Backtracks.

247

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 73483.10 129429.60 183842.20 214082.45 194256.60 139867.80

LJRandLDS 407814.20 480089.35 460838.25 419504.25 335978.70 202557.60

CBASlackChron 38772.95 100305.65 135353.20 139937.50 111221.25 51764.05

CBASlackLDS 78554.10 337240.40 330962.10 256123.95 172544.70 81556.65

SumHeightChron 109716.10 164669.15 170349.15 175959.55 124188.70 51522.80

SumHeightLDS 211395.90 420912.30 385081.70 324172.40 231555.15 98132.00

JointHeightChron 77036.00 154463.80 157087.40 153058.10 129207.75 60461.80

JointHeightLDS 95463.05 203344.10 200846.10 188709.20 158099.85 82167.80

TriangleHeightChron 105888.25 154722.65 188083.65 216783.80 177525.60 91748.20

TriangleHeightLDS 305347.10 388415.65 375359.45 372589.55 287373.90 138087.55

VarHeightChron 85846.30 149399.10 166752.35 187178.55 158776.20 83622.95

VarHeightLDS 179637.25 411476.45 400342.55 344159.20 254639.65 148565.75

Table B.52. Experiment 3, 20✕ 20 Problems: Mean Number of Commitments.

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 3630.20 4318.50 4255.80 4471.30 3598.00 2258.95

LJRandLDS 24193.15 18553.65 12555.65 9218.05 5716.10 2992.55

CBASlackChron 3562.75 5473.25 5711.70 5324.10 3669.90 1542.25

CBASlackLDS 10087.80 39648.00 30228.30 17192.30 8362.45 2543.30

SumHeightChron 2848.85 4746.15 4742.65 4727.25 3044.00 1205.30

SumHeightLDS 11364.40 14584.80 12640.15 8354.70 5187.60 2080.70

JointHeightChron 2357.20 4330.05 4297.60 3801.20 2943.50 1310.50

JointHeightLDS 5701.50 10098.95 8559.45 6141.40 4334.45 1759.65

TriangleHeightChron 3951.55 4187.40 3972.55 3834.40 2784.15 1289.70

TriangleHeightLDS 16236.05 12802.10 8880.75 5643.35 3790.35 1969.20

VarHeightChron 2314.90 4092.15 4144.05 4227.65 3239.60 1693.70

VarHeightLDS 9883.65 13031.75 11342.50 9047.70 5970.50 2938.65

Table B.53. Experiment 3, 20✕ 20 Problems: Mean Number of Heuristic Commitments.

248

Number of Bottlenecks

Algorithm 0 4 8 12 16 20

LJRandChron 5.63 3.75 2.42 2.16 1.72 1.00

LJRandLDS 6.03 3.87 2.73 2.22 1.57 0.97

CBASlackChron 30.95 5.83 4.35 3.83 2.90 1.50

CBASlackLDS 25.78 11.84 9.16 6.69 4.13 1.70

SumHeightChron 3.38 3.35 3.04 2.93 2.06 1.20

SumHeightLDS 6.01 3.46 3.27 2.56 1.90 1.23

JointHeightChron 4.65 2.96 2.81 2.52 1.96 1.13

JointHeightLDS 6.80 4.99 4.29 3.26 2.34 1.25

TriangleHeightChron 4.40 2.89 2.29 1.82 1.30 0.72

TriangleHeightLDS 5.40 3.31 2.39 1.52 1.15 0.80

VarHeightChron 3.79 2.89 2.79 2.49 1.87 1.24

VarHeightLDS 6.54 3.17 2.84 2.64 1.98 1.19

Table B.54. Experiment 3, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments.

249

Appendix C Detailed Results for the Experiments

in Chapter 6

C.1 Experiment 1

Number of Consumers per Process Plan

Algorithm 5 10 15 20 25

CBASlackNoProp 0.60 0.85 0.90 0.85 0.90

CBASlackProp 0.30 0.50 0.55 0.65 0.60

GreedySumHeightNoProp 0.45 0.60 0.90 0.85 0.75

GreedySumHeightProp 0.25 0.20 0.60 0.45 0.50

VarHeightNoProp 0.40 0.40 0.50 0.70 0.75

VarHeightProp 0.05 0.10 0.30 0.25 0.25

Table C.1. Experiment 1: Fraction of Problems Timed-out.

Number of Consumers per Process Plan

Algorithm 5 10 15 20 25

CBASlackNoProp 724.16 1026.54 1113.83 1039.62 1080.08

CBASlackProp 360.63 604.89 678.18 784.33 725.86

GreedySumHeightNoProp 540.29 720.42 1080.24 1020.24 900.43

GreedySumHeightProp 339.63 240.94 720.73 540.93 600.89

VarHeightNoProp 480.58 482.46 639.46 840.65 900.52

VarHeightProp 63.87 122.23 363.86 301.52 305.17

Table C.2. Experiment 1: Mean CPU Time in Seconds.

250

Number of Consumers per Process Plan

Algorithm 5 10 15 20 25

CBASlackNoProp 9622.60 12556.35 12806.40 10802.00 9615.75

CBASlackProp 5410.75 7130.85 6667.75 6869.90 5836.35

GreedySumHeightNoProp 6473.65 7289.80 9823.35 8520.65 6208.15

GreedySumHeightProp 4235.25 2519.10 7417.15 5544.25 5393.15

VarHeightNoProp 5420.20 4639.40 5764.90 6538.05 6557.20

VarHeightProp 618.75 933.40 3665.80 2779.65 2246.40

Table C.3. Experiment 1: Mean Number of Backtracks.

Number of Consumers per Process Plan

Algorithm 5 10 15 20 25

CBASlackNoProp 64538.95 82914.05 126518.45 94886.55 100586.15

CBASlackProp 11861.70 52459.15 99881.20 94029.40 59560.50

GreedySumHeightNoProp 171862.20 206466.75 142097.40 139458.10 74183.90

GreedySumHeightProp 74861.55 52339.55 150908.35 78032.15 71649.65

VarHeightNoProp 122016.85 133475.10 123333.70 174536.55 136523.45

VarHeightProp 26334.50 28700.05 87663.85 67849.70 71671.50

Table C.4. Experiment 1: Mean Number of Commitments.

Number of Consumers per Process Plan

Algorithm 5 10 15 20 25

CBASlackNoProp 19427.15 25372.70 25851.05 21828.75 19478.75

CBASlackProp 10945.45 14448.60 13541.70 13941.45 11873.50

GreedySumHeightNoProp 17863.50 19597.75 36654.55 28158.90 23643.95

GreedySumHeightProp 7245.25 3839.45 11067.45 7681.65 7637.20

VarHeightNoProp 11859.05 9705.35 14331.15 16520.00 16544.35

VarHeightProp 1141.35 1861.90 5672.20 4040.30 3311.30

Table C.5. Experiment 1: Mean Number of Heuristic Commitments.

251

C.2 Experiment 2

C.2.1 5✕ 5 Results

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 0.00 0.00 0.00 0.00

CBASlackProp 0.10 0.00 0.10 0.05

EorPProp 0.05 0.20 0.20 0.20

SumHeightProp 0.10 0.05 0.10 0.05

GreedyCBASlackProp 0.00 0.10 0.20 0.30

GreedyEorPProp 0.00 0.10 0.20 0.30

GreedySumHeightProp 0.00 0.10 0.20 0.30

Table C.6. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 0.08 3.56 76.80 42.28

CBASlackProp 121.61 92.34 273.95 126.23

EorPProp 87.43 278.64 360.29 387.64

SumHeightProp 121.69 109.01 204.30 108.01

GreedyCBASlackProp 0.09 120.14 240.56 360.22

GreedyEorPProp 0.10 120.14 240.54 360.23

GreedySumHeightProp 0.11 120.15 240.57 360.23

Table C.7. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 0.80 106.00 2235.30 987.00

CBASlackProp 8707.95 5232.25 12546.30 4801.65

EorPProp 5999.50 15229.30 14846.05 13281.60

SumHeightProp 8199.90 5998.60 9052.25 4125.40

GreedyCBASlackProp 1.05 4464.40 8210.15 10858.15

GreedyEorPProp 1.05 4467.45 8281.55 10622.30

GreedySumHeightProp 1.05 4323.20 8023.85 10476.65

Table C.8. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks.

252

C.2.2 10✕ 10 Results

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 129.55 1759.80 40365.95 18852.25

CBASlackProp 17660.20 10660.95 25552.15 9861.60

EorPProp 19761.45 50581.05 81898.80 61735.75

SumHeightProp 16628.40 12188.65 18396.95 8505.50

GreedyCBASlackProp 137.05 65327.25 87867.00 138577.95

GreedyEorPProp 140.95 66054.70 88604.70 135551.55

GreedySumHeightProp 137.00 63346.60 86274.40 133535.20

Table C.9. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 2.00 187.35 3095.40 1406.45

CBASlackProp 17418.10 10472.70 25108.65 9623.05

EorPProp 12001.00 30463.75 29698.05 26570.95

SumHeightProp 16401.95 12003.15 18115.65 8263.85

GreedyCBASlackProp 8.60 6961.65 12509.05 15298.70

GreedyEorPProp 10.75 6963.80 12643.70 14953.40

GreedySumHeightProp 8.50 6743.35 12226.85 14755.40

Table C.10. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 0.35 0.60 0.55 0.45

CBASlackProp 0.80 0.90 0.95 0.90

EorPProp 0.90 1.00 1.00 1.00

SumHeightProp 0.75 0.95 0.95 1.00

GreedyCBASlackProp 0.50 0.75 0.65 0.45

GreedyEorPProp 0.50 0.75 0.65 0.45

GreedySumHeightProp 0.50 0.75 0.65 0.45

Table C.11. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out.

253

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 421.69 721.87 664.08 545.57

CBASlackProp 963.50 1081.02 1140.54 1081.63

EorPProp 1080.07 1200.08 1200.13 1200.20

SumHeightProp 902.42 1140.38 1140.41 1200.21

GreedyCBASlackProp 600.94 901.15 782.17 545.11

GreedyEorPProp 600.95 901.16 782.20 545.26

GreedySumHeightProp 600.97 901.16 782.23 545.29

Table C.12. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 3223.35 4557.05 2716.25 1662.35

CBASlackProp 8238.70 5669.75 4078.30 2687.35

EorPProp 9546.95 6579.85 4831.90 3359.10

SumHeightProp 7237.05 5326.90 3846.70 2993.20

GreedyCBASlackProp 5039.20 5604.20 3084.65 1458.05

GreedyEorPProp 4987.60 5550.20 3115.50 1456.35

GreedySumHeightProp 4909.25 5466.10 3067.00 1449.80

Table C.13. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks.

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 120608.40 93338.60 50062.25 28944.05

CBASlackProp 121160.25 92469.20 60279.90 48588.65

EorPProp 177764.70 143691.35 67160.70 64437.40

SumHeightProp 142623.35 141704.50 92388.75 64644.55

GreedyCBASlackProp 99317.65 56370.50 30012.10 19237.10

GreedyEorPProp 97248.30 56028.00 30384.05 19092.30

GreedySumHeightProp 97000.55 55266.10 29742.60 19085.95

Table C.14. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments.

254

C.3 Experiment 3

C.3.1 5✕ 5 Results

Proportion of Maximum Consumers

Algorithm 0.2 0.4 0.6 0.8

VarHeightProp 5219.45 6541.10 3892.80 2404.30

CBASlackProp 16716.25 11632.45 8484.80 5690.90

EorPProp 19139.60 13207.90 9713.25 6765.35

SumHeightProp 14597.85 10761.10 7834.10 6126.85

GreedyCBASlackProp 7619.00 7745.05 4416.40 2408.00

GreedyEorPProp 7578.05 7686.05 4475.40 2440.05

GreedySumHeightProp 7433.20 7560.00 4392.50 2397.10

Table C.15. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 0.10 0.25 0.05 0.05 0.20 0.05

CBASlackProp 0.00 0.40 0.75 0.80 0.85 0.95

EorPProp 0.25 0.70 0.70 0.70 0.40 0.70

SumHeightProp 0.05 0.15 0.50 0.65 0.80 0.95

GreedyCBASlackProp 0.30 0.80 0.60 0.50 0.35 0.20

GreedyEorPProp 0.30 0.80 0.60 0.50 0.35 0.25

GreedySumHeightProp 0.30 0.80 0.60 0.45 0.35 0.20

Table C.16. Experiment 3, 5✕ 5 Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 155.77 351.84 135.68 61.76 241.52 61.85

CBASlackProp 23.53 485.70 901.02 962.88 1020.36 1140.12

EorPProp 300.16 933.28 847.94 893.07 487.27 840.28

SumHeightProp 63.80 215.84 616.64 784.90 965.66 1140.79

GreedyCBASlackProp 360.13 960.18 720.53 600.65 421.12 241.66

GreedyEorPProp 360.12 960.17 720.53 600.61 421.27 302.59

GreedySumHeightProp 360.12 960.18 720.53 540.71 421.08 241.41

Table C.17. Experiment 3, 5✕ 5 Problems: Mean CPU Time in Seconds.

255

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 1808.15 4779.60 1594.05 701.25 3554.80 809.40

CBASlackProp 293.15 10016.60 18260.95 19116.35 18376.20 21472.10

EorPProp 5533.75 17924.00 17442.25 19570.90 10518.60 17856.25

SumHeightProp 757.60 3746.25 12309.40 15836.70 19226.75 23936.50

GreedyCBASlackProp 6925.75 15031.70 11621.30 7866.90 5399.80 2608.35

GreedyEorPProp 7107.70 15179.20 12129.45 8615.05 6320.40 4286.95

GreedySumHeightProp 6954.60 14797.95 11475.15 7293.05 5453.30 2649.40

Table C.18. Experiment 3, 5✕ 5 Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 68704.60 132915.75 51621.70 10586.05 12662.75 3303.35

CBASlackProp 11769.05 57899.40 45483.25 49528.20 55659.75 50989.85

EorPProp 123086.00 297681.10 163353.10 92972.75 46229.80 94641.65

SumHeightProp 34310.10 60448.00 50747.20 49482.85 61632.95 59166.45

GreedyCBASlackProp 124832.65 345913.90 151264.20 118466.90 62000.85 49171.80

GreedyEorPProp 129044.70 350686.15 147614.85 120238.70 71764.30 41062.05

GreedySumHeightProp 124970.10 341861.65 160748.80 113812.65 84849.60 58263.00

Table C.19. Experiment 3, 5✕ 5 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 3054.00 7496.40 2878.85 1563.10 6436.90 1577.85

CBASlackProp 601.60 20156.70 36715.45 38434.60 36962.50 43159.90

EorPProp 11072.35 35868.70 34920.05 39182.10 21081.45 35753.45

SumHeightProp 1523.25 7555.45 24721.05 31789.80 38580.25 48003.85

GreedyCBASlackProp 9885.55 23016.45 19297.35 14221.85 10300.05 5394.40

GreedyEorPProp 10142.35 23241.00 20260.25 15675.70 12031.60 8696.05

GreedySumHeightProp 9919.90 22669.45 19050.20 13040.70 10311.60 5436.00

Table C.20. Experiment 3, 5✕ 5 Problems: Mean Number of Heuristic Commitments.

256

C.3.2 10✕ 10 Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 0.35 0.65 0.20 0.15 0.10 0.25

CBASlackProp 0.45 0.95 1.00 1.00 1.00 1.00

EorPProp 0.45 1.00 1.00 1.00 0.95 1.00

SumHeightProp 0.45 1.00 0.95 0.95 0.85 1.00

GreedyCBASlackProp 0.45 1.00 0.95 0.90 0.60 0.35

GreedyEorPProp 0.45 1.00 0.95 1.00 0.85 0.45

GreedySumHeightProp 0.45 1.00 0.95 0.95 0.75 0.55

Table C.21. Experiment 3, 10✕ 10 Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 451.81 799.15 289.01 215.21 159.36 336.18

CBASlackProp 540.57 1142.96 1200.41 1200.32 1200.30 1200.33

EorPProp 540.51 1200.24 1200.28 1200.28 1140.96 1200.28

SumHeightProp 540.58 1200.27 1141.52 1141.71 1024.14 1200.35

GreedyCBASlackProp 540.56 1200.24 1141.40 1089.85 759.11 469.94

GreedyEorPProp 540.50 1200.29 1141.29 1200.45 1025.24 558.83

GreedySumHeightProp 540.57 1200.27 1141.36 1142.47 931.12 719.42

Table C.22. Experiment 3, 10✕ 10 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 1136.45 1060.20 362.30 251.90 153.55 416.45

CBASlackProp 752.55 1748.70 1722.80 1723.50 1755.20 1840.10

EorPProp 1068.75 2355.95 2200.20 2221.30 2215.95 2285.30

SumHeightProp 987.95 2021.40 1689.65 1641.60 1578.90 1828.50

GreedyCBASlackProp 1038.45 2241.15 1810.05 1423.50 918.70 411.25

GreedyEorPProp 1126.75 2328.80 1902.90 1695.35 1445.65 715.50

GreedySumHeightProp 1083.70 2228.00 1779.70 1448.35 1106.65 742.35

Table C.23. Experiment 3, 10✕ 10 Problems: Mean Number of Backtracks.

257

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 35489.50 73509.60 15975.60 13104.55 5364.75 5812.65

CBASlackProp 48762.45 54940.90 36101.80 31459.45 18534.55 18421.90

EorPProp 19466.10 46229.95 49057.75 42568.50 23922.15 33975.60

SumHeightProp 55477.60 95784.45 91393.50 76414.65 36995.30 58857.55

GreedyCBASlackProp 36672.45 60400.30 51465.30 41319.50 35380.75 18619.90

GreedyEorPProp 39530.15 61041.95 45033.20 28948.65 24585.50 12512.65

GreedySumHeightProp 38224.80 59495.10 58266.85 45398.30 43678.00 31263.30

Table C.24. Experiment 3, 10✕ 10 Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

VarHeightProp 1915.65 2182.55 1140.90 978.95 875.50 1408.60

CBASlackProp 1879.10 4678.60 4768.70 4727.85 4934.30 5082.65

EorPProp 2192.75 4857.55 4564.25 4611.85 4607.80 4742.35

SumHeightProp 2049.05 4354.70 3725.95 3727.25 3715.60 4170.50

GreedyCBASlackProp 1557.90 3570.55 3450.60 3493.90 2805.75 2303.05

GreedyEorPProp 1683.85 3710.45 3642.30 4009.30 3539.10 2138.15

GreedySumHeightProp 1623.15 3554.65 3377.00 3484.45 2870.80 2282.80

Table C.25. Experiment 3, 10✕ 10 Problems: Mean Number of Heuristic Commitments.

258

259

Appendix D Detailed Results for the Experiments

in Chapter 7

D.1 Experiment 1

D.1.1 Overall Results

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 0.00 0.02 0.00 0.04

CBASlackPropPEX 0.00 0.02 0.00 0.04

LJRandPEX 0.21 0.42 0.49 0.55

LJRandPropPEX 0.11 0.23 0.20 0.25

SumHeightPEX 0.01 0.04 0.06 0.08

SumHeightPropPEX 0.00 0.00 0.00 0.00

VarHeightPEX 0.01 0.02 0.03 0.09

VarHeightPropPEX 0.00 0.00 0.00 0.00

Table D.1. Experiment 1 Overall: Fraction of Problems Timed-out.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 4.70 40.34 64.53 153.23

CBASlackPropPEX 4.67 39.79 57.96 136.86

LJRandPEX 292.23 543.90 614.82 677.15

LJRandPropPEX 144.71 320.14 282.05 340.55

SumHeightPEX 21.49 97.56 98.12 161.51

SumHeightPropPEX 2.27 7.62 4.56 17.05

VarHeightPEX 16.27 64.30 63.53 156.11

VarHeightPropPEX 1.82 5.82 4.13 12.27

Table D.2. Experiment 1 Overall: Mean CPU Time in Seconds.

260

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 94.93 636.41 1112.53 2593.71

CBASlackPropPEX 90.43 616.36 953.33 2189.79

LJRandPEX 6147.72 9512.61 9745.32 10429.66

LJRandPropPEX 2407.81 4339.43 3233.32 3769.48

SumHeightPEX 389.33 1584.38 1439.28 2281.82

SumHeightPropPEX 18.91 65.31 26.42 133.64

VarHeightPEX 260.34 909.32 837.02 1973.79

VarHeightPropPEX 10.58 42.65 18.47 80.35

Table D.3. Experiment 1 Overall: Mean Number of Backtracks.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 2902.64 16072.19 28457.79 66834.32

CBASlackPropPEX 2781.42 15359.41 23993.05 58860.02

LJRandPEX 88666.53 94722.18 82219.18 88306.67

LJRandPropPEX 75694.16 124503.93 98543.12 118501.88

SumHeightPEX 5271.70 20157.82 17843.91 27095.17

SumHeightPropPEX 1192.01 3246.88 1955.11 7342.73

VarHeightPEX 3793.04 12011.95 11117.13 24445.48

VarHeightPropPEX 849.03 2534.23 1561.44 4937.83

Table D.4. Experiment 1 Overall: Mean Number of Commitments.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 278.63 1347.07 2325.10 5270.64

CBASlackPropPEX 270.45 1306.36 2005.65 4465.02

LJRandPEX 13138.06 21138.97 21923.18 23219.40

LJRandPropPEX 4852.47 8709.38 6506.57 7573.18

SumHeightPEX 819.02 3207.13 2933.75 4612.62

SumHeightPropPEX 79.03 166.96 105.55 312.52

VarHeightPEX 561.47 1855.73 1730.81 3994.14

VarHeightPropPEX 61.97 121.59 90.42 205.57

Table D.5. Experiment 1 Overall: Mean Number of Heuristic Commitments.

261

D.1.2 One-Alternative Results

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 14.96 11.29 14.66 12.15

CBASlackPropPEX 15.07 10.94 14.22 11.73

LJRandPEX 10.77 17.76 21.20 21.18

LJRandPropPEX 5.28 5.08 5.83 5.17

SumHeightPEX 9.32 9.97 12.41 12.47

SumHeightPropPEX 7.70 6.25 8.39 6.96

VarHeightPEX 9.01 9.34 12.20 11.65

VarHeightPropPEX 7.75 6.09 8.58 7.08

Table D.6. Experiment 1 Overall: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

LJRandPEX 0.00 0.00 0.35 0.55 0.20 0.15

LJRandPropPEX 0.00 0.00 0.15 0.35 0.15 0.00

SumHeightPEX 0.00 0.00 0.00 0.05 0.00 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.00 0.00 0.00 0.05 0.00 0.00

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.7. Experiment 1, 1-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.26 0.27 2.30 18.01 5.01 2.33

CBASlackPropPEX 0.25 0.26 2.34 18.32 4.60 2.22

LJRandPEX 0.26 15.37 447.51 730.86 342.06 217.30

LJRandPropPEX 0.26 0.26 193.43 432.18 229.28 12.83

SumHeightPEX 0.25 0.31 27.34 95.00 5.17 0.87

SumHeightPropPEX 0.25 0.25 1.80 8.01 1.87 1.45

VarHeightPEX 0.27 0.31 12.34 72.37 11.14 1.21

VarHeightPropPEX 0.27 0.27 1.66 5.37 1.70 1.64

Table D.8. Experiment 1, 1-Alternative Problems: Mean CPU Time in Seconds.

262

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.00 1.25 47.85 396.90 93.00 29.60

CBASlackPropPEX 1.00 1.00 43.80 394.80 77.75 24.20

LJRandPEX 1.00 381.60 9879.85 15385.75 6776.40 4461.75

LJRandPropPEX 1.00 1.00 3283.40 7091.50 3863.25 206.70

SumHeightPEX 1.00 1.95 504.30 1745.75 82.55 0.40

SumHeightPropPEX 1.00 1.00 15.65 88.85 6.80 0.15

VarHeightPEX 1.00 1.70 201.60 1173.35 180.65 3.75

VarHeightPropPEX 1.00 1.00 11.90 47.45 1.75 0.35

Table D.9. Experiment 1, 1-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 135.25 160.60 1465.70 11223.35 3045.95 1385.00

CBASlackPropPEX 135.25 145.90 1342.65 11163.00 2679.25 1222.50

LJRandPEX 135.25 4502.25 133662.10 250940.35 103645.35 39113.90

LJRandPropPEX 135.25 145.90 89178.85 245309.25 112621.95 6773.75

SumHeightPEX 135.25 168.55 7905.95 20981.70 1887.30 551.45

SumHeightPropPEX 135.25 145.90 1001.90 4479.70 819.50 569.80

VarHeightPEX 135.25 162.25 3494.70 15209.00 3160.20 596.85

VarHeightPropPEX 135.25 145.90 813.35 2765.80 666.70 567.20

Table D.10. Experiment 1, 1-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.50 108.10 873.65 356.75 332.80

CBASlackPropPEX 0.00 0.00 100.00 869.35 323.60 329.75

LJRandPEX 0.00 824.85 21052.35 32877.75 14667.80 9405.60

LJRandPropPEX 0.00 0.00 6577.45 14235.15 7799.70 502.55

SumHeightPEX 0.00 1.90 1017.85 3533.40 248.95 112.00

SumHeightPropPEX 0.00 0.00 40.60 221.65 100.00 111.95

VarHeightPEX 0.00 1.40 410.50 2388.00 445.30 123.60

VarHeightPropPEX 0.00 0.00 32.30 138.35 85.30 115.85

Table D.11. Experiment 1, 1-Alternative Problems: Mean Number of Heuristic
Commitments.

263

D.1.3 Three-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.17 4.17 12.83 26.57 46.01

CBASlackPropPEX 0.00 0.00 3.74 12.74 26.46 47.51

LJRandPEX 0.00 2.97 12.26 16.58 15.87 16.94

LJRandPropPEX 0.00 0.00 3.44 7.39 9.85 11.02

SumHeightPEX 0.00 0.47 5.25 12.59 16.29 21.32

SumHeightPropPEX 0.00 0.00 2.68 7.80 15.03 20.68

VarHeightPEX 0.00 0.42 4.35 10.47 16.13 22.67

VarHeightPropPEX 0.00 0.00 2.50 7.95 14.02 22.00

Table D.12. Experiment 1, 1-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.10 0.00 0.00

CBASlackPropPEX 0.00 0.00 0.00 0.10 0.00 0.00

LJRandPEX 0.00 0.05 0.40 0.80 0.70 0.60

LJRandPropPEX 0.00 0.00 0.25 0.65 0.20 0.25

SumHeightPEX 0.00 0.00 0.05 0.10 0.05 0.05

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.00 0.00 0.00 0.05 0.05 0.00

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.13. Experiment 1, 3-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.10 0.25 18.55 149.99 15.92 57.25

CBASlackPropPEX 0.11 0.11 15.22 148.34 17.58 57.38

LJRandPEX 0.11 60.11 552.61 1014.07 910.80 725.71

LJRandPropPEX 0.11 0.11 383.85 831.11 390.59 315.05

SumHeightPEX 0.10 0.14 121.11 299.84 86.74 77.46

SumHeightPropPEX 0.10 0.11 3.23 9.53 28.96 3.78

VarHeightPEX 0.11 0.13 35.36 156.56 151.53 42.09

VarHeightPropPEX 0.12 0.11 2.25 13.04 17.35 2.04

Table D.14. Experiment 1, 3-Alternative Problems: Mean CPU Time in Seconds.

264

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.00 3.65 334.05 2060.15 302.25 1117.35

CBASlackPropPEX 1.00 1.00 247.30 2016.00 324.35 1108.50

LJRandPEX 1.00 1082.30 10606.10 18445.60 15650.75 11289.90

LJRandPropPEX 1.00 1.00 5244.45 10876.00 5193.50 4720.65

SumHeightPEX 1.00 1.65 1949.25 4844.35 1349.90 1360.10

SumHeightPropPEX 1.00 1.00 29.90 73.60 260.65 25.70

VarHeightPEX 1.00 1.20 575.80 2153.30 2143.35 581.30

VarHeightPropPEX 1.00 1.00 17.40 101.75 133.60 1.15

Table D.15. Experiment 1, 3-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 176.25 256.90 8738.50 48972.60 7671.45 30617.45

CBASlackPropPEX 176.25 187.35 6772.00 46492.55 8184.90 30343.40

LJRandPEX 176.25 11503.90 115480.65 224197.45 133291.05 83683.80

LJRandPropPEX 176.25 187.35 153710.30 336382.90 156560.00 100006.75

SumHeightPEX 176.25 194.30 23680.70 61266.45 18865.80 16763.40

SumHeightPropPEX 176.25 187.35 1632.95 4042.75 11984.65 1457.30

VarHeightPEX 176.25 190.05 8968.85 29644.65 27632.65 5459.25

VarHeightPropPEX 176.25 187.35 1209.25 5909.90 7050.50 672.15

Table D.16. Experiment 1, 3-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 5.30 675.00 4171.55 743.00 2487.55

CBASlackPropPEX 0.00 0.00 501.30 4081.70 788.40 2466.75

LJRandPEX 0.00 2364.70 23596.50 40250.40 35489.05 25133.15

LJRandPropPEX 0.00 0.00 10499.60 21777.50 10460.95 9518.20

SumHeightPEX 0.00 1.30 3902.70 9725.70 2777.40 2835.65

SumHeightPropPEX 0.00 0.00 64.80 180.75 598.10 158.10

VarHeightPEX 0.00 0.40 1156.05 4345.10 4359.55 1273.25

VarHeightPropPEX 0.00 0.00 39.75 236.65 344.85 108.30

Table D.17. Experiment 1, 3-Alternative Problems: Mean Number of Heuristic
Commitments.

265

D.1.4 Five-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.36 4.12 8.40 17.84 37.01

CBASlackPropPEX 0.00 0.00 3.23 8.02 17.90 36.48

LJRandPEX 0.00 1.09 15.46 23.97 35.30 30.73

LJRandPropPEX 0.00 0.00 4.15 6.70 9.13 10.51

SumHeightPEX 0.00 0.43 8.49 13.17 16.44 21.28

SumHeightPropPEX 0.00 0.00 2.11 5.77 11.91 17.71

VarHeightPEX 0.00 0.15 7.02 12.30 15.92 20.62

VarHeightPropPEX 0.00 0.00 1.77 5.32 11.84 17.62

Table D.18. Experiment 1, 3-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

LJRandPEX 0.05 0.25 0.75 0.80 0.60 0.50

LJRandPropPEX 0.00 0.00 0.55 0.50 0.10 0.05

SumHeightPEX 0.00 0.00 0.20 0.15 0.00 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.05 0.00 0.10 0.05 0.00 0.00

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.19. Experiment 1, 5-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.97 0.81 138.78 187.36 56.25 3.00

CBASlackPropPEX 0.61 0.72 108.79 176.37 57.86 3.43

LJRandPEX 60.57 303.67 942.54 1028.47 728.56 625.14

LJRandPropPEX 0.65 0.81 686.98 686.25 231.31 86.32

SumHeightPEX 1.81 1.03 300.96 235.43 48.14 1.36

SumHeightPropPEX 0.61 0.73 10.67 10.22 2.66 2.47

VarHeightPEX 60.59 1.45 179.75 135.05 2.73 1.60

VarHeightPropPEX 0.66 0.78 9.61 8.22 2.73 2.80

Table D.20. Experiment 1, 5-Alternative Problems: Mean CPU Time in Seconds.

266

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 6.70 4.35 2358.40 3305.65 978.20 21.85

CBASlackPropPEX 1.05 1.20 1711.75 3005.80 978.35 21.80

LJRandPEX 1000.70 5148.95 15810.80 16230.70 11011.35 9269.40

LJRandPropPEX 1.30 1.80 7699.85 7856.80 2784.85 1055.35

SumHeightPEX 19.90 7.90 4383.85 3522.60 701.30 0.15

SumHeightPropPEX 1.00 1.05 79.15 74.95 2.25 0.10

VarHeightPEX 817.40 12.80 2392.30 1782.90 16.50 0.20

VarHeightPropPEX 1.05 1.05 62.70 45.80 0.20 0.00

Table D.21. Experiment 1, 5-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 405.35 369.35 69493.70 75595.60 23567.45 1315.30

CBASlackPropPEX 244.10 283.75 50461.15 68069.45 23585.10 1314.75

LJRandPEX 8728.95 51343.35 155630.20 147687.75 79254.35 50670.50

LJRandPropPEX 252.75 319.70 247499.80 237096.30 80877.10 25213.10

SumHeightPEX 482.45 355.05 55101.05 41659.80 8876.75 588.35

SumHeightPropPEX 243.90 281.70 5150.85 4632.35 804.45 617.40

VarHeightPEX 9674.45 420.10 33116.15 22062.40 833.20 596.50

VarHeightPropPEX 244.80 286.10 4191.20 3351.15 670.80 624.60

Table D.22. Experiment 1, 5-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 13.00 11.40 4749.85 6711.80 2142.50 322.05

CBASlackPropPEX 1.15 7.55 3454.10 6109.60 2141.40 320.10

LJRandPEX 2156.50 11942.20 36165.85 36080.05 24356.05 20838.45

LJRandPropPEX 3.70 5.70 15414.30 15767.90 5651.45 2196.35

SumHeightPEX 39.75 18.40 8791.20 7111.90 1511.90 129.35

SumHeightPropPEX 1.00 5.70 177.40 211.60 111.30 126.30

VarHeightPEX 1634.70 27.30 4811.80 3637.65 144.50 128.90

VarHeightPropPEX 1.30 2.80 142.80 155.50 111.05 129.05

Table D.23. Experiment 1, 5-Alternative Problems: Mean Number of Heuristic
Commitments.

267

D.1.5 Seven-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.32 1.62 7.96 14.33 23.72 40.03

CBASlackPropPEX 0.13 0.95 6.63 14.22 23.59 39.80

LJRandPEX 1.26 9.13 21.87 28.18 30.66 36.09

LJRandPropPEX 0.36 0.57 5.55 7.68 9.93 10.88

SumHeightPEX 0.71 2.95 13.06 16.85 18.58 22.30

SumHeightPropPEX 0.12 0.76 3.23 8.84 16.50 20.91

VarHeightPEX 0.86 3.06 11.29 16.98 18.98 22.00

VarHeightPropPEX 0.15 0.34 3.02 9.38 17.22 21.40

Table D.24. Experiment 1, 5-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.05 0.15 0.05

CBASlackPropPEX 0.00 0.00 0.05 0.05 0.10 0.05

LJRandPEX 0.05 0.25 0.70 0.85 0.70 0.75

LJRandPropPEX 0.00 0.10 0.25 0.50 0.45 0.20

SumHeightPEX 0.00 0.00 0.05 0.20 0.25 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.00 0.05 0.00 0.20 0.25 0.05

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.25. Experiment 1, 7-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.22 46.47 198.49 223.17 336.19 114.82

CBASlackPropPEX 0.15 33.45 194.62 201.12 277.02 114.79

LJRandPEX 60.15 300.46 879.24 1020.17 896.97 905.90

LJRandPropPEX 0.15 142.22 386.00 616.98 601.71 296.23

SumHeightPEX 2.54 73.74 174.41 339.71 340.18 38.46

SumHeightPropPEX 0.15 2.54 3.69 78.94 14.08 2.90

VarHeightPEX 1.14 91.52 68.57 342.59 351.20 81.64

VarHeightPropPEX 0.16 2.39 3.49 53.85 10.61 3.14

Table D.26. Experiment 1, 7-Alternative Problems: Mean CPU Time in Seconds.

268

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 2.15 688.25 3300.20 3655.50 5973.45 1942.70

CBASlackPropPEX 1.00 426.05 3112.95 2863.20 4818.65 1916.90

LJRandPEX 900.15 4483.10 14213.55 15648.00 13562.90 13770.25

LJRandPropPEX 1.00 1453.95 4302.80 7136.55 6582.15 3140.45

SumHeightPEX 35.05 960.65 2463.80 4887.15 4830.15 514.15

SumHeightPropPEX 1.00 17.30 22.20 649.30 105.25 6.80

VarHeightPEX 13.35 1085.35 872.95 4387.15 4461.35 1022.60

VarHeightPropPEX 1.00 14.40 17.65 382.95 61.30 4.80

Table D.27. Experiment 1, 7-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 263.30 23700.20 84412.50 98016.00 146180.15 48433.80

CBASlackPropPEX 243.40 16379.95 85651.95 85007.50 117754.75 48122.60

LJRandPEX 6169.50 39390.45 140058.40 142322.75 129298.40 72600.50

LJRandPropPEX 243.40 48850.55 125190.40 220814.65 219381.30 96530.95

SumHeightPEX 537.80 12218.05 26554.35 65790.55 51488.15 5982.15

SumHeightPropPEX 243.55 1388.95 1662.45 33731.25 6080.60 949.60

VarHeightPEX 494.30 11020.75 10956.10 63728.60 49520.95 10952.15

VarHeightPropPEX 243.40 1167.55 1414.65 21648.20 4217.05 936.15

Table D.28. Experiment 1, 7-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 2.35 1378.45 6629.05 7378.85 12111.85 4123.30

CBASlackPropPEX 0.00 852.70 6251.80 5798.90 9812.80 4073.90

LJRandPEX 2146.15 10180.45 31130.45 35335.45 29997.15 30526.75

LJRandPropPEX 0.00 2912.95 8627.85 14317.20 13224.70 6356.40

SumHeightPEX 68.10 1922.55 4951.40 9832.95 9750.65 1150.05

SumHeightPropPEX 0.00 36.40 61.95 1347.00 294.20 135.60

VarHeightPEX 24.70 2172.85 1769.05 8830.45 9006.90 2160.90

VarHeightPropPEX 0.00 29.85 58.25 816.85 204.90 123.55

Table D.29. Experiment 1, 7-Alternative Problems: Mean Number of Heuristic
Commitments.

269

D.2 Experiment 2

D.2.1 Overall Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.30 1.90 6.24 10.34 21.82 32.29

CBASlackPropPEX 0.00 1.27 4.44 10.38 22.01 32.30

LJRandPEX 1.80 8.85 23.60 26.68 25.90 40.26

LJRandPropPEX 0.00 1.59 5.18 7.23 7.87 9.15

SumHeightPEX 1.09 3.53 12.07 15.25 19.55 23.36

SumHeightPropPEX 0.00 0.98 3.14 7.63 10.93 19.05

VarHeightPEX 0.46 4.08 11.88 13.82 17.86 21.80

VarHeightPropPEX 0.00 0.88 4.04 7.90 11.55 18.12

Table D.30. Experiment 1, 7-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 0.00 0.00 0.43 0.60

CBASlackPropPEX 0.00 0.00 0.44 0.59

LJRandPEX 0.01 0.49 0.65 0.74

LJRandPropPEX 0.00 0.20 0.59 0.68

SumHeightPEX 0.00 0.06 0.44 0.67

SumHeightPropPEX 0.00 0.00 0.25 0.52

VarHeightPEX 0.00 0.03 0.43 0.63

VarHeightPropPEX 0.00 0.00 0.23 0.56

Table D.31. Experiment 2 Overall: Fraction of Problems Timed-out.

270

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 0.12 64.53 538.76 733.88

CBASlackPropPEX 0.08 57.96 547.28 732.95

LJRandPEX 18.31 614.82 789.77 895.76

LJRandPropPEX 0.11 282.05 721.89 828.19

SumHeightPEX 0.13 98.12 569.54 815.28

SumHeightPropPEX 0.10 4.56 329.63 661.54

VarHeightPEX 0.14 63.53 531.39 775.55

VarHeightPropPEX 0.11 4.13 323.84 691.05

Table D.32. Experiment 2 Overall: Mean CPU Time in Seconds.

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 4.34 1112.53 3086.16 1444.59

CBASlackPropPEX 1.06 953.33 2971.62 1257.19

LJRandPEX 1411.28 9745.32 3110.13 1295.90

LJRandPropPEX 1.56 3233.32 2148.22 859.42

SumHeightPEX 4.13 1439.28 2354.68 1322.41

SumHeightPropPEX 0.65 26.42 787.73 540.35

VarHeightPEX 3.60 837.02 2098.49 1170.77

VarHeightPropPEX 0.70 18.47 706.85 523.06

Table D.33. Experiment 2 Overall: Mean Number of Backtracks.

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 147.80 28457.79 114637.06 76523.38

CBASlackPropPEX 131.47 23993.05 109110.17 62690.99

LJRandPEX 7363.59 82219.18 71178.33 45915.08

LJRandPropPEX 146.63 98543.12 88908.11 43496.00

SumHeightPEX 123.17 17843.91 44773.49 42457.52

SumHeightPropPEX 119.41 1955.11 51475.72 42238.53

VarHeightPEX 123.64 11117.13 44331.42 48063.00

VarHeightPropPEX 120.03 1561.44 54455.00 48005.02

Table D.34. Experiment 2 Overall: Mean Number of Commitments.

271

D.2.2 5✕ 5 Results

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 21.18 2325.10 6464.90 3638.53

CBASlackPropPEX 13.65 2005.65 6236.67 3261.46

LJRandPEX 3410.23 21923.18 6636.85 2809.23

LJRandPropPEX 12.67 6506.57 4353.38 1825.48

SumHeightPEX 21.30 2933.75 4795.79 2771.67

SumHeightPropPEX 12.80 105.55 1666.05 1222.83

VarHeightPEX 19.78 1730.81 4284.28 2471.52

VarHeightPropPEX 11.97 90.42 1505.73 1179.98

Table D.35. Experiment 2 Overall: Mean Number of Heuristic Commitments.

Problem Size

Algorithm 5 10 15 20

CBASlackPEX 12.52 14.66 12.46 11.20

CBASlackPropPEX 9.13 14.22 12.32 11.07

LJRandPEX 17.72 21.20 9.41 6.05

LJRandPropPEX 6.58 5.83 3.96 3.67

SumHeightPEX 13.70 12.41 9.38 6.61

SumHeightPropPEX 9.15 8.39 4.93 3.44

VarHeightPEX 13.33 12.20 8.95 5.24

VarHeightPropPEX 8.60 8.58 4.74 3.00

Table D.36. Experiment 2 Overall: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

LJRandPEX 0.00 0.05 0.00 0.00 0.00 0.00

LJRandPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightPEX 0.00 0.00 0.00 0.00 0.00 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.37. Experiment 2, 5✕ 5 Problems: Fraction of Problems Timed-out.

272

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.05 0.09 0.12 0.20 0.14 0.11

CBASlackPropPEX 0.04 0.06 0.07 0.11 0.11 0.11

LJRandPEX 0.75 60.68 41.63 3.76 2.64 0.41

LJRandPropPEX 0.04 0.06 0.08 0.17 0.14 0.15

SumHeightPEX 0.04 0.10 0.12 0.22 0.21 0.11

SumHeightPropPEX 0.04 0.06 0.09 0.13 0.15 0.16

VarHeightPEX 0.05 0.09 0.18 0.24 0.16 0.13

VarHeightPropPEX 0.04 0.06 0.09 0.14 0.16 0.16

Table D.38. Experiment 2, 5✕ 5 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.65 3.85 4.85 9.30 3.85 2.55

CBASlackPropPEX 0.95 1.20 0.95 1.80 0.70 0.75

LJRandPEX 44.30 4376.70 3578.10 256.10 191.10 21.40

LJRandPropPEX 0.95 1.00 1.10 3.65 1.25 1.40

SumHeightPEX 1.10 3.90 3.80 8.55 7.10 0.30

SumHeightPropPEX 0.95 0.85 0.75 0.80 0.25 0.30

VarHeightPEX 1.25 2.90 6.45 9.00 1.85 0.15

VarHeightPropPEX 1.00 0.85 0.85 1.05 0.45 0.00

Table D.39. Experiment 2, 5✕ 5 Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 78.30 108.15 137.90 219.15 176.95 166.35

CBASlackPropPEX 77.70 99.10 122.85 171.75 158.50 158.90

LJRandPEX 332.20 21591.15 19600.20 1389.45 1006.55 262.00

LJRandPropPEX 77.80 102.10 125.75 202.40 185.35 186.40

SumHeightPEX 73.10 96.40 119.40 168.75 156.15 125.20

SumHeightPropPEX 77.05 93.50 116.50 144.70 146.75 137.95

VarHeightPEX 73.10 93.80 139.15 173.10 136.60 126.10

VarHeightPropPEX 77.15 95.15 117.70 147.45 147.45 135.30

Table D.40. Experiment 2, 5✕ 5 Problems: Mean Number of Commitments.

273

D.2.3 10✕ 10 Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 2.30 9.75 16.25 32.05 31.70 35.00

CBASlackPropPEX 0.50 3.40 7.40 15.95 24.20 30.45

LJRandPEX 105.00 10347.50 8874.25 598.40 464.25 71.95

LJRandPropPEX 0.65 4.75 8.55 19.70 19.95 22.40

SumHeightPEX 1.45 9.55 14.50 32.40 38.75 31.15

SumHeightPropPEX 0.70 3.05 7.50 15.10 21.90 28.55

VarHeightPEX 1.50 7.70 19.25 32.20 27.55 30.45

VarHeightPropPEX 0.50 2.25 6.70 14.15 22.35 25.85

Table D.41. Experiment 2, 5✕ 5 Problems: Mean Number of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.52 5.64 9.49 14.84 19.37 24.23

CBASlackPropPEX 0.27 1.88 4.27 9.62 16.45 22.27

LJRandPEX 5.61 12.59 17.12 29.33 22.35 19.31

LJRandPropPEX 0.34 2.40 4.76 8.97 10.70 12.32

SumHeightPEX 1.16 5.95 9.69 17.08 22.65 25.69

SumHeightPropPEX 0.40 1.84 4.59 10.10 15.69 22.31

VarHeightPEX 1.31 5.35 10.79 16.87 20.52 25.16

VarHeightPropPEX 0.28 1.27 3.99 9.45 16.08 20.53

Table D.42. Experiment 2, 5✕ 5 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.00 0.00 0.00 0.00 0.00

CBASlackPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

LJRandPEX 0.05 0.25 0.75 0.80 0.60 0.50

LJRandPropPEX 0.00 0.00 0.55 0.50 0.10 0.05

SumHeightPEX 0.00 0.00 0.20 0.15 0.00 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.05 0.00 0.10 0.05 0.00 0.00

VarHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

Table D.43. Experiment 2, 10✕ 10 Problems: Fraction of Problems Timed-out.

274

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.97 0.81 138.78 187.36 56.25 3.00

CBASlackPropPEX 0.61 0.72 108.79 176.37 57.86 3.43

LJRandPEX 60.57 303.67 942.54 1028.47 728.56 625.14

LJRandPropPEX 0.65 0.81 686.98 686.25 231.31 86.32

SumHeightPEX 1.81 1.03 300.96 235.43 48.14 1.36

SumHeightPropPEX 0.61 0.73 10.67 10.22 2.66 2.47

VarHeightPEX 60.59 1.45 179.75 135.05 2.73 1.60

VarHeightPropPEX 0.66 0.78 9.61 8.22 2.73 2.80

Table D.44. Experiment 2, 10✕ 10 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 6.70 4.35 2358.40 3305.65 978.20 21.85

CBASlackPropPEX 1.05 1.20 1711.75 3005.80 978.35 21.80

LJRandPEX 1000.70 5148.95 15810.80 16230.70 11011.35 9269.40

LJRandPropPEX 1.30 1.80 7699.85 7856.80 2784.85 1055.35

SumHeightPEX 19.90 7.90 4383.85 3522.60 701.30 0.15

SumHeightPropPEX 1.00 1.05 79.15 74.95 2.25 0.10

VarHeightPEX 817.40 12.80 2392.30 1782.90 16.50 0.20

VarHeightPropPEX 1.05 1.05 62.70 45.80 0.20 0.00

Table D.45. Experiment 2, 10✕ 10 Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 405.35 369.35 69493.70 75595.60 23567.45 1315.30

CBASlackPropPEX 244.10 283.75 50461.15 68069.45 23585.10 1314.75

LJRandPEX 8728.95 51343.35 155630.20 147687.75 79254.35 50670.50

LJRandPropPEX 252.75 319.70 247499.80 237096.30 80877.10 25213.10

SumHeightPEX 482.45 355.05 55101.05 41659.80 8876.75 588.35

SumHeightPropPEX 243.90 281.70 5150.85 4632.35 804.45 617.40

VarHeightPEX 9674.45 420.10 33116.15 22062.40 833.20 596.50

VarHeightPropPEX 244.80 286.10 4191.20 3351.15 670.80 624.60

Table D.46. Experiment 2, 10✕ 10 Problems: Mean Number of Commitments.

275

D.2.4 15✕ 15 Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 13.00 11.40 4749.85 6711.80 2142.50 322.05

CBASlackPropPEX 1.15 7.55 3454.10 6109.60 2141.40 320.10

LJRandPEX 2156.50 11942.20 36165.85 36080.05 24356.05 20838.45

LJRandPropPEX 3.70 5.70 15414.30 15767.90 5651.45 2196.35

SumHeightPEX 39.75 18.40 8791.20 7111.90 1511.90 129.35

SumHeightPropPEX 1.00 5.70 177.40 211.60 111.30 126.30

VarHeightPEX 1634.70 27.30 4811.80 3637.65 144.50 128.90

VarHeightPropPEX 1.30 2.80 142.80 155.50 111.05 129.05

Table D.47. Experiment 2, 10✕ 10 Problems: Mean Number of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.32 1.62 7.96 14.33 23.72 40.03

CBASlackPropPEX 0.13 0.95 6.63 14.22 23.59 39.80

LJRandPEX 1.26 9.13 21.87 28.18 30.66 36.09

LJRandPropPEX 0.36 0.57 5.55 7.68 9.93 10.88

SumHeightPEX 0.71 2.95 13.06 16.85 18.58 22.30

SumHeightPropPEX 0.12 0.76 3.23 8.84 16.50 20.91

VarHeightPEX 0.86 3.06 11.29 16.98 18.98 22.00

VarHeightPropPEX 0.15 0.34 3.02 9.38 17.22 21.40

Table D.48. Experiment 2, 10✕ 10 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.15 0.80 0.90 0.60 0.15

CBASlackPropPEX 0.00 0.15 0.80 0.90 0.60 0.20

LJRandPEX 0.00 0.30 1.00 1.00 0.90 0.70

LJRandPropPEX 0.00 0.20 0.90 0.95 0.90 0.60

SumHeightPEX 0.00 0.05 0.65 0.95 0.75 0.25

SumHeightPropPEX 0.00 0.05 0.55 0.65 0.20 0.05

VarHeightPEX 0.00 0.05 0.70 0.85 0.75 0.20

VarHeightPropPEX 0.00 0.05 0.50 0.65 0.15 0.00

Table D.49. Experiment 2, 15✕ 15 Problems: Fraction of Problems Timed-out.

276

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.32 182.07 1007.53 1080.90 765.66 196.06

CBASlackPropPEX 0.33 180.97 998.27 1081.20 767.11 255.80

LJRandPEX 0.31 401.37 1200.21 1200.20 1081.49 855.02

LJRandPropPEX 0.31 240.54 1107.13 1140.81 1086.56 755.97

SumHeightPEX 0.33 153.85 855.21 1140.42 901.31 366.11

SumHeightPropPEX 0.35 76.94 715.64 797.02 311.00 76.85

VarHeightPEX 0.34 77.65 883.33 1020.84 957.98 248.21

VarHeightPropPEX 0.34 65.66 665.92 847.35 344.10 19.66

Table D.50. Experiment 2, 15✕ 15 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.00 1098.50 6022.95 6545.30 3912.05 937.15

CBASlackPropPEX 1.00 1042.60 5363.50 6389.10 3891.60 1141.90

LJRandPEX 1.00 2050.50 5509.25 4836.00 3731.20 2532.85

LJRandPropPEX 1.00 818.95 3462.65 3370.55 3152.20 2084.00

SumHeightPEX 1.00 712.85 3873.55 4809.25 3433.40 1298.05

SumHeightPropPEX 1.00 236.20 1687.95 1893.95 746.60 160.65

VarHeightPEX 1.00 334.90 3807.05 4126.20 3485.40 836.40

VarHeightPropPEX 1.00 164.35 1397.25 1872.05 801.35 5.10

Table D.51. Experiment 2, 15✕ 15 Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 441.35 40490.20 231427.10 234433.80 146874.05 34155.85

CBASlackPropPEX 441.35 36647.35 202072.25 230467.75 142733.25 42299.05

LJRandPEX 441.30 43435.75 134369.60 132362.10 78608.15 37853.10

LJRandPropPEX 441.30 39106.60 149928.55 156688.15 112701.40 74582.65

SumHeightPEX 441.30 16182.00 97825.65 82072.60 49897.65 22221.75

SumHeightPropPEX 441.30 11829.55 116011.30 127608.50 43035.90 9927.80

VarHeightPEX 441.40 10448.65 109392.30 78767.45 51101.25 15837.45

VarHeightPropPEX 441.40 10472.35 113698.30 146507.15 53385.55 2225.25

Table D.52. Experiment 2, 15✕ 15 Problems: Mean Number of Commitments.

277

D.2.5 20✕ 20 Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 2204.50 12120.50 13308.80 8371.10 2784.50

CBASlackPropPEX 0.00 2090.35 10801.00 12998.60 8334.65 3195.40

LJRandPEX 0.00 4442.05 11812.50 10152.95 7876.95 5536.65

LJRandPropPEX 0.00 1641.75 6960.60 6802.95 6401.40 4313.60

SumHeightPEX 0.00 1427.10 7788.50 9712.15 7018.55 2828.45

SumHeightPropPEX 0.00 473.25 3405.15 3893.45 1667.80 556.65

VarHeightPEX 0.00 670.75 7646.65 8351.25 7119.20 1917.80

VarHeightPropPEX 0.00 329.45 2823.60 3847.50 1773.65 260.20

Table D.53. Experiment 2, 15✕ 15 Problems: Mean Number of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 1.63 5.43 9.66 17.60 40.44

CBASlackPropPEX 0.00 1.16 5.12 9.58 17.87 40.18

LJRandPEX 0.00 4.40 10.54 8.30 13.01 20.22

LJRandPropPEX 0.00 0.94 4.56 4.73 6.39 7.14

SumHeightPEX 0.00 2.29 8.28 14.81 15.19 15.72

SumHeightPropPEX 0.00 0.64 3.00 4.80 8.51 12.61

VarHeightPEX 0.00 1.69 7.44 11.42 17.25 15.90

VarHeightPropPEX 0.00 0.45 2.36 4.55 7.58 13.49

Table D.54. Experiment 2, 15✕ 15 Problems: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 0.45 0.95 0.95 0.85 0.40

CBASlackPropPEX 0.00 0.45 0.90 0.95 0.85 0.40

LJRandPEX 0.00 0.60 1.00 1.00 1.00 0.85

LJRandPropPEX 0.00 0.55 1.00 1.00 0.95 0.60

SumHeightPEX 0.00 0.40 0.90 1.00 0.95 0.80

SumHeightPropPEX 0.00 0.35 0.90 0.85 0.65 0.35

VarHeightPEX 0.00 0.35 0.90 1.00 0.90 0.65

VarHeightPropPEX 0.00 0.35 0.90 0.85 0.80 0.45

Table D.55. Experiment 2, 20✕ 20 Problems: Fraction of Problems Timed-out.

278

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.60 543.62 1143.61 1142.43 1040.73 532.27

CBASlackPropPEX 0.59 545.35 1127.01 1143.25 1041.33 540.15

LJRandPEX 0.61 745.84 1200.28 1200.67 1200.63 1026.55

LJRandPropPEX 0.61 676.87 1200.53 1200.61 1144.93 745.58

SumHeightPEX 0.60 489.23 1097.13 1200.36 1140.96 963.38

SumHeightPropPEX 0.61 453.85 1124.90 1044.49 814.83 530.57

VarHeightPEX 0.61 480.27 1102.54 1200.32 1082.03 787.52

VarHeightPropPEX 0.61 435.52 1098.31 1040.89 981.26 589.72

Table D.56. Experiment 2, 20✕ 20 Problems: Mean CPU Time in Seconds.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 1.00 1227.55 2468.80 2431.75 1813.60 724.85

CBASlackPropPEX 1.00 918.35 1891.20 2322.40 1680.35 729.85

LJRandPEX 1.00 1468.45 1995.45 1626.35 1521.95 1162.20

LJRandPropPEX 1.00 821.20 1261.80 1163.65 1195.80 713.05

SumHeightPEX 1.00 1043.00 2087.55 1975.60 1555.45 1271.85

SumHeightPropPEX 1.00 415.25 959.55 870.85 640.40 355.05

VarHeightPEX 1.00 984.15 1963.15 1733.80 1444.00 898.50

VarHeightPropPEX 1.00 309.80 852.15 786.20 747.85 441.35

Table D.57. Experiment 2, 20✕ 20 Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 751.95 69423.25 156506.85 110694.30 86278.65 35485.30

CBASlackPropPEX 751.95 50891.05 107434.60 100777.05 81221.65 35069.65

LJRandPEX 751.85 49652.80 77090.30 58287.85 53803.40 35904.25

LJRandPropPEX 751.85 44110.65 63823.85 58345.95 57777.55 36166.15

SumHeightPEX 751.85 38346.05 84049.90 61836.55 38919.85 30840.90

SumHeightPropPEX 751.85 32340.45 76645.30 64654.95 53626.65 25412.00

VarHeightPEX 751.80 40047.70 95248.95 66817.25 54982.30 30530.00

VarHeightPropPEX 751.80 34196.50 77494.00 72304.35 63906.70 39376.75

Table D.58. Experiment 2, 20✕ 20 Problems: Mean Number of Commitments.

279

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 2476.20 5152.55 5479.75 4977.25 3745.45

CBASlackPropPEX 0.00 1862.35 3997.20 5262.05 4716.30 3730.85

LJRandPEX 0.00 3129.50 4203.05 3515.65 3321.15 2686.05

LJRandPropPEX 0.00 1663.90 2597.10 2444.70 2561.40 1685.80

SumHeightPEX 0.00 2102.75 4260.20 4107.95 3331.90 2827.25

SumHeightPropPEX 0.00 849.00 2007.55 1909.85 1532.50 1038.10

VarHeightPEX 0.00 1984.10 4012.90 3616.45 3106.00 2109.65

VarHeightPropPEX 0.00 635.40 1790.60 1733.65 1700.20 1220.05

Table D.59. Experiment 2, 20✕ 20 Problems: Mean Number of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.00 2.34 3.73 7.37 13.20 40.53

CBASlackPropPEX 0.00 1.94 3.63 7.51 13.37 39.98

LJRandPEX 0.00 4.35 6.40 7.51 8.39 9.63

LJRandPropPEX 0.00 2.58 4.20 4.35 4.79 6.11

SumHeightPEX 0.00 3.14 6.05 7.44 10.74 12.31

SumHeightPropPEX 0.00 1.52 2.74 3.78 5.11 7.52

VarHeightPEX 0.00 2.78 4.51 6.55 7.95 9.63

VarHeightPropPEX 0.00 1.06 2.39 3.04 3.70 7.80

Table D.60. Experiment 2, 20✕ 20 Problems: Mean Percentage of Heuristic Commitments.

280

D.3 Experiment 3

D.3.1 Overall Results

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 0.92 0.91 0.90 0.92

CBASlackPropPEX 0.82 0.84 0.85 0.88

LJRandPEX 0.57 0.67 0.56 0.70

LJRandPropPEX 0.25 0.33 0.29 0.33

SumHeightPEX 0.27 0.30 0.26 0.33

SumHeightPropPEX 0.00 0.02 0.02 0.03

VarHeightPEX 0.35 0.43 0.42 0.37

VarHeightPropPEX 0.08 0.16 0.14 0.18

Table D.61. Experiment 3 Overall: Fraction of Problems Timed-out.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 1102.65 1093.63 1086.51 1101.00

CBASlackPropPEX 985.59 1022.66 1028.03 1060.77

LJRandPEX 691.72 816.29 697.83 864.81

LJRandPropPEX 313.35 415.83 360.23 402.61

SumHeightPEX 334.19 370.67 329.34 423.62

SumHeightPropPEX 16.13 55.01 36.16 54.66

VarHeightPEX 434.55 515.69 509.80 446.23

VarHeightPropPEX 126.22 198.55 188.68 230.48

Table D.62. Experiment 3 Overall: Mean CPU Time in Seconds.

281

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 10063.45 7217.11 5816.05 5769.42

CBASlackPropPEX 7103.89 5482.73 4509.05 4527.57

LJRandPEX 4878.19 5225.35 4017.67 4606.58

LJRandPropPEX 1721.65 2121.72 1626.24 1729.18

SumHeightPEX 2678.84 2117.53 1610.11 1949.32

SumHeightPropPEX 55.55 174.58 89.35 128.93

VarHeightPEX 3589.64 3114.68 2549.19 2151.77

VarHeightPropPEX 698.05 879.28 720.72 824.03

Table D.63. Experiment 3 Overall: Mean Number of Backtracks.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 116728.23 72898.35 62314.90 51164.23

CBASlackPropPEX 261910.83 222099.97 180997.09 188905.32

LJRandPEX 41478.40 45947.70 36662.81 41333.24

LJRandPropPEX 62688.65 87457.83 61562.55 68487.63

SumHeightPEX 15573.78 13255.09 9780.87 11306.79

SumHeightPropPEX 5895.03 19412.31 9807.72 15306.43

VarHeightPEX 23245.18 19283.14 15983.41 13459.43

VarHeightPropPEX 36628.22 44978.25 37939.99 41634.23

Table D.64. Experiment 3 Overall: Mean Number of Commitments.

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 20531.94 14748.95 12013.14 11871.96

CBASlackPropPEX 14323.97 11106.92 9208.02 9245.17

LJRandPEX 14479.85 15561.61 12160.99 13783.11

LJRandPropPEX 3513.08 4308.37 3324.34 3528.42

SumHeightPEX 5558.11 4445.97 3470.99 4142.54

SumHeightPropPEX 302.53 548.43 406.83 486.97

VarHeightPEX 7384.27 6440.63 5348.87 4559.77

VarHeightPropPEX 1586.91 1957.53 1676.12 1875.88

Table D.65. Experiment 3 Overall: Mean Number of Heuristic Commitments.

282

D.3.2 One-Alternative Results

Maximum Number of Alternative Process Plans

Algorithm 1 3 5 7

CBASlackPEX 19.45 22.12 22.39 25.22

CBASlackPropPEX 5.83 5.13 6.78 5.75

LJRandPEX 30.22 29.47 27.80 29.37

LJRandPropPEX 7.47 6.40 6.61 6.17

SumHeightPEX 30.67 28.35 29.56 30.21

SumHeightPropPEX 19.50 16.88 17.20 16.36

VarHeightPEX 31.30 30.31 30.78 29.62

VarHeightPropPEX 19.61 16.73 17.73 16.21

Table D.66. Experiment 3 Overall: Mean Percentage of Heuristic Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.65 1.00 1.00 1.00 1.00 0.85

CBASlackPropPEX 0.15 1.00 1.00 0.95 0.95 0.85

LJRandPEX 0.60 1.00 0.90 0.60 0.30 0.00

LJRandPropPEX 0.15 0.85 0.45 0.05 0.00 0.00

SumHeightPEX 0.25 0.85 0.45 0.05 0.00 0.00

SumHeightPropPEX 0.00 0.00 0.00 0.00 0.00 0.00

VarHeightPEX 0.60 0.90 0.60 0.00 0.00 0.00

VarHeightPropPEX 0.15 0.35 0.00 0.00 0.00 0.00

Table D.67. Experiment 3, 1-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 780.19 1200.07 1200.06 1200.05 1200.06 1035.46

CBASlackPropPEX 180.48 1200.10 1200.09 1171.57 1140.25 1021.04

LJRandPEX 737.66 1200.18 1080.78 752.40 369.86 9.43

LJRandPropPEX 180.61 1062.95 563.44 64.66 4.02 4.44

SumHeightPEX 304.92 1057.60 574.71 62.64 2.62 2.64

SumHeightPropPEX 1.26 75.07 4.82 5.14 5.24 5.23

VarHeightPEX 773.31 1102.24 721.29 3.92 3.21 3.30

VarHeightPropPEX 191.87 538.91 9.75 5.50 5.66 5.61

Table D.68. Experiment 3, 1-Alternative Problems: Mean CPU Time in Seconds.

283

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 7108.05 10906.05 10843.25 10766.55 11172.85 9583.95

CBASlackPropPEX 1092.65 7516.70 8073.00 8540.60 8677.05 8723.35

LJRandPEX 6214.90 9335.85 7246.25 4032.40 2426.85 12.90

LJRandPropPEX 991.30 5746.80 3209.15 382.45 0.15 0.05

SumHeightPEX 2416.00 8523.80 4653.20 480.00 0.00 0.05

SumHeightPropPEX 2.80 330.30 0.15 0.05 0.00 0.00

VarHeightPEX 6718.30 9003.55 5808.65 7.35 0.00 0.00

VarHeightPropPEX 1188.85 2972.95 26.45 0.00 0.05 0.00

Table D.69. Experiment 3, 1-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 53473.50 97805.70 115656.35 144438.60 147275.70 141719.55

CBASlackPropPEX 50373.20 400954.40 344725.75 274468.35 272631.15 228312.15

LJRandPEX 57109.05 83208.70 56110.70 31536.75 20040.25 864.95

LJRandPropPEX 35381.70 222738.70 103762.00 12331.60 973.55 944.35

SumHeightPEX 13664.30 50351.95 25316.55 2450.85 838.30 820.70

SumHeightPropPEX 812.20 30542.75 1223.00 1029.45 914.45 848.35

VarHeightPEX 49135.65 54356.35 33375.85 932.05 849.30 821.90

VarHeightPropPEX 53080.25 160965.30 2957.75 1025.55 898.50 842.00

Table D.70. Experiment 3, 1-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 14500.05 22554.75 22302.20 21817.95 22607.15 19409.55

CBASlackPropPEX 2194.50 15110.50 16258.45 17225.50 17515.30 17639.55

LJRandPEX 18841.45 27597.35 21028.25 11973.15 7226.30 212.60

LJRandPropPEX 1987.85 11541.85 6493.45 859.25 97.95 98.10

SumHeightPEX 4848.45 17182.35 9509.40 1212.20 292.35 303.90

SumHeightPropPEX 13.95 760.35 200.50 250.95 286.60 302.85

VarHeightPEX 13479.90 18136.35 11819.45 271.60 291.60 306.70

VarHeightPropPEX 2386.50 6035.75 242.55 255.80 290.75 310.10

Table D.71. Experiment 3, 1-Alternative Problems: Mean Number of Heuristic
Commitments.

284

D.3.3 Three-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 18.01 25.57 21.92 19.07 17.76 14.35

CBASlackPropPEX 0.71 4.00 5.46 6.91 6.97 10.92

LJRandPEX 23.98 34.25 36.29 33.86 29.45 23.47

LJRandPropPEX 1.11 6.26 7.66 9.26 10.09 10.43

SumHeightPEX 12.64 34.24 33.69 31.29 34.99 37.14

SumHeightPropPEX 0.79 6.25 17.02 25.08 31.84 35.99

VarHeightPEX 19.26 34.51 32.77 29.45 34.42 37.42

VarHeightPropPEX 0.90 5.74 15.86 25.54 32.66 36.99

Table D.72. Experiment 3, 1-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.50 1.00 1.00 1.00 1.00 0.95

CBASlackPropPEX 0.30 1.00 0.95 0.95 1.00 0.85

LJRandPEX 0.60 1.00 0.90 0.75 0.55 0.20

LJRandPropPEX 0.30 0.80 0.55 0.30 0.05 0.00

SumHeightPEX 0.30 0.95 0.45 0.10 0.00 0.00

SumHeightPropPEX 0.00 0.15 0.00 0.00 0.00 0.00

VarHeightPEX 0.45 1.00 0.80 0.20 0.10 0.00

VarHeightPropPEX 0.30 0.60 0.05 0.00 0.00 0.00

Table D.73. Experiment 3, 3-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 602.40 1200.06 1200.06 1200.06 1200.09 1159.11

CBASlackPropPEX 360.47 1200.09 1140.34 1141.57 1200.11 1093.36

LJRandPEX 720.29 1200.10 1113.07 951.61 663.11 249.58

LJRandPropPEX 360.45 963.76 684.03 409.54 72.64 4.53

SumHeightPEX 372.40 1154.57 559.88 129.05 4.12 4.00

SumHeightPropPEX 74.19 227.18 7.13 6.88 7.53 7.14

VarHeightPEX 560.44 1200.07 961.09 243.56 124.18 4.80

VarHeightPropPEX 360.44 738.01 70.12 7.22 7.62 7.88

Table D.74. Experiment 3, 3-Alternative Problems: Mean CPU Time in Seconds.

285

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 3712.95 7784.70 7853.25 7901.25 8029.40 8021.10

CBASlackPropPEX 1677.60 5591.25 5778.45 6262.00 6843.90 6743.20

LJRandPEX 4005.50 7381.00 7414.60 6477.60 4535.95 1537.45

LJRandPropPEX 1684.65 4805.20 3668.60 2131.75 439.65 0.45

SumHeightPEX 2153.75 6599.40 3279.30 672.05 0.50 0.15

SumHeightPropPEX 290.45 753.95 3.10 0.00 0.00 0.00

VarHeightPEX 3464.30 7064.75 5815.30 1512.90 830.85 0.00

VarHeightPropPEX 1688.60 3323.45 263.40 0.20 0.05 0.00

Table D.75. Experiment 3, 3-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 30564.45 60238.70 76287.75 82579.85 82259.60 105459.75

CBASlackPropPEX 96186.95 349959.55 276655.70 215815.40 216777.30 177204.95

LJRandPEX 42842.15 70102.95 64242.60 53762.35 32725.60 12010.55

LJRandPropPEX 83037.25 233479.15 134139.45 66108.45 6865.60 1117.05

SumHeightPEX 14812.10 38261.65 19561.45 4926.50 992.70 976.15

SumHeightPropPEX 25499.35 85791.80 1806.05 1274.90 1084.70 1017.05

VarHeightPEX 24320.25 45347.70 31814.70 7897.60 5324.15 994.45

VarHeightPropPEX 84431.70 168999.15 13063.05 1255.95 1096.60 1023.05

Table D.76. Experiment 3, 3-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 7604.60 15966.80 16036.25 16104.55 16361.25 16420.25

CBASlackPropPEX 3368.30 11281.20 11701.60 12697.90 13884.00 13708.50

LJRandPEX 12025.25 21649.50 22057.35 19740.35 12982.55 4914.65

LJRandPropPEX 3374.55 9655.45 7400.80 4346.65 974.00 98.80

SumHeightPEX 4323.95 13331.30 6771.55 1609.80 309.05 330.15

SumHeightPropPEX 586.75 1608.25 198.45 261.15 306.75 329.25

VarHeightPEX 6974.40 14267.25 11818.95 3290.65 1961.25 331.30

VarHeightPropPEX 3392.40 6750.20 713.05 254.10 303.50 331.95

Table D.77. Experiment 3, 3-Alternative Problems: Mean Number of Heuristic
Commitments.

286

D.3.4 Five-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 14.45 27.55 24.03 22.44 25.91 18.36

CBASlackPropPEX 1.11 3.45 4.76 6.21 6.91 8.34

LJRandPEX 16.95 31.25 34.53 34.50 32.26 27.35

LJRandPropPEX 1.23 4.82 6.57 7.94 8.96 8.89

SumHeightPEX 10.92 35.10 30.69 28.26 31.21 33.92

SumHeightPropPEX 0.59 5.55 12.60 21.12 28.77 32.67

VarHeightPEX 16.63 32.85 35.21 31.35 32.38 33.42

VarHeightPropPEX 1.23 5.77 11.88 20.82 28.07 32.59

Table D.78. Experiment 3, 3-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.60 1.00 1.00 1.00 0.95 0.85

CBASlackPropPEX 0.50 1.00 1.00 1.00 0.85 0.75

LJRandPEX 0.60 0.95 0.90 0.50 0.35 0.05

LJRandPropPEX 0.40 0.70 0.45 0.15 0.05 0.00

SumHeightPEX 0.45 0.75 0.35 0.00 0.00 0.00

SumHeightPropPEX 0.05 0.05 0.00 0.00 0.00 0.00

VarHeightPEX 0.65 0.95 0.75 0.15 0.00 0.00

VarHeightPropPEX 0.45 0.35 0.05 0.00 0.00 0.00

Table D.79. Experiment 3, 5-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 756.09 1200.09 1200.09 1200.07 1140.80 1021.92

CBASlackPropPEX 600.42 1200.11 1200.13 1200.12 1063.50 903.91

LJRandPEX 766.92 1140.22 1080.55 661.63 439.63 98.05

LJRandPropPEX 491.14 849.79 560.99 189.75 64.73 4.98

SumHeightPEX 542.78 907.40 460.00 56.14 4.94 4.81

SumHeightPropPEX 99.90 84.08 7.60 8.26 8.66 8.43

VarHeightPEX 780.32 1140.38 902.51 209.80 19.78 6.00

VarHeightPropPEX 557.75 477.34 68.34 9.31 9.49 9.87

Table D.80. Experiment 3, 5-Alternative Problems: Mean CPU Time in Seconds.

287

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 4034.90 6045.20 6340.35 6459.35 6122.40 5894.10

CBASlackPropPEX 2336.35 4835.20 5045.65 5231.65 4948.95 4656.50

LJRandPEX 4550.90 6455.15 6140.40 3814.10 2500.55 644.95

LJRandPropPEX 2098.95 3778.00 2682.15 900.35 297.85 0.15

SumHeightPEX 2688.85 4289.30 2419.05 262.15 1.30 0.00

SumHeightPropPEX 292.05 243.90 0.15 0.00 0.00 0.00

VarHeightPEX 3950.85 5815.70 4495.35 968.80 64.45 0.00

VarHeightPropPEX 2282.15 1806.50 235.50 0.15 0.00 0.05

Table D.81. Experiment 3, 5-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 31952.60 50329.00 62676.70 72047.15 81443.70 75440.25

CBASlackPropPEX 134723.40 260129.70 217460.10 188007.00 157854.95 127807.40

LJRandPEX 45014.60 63249.60 53790.45 32909.60 20438.40 4574.20

LJRandPropPEX 90614.70 168304.85 74303.85 25841.40 9098.85 1211.65

SumHeightPEX 15831.05 24405.35 13996.10 2262.95 1105.60 1084.15

SumHeightPropPEX 27907.10 25468.00 1706.10 1416.30 1220.45 1128.35

VarHeightPEX 28593.60 33323.05 25829.00 5729.90 1343.05 1081.85

VarHeightPropPEX 114129.75 101236.30 8559.95 1362.80 1211.60 1139.55

Table D.82. Experiment 3, 5-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 8404.10 12545.45 13018.20 13372.95 12650.10 12088.05

CBASlackPropPEX 4710.70 9802.35 10281.55 10681.75 10162.30 9609.45

LJRandPEX 13850.45 19456.90 18374.50 11800.15 7548.80 1935.15

LJRandPropPEX 4216.00 7611.60 5440.95 1889.70 691.35 96.45

SumHeightPEX 5440.25 8761.60 5090.90 834.85 334.90 363.45

SumHeightPropPEX 616.65 623.85 226.65 288.15 332.85 352.85

VarHeightPEX 7991.55 11812.85 9224.60 2238.65 465.30 360.25

VarHeightPropPEX 4608.60 3745.25 716.15 296.90 331.55 358.30

Table D.83. Experiment 3, 5-Alternative Problems: Mean Number of Heuristic
Commitments.

288

D.3.5 Seven-Alternative Results

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 17.90 26.61 24.98 21.69 19.91 23.28

CBASlackPropPEX 1.95 4.18 5.17 6.16 9.53 13.70

LJRandPEX 20.39 31.19 33.31 31.71 27.88 22.31

LJRandPropPEX 2.71 5.70 7.89 7.45 7.88 8.02

SumHeightPEX 17.97 34.23 32.11 29.03 30.40 33.61

SumHeightPropPEX 2.16 6.75 13.77 21.31 27.75 31.49

VarHeightPEX 18.66 35.88 34.35 30.59 31.80 33.39

VarHeightPropPEX 2.41 6.41 15.98 22.39 27.64 31.58

Table D.84. Experiment 3, 5-Alternative Problems: Mean Percentage of Heuristic
Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 0.65 1.00 1.00 1.00 1.00 0.85

CBASlackPropPEX 0.45 1.00 1.00 1.00 0.85 1.00

LJRandPEX 0.65 1.00 0.95 0.70 0.55 0.35

LJRandPropPEX 0.25 0.65 0.70 0.25 0.10 0.00

SumHeightPEX 0.40 0.80 0.45 0.35 0.00 0.00

SumHeightPropPEX 0.05 0.10 0.00 0.00 0.00 0.00

VarHeightPEX 0.65 0.85 0.50 0.15 0.05 0.00

VarHeightPropPEX 0.45 0.55 0.00 0.05 0.00 0.00

Table D.85. Experiment 3, 7-Alternative Problems: Fraction of Problems Timed-out.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 780.35 1200.08 1200.11 1200.10 1200.10 1025.29

CBASlackPropPEX 540.55 1200.15 1200.11 1200.09 1023.60 1200.11

LJRandPEX 780.41 1200.18 1189.86 882.86 662.88 472.69

LJRandPropPEX 304.76 799.35 853.25 318.09 129.60 10.59

SumHeightPEX 522.36 998.61 585.32 424.11 5.31 6.02

SumHeightPropPEX 68.66 221.28 9.43 9.89 9.42 9.31

VarHeightPEX 780.35 1021.40 603.43 199.55 66.08 6.59

VarHeightPropPEX 540.54 687.50 36.12 97.45 10.53 10.73

Table D.86. Experiment 3, 7-Alternative Problems: Mean CPU Time in Seconds.

289

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 4003.20 6043.55 6131.85 6239.65 6600.15 5598.10

CBASlackPropPEX 2016.70 4726.60 4956.70 5017.85 4578.75 5868.80

LJRandPEX 4097.00 6328.70 6363.40 4629.55 3667.30 2553.55

LJRandPropPEX 1256.55 3526.55 3697.75 1294.75 568.20 31.25

SumHeightPEX 2280.45 4747.05 2687.75 1976.95 0.25 3.45

SumHeightPropPEX 197.10 570.45 3.45 2.55 0.05 0.00

VarHeightPEX 3841.25 4872.50 2931.85 962.60 302.40 0.00

VarHeightPropPEX 2111.65 2385.90 94.55 351.70 0.30 0.05

Table D.87. Experiment 3, 7-Alternative Problems: Mean Number of Backtracks.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 29405.90 51237.00 52411.35 57251.40 58655.05 58024.70

CBASlackPropPEX 112137.05 260504.85 216587.20 201418.10 169214.15 173570.55

LJRandPEX 41865.40 60669.65 55974.85 39370.60 29581.90 20537.05

LJRandPropPEX 49740.45 160775.20 137559.50 47509.65 13842.40 1498.55

SumHeightPEX 13154.15 27757.40 13650.95 10956.55 1159.50 1162.20

SumHeightPropPEX 19718.55 65805.95 2020.80 1760.85 1310.60 1221.80

VarHeightPEX 24644.60 29211.70 15549.55 7008.50 3188.25 1153.95

VarHeightPropPEX 89923.55 140953.20 6392.95 10007.45 1292.15 1236.10

Table D.88. Experiment 3, 7-Alternative Problems: Mean Number of Commitments.

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 8285.70 12364.25 12719.90 12877.60 13476.20 11508.10

CBASlackPropPEX 4075.10 9591.20 10111.00 10267.85 9416.50 12009.35

LJRandPEX 12643.90 18770.45 18845.60 13661.65 10906.90 7870.15

LJRandPropPEX 2531.10 7107.95 7460.05 2683.00 1227.60 160.80

SumHeightPEX 4614.85 9673.70 5617.50 4243.45 337.35 368.40

SumHeightPropPEX 432.05 1270.55 228.75 297.30 335.75 357.40

VarHeightPEX 7773.65 9928.75 6119.80 2224.30 947.40 364.70

VarHeightPropPEX 4269.30 4890.10 410.05 985.30 339.50 361.00

Table D.89. Experiment 3, 7-Alternative Problems: Mean Number of Heuristic
Commitments.

290

Makespan Factor

Algorithm 1.0 1.1 1.2 1.3 1.4 1.5

CBASlackPEX 19.16 26.64 28.11 26.10 28.52 22.80

CBASlackPropPEX 1.81 4.65 5.50 5.51 7.97 9.03

LJRandPEX 20.47 31.67 33.95 33.47 29.17 27.48

LJRandPropPEX 2.19 5.49 6.61 6.47 7.77 8.50

SumHeightPEX 19.81 33.80 34.22 32.43 29.19 31.81

SumHeightPropPEX 2.17 6.52 13.31 19.99 26.38 29.80

VarHeightPEX 21.22 33.51 33.07 28.55 29.65 31.75

VarHeightPropPEX 2.30 5.84 12.64 20.09 26.91 29.46

Table D.90. Experiment 3, 7-Alternative Problems: Mean Percentage of Heuristic
Commitments.

291

Chapter 9 References

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management

Science, 34:391–401.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843.

Applegate, D. and Cook, W. (1991). A computational study of the job-shop scheduling problem. ORSA Journal on

Computing, 3:149–156.

Baker, A. (1994). The hazards of fancy backtracking. In Proceedings of AAAI-94, pages 288–293.

Baker, K. (1974). Introduction to sequencing and scheduling. John Wiley and Sons.

Baptiste, P. and Le Pape, C. (1995). Disjunctive constraints for manufacturing scheduling: Principles and extensions.
In Proceedings of the Third International Conference on Computer Integrated Manufacturing.

Baptiste, P. and Le Pape, C. (1996). Edge-finding constraint propagation algorithms for disjunctive and cumulative
scheduling. In Proceedings of the 15th Workshop of the UK Planning and Scheduling Special Interest Group.
Available from http://www.hds.utc.fr/ baptiste/.

Baptiste, P., Le Pape, C., and Nuijten, W. (1995a). Constraint-based optimization and approximation for job-shop
scheduling. In Proceedings of the AAAI-SIGMAN Workshop on Intelligent Manufacturing Systems, IJCAI-95.

Baptiste, P., Le Pape, C., and Nuijten, W. (1995b). Incorporating efficient operations research algorithms in constraint-
based scheduling. In Proceedings of the First Joint Workshop on Artificial Intelligence and Operations

Research. Workshop proceedings available on world wide web from http://www.cirl.uoregon.edu/aior/.

Beasley, J. E. (1990). OR-library: distributing test problems by electronic mail. Journal of the Operational Research

Society, 41(11):1069–1072. Also available by ftp from ftp://graph.ms.ic.ac.uk/pub/paper.txt.

Beck, J. C., Davenport, A. J., Davis, E. D., and Fox, M. S. (1998). The ODO project: Toward a unified basis for
constraint-directed scheduling. Journal of Scheduling, 1(2):89–125.

Beck, J. C., Davenport, A. J., and Fox, M. S. (1997a). Five pitfalls of empirical scheduling research. In Smolka, G.,
editor, Proceedings of the Third International Conference on Principles and Practice of Constraint

Programming (CP97), pages 390–404. Springer-Verlag.

Beck, J. C., Davenport, A. J., Sitarski, E. M., and Fox, M. S. (1997b). Texture-based heuristics for scheduling
revisited. In Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-97). AAAI Press,
Menlo Park, California.

Beck, J. C. and Jackson, K. (1997). Constrainedness and the phase transition in job shop scheduling. Technical report,
School of Computing Science, Simon Fraser University.

Blazewicz, J., Domschke, W., and Pesch, E. (1996). The job shop scheduling problem: Conventional and new solution
techniques. European Journal of Operational Research, 93(1):1–33.

Bogart, K. P. (1988). Discrete Mathematics. D.C. Heath and Company, Lexington, Mass.

Brasel, H., Harborth, M., Tautenhahn, T., and Willenius, P. (1997). On the hardness ofthe classical job shop problem.
Technical Report 23, Fakultat fur Mathematik, Otto-von-Guericke-Universitat Magdeburg, Postfach 4120,
39016 Magdeburg, Germany.

292

Brucker, P. and Thiele, O. (1996). A branch & bound method for the general-shop problems with sequence dependent
set-up times. OR Spektrum, 18:145–161.

Burke, P. and Prosser, P. (1994). The distributed asynchronous scheduler. In Zweben, M. and Fox, M., editors,
Intelligent Scheduling, chapter 11, pages 309–339. Morgan Kaufmann Publishers, San Francisco.

Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop problem. Management Science, 35(2):164–
176.

Carlier, J. and Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem. European Journal of

Operational Research, 78:146–161.

Caseau, Y. and Laburthe, F. (1994). Improved CLP scheduling with task intervals. In Proceedings of the Eleventh

International Conference on Logic Programming. MIT Press.

Caseau, Y. and Laburthe, F. (1995). Improving branch and bound for jobshop scheduling with constraint propagation.
In Proceedings of the Eighth Franco-Japanese Conference CCS’95.

Caseau, Y. and Laburthe, F. (1996). Cumulative scheduling with task intervals. In Proceedings of the Joint

International Conference and Symposium on Logic Programming. MIT Press.

Cesta, A. and Oddi, A. (1996). Gaining efficiency and flexibility in the simple temporal problem. In Chittaro, L.,
Goodwin, S., Hamilton, H., and Montanari, A., editors, Proceedings of the Third International Workshop on

Temporal Representation and Reasoning (TIME-96), Los Alamitos, CA. IEEE Computer Society Press.

Cesta, A., Oddi, A., and Smith, S. F. (1998). Profile-based algorithms to solve multiple capacitated metric scheduling
problems. In Simmons, R., Veloso, M., and Smith, S. F., editors, Proceedings of the Fourth International

Conference on Artificial Intelligence Planning Systems, pages 214–223, Menlo Park, CA. AAAI Press.

Cheng, C. C. and Smith, S. F. (1997). Applying constraint satisfaction techniques to job shop scheduling. Annals of

Operations Research, Special Volume on Scheduling: Theory and Practice, 70:327–378.

Cherkassky, B. V., Goldberg, A. V., and Radzik, T. (1994). Shortest paths algorithms: theory and experimental
evaluation. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 516–525.

Clements, D. P., Crawford, J. M., Joslin, D. E., Nemhauser, G. L., Puttlitz, M. E., and Savelsbergh, M. W. P. (1997).
Heuristic optimization: A hybrid AI/OR approach. In Proceedings of CP97 Workshop on Constraint-Directed

Scheduling.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge, Mass.

Collinot, A. and Le Pape, C. (1987). Controlling constraint propagation. In Proceedings of the Tenth International

Joint Conference on Artificial Intelligence.

Crawford, J. M. and Baker, A. B. (1994). Experimental results on the application of satisfiability algorithms to
scheduling problems. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
volume 2, pages 1092–1097.

Davenport, A. J., Beck, J. C., and Fox, M. S. (1999). An investigation into two approaches for resource allocation and
scheduling. Technical report, Enterprise Integration Laboratory, Department of Mechanical and Industrial
Engineering, University of Toronto.

Davis, E. D. (1994). ODO: A constraint-based scheduler founded on a unified problem solving model. Master’s thesis,
Enterprise Integration Laboratory, Department of Industrial Engineering, University of Toronto, 4 Taddle
Creek Road, Toronto, Ontario M5S 3G9, Canada.

Davis, E. D. and Fox, M. S. (1993). Odo: A constraint-based scheduling shell. In Proceedings of the IJCAI-93

Workshop on Production Planning, Scheduling and Control.

DeBacker, B., Furnon, V., Kilby, P., Prosser, P., and Shaw, P. (1997). Local search in constraint programming:
Application to the vehicle routing problem. In CP97 Workshop on Industrial Constraint-Directed Scheduling.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning and cutset
decomposition. Artificial Intelligence, 41:273–312.

Dechter, R., Dechter, A., and Pearl, J. (1990). Optimization in constraint networks. In Oliver, R. and Smith, J., editors,
Influence Diagrams, Belief Nets, and Decision Analysis. John Wiley and Sons, Ltd, Chicester, England.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49:61–95.

293

Dorndorf, U. and Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers and

Operations Research, 22(1):25–40.

Erschler, J., Roubellat, F., and Vernhes, J. P. (1976). Finding some essential characteristics of the feasible solutions
for a scheduling problem. Operations Research, 24:772–782.

Erschler, J., Roubellat, F., and Vernhes, J. P. (1980). Characterising the set of feasible sequences for n jobs to be
carried out on a single machine. European Journal of Operational Research, 4:189–194.

Fisher, H. and Thompson, G. L. (1963). Probabilistic learning combinations of local job-shop scheduling rules. In
Muth, J. F. and Thompson, G. L., editors, Industrial Scheduling, pages 225–251. Prentice Hall, Englewood
Cliffs, New Jersey.

Fox, M. (1986). Observations on the role of constraints in problem solving. In Proceedings of the Sixth Canadian

Conference on Artificial Intelligence.

Fox, M. S. (1983). Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD thesis, Carnegie Mellon
University, Intelligent Systems Laboratory, The Robotics Institute, Pittsburgh, PA. CMU-RI-TR-85-7.

Fox, M. S. (1990). Constraint-guided scheduling - a short history of research at CMU. Computers in Industry, 14:79–
88.

Fox, M. S. (1999). personal communication. 1999.

Fox, M. S., Sadeh, N., and Baykan, C. (1989). Constrained heuristic search. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence (IJCAI-89), pages 309–316.

Freuder, E. C. (1978). Synthesizing constraint expressions. Communications of the Association for Computing

Machinery, 21(11):958–966.

Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the Association for Computing

Machinery, 29(1):24–32.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York.

Gaschnig, J. (1978). Experimental case studies of backtrack vs. waltz-type vs. new algorithms for satisficing
assignment problems. In Proceedings of the Second National Conference of the Canadian Society for

Computational Studies of Intelligence.

Gent, I., MacIntyre, E., Prosser, P., Smith, B., and Walsh, T. (1996a). An empirical study of dynamic variable ordering
heuristics for the constraint satisfaction problem. In Freuder, E., editor, Proceedings of the Second International

Conference on Principles and Practice of Constraint Programming (CP96), pages 179–193. Springer-Verlag.

Gent, I. P., MacIntyre, E., Prosser, P., and Walsh, T. (1996b). The constrainedness of search. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI-96), volume 1, pages 246–252.

Gent, I. P. and Walsh, T. (1994). The hardest random SAT problems. In Nebel, B. and Dreschler-Fischer, L., editors,
Proceedings of KI-94: Advances in Artificial Intelligence. 18th German Annual Conference on Artificial

Intelligence, pages 355–366. Springer-Verlag.

Ginsberg, M. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25–46.

Glover, F. (1989). Tabu search part I. Operations Research Society of America (ORSA) Journal on Computing,
1(3):109–206.

Glover, F. (1990). Tabu search part II. Operations Research Society of America (ORSA) Journal on Computing,
2(1):4–32.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading,
Mass.

Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting combinatorial search through randomization. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 431–437.

Haralick, R. M. and Elliot, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence Journal, 14:263–314.

Harvey, W. D. (1995). Nonsystematic backtracking search. PhD thesis, Department of Computer Science, Stanford
University.

294

Harvey, W. D. and Ginsberg, M. L. (1995). Limited discrepancy search. In Proceedings of the Fourteenth

International Joint Conference onf Artificial Intelligence (IJCAI-95), pages 607–613.

Havens, W. S. (1997). Nogood caching for multiagent backtrack search. In Proceedings of the AAAI-97 Constraints

and Agents Workshop, Providence, Rhode Island.

Herroelen, W. S. and Demeulemeester, E. L. (1995). Recent advances in branch-and-bound procedures for resource-
constrained project scheduling problems. In Chretienne, P., Coffman Jr., E., Lenstra, J., and Liu, Z., editors,
Scheduling theory and it applications, chapter 12. John Wiley & Sons, Ltd.

Hildum, D. W. (1994). Flexibility in a knowledge-based system for solving dynamic resource-constrained scheduling

problems. PhD thesis, Department of Computer Science, University of Massachusetts, Amherst, MA. 01003-
4610. UMass CMPSCI TR 94-77.

Hogg, T. and Williams, C. P. (1994). The hardest constraint problems: A double phase transition. Artificial

Intelligence, 69:359–377.

Holland, J. (1975). Adaptation in natural systems. University of Michigan Press, Ann Arbor, Mich.

Hooker, J. N. (1996). Testing heuristics: We have it all wrong. Journal of Heuristics, 1:33–42.

Hooker, J. N. and Vinay, V. (1995). Branching rules for satisfiability. Journal of Automated Reasoning, 15:359–383.

Johnston, M. D. (1990). Spike: AI scheduling for NASA’s hubble space telescope. In Proceedings of the 6th IEEE

Conference on AI Applications, pages 184–190. IEEE Computer Society Press, Los Alamitos, California.

Johnston, M. D. and Minton, S. (1994). Analysing a heuristic strategy for constraint satisfaction scheduling. In
Zweben, M. and Fox, M., editors, Intelligent Scheduling, chapter 9, pages 257–289. Morgan Kaufmann
Publishers, San Francisco.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220:671–680.

Korf, R. (1996). Improved limited discrepancy search. In Proceedings of the Thirteenth National Conference on

Artificial Intelligence (AAAI-96).

Kott, A. and Saks, V. (1998). A multi-decompositional approach to integration of planning and scheduling – an applied
perspective. In Proceedings of the Workshop on Integrating Planning, Scheduling and Execution in Dynamic

and Uncertain Environments, Pittsburgh, USA.

Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey. AI Magazine, pages 32–44.

Laarhoven, P. J. M., Aarts, E. H. L., and Lenstra, J. K. (1992). Job shop scheduling by simulated annealing.
Operations Research, 40(1):113–125.

Lawrence, S. (1984). Resource constrained project scheduling: an experimental investigation of heuristic scheduling

techniques (Supplement). PhD thesis, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, Pennsylvania.

Le Pape, C. (1994a). Constraint-based programming for scheduling: An historical perspective. In Working Papers of

the Operations Research Seminar on Constraint Handling Techniques.

Le Pape, C. (1994b). Implementation of resource constraints in ILOG Schedule: A library for the development of
constraint-based scheduling systems. Intelligent Systems Engineering, 3(2):55–66.

Le Pape, C. (1994c). Using a constraint-based scheduling library to solve a specific scheduling problem. In
Proceedings of the AAAI-SIGMAN Workshop on Artificial Intelligence Approaches to Modelling and

Scheduling Manufacturing Processes.

Le Pape, C. and Baptiste, P. (1996). Constraint propagation techniques for disjunctive scheduling: the preemptive
case. In Proceedings of the Twelfth European Conference on Artificial Intelligence (ECAI-96).

Le Pape, C. and Baptiste, P. (1997). An experimental comparison of constraint-based algorithms for the preemptive
job shop scheduling problem. In CP97 Workshop on Industrial Constraint-Directed Scheduling.

Le Pape, C., Couronné, P., Vergamini, D., and Gosselin, V. (1994). Time-versus-capacity compromises in project
scheduling. In Proceedings of the Thirteenth Workshop of the UK Planning Special Interest Group.

LePape, C. and Smith, S. F. (1987). Management of temporal constraints for factory scheduling. In Rolland, C.,
Leonard, M., and Bodart, F., editors, Proceedings IFIP TC 8/WG 8.1 Conference on Temporal Aspects in

Information Systems (TAIS 87). Elsevier Science Publishers.

295

Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence (IJCAI-93), volume 1, pages 232–238.

Little, J., Murty, K., Sweeney, D., and Karel, C. (1963). An algorithm for the traveling salesman problem. Operations

Research, 11(6):972–989.

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8:99–118.

Minton, S., Johnston, M., Philips, A. B., and Laird, P. (1992). Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problems. Artificial Intelligence, 58:161–205.

Muscettola, N. (1992). Scheduling by iterative partition of bottleneck conflicts. Technical Report CMU-RI-TR-92-05,
The Robotics Institute, Carnegie Mellon University.

Muscettola, N. (1994). On the utility of bottleneck reasoning for scheduling. In Proceedings of the Twelfth National

Conference on Artificial Intelligence (AAAI-94), pages 1105–1110.

Navinchandra, D. (1991). Exploration and innovation in design. Springer-Verlag, New York.

Navinchandra, D. and Marks, D. H. (1987). Design exploration through constraint relaxation. In Expert Systems in

Computer-Aided Design. Elsevier Science Publishers B. V.

Neiman, D., Hildum, D., Lesser, V., and Sandholm, T. (1994). Exploiting meta-level information in a distributed
scheduling system. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
pages 394–400,, Seattle, WA.

Nowicki, E. and Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science,
42(6):797–813.

Nuijten, W. (1999). personal communication. 1999.

Nuijten, W. P. M. (1994). Time and resource constrained scheduling: a constraint satisfaction approach. PhD thesis,
Department of Mathematics and Computing Science, Eindhoven University of Technology.

Nuijten, W. P. M. and Aarts, E. H. L. (1997). A computational study of constraint satisfaction for multiple capacitated
job shop scheduling. European Journal of Operational Research. To appear.

Nuijten, W. P. M., Aarts, E. H. L., van Arp Taalman Kip, D. A. A., and van Hee, K. M. (1993). Randomized constraint
satisfaction for job shop scheduling. In Proceedings of the IJCAI’93 Workshop on Knowledge-Based

Production, Scheduling and Control, pages 251–262.

Oddi, A. and Smith, S. F. (1997). Stochastic procedures for generating feasible schedules. In Proceedings of

Fourteenth National Conference on Artificial Intelligence (AAAI-97). AAAI Press, Menlo Park, California.

Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9(3):268–
299.

Roberts, F. (1984). Applied combinatorics. Prentice Hall, Engelwood Cliffs, New Jersey.

Sadeh, N. (1991). Lookahead techniques for micro-opportunistic job-shop scheduling. PhD thesis, Carnegie-Mellon
University. CMU-CS-91-102.

Sadeh, N. (1994). Micro-opportunistic scheduling. In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling,
chapter 4, pages 99–138. Morgan Kaufmann Publishers, San Francisco.

Sadeh, N. and Fox, M. S. (1989). Focus of attention in an activity-based scheduler. In Proceedings of the NASA

Conference on Space Telerobotics.

Sadeh, N. and Fox, M. S. (1996). Variable and value ordering heuristics for the job shop scheduling constraint
satisfaction problem. Artificial Intelligence Journal, 86(1).

Sadeh, N., Sycara, K., and Xiong, Y. (1995). Backtracking techniques for the job shop scheduling constraint
satisfaction. Artificial Intelligence, 76:455–480.

Sadeh, N. M., Hildum, D. W., Laliberty, T. J., McA’Nulty, J., Kjenstad, D., and Tseng, A. (1998). A blackboard
architecture for integrating process planning and production scheduling. Concurrent Engineering: Research

and Applications, 6(2).

Saks, V. (1992). Distribution planner overview. Technical report, Carnegie Group, Inc., Pittsburgh, PA, 15222.

296

Saks, V., Johnson, I., and Fox, M. S. (1993). Distribution planning: A constrained heuristic search approach. In
Proceedings of the Knowledge-based System and Robotics Workshop, pages 13–19. Industry Canada.

Selman, B., Levesque, H., and Mitchell, D. G. (1992). A new method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages 440–446. AAAI
Press/MIT Press.

Simon, H. A. (1973). The structure of ill-structured problems. Artificial Intelligence, 4:181–200.

Simonis, H. and Cornelissens, T. (1995). Modelling producer/consumer constraints. In Montanari, U. and Rossi, F.,
editors, Proceedings of the First International Conference on Principles and Practice of Constraint

Programming (CP95), pages 449–462. Springer-Verlag.

Smith, B. M. and Grant, S. A. (1997). Trying harder to fail first. Technical Report 97.45, School of Computer Science,
University of Leeds.

Smith, S. F.and Ow, P. S., Matthys, D. C., and Potvin, J. Y. (1989). OPIS: An opportunistic factory scheduling system.
In Proceedings of International Symposium for Computer Scientists.

Smith, S. F. and Cheng, C. C. (1993). Slack-based heuristics for constraint satisfaction scheduling. In Proceedings of

the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 139–144.

Stallman, R. and Sussman, G. (1977). Forward reasoning and dependency-directed backtracking in a system for
computer-aided circuit analysis. Artificial Intelligence, 9:135–196.

Sycara, K., Roth, S., Sadeh, N., and Fox, M. S. (1991). Distributed constrained heuristic search. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-21(6):1446–1461.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64:278–
285.

Tsang, E. P. K. (1993). Foundations of Constraint Satisfaction. Academic Press.

Vaessens, R. J. M., Aarts, E. H. L., and Lenstra, J. K. (1994). Job shop scheduling by local search. Technical Report
COSOR Memorandum 94-05, Eindhoven University of Technology. Submitted for publication in INFORMS
Journal on Computing.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.

Wagner, T., Garvey, A., and Lesser, V. (1997). Design-to-criteria scheduling: Managing complexity through goal-
directed satisficing. In Proceedings of the AAAI-97 Workshop on Building Resource-Bounded Reasoning

Systems.

Wagner, T., Garvey, A., and Lesser, V. (1998). Criteria directed task scheduling. International Journal of Approximate

Reasoning, 19:91–118.

Zweben, M., Daun, B., Davis, E., and Deale, M. (1994). Scheduling and rescheduling with iterative repair. In Zweben,
M. and Fox, M. S., editors, Intelligent Scheduling, chapter 8, pages 241–256. Morgan Kaufmann Publishers,
San Francisco.

Zweben, M., Davis, E., Daun, B., and Deale, M. (1993). Informedness vs. computational cost of heuristics in iterative
repair scheduling. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence

(IJCAI-93), pages 1416–1422.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivations
	1.2 Overview of Dissertation
	1.3 Summary of Contributions

	Chapter 2 Literature Review
	2.1 An Overview of Constraint-Directed Search and Scheduling
	2.1.1 The Constraint Satisfaction Problem
	Figure 1.� A Small Graph Coloring Problem Represented as a CSP.
	Figure 2.� A Possible Search Tree for the Problem in Figure�1.

	2.1.2 Why Constraints?
	2.1.3 Constraint-Directed Scheduling
	2.1.3.1 The Job Shop Scheduling Problem
	Figure 3.� An Example 3 ¥ 5 Job Shop Scheduling Problem.

	2.1.3.2 Notation
	Table 1. Notation.

	2.1.3.3 Historical Perspective

	2.2 Techniques for Constraint-Directed Scheduling
	2.3 Heuristic Commitment Techniques
	2.3.1 The ORR/FSS Heuristic
	(1)
	(2)
	Figure 4.� Activities A1, B2, and C3.
	Figure 5.� Individual Demand Curves (A1, B2, C3) and Their Aggregate Demand Curve (R1).

	2.3.2 Task Interval Entropy Heuristic
	(3)
	(4)
	(5)

	2.3.3 Resource Slack, First/Last Heuristic
	2.3.4 CBASlack Heuristic
	(6)
	(7)
	(8)

	2.3.5 The Randomized Left-Justified Heuristic
	2.3.6 Local Search Heuristics
	2.3.7 Open Issues

	2.4 Propagators
	2.4.1 Constraint-Based Analysis
	Figure 6.� An Example Where CBA Can Infer a New Constraint: A1 Before B3.

	2.4.2 Edge-finding Exclusion
	(9)
	(10)
	Figure 7.� An Example Where Edge-finding Exclusion Can Infer a New Constraint: STC ³ 25.

	2.4.3 Edge-finding Not-First/Not-Last
	(11)
	(12)
	Figure 8.� An Example Where EdgeFinding Not-First/Not-Last Can Infer That C4 Must Execute After E...

	2.4.4 Open Issues

	2.5 Retraction Techniques
	Figure 9.� A Search at a Dead-end.
	2.5.1 Choosing Commitments to Retract
	2.5.1.1 Provable Retraction
	2.5.1.2 Heuristic Retraction
	Figure 10.� A Comparison of Traversals of the Search Space for a Binary Tree of Depth 4.

	2.5.2 Dealing with Intervening Commitments
	2.5.2.1 Retract All
	2.5.2.2 Retract Some
	2.5.2.3 Retract None

	2.5.3 Open Issues

	2.6 Scheduling with Inventory
	2.6.1 Problem Definition
	2.6.2 Previous Work
	Figure 11.� Using the Cumulative Constraint to Model Inventory (from [Simonis and Cornelissens,�1...
	(13)

	2.6.3 Discussion

	2.7 Scheduling with Alternative Activities
	2.7.1 Alternative Resources
	2.7.2 Alternative Process Plans
	Figure 12.� Four Alternative Process Plans.
	2.7.2.1 Complete and Incremental Decomposition
	2.7.2.2 Multiple Alternative Decomposition

	2.7.3 Discussion

	2.8 Summary

	Chapter 3 The ODO Framework
	3.1 Overview of the ODO Framework
	Figure 13.� A High-level View of the ODO Framework.
	Figure 14.� A Conceptual Four-Level Constraint-Directed Search Tree.
	Figure 15.� Schematic of a Policy.
	Figure 16.� Pseudocode for a Policy.
	3.1.1 Why the Framework?

	3.2 The Components of ODO
	3.2.1 The Constraint Graph Representation
	3.2.2 The Commitment Model
	3.2.2.1 Commitments, Assertion, and Retraction
	3.2.2.2 Commitments as a Unification for Constructive and Local Search
	Figure 17.� Constructive and Local Search in the Commitment Model.

	3.2.2.3 Research Issues
	3.2.2.4 The Advantages of the Commitment Model

	3.2.3 Texture Measurements and Heuristic Commitment Techniques
	3.2.3.1 Research Issues

	3.3 Scheduling Algorithms as Instances of the Framework
	3.3.1 The ORR/FSS Algorithm
	3.3.2 The SOLVE Algorithm
	3.3.3 GERRY
	3.3.4 Tabu Search
	3.3.5 Genetic Algorithms
	3.3.6 Summary and Discussion
	Table 2. Summary of the ODO Policy Model of Five Example Scheduling Algorithms.

	3.4 Summary

	Chapter 4 An Experimental Study of Heuristics for Job Shop Scheduling
	4.1 Motivation
	4.1.1 Search State Analysis and Scheduling Performance
	4.1.2 Criticisms of Texture-based Heuristics

	4.2 The Job Shop Scheduling Problem
	4.3 Updating Contention and Reliance: SumHeight
	4.3.1 An Event-based Texture Measurement Implementation
	(14)
	(15)
	(16)
	Figure 18.� Event-based Individual Demand Curves (A1, B2, C3) and Their Aggregate Curve (R1).

	4.3.2 Heuristic Commitment Selection
	4.3.2.1 Finding the Critical Activities
	4.3.2.2 Sequencing the Critical Activities
	(17)
	(18)

	4.3.3 Complexity

	4.4 Instantiations of the ODO Framework
	Table 3. Summary of Experimental Scheduling Algorithms.

	4.5 Evaluating Scheduling Performance
	4.5.1 Competitive versus Scientific Testing
	4.5.2 Empirical Testing in Scheduling
	4.5.3 A Compromise Approach
	4.5.4 The Reporting of Time-outs

	4.6 Experiment 1: Operations Research Library
	4.6.1 Problem Set
	Table 4. Test Problems.

	4.6.2 Results
	4.6.2.1 Problems Timed-Out
	Figure 19.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (Chro...
	Figure 20.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (LDS).

	4.6.2.2 Mean CPU Time
	Figure 21.� The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking).
	Figure 22.� The Mean CPU Time in Seconds for Each Problem Set (LDS).

	4.6.2.3 Percentage of Heuristic Commitments
	Figure 23.� The Mean Percentage of Commitments Made by the Heuristic Commitment Technique (Chrono...
	Figure 24.� The Mean Percentage of Commitments Made by the Heuristic Commitment Technique (LDS).

	4.6.3 Summary and Discussion

	4.7 Experiment 2: Scaling with Problem Size
	4.7.1 Problem Set
	4.7.2 Results
	4.7.2.1 Problems Timed-out
	Figure 25.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (Chro...
	Figure 26.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (LDS).
	Figure 27.� The Fraction of the 20520 Problems at Each Makespan Factor for which Each Algorithm T...
	Figure 28.� The Fraction of the 20520 Problems at Each Makespan Factor for which Each Algorithm T...

	4.7.2.2 Mean CPU Time
	Figure 29.� The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking).
	Figure 30.� The Mean CPU Time in Seconds for Each Problem Set (LDS).
	Figure 31.� The Mean CPU Time in Seconds for the 20520 Problems at Each Makespan Factor (Chronolo...
	Figure 32.� The Mean CPU Time in Seconds for the 20520 Problems at Each Makespan Factor (LDS).

	4.7.3 Summary

	4.8 Experiment 3: Bottleneck Resources
	4.8.1 Problem Sets
	4.8.2 Results
	4.8.2.1 10510 Problems
	Figure 33.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1051...
	Figure 34.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1051...
	Figure 35.� The Mean CPU Time in Seconds for Each Problem Set (10510 Problems – Chronological Bac...
	Figure 36.� The Mean CPU Time in Seconds for Each Problem Set (10510 Problems – LDS).

	4.8.2.2 15515 Problems
	Figure 37.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1551...
	Figure 38.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1551...
	Figure 39.� The Mean CPU Time in Seconds for Each Problem Set (15515 Problems – Chronological Bac...
	Figure 40.� The Mean CPU Time in Seconds for Each Problem Set (15515 Problems – LDS).

	4.8.2.3 20520 Problems
	Figure 41.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (2052...
	Figure 42.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (2052...
	Figure 43.� The Mean CPU Time in Seconds for Each Problem Set (20520 Problems – Chronological Bac...
	Figure 44.� The Mean CPU Time in Seconds for Each Problem Set (20520 Problems – LDS).

	4.8.3 Summary

	4.9 Discussion
	4.9.1 Heuristics
	4.9.1.1 LJRand
	4.9.1.2 CBASlack and SumHeight
	Figure 45.� Activities A and B.
	(19)
	Figure 46.� The Standard Deviation in Resource Usage for Each Problem in the 10510, 15515, and 20...

	4.9.1.3 Heuristic Commitments versus Implied Commitments

	4.9.2 Retraction Techniques
	4.9.2.1 The Presence of Overconstrained Problems
	4.9.2.2 Improving Heuristics
	Figure 47.� The Mean Reduction in CPU Time in Seconds When Using LDS Instead of Chronological Bac...

	4.10 Conclusions

	Chapter 5 The Criticality of Constraints
	5.1 From Contention to Criticality
	5.1.1 The Criticality of a Constraint
	5.1.2 Contention and Aggregate Demand
	(20)

	5.1.3 Requirements for a Measure of Criticality

	5.2 Probability of Breakage of a Constraint
	5.2.1 Estimation of the Probability of Breakage
	5.2.2 The JointHeight Texture
	(21)
	(22)
	5.2.2.1 Complexity

	5.2.3 The TriangleHeight Texture
	Figure 48.� Calculating the Probability of Breakage at Event t with TriangleHeight.
	5.2.3.1 Calculating the Bounds on Aggregate Demand
	5.2.3.2 Complexity

	5.2.4 The VarHeight Texture
	(23)
	Figure 49.� Calculating the Probability of Breakage at Event t with VarHeight.
	(24)
	5.2.4.1 Complexity

	5.3 Empirical Studies
	5.3.1 Instantiations of the ODO Framework
	Table 5. Summary of Experimental Scheduling Algorithms.

	5.4 Experiment 1: Operations Research Library
	5.4.1 Results
	5.4.1.1 Problems Timed-out
	Figure 50.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (Chro...
	Figure 51.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (LDS).

	5.4.1.2 Mean CPU Time
	Figure 52.� The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking).
	Figure 53.� The Mean CPU Time in Seconds for Each Problem Set (LDS).

	5.4.1.3 Other Search Performance Statistics

	5.4.2 Summary

	5.5 Experiment 2: Scaling with Problem Size
	5.5.1 Results
	5.5.1.1 Problems Timed-out
	Figure 54.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (Chro...
	Figure 55.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (LDS).
	Figure 56.� The Fraction of the 20520 Problems at Each Makespan Factor for which Each Algorithm T...
	Figure 57.� The Fraction of the 20520 Problems at Each Makespan Factor for which Each Algorithm T...

	5.5.1.2 Mean CPU Time
	Figure 58.� The Mean CPU Time in Seconds for Each Problem Set (Chronological Backtracking).
	Figure 59.� The Mean CPU Time in Seconds for Each Problem Set (LDS).
	Figure 60.� The Mean CPU Time in Seconds for the 20520 Problems at Each Makespan Factor (Chronolo...
	Figure 61.� The Mean CPU Time in Seconds for the 20520 Problems at Each Makespan Factor (LDS).

	5.5.1.3 Other Search Performance Statistics

	5.5.2 Summary

	5.6 Experiment 3: Bottleneck Resources
	5.6.1 Results
	5.6.1.1 10510 Problems
	Figure 62.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1051...
	Figure 63.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1051...
	Figure 64.� The Mean CPU Time in Seconds for Each Problem Set (10510 Problems – Chronological Bac...
	Figure 65.� The Mean CPU Time in Seconds for Each Problem Set (10510 Problems – LDS).

	5.6.1.2 15515 Problems
	Figure 66.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1551...
	Figure 67.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (1551...
	Figure 68.� The Mean CPU Time in Seconds for Each Problem Set (15515 Problems – Chronological Bac...
	Figure 69.� The Mean CPU Time in Seconds for Each Problem Set (15515 Problems – LDS).

	5.6.1.3 20520 Problems
	Figure 70.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (2052...
	Figure 71.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out (2052...
	Figure 72.� The Mean CPU Time in Seconds for Each Problem Set (20520 Problems – Chronological Bac...
	Figure 73.� The Mean CPU Time in Seconds for Each Problem Set (20520 Problems – LDS).

	5.6.2 Summary

	5.7 Discussion
	5.7.1 The Practical Utility of the Probability of Breakage
	5.7.2 Probability of Breakage versus Aggregate Demand
	5.7.3 Estimations of Probability of Breakage

	5.8 Conclusions

	Chapter 6 Scheduling with Inventory
	6.1 Introduction
	6.1.1 Motivation and Problem Definition
	6.1.1.1 Restrictions on the Problem in this Chapter

	6.1.2 Overview of Approach

	6.2 Inventory Representation
	Figure 74.� Example InventoryChunks, Their Producers, and Their Consumers.
	6.2.1 Calculating the Inventory Bounds
	6.2.1.1 Calculating the Upper Bound
	Figure 75.� The Naive Upper Bound and the Actual Upper Bound When a Producer and Consumer are Lin...
	Figure 76.� Pseudo-code for the Calculation of the Upper Bound on the Inventory Level for Invento...

	6.2.1.2 Calculating the Lower Bound
	Figure 77.� Pseudo-code for the Calculation of the Lower Bound on the Inventory Level for Invento...

	6.2.2 Inventory Termination

	6.3 Inventory Commitments
	Figure 78.� An Example of the Need to Assign Some Start Times to Ensure Satisfaction of Inventory...
	6.3.1 Producer/Consumer Commitments
	(p Æ c, min(amount-unmatched(p, S), amount-unmatched(c, S)) (25)
	min(amount-unmatched(p, S’), amount-unmatched(c, S’)) < min(amount-unmatched(p, S), amount-unmatc...
	Figure 79.� A Situation Where Consideration of a Commitment in Between P1 and C2 in State S’ is N...
	6.3.1.1 The Completeness of the Producer/Consumer Branching Scheme
	Figure 80.� Given Two No-goods (1 and 2), Will the Third also Result in a Dead-end?
	"piŒ P(c, S) ¬(pi Æ c, min(amount-unmatched(pi, S), amount-unmatched(c, S)) Œ NOGOODS(S) (27)

	6.3.1.2 The Temporal Component of a Producer/Consumer Commitment

	6.3.2 Producer/Consumer Interval Commitments
	6.3.3 Start Time Commitments

	6.4 Texture Measurements for Inventory
	6.4.1 Adapting VarHeight to Inventory
	6.4.1.1 Individual Demand
	(28)
	(29)

	6.4.1.2 Variance of the Individual Demand
	(30)
	(31)
	(32)

	6.4.1.3 Event-based Representation of Individual Demand
	(33)
	(34)
	Figure 81.� Activities A1, B2, and C3 Producing or Consuming Inventory I1.
	Figure 82.� Inventory Curves for the Activities Shown in Figure�81.

	6.4.2 Aggregating Demand
	Figure 83.� Calculating the Probability of Breakage at Event t with VarHeight.

	6.5 Propagators for Inventory
	6.5.1 Inventory Bound Propagation
	6.5.1.1 Dead-end Detection
	6.5.1.2 Inventory Bound Propagation of the Minimum Inventory Constraint
	6.5.1.3 Inventory Bound Propagation of the Maximum Inventory Constraint

	6.5.2 Producer/Consumer Propagation
	6.5.2.1 Dead-end Detection
	Figure 84.� An Example of a Dead-end that Inventory Bound Dead-end Detection Does Not Find but Pr...

	6.5.2.2 Propagation
	6.5.2.3 Complexity

	6.6 Inventory Scheduling Strategies
	6.6.1 Propagators
	6.6.2 A Texture-based Heuristic Commitment Technique
	6.6.2.1 Resource Commitment
	6.6.2.2 Minimum Inventory Commitment
	6.6.2.3 Maximum Inventory Commitment

	6.6.3 Non-texture-based Inventory Heuristic Commitment Techniques
	6.6.3.1 Producer/Consumer Commitment Heuristic
	6.6.3.2 Resource Commitment Heuristics
	6.6.3.3 Start Time Assignment Heuristics

	6.6.4 Scheduling Without Inventory Heuristics
	6.6.5 A Note on Early Termination
	6.6.6 Instantiations of the ODO Framework
	Table 6. The Algorithms Used in the Inventory Experiments.

	6.7 Problem Generation
	6.7.1 One-Stage Inventory Problems
	Figure 85.� A Process Plan from a One-Stage 555 Inventory Problem.
	6.7.1.1 Supply and Demand Events
	(35)

	6.7.1.2 Inventory Constraints

	6.7.2 Two-Stage Inventory Problems
	6.7.2.1 Inventory Combination
	6.7.2.2 Resource Combination
	6.7.2.3 Temporal Combination
	6.7.2.4 Summary

	6.8 Empirical Evaluation
	6.9 Experiment 1: Inventory Propagators
	6.9.1 Results
	Figure 86.� The Fraction of Problems Timed-out for Each Problem Set and Algorithm.
	Figure 87.� The Mean CPU Time in Seconds for Each Problem Set and Algorithm.

	6.10 Experiment 2: One-Stage Problems
	6.10.1 Algorithms
	6.10.2 Problems
	6.10.3 Results
	6.10.3.1 555 Problems
	Figure 88.� The Fraction of Problems Timed-out for Each Problem Set and Algorithm.
	Figure 89.� The Mean CPU Time in Seconds for Each Problem Set and Algorithm.

	6.10.3.2 10510 Problems
	Figure 90.� The Fraction of Problems Timed-out for Each Problem Set and Algorithm.
	Figure 91.� The Mean CPU Time in Seconds for Each Problem Set and Algorithm.

	6.10.4 Summary

	6.11 Experiment 3: Two-Stage Problems
	6.11.1 Results
	6.11.1.1 555 Problems
	Figure 92.� The Fraction of Problems Timed-out for Each Problem Set and Algorithm.
	Figure 93.� The Mean CPU Time in Seconds for Each Problem Set and Algorithm.

	6.11.1.2 10510 Problems
	Figure 94.� The Fraction of Problems Timed-out for Each Problem Set and Algorithm.
	Figure 95.� The Mean CPU Time in Seconds for Each Problem Set and Algorithm.

	6.11.2 Summary

	6.12 Discussion
	6.12.1 Inventory Heuristics
	6.12.1.1 Dynamic Focus on Critical Constraints
	6.12.1.2 The Probability of Breakage as a Measure of Criticality
	6.12.1.3 Simple Inventory Heuristics
	6.12.1.4 The Performance of the Non-Texture-Based Inventory Heuristic

	6.12.2 Inventory Propagators
	6.12.3 Appropriateness of the Experimental Problems
	6.12.4 Allowing Varying Inventory Constraints

	6.13 Conclusions

	Chapter 7 Scheduling with Alternative Activities
	7.1 Introduction
	7.1.1 Motivation and Problem Definition
	Figure 96.� Four Alternative Process Plans.

	7.1.2 Overview of Approach
	Figure 97.� Modification of the Temporal Network to Directly Model the Alternatives Implicit in F...

	7.2 Probability of Existence
	7.2.1 Desired Functionality
	Figure 98.� A Process Plan with a Choice of Activities. The duration of each activity is shown in...

	7.2.2 Limitations on the PEX Implementation

	7.3 Adding PEX to the Temporal Network
	7.3.1 Extending the Temporal Graph
	Figure 99.� Extensions to the Activity Hierarchy to Implement PEX Functionality.
	7.3.1.1 AndNode
	Figure 100.� A Sample Temporal Sub-graph with an AndNode.

	7.3.1.2 XorNode
	Figure 101.� A Temporal Graph with XorNodes.
	Table 7. The Time Windows for the Activities in Figure�101.

	7.3.1.3 Illegal Temporal Networks
	Figure 102.� Examples of Illegal Temporal Networks.
	Figure 103.� Examples of Legal Temporal Networks.

	7.4 Propagating PEX
	7.4.1 Initial Propagation
	Figure 104.� Pseudocode for the Initial PEX Propagation Algorithm.

	7.4.2 Incremental Propagation
	7.4.2.1 Example of Incremental PEX Propagation
	Figure 105.� An Example of Cascading PEX Propagation.
	Table 8. The PEX Values for a Subset of the Nodes in Figure�105.

	7.4.2.2 The Details
	Figure 106.� High-level Pseudocode for the Main Procedure of the Incremental PEX Propagation Algo...
	Figure 107.� Pseudocode for Identifying the Downstream XorNode during PEX Propagation.

	7.4.2.3 Complexity

	7.5 Temporal Propagation with PEX
	7.5.1 Temporal Propagation through a XorNode
	7.5.2 Deriving Implied PEX Commitments from Temporal Propagation
	7.5.3 Temporal Propagation After PEX Propagation
	Figure 108.� An Example of Cascading Temporal Propagation.

	7.5.4 A Note on Temporal Propagation Algorithms

	7.6 Incorporating PEX in Scheduling Heuristics
	7.6.1 Texture-based Heuristics
	7.6.1.1 Adding PEX to Texture Curves
	(36)

	7.6.1.2 New Heuristic Commitments
	Figure 109.� Pseudocode for Determining Heuristic Commitment.

	7.6.2 Other Heuristics
	7.6.2.1 CBASlackPEX
	7.6.2.2 LJRandPEX

	7.6.3 The Information Content of Heuristic Commitment Techniques

	7.7 Incorporating PEX in Propagators
	7.7.1 Constraint Based Analysis
	7.7.2 Edge-finding
	Figure 110.� Pseudocode for PEX-Edge-Finding.

	7.8 Empirical Evaluation
	7.8.1 Experimental Design
	7.8.2 Instantiations of the ODO Framework
	Table 9. The Eight Algorithms Used in the Alternative Process Plan Experiments.

	7.8.3 Statistical Analysis
	Table 10. The Groups of Algorithms Used in the Statistical Tests.

	7.9 Alternative Process Plans
	7.9.1 Experiment 1: Scaling with the Number of Alternatives
	7.9.1.1 Problems
	Figure 111.� Generating a Single Process Plan with Two Alternatives.
	Table 11. The Characteristics of the Problems in Experiment 1.

	7.9.1.2 Results
	Figure 112.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out.
	Figure 113.� The Fraction of Problems with Seven Alternatives for which Each Algorithm Timed-out.
	Figure 114.� The Mean CPU Time in Seconds for Each Problem Set.
	Figure 115.� The Mean CPU Time in Seconds for the Problems with Seven Alternatives at Each Makesp...

	7.9.1.3 Summary

	7.9.2 Experiment 2: Scaling with Problem Size
	7.9.2.1 Problems
	Table 12. The Characteristics of the Problems in Experiment 2.

	7.9.2.2 Results
	Figure 116.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out.
	Figure 117.� The Fraction of the 20520 Problems at Each Makespan Factor for which Each Algorithm ...
	Figure 118.� The Mean CPU Time in Seconds for Each Problem Set.
	Figure 119.� The Mean CPU Time in Seconds for the 20520 Problems at Each Makespan Factor.

	7.9.2.3 Summary

	7.10 Combining Alternative Process Plans and Alternative Resources
	7.10.1 Experiment 3: Scaling with the Number of Alternatives
	7.10.1.1 Problems
	Table 13. The Distribution of Alternative Resources for the Problems in Experiment 3.
	(37)

	7.10.1.2 Results
	Figure 120.� The Fraction of Problems in Each Problem Set for which Each Algorithm Timed-out.
	Figure 121.� The Mean CPU Time in Seconds for Each Problem Set.

	7.10.1.3 Summary

	7.11 Discussion
	7.11.1 Heuristics
	7.11.1.1 Why is CBASlackPEX So Good?
	7.11.1.2 Why is CBASlackPEX So Bad?
	7.11.1.3 SumHeightPEX and VarHeightPEX

	7.11.2 PEX-Edge-Finding
	Figure 122.� The Mean Percentage of Commitments in Each Problem Set Made by the Heuristic Commitm...

	7.11.3 Exploiting Non-uniformities of Problem Structure
	7.11.4 Alternative Resources

	7.12 Conclusion

	Chapter 8 Conclusions and Future Work
	8.1 Contributions
	8.1.1 Major Contributions
	8.1.1.1 Analysis and Categorization of Scheduling Algorithms
	8.1.1.2 The Importance of Problem Structure in Heuristic Search
	8.1.1.3 The Criticality of Constraints
	8.1.1.4 Scheduling with Inventory
	8.1.1.5 Scheduling with Alternate Activities

	8.1.2 Other Contributions

	8.2 Future Work
	8.2.1 Heuristics for Constraint-Directed Search
	8.2.1.1 Problem Structure and Criticality
	8.2.1.2 The Quality versus Cost Trade-off

	8.2.2 Models of Scheduling
	8.2.2.1 Scheduling with Inventory
	8.2.2.2 Scheduling with Alternative Activities
	8.2.2.3 Alternative Activities and Inventory
	8.2.2.4 Scheduling with Multi-capacity Resources
	8.2.2.5 Scheduling and Optimization

	8.3 Conclusion

	Appendix A Index of Important Terms
	Appendix B Detailed Results for the Experiments in Chapter�4 and Chapter�5
	B.1 Experiment 1
	Table B.1. Experiment 1: Fraction of Problems Timed-out.
	Table B.2. Experiment 1: Mean CPU Time in Seconds.
	Table B.3. Experiment 1: Mean Number of Backtracks.
	Table B.4. Experiment 1: Mean Number of Commitments.
	Table B.5. Experiment 1: Mean Number of Heuristic Commitments.
	Table B.6. Experiment 1: Mean Percentage of Heuristic Commitments.

	B.2 Experiment 2
	B.2.1 Overall Results
	Table B.7. Experiment 2 Overall: Fraction of Problems Timed-out.
	Table B.8. Experiment 2 Overall: Mean CPU Time in Seconds.
	Table B.9. Experiment 2 Overall: Mean Number of Backtracks.
	Table B.10. Experiment 2 Overall: Mean Number of Commitments.
	Table B.11. Experiment 2 Overall: Mean Number of Heuristic Commitments.
	Table B.12. Experiment 2 Overall: Mean Percentage of Heuristic Commitments.

	B.2.2 555 Results
	Table B.13. Experiment 2, 555 Problems: Fraction of Problems Timed-out.
	Table B.14. Experiment 2, 555 Problems: Mean CPU Time in Seconds.
	Table B.15. Experiment 2, 555 Problems: Mean Number of Backtracks.
	Table B.16. Experiment 2, 555 Problems: Mean Number of Commitments.
	Table B.17. Experiment 2, 555 Problems: Mean Number of Heuristic Commitments.
	Table B.18. Experiment 2, 555 Problems: Mean Percentage of Heuristic Commitments.

	B.2.3 10510 Results
	Table B.19. Experiment 2, 10510 Problems: Fraction of Problems Timed-out.
	Table B.20. Experiment 2, 10510 Problems: Mean CPU Time in Seconds.
	Table B.21. Experiment 2, 10510 Problems: Mean Number of Backtracks.
	Table B.22. Experiment 2, 10510 Problems: Mean Number of Commitments.
	Table B.23. Experiment 2, 10510 Problems: Mean Number of Heuristic Commitments.
	Table B.24. Experiment 2, 10510 Problems: Mean Percentage of Heuristic Commitments.

	B.2.4 15515 Results
	Table B.25. Experiment 2, 15515 Problems: Fraction of Problems Timed-out.
	Table B.26. Experiment 2, 15515 Problems: Mean CPU Time in Seconds.
	Table B.27. Experiment 2, 15515 Problems: Mean Number of Backtracks.
	Table B.28. Experiment 2, 15515 Problems: Mean Number of Commitments.
	Table B.29. Experiment 2, 15515 Problems: Mean Number of Heuristic Commitments.
	Table B.30. Experiment 2, 15515 Problems: Mean Percentage of Heuristic Commitments.

	B.2.5 20520 Results
	Table B.31. Experiment 2, 20520 Problems: Fraction of Problems Timed-out.
	Table B.32. Experiment 2, 20520 Problems: Mean CPU Time in Seconds.
	Table B.33. Experiment 2, 20520 Problems: Mean Number of Backtracks.
	Table B.34. Experiment 2, 20520 Problems: Mean Number of Commitments.
	Table B.35. Experiment 2, 20520 Problems: Mean Number of Heuristic Commitments.
	Table B.36. Experiment 2, 20520 Problems: Mean Percentage of Heuristic Commitments.

	B.3 Experiment 3
	B.3.1 10510 Results
	Table B.37. Experiment 3, 10510 Problems: Fraction of Problems Timed-out.
	Table B.38. Experiment 3, 10510 Problems: Mean CPU Time in Seconds.
	Table B.39. Experiment 3, 10510 Problems: Mean Number of Backtracks.
	Table B.40. Experiment 3, 10510 Problems: Mean Number of Commitments.
	Table B.41. Experiment 3, 10510 Problems: Mean Number of Heuristic Commitments.
	Table B.42. Experiment 3, 10510 Problems: Mean Percentage of Heuristic Commitments.

	B.3.2 15515 Results
	Table B.43. Experiment 3, 15515 Problems: Fraction of Problems Timed-out.
	Table B.44. Experiment 3, 15515 Problems: Mean CPU Time in Seconds.
	Table B.45. Experiment 3, 15515 Problems: Mean Number of Backtracks.
	Table B.46. Experiment 3, 15515 Problems: Mean Number of Commitments.
	Table B.47. Experiment 3, 15515 Problems: Mean Number of Heuristic Commitments.
	Table B.48. Experiment 3, 15515 Problems: Mean Percentage of Heuristic Commitments.

	B.3.3 20520 Results
	Table B.49. Experiment 3, 20520 Problems: Fraction of Problems Timed-out.
	Table B.50. Experiment 3, 20520 Problems: Mean CPU Time in Seconds.
	Table B.51. Experiment 3, 20520 Problems: Mean Number of Backtracks.
	Table B.52. Experiment 3, 20520 Problems: Mean Number of Commitments.
	Table B.53. Experiment 3, 20520 Problems: Mean Number of Heuristic Commitments.
	Table B.54. Experiment 3, 20520 Problems: Mean Percentage of Heuristic Commitments.

	Appendix C Detailed Results for the Experiments in Chapter�6
	C.1 Experiment 1
	Table C.1. Experiment 1: Fraction of Problems Timed-out.
	Table C.2. Experiment 1: Mean CPU Time in Seconds.
	Table C.3. Experiment 1: Mean Number of Backtracks.
	Table C.4. Experiment 1: Mean Number of Commitments.
	Table C.5. Experiment 1: Mean Number of Heuristic Commitments.

	C.2 Experiment 2
	C.2.1 555 Results
	Table C.6. Experiment 2, 555 Problems: Fraction of Problems Timed-out.
	Table C.7. Experiment 2, 555 Problems: Mean CPU Time in Seconds.
	Table C.8. Experiment 2, 555 Problems: Mean Number of Backtracks.
	Table C.9. Experiment 2, 555 Problems: Mean Number of Commitments.
	Table C.10. Experiment 2, 555 Problems: Mean Number of Heuristic Commitments.

	C.2.2 10510 Results
	Table C.11. Experiment 2, 10510 Problems: Fraction of Problems Timed-out.
	Table C.12. Experiment 2, 10510 Problems: Mean CPU Time in Seconds.
	Table C.13. Experiment 2, 10510 Problems: Mean Number of Backtracks.
	Table C.14. Experiment 2, 10510 Problems: Mean Number of Commitments.
	Table C.15. Experiment 2, 10510 Problems: Mean Number of Heuristic Commitments.

	C.3 Experiment 3
	C.3.1 555 Results
	Table C.16. Experiment 3, 555 Problems: Fraction of Problems Timed-out.
	Table C.17. Experiment 3, 555 Problems: Mean CPU Time in Seconds.
	Table C.18. Experiment 3, 555 Problems: Mean Number of Backtracks.
	Table C.19. Experiment 3, 555 Problems: Mean Number of Commitments.
	Table C.20. Experiment 3, 555 Problems: Mean Number of Heuristic Commitments.

	C.3.2 10510 Results
	Table C.21. Experiment 3, 10510 Problems: Fraction of Problems Timed-out.
	Table C.22. Experiment 3, 10510 Problems: Mean CPU Time in Seconds.
	Table C.23. Experiment 3, 10510 Problems: Mean Number of Backtracks.
	Table C.24. Experiment 3, 10510 Problems: Mean Number of Commitments.
	Table C.25. Experiment 3, 10510 Problems: Mean Number of Heuristic Commitments.

	Appendix D Detailed Results for the Experiments in Chapter�7
	D.1 Experiment 1
	D.1.1 Overall Results
	Table D.1. Experiment 1 Overall: Fraction of Problems Timed-out.
	Table D.2. Experiment 1 Overall: Mean CPU Time in Seconds.
	Table D.3. Experiment 1 Overall: Mean Number of Backtracks.
	Table D.4. Experiment 1 Overall: Mean Number of Commitments.
	Table D.5. Experiment 1 Overall: Mean Number of Heuristic Commitments.
	Table D.6. Experiment 1 Overall: Mean Percentage of Heuristic Commitments.

	D.1.2 One-Alternative Results
	Table D.7. Experiment 1, 1-Alternative Problems: Fraction of Problems Timed-out.
	Table D.8. Experiment 1, 1-Alternative Problems: Mean CPU Time in Seconds.
	Table D.9. Experiment 1, 1-Alternative Problems: Mean Number of Backtracks.
	Table D.10. Experiment 1, 1-Alternative Problems: Mean Number of Commitments.
	Table D.11. Experiment 1, 1-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.12. Experiment 1, 1-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.1.3 Three-Alternative Results
	Table D.13. Experiment 1, 3-Alternative Problems: Fraction of Problems Timed-out.
	Table D.14. Experiment 1, 3-Alternative Problems: Mean CPU Time in Seconds.
	Table D.15. Experiment 1, 3-Alternative Problems: Mean Number of Backtracks.
	Table D.16. Experiment 1, 3-Alternative Problems: Mean Number of Commitments.
	Table D.17. Experiment 1, 3-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.18. Experiment 1, 3-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.1.4 Five-Alternative Results
	Table D.19. Experiment 1, 5-Alternative Problems: Fraction of Problems Timed-out.
	Table D.20. Experiment 1, 5-Alternative Problems: Mean CPU Time in Seconds.
	Table D.21. Experiment 1, 5-Alternative Problems: Mean Number of Backtracks.
	Table D.22. Experiment 1, 5-Alternative Problems: Mean Number of Commitments.
	Table D.23. Experiment 1, 5-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.24. Experiment 1, 5-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.1.5 Seven-Alternative Results
	Table D.25. Experiment 1, 7-Alternative Problems: Fraction of Problems Timed-out.
	Table D.26. Experiment 1, 7-Alternative Problems: Mean CPU Time in Seconds.
	Table D.27. Experiment 1, 7-Alternative Problems: Mean Number of Backtracks.
	Table D.28. Experiment 1, 7-Alternative Problems: Mean Number of Commitments.
	Table D.29. Experiment 1, 7-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.30. Experiment 1, 7-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.2 Experiment 2
	D.2.1 Overall Results
	Table D.31. Experiment 2 Overall: Fraction of Problems Timed-out.
	Table D.32. Experiment 2 Overall: Mean CPU Time in Seconds.
	Table D.33. Experiment 2 Overall: Mean Number of Backtracks.
	Table D.34. Experiment 2 Overall: Mean Number of Commitments.
	Table D.35. Experiment 2 Overall: Mean Number of Heuristic Commitments.
	Table D.36. Experiment 2 Overall: Mean Percentage of Heuristic Commitments.

	D.2.2 555 Results
	Table D.37. Experiment 2, 555 Problems: Fraction of Problems Timed-out.
	Table D.38. Experiment 2, 555 Problems: Mean CPU Time in Seconds.
	Table D.39. Experiment 2, 555 Problems: Mean Number of Backtracks.
	Table D.40. Experiment 2, 555 Problems: Mean Number of Commitments.
	Table D.41. Experiment 2, 555 Problems: Mean Number of Heuristic Commitments.
	Table D.42. Experiment 2, 555 Problems: Mean Percentage of Heuristic Commitments.

	D.2.3 10510 Results
	Table D.43. Experiment 2, 10510 Problems: Fraction of Problems Timed-out.
	Table D.44. Experiment 2, 10510 Problems: Mean CPU Time in Seconds.
	Table D.45. Experiment 2, 10510 Problems: Mean Number of Backtracks.
	Table D.46. Experiment 2, 10510 Problems: Mean Number of Commitments.
	Table D.47. Experiment 2, 10510 Problems: Mean Number of Heuristic Commitments.
	Table D.48. Experiment 2, 10510 Problems: Mean Percentage of Heuristic Commitments.

	D.2.4 15515 Results
	Table D.49. Experiment 2, 15515 Problems: Fraction of Problems Timed-out.
	Table D.50. Experiment 2, 15515 Problems: Mean CPU Time in Seconds.
	Table D.51. Experiment 2, 15515 Problems: Mean Number of Backtracks.
	Table D.52. Experiment 2, 15515 Problems: Mean Number of Commitments.
	Table D.53. Experiment 2, 15515 Problems: Mean Number of Heuristic Commitments.
	Table D.54. Experiment 2, 15515 Problems: Mean Percentage of Heuristic Commitments.

	D.2.5 20520 Results
	Table D.55. Experiment 2, 20520 Problems: Fraction of Problems Timed-out.
	Table D.56. Experiment 2, 20520 Problems: Mean CPU Time in Seconds.
	Table D.57. Experiment 2, 20520 Problems: Mean Number of Backtracks.
	Table D.58. Experiment 2, 20520 Problems: Mean Number of Commitments.
	Table D.59. Experiment 2, 20520 Problems: Mean Number of Heuristic Commitments.
	Table D.60. Experiment 2, 20520 Problems: Mean Percentage of Heuristic Commitments.

	D.3 Experiment 3
	D.3.1 Overall Results
	Table D.61. Experiment 3 Overall: Fraction of Problems Timed-out.
	Table D.62. Experiment 3 Overall: Mean CPU Time in Seconds.
	Table D.63. Experiment 3 Overall: Mean Number of Backtracks.
	Table D.64. Experiment 3 Overall: Mean Number of Commitments.
	Table D.65. Experiment 3 Overall: Mean Number of Heuristic Commitments.
	Table D.66. Experiment 3 Overall: Mean Percentage of Heuristic Commitments.

	D.3.2 One-Alternative Results
	Table D.67. Experiment 3, 1-Alternative Problems: Fraction of Problems Timed-out.
	Table D.68. Experiment 3, 1-Alternative Problems: Mean CPU Time in Seconds.
	Table D.69. Experiment 3, 1-Alternative Problems: Mean Number of Backtracks.
	Table D.70. Experiment 3, 1-Alternative Problems: Mean Number of Commitments.
	Table D.71. Experiment 3, 1-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.72. Experiment 3, 1-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.3.3 Three-Alternative Results
	Table D.73. Experiment 3, 3-Alternative Problems: Fraction of Problems Timed-out.
	Table D.74. Experiment 3, 3-Alternative Problems: Mean CPU Time in Seconds.
	Table D.75. Experiment 3, 3-Alternative Problems: Mean Number of Backtracks.
	Table D.76. Experiment 3, 3-Alternative Problems: Mean Number of Commitments.
	Table D.77. Experiment 3, 3-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.78. Experiment 3, 3-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.3.4 Five-Alternative Results
	Table D.79. Experiment 3, 5-Alternative Problems: Fraction of Problems Timed-out.
	Table D.80. Experiment 3, 5-Alternative Problems: Mean CPU Time in Seconds.
	Table D.81. Experiment 3, 5-Alternative Problems: Mean Number of Backtracks.
	Table D.82. Experiment 3, 5-Alternative Problems: Mean Number of Commitments.
	Table D.83. Experiment 3, 5-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.84. Experiment 3, 5-Alternative Problems: Mean Percentage of Heuristic Commitments.

	D.3.5 Seven-Alternative Results
	Table D.85. Experiment 3, 7-Alternative Problems: Fraction of Problems Timed-out.
	Table D.86. Experiment 3, 7-Alternative Problems: Mean CPU Time in Seconds.
	Table D.87. Experiment 3, 7-Alternative Problems: Mean Number of Backtracks.
	Table D.88. Experiment 3, 7-Alternative Problems: Mean Number of Commitments.
	Table D.89. Experiment 3, 7-Alternative Problems: Mean Number of Heuristic Commitments.
	Table D.90. Experiment 3, 7-Alternative Problems: Mean Percentage of Heuristic Commitments.

	Chapter 9 References

