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ABSTRACT

In this paper, we present a new method for removing texture

in images using a smoothing rotating filter. From this filter, a

bank of smoothed images provides pixel signals able to clas-

sify a pixel as a texture pixel, a homogenous region pixel or an

edge pixel. Then, we introduce a new method for anisotropic

diffusion which controls accurately the diffusion near edge

and corner points and diffuses isotropically inside textured

regions. Several results applied on real images and a compar-

ison with anisotropic diffusion methods show that our model

is able to remove the texture and control the diffusion.

Index Terms— Smoothing filter, rotating filter, texture,

image segmentation, anisotropic diffusion.

1. INTRODUCTION

The textural analysis has been a domain of active research for

almost forty years [4] because texture brings many problems

for image segmentation [1]. The texture is related to the spa-

tial distribution or statistical grayscale intensity and contains

important information about the structural arrangement of im-

age surfaces and their relationships with their direct environ-

ment. It is easy to a human observer to recognize a texture

[5], however it remains difficult to precisely define and an-

alyze it automatically [9]. This difficulty is reflected by the

high number of different definitions of the texture. In this

paper, we do not analyze the texture but simply identify and

diffuse anisotropically it [11] so that it appears as an uniform

region.

In image restoration, edge detection is often used to detect

image boundaries in order to control a diffusion process. For

example, in [10], images derivatives alongs four directions

are computed providing edge informations. On homogenous

regions, the diffusion is isotropic, on the contrary, at edge

points, diffusion in inhibited. In [6], diffusion is isotropic on

homogenous regions but decreases and becomes anisotropic

near boundaries. Control is done with finite differences so

many contours of small objects or small structures are pre-

served. In [10], Gaussian filtering is used for gradient estima-

tion, so the control of the diffusion is more robust to noise.

Nevertheless, it remains difficult to distinguish between noise

or texture and small objects that need to be preserved by the

diffusion process.

In this paper, we present a rotating filter (inspired by [8])

able to detect textures. Secondly, we introduce a new method

for anisotropic diffusion which controls accurately the diffu-

sion near edge and corner points and diffuses isotropically

inside the textured regions. In particular, our detector pro-

vides two different directions on edges or corners, these in-

formations allow an anisotropic diffusion in these directions

contrary to [6] where only one direction was considered.

We first present in Section 2 our rotating smoothing filter.

A new pixel classification using a bank of filtered images is

introduced in Section 3. Our anisotropic diffusion scheme is

introduced in Section 4. Section 5 is devoted to experimental

results and Section 6 concludes this paper.

2. ROTATING FILTERS

In our method, for each pixel of the original image, we use
rotating filters [8] in order to build a signal s in function of a
rotation angle θ. Smoothing rotating filters means that the im-
age is smoothed with a bank of rotated anisotropic Gaussian
kernels :
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where C is a normalization coefficient, Pθ a rotation matrix

of angle θ, x and y are pixel coordinates and σ1 and σ2 the

standard-deviations of the Gaussian filter.

As we need only the causal part of the filter (illustrated

on Fig. 1 (a) ), we simply “cut” the smoothing kernel in the

middle, it corresponds to the Heaviside function H . By con-

volution with these rotated kernels (see Fig. 1(b)), we obtain

a collection of directional smoothed images Iθ = I ∗Gθ.

For computational efficiency, we just proceed in a first

time in a rotation of the image at some discretized orienta-

tions from 0 to 360 degrees (of ∆θ = 1, 2, 5, or 10 degrees,



depending on the precision needed and the smoothing param-

eters) before applying non rotated smoothing filters with ση

and σξ the standard-deviations of the Gaussian filter (illus-

trated on Fig. 1(a)). As the image is rotated instead of the fil-

ters, the filtering implementation is quite straightforward. In

a second time, we apply an inverse rotation of the smoothed

image and obtain a bank of 360/∆θ images.
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(a) Smoothing filter.

θ

(b) Rotating filters

Fig. 1. Description of smoothing rotating filters.

3. PIXEL CLASSIFICATION

3.1. Pixels signals
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Fig. 2. Flat cartesian representation of s(θ) for points indi-

cated by a cross in Fig. 5(a) with a discretization angle ∆θ
equal to 5 degrees with ση = 1.5 and σξ = 10.

Applying the rotating filter at one point of an image and

making a 360 scan provides to each pixel a characterizing sig-

nal. In the case of a gray level image, the pixel signal is a

single function s(θ) of the orientation angle θ. Fig. 2 is an

example of s-functions measured at 9 points located on the

image of Fig. 5(a). Each plot of Fig. 2 represents in polar co-

ordinates the function s(θ) of a particular point. From these
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Fig. 3. Flat cartesian representation of s(θ) at the point 9

which corresponds to a pixels inside texture region.

pixel signals, we now extract the descriptors that will discrim-

inate edges and regions.

In the case of a pixel in a homogeneous region, s(θ) will

be constant (see Fig. 2 point 2). On the contrary, in a textured

region, s(θ) will be stochastic (as illustrated in Fig. 3). In the

case where the pixel lies between several different regions,

s(θ) will contain several flat areas (see point 1 on Fig. 5(a),

s(θ) is illustrated in Fig. 2 in polar coordinates and in Fig.

4(a) for a cartesian representation).

3.2. Flat area detection
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(a) Original signal
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Fig. 4. A signal and its derivatives to compute η, ξ1 and ξ2
directions.

The main idea for analyzing a 360 scan signal is to de-

tect significant flat areas, which correspond to homogeneous

regions of the image. Fig. 4(a) shows the pixel signal s(θ)
extracted from point 9 of Fig. 5(a). This particular point is

located at the limit of two regions (the edge of a bush on the

image). After smoothing, the derivative sθ(θ) is calculated

and represented on Fig. 4(b), and so is the second derivative



sθθ(θ) represented on Fig. 4(c). From the derivative sθ(θ) ,

flat areas are detected as intervals (i.e. angular sectors) with

a null derivative, their median direction noted η corresponds

to the gradient direction. From the second derivative sθθ(θ),
we can extract the directions ξ1 and ξ2 which delimit the flat

area detected. ξ1 and ξ2 are calculated as the directions of

maximum (or minimum) curvature (see Fig. 4(c)). As illus-

trated on Fig. 4(d), they are the directions of a smoothed edge

curve crossing the considered pixel (entering and leaving di-

rections). They will be used by a simple anisotropic diffusion

scheme that will be presented in the next section.

The method will consist to diffuse isotropically inside ho-

mogenous (point 2) and textured regions (points 6 and 9) and

diffuse anisotropically on directions ξ1 and ξ2 at edge and

corner points (points 1, 3 and 4).

4. OUR ANISOTROPIC DIFFUSION SCHEME

As stated in the introducing section, we want to design a

a smoothing process able to remove texture, preserve edges

and smooth homogeneous regions. Like many restoration

schemes (for example [6], [10]) which can be interpreted from

a geometrical point of view, we are going to define a diffusion

scheme which will take into account the pixel classification

established in the previous section.

Basically we want to smooth isotropically inside tex-

tured and homogeneous regions whereas we want to diffuse

anisotropically on and near boundaries. The first idea could

be to use a heat equation on textured and homogeneous re-

gions and a Mean Curvature Motion (MCM) [3] scheme

on edge points, leading to a diffusion scheme described by

equation 1.

∂It
∂t

= F (I0)∆It + (1− F (I0))
∂2It
∂ξ2

(1)

where :

t is the diffusion time,

ξ is the direction of diffusion (contour tangent),

I0 is the original image,

It is the diffused image at time t,
F (I0) is our classification function.

But unlike [6], our classification function F (I0) does not

provide us with a precise control on image boundaries, then

the MCM scheme here takes an important part and moves cor-

ner points according to the curvature of iso-intensity lines. As

a consequence, this scheme behaves as the MCM scheme then

for example a square is transformed into a circle after some

iterations. For minimizing this effect we are going to consider

the two directions ξ1 and ξ2 provided by our pixel classifica-

tion process on image boundaries.

The new diffusion process can be now described by the

new following equation :

∂It
∂t

= F (I0)∆It + (1− F (I0))
∂2It

∂ξ1∂ξ2
(2)

on which diffusion is driven by the two directions ξ1 and ξ2.

5. RESULTS
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(a) Original image (b) Result using [6]

(c) Flat areas detection (d) Result of our diffusion

Fig. 5. Result 1.

(a) Edge detection

on the original image

(b) Edge detection

on the diffused image

Fig. 6. Edges detections comparison.

We present results obtained on real images using our de-

tector and compare them with other methods.

In the first image (Fig. 5(a)), the aim is to smooth the dif-

ferent textures present in the image (wall, bushes) preserving

all objects (windows, panel, sidewalk). We used our detec-

tor with σξ = 10, ση = 1.5 and a discretization angle of



5 degrees. Fig. 5(c) shows flat areas results : a black pixel

matches at least one flat area, whereas white pixels denote

that no flat area has been detected. In others words, they

correspond to a pixel lying between two regions (contours),

between a homogeneous region and texture region or a cor-

ner. The result of the anisotropic diffusion is presented in the

Fig. 5(d) after 50 iterations. Note that different objects are

perfectly visible whereas textures regions are smoothed and

some of them have merged.

We compare our result with the method proposed in [6]

after 100 iterations and a K parameter equal to 0.03 (illus-

trated in Fig. 5(b)). We can note that texture has not been

completely removed on the wall and that bushes boundaries

are not correctly preserved. If we change the K parameter or

the iteration number, we will never obtain the desired result.

In order to show the efficiency of our method for texture

removal, we compare edge detection on the original image

and on the image obtained after the diffusion. Fig. 6 shows

the difference between an edge detection [2] on the original

image (Fig. 6(a)) and the diffused image (Fig. 6(b)) with

the same edge detection parameters (standard deviation of the

Gaussian σ = 2). Edge detection on the diffused image is less

noisy than on the original image. Moreover, edges of bushes,

panel, sidewalk and windows appear clearly, whereas edge

detection on the original image fails detecting some bushes

and wall contours.

(a) Original image (b) Our diffusion result

Fig. 7. Result 2.

The second picture (Fig. 7(a)) is an aerial photography of

vineyard areas. The aim is to separate vineyard areas from

roads. We used our detector with σξ = 5, ση = 1 and a

discretization angle of 5 degrees. The result of the anisotropic

diffusion is presented in the Fig. 7(b) after 50 iterations. This

result achieves correctly our objective which was to smooth

vineyard regions while preserving roads.

An image data base with results is available on-line [7].

6. CONCLUSION

We have proposed in this paper a new method to remove

texture in images by pixel classification using a rotating

smoothing filter. Comparing our results with existing algo-

rithms allows us to validate our method. Our classification

method seems very promising as we have been able to clas-

sify correctly texture region, homogenous region and edge

regions (small ribbon located centered at the edge). Next on

our agenda is to extend this approach to color images and

enhance this method for image restoration.
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