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Abstract

Texture replacement in real images has many applications,

such as interior design, digital movie making and computer

graphics. The goal is to replace some specified texture pat-

terns in an image while preserving lighting effects, shad-

ows and occlusions. To achieve convincing replacement re-

sults we have to detect texture patterns and estimate light-

ing map from a given image. Near regular planar texture

patterns are considered in this paper. Given a sample tex-

ture patch, a standard tile is computed. Candidate texture

regions are determined by mutual information between the

standard tile and each image patch. Regions with high mu-

tual information scores are used to estimate the admissi-

ble lighting distributions, which is represented by cached

statistics. Spatial lighting change constraints are repre-

sented by a Markov random field model. Maximum a pos-

teriori estimation of the texture segmentation and lighting

map is solved in a stochastic annealing fashion, namely, the

Markov Chain Monte Carlo method. Visually satisfactory

result is achieved using this statistical sampling model.

1. Introduction

Texture replacement in real images has many applications,

such as interior design, digital movie making and computer

graphics. The goal is to replace some specified texture pat-

terns in an image while preserving lighting effects, shadows

and occlusions. To achieve visually convincing replacement

two separate maps must be obtained, namely the texture

segmentation map and the lighting map. Human labeling

of the texture map can be very tedious, and it is not clear

for a human how to determine lighting at a certain pixel. It

is thus appealing to compute the two maps automatically.

This paper is an attempt to solve the problem of replacing

planar near regular patterns.

Computing the two maps corresponds to two computer

vision problems, the texture segmentation problem[1, 8]

and the color constancy problem[5, 2]. Texture segmen-

tation algorithms have mainly been applied to cases with

uniform lighting. Healey and Wang [7] developed an il-

lumination invariant texture recognition algorithm. Their

method is based on statistics of texture regions and can not

determine texture boundary, which is an important issue in

our application.

The similarity between texture replacement problem and

the color constancy problem is that both attempt to recover

lighting changes from image appearance. Theories of color

constancy have been established and we can borrow some

results from the area. We will adopt the Bayesian color con-

stancy algorithms [2, 5] to deal with illumination change.

The Bayesian color constancy framework elegantly incor-

porates prior knowledge, such as lighting and reflectance

distribution, into an inference engine.

Due to the complexity of a real illumination environ-

ment and camera artifacts, it is usually very difficult to

derive a parametric model for the observed lighting dis-

tribution. Instead we put the problem in a particle filter-

ing framework[9, 5]. We estimate light samples from pos-

itively identified texture tiles, and a resampling technique

is used to estimate sample density when needed. To speed

up the resampling procedure we adopt the cached statistics

model[13].

2. Lighting Distribution Models

We will discuss two important lighting distribution models

in this section. These distributions describe the physical

feasibility of the light spectrum and the frequency of the

spatial lighting change respectively. First we define what

we mean by “lighting”.

We adopt the diagonal transformation model to describe

apparent color changes [4]. The accuracy of this model de-

pends on the spectral sensitivity function of the imaging de-

vice. And we find it is accurate enough for our application.

Denoting the color under a canonical lighting as �


2 R

3,

the color observed under the new lighting is

�̂ = l: � �
 (1)

1
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where the operator :� is defined as element-wise product

of two vectors and we call the linear scaling coefficients

l 2 R
3 as lighting.

The roles of l and � in equation (1) are symmetric, i.e.

a reference color whose value is equal to l can produce the

same color observation �̂ if the lighting happens to be equal

to �

. This inherent ambiguity must be addressed in our

problem, otherwise we can always get a trivial solution,

where every point in the image is generated by the under-

lying texture model, and the presence of the occlusion is

attributed to lighting changes. For example, leaves of a tree

can be interpreted as being projected to the wall by a green

light. This solution explains the image perfectly. However,

it won’t generate the right texture replacement effect be-

cause it misinterprets the roles of the light and reflectance.

We know it is wrong because the real world lighting does

not behave like a movie projector, and green light is quite

unlikely[10]. This leads us to the discussion of the admissi-

ble global lighting distribution p(l), defined in the domain

of lighting L � R
3.

Suppose there are n independent light sources in a scene,

each represented by li, i = 1; 2; : : : ; n. Ideally the effects

of these light sources are additive. The admissible lighting

distribution is defined by the set fljl =
Pn

i=1 �ili; �i �

0g. For instance, if there are two light sources, the possible

lighting distribution will be on a line.

However, there are several factors that can result in de-

viations from this ideal linear model. The most noticeable

effects are due to nonlinearity introduced by an imaging de-

vice, such as a digital camera. When common nonlinear

processes such as gamma-correction, clipping and bloom-

ing [15] are introduced, chromaticity of a colored surface

will change as its intensity varies. Secondly, interreflec-

tion between scene objects can change the lighting distri-

bution in an unpredictable way. The situation is modeled

in the radiosity and global illumination model[16]. For our

case, however, only one picture of a scene is provided. It is

not possible to estimate the interreflection using techniques

known to us. In summary, in an uncontrolled environment

the admissible lighting distribution will not be in a linear

subspace. Instead of trying to accurately predict the light-

ing distribution, we represent and approximate them in a

sampling and resampling framework[14, 9].

Now we describe the framework we adopted. We esti-

mate lighting samples l̂ as will be introduced in Section 4.

We keep them as 3D points in the lighting space L. See

Figure 1 for an illustration. When a query about p(l) is

requested, we estimate the sample density around l and re-

port it. To avoid the computational burden of estimating the

density at every query, we divide the lighting space L into

N3 bins. Sample density in each bin can be precomputed.

This technique is known as the cached statistics[13] and can

achieve very high efficiency with little sacrifice in accuracy.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.5

1

1.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.5

1

1.5

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

(d)(c)

Figure 1: Estimated lighting distributions of two scenes

taken by two different cameras. (a) A scene with many soft

shadows on the textured region. (b) An image whose tex-

tured regions have little soft shadows. (c) Lighting samples

estimated from (a). They are distributed along a curved

structure. (d) Lighting samples are concentrated on two

clouds in the lighting space.

A second distribution describes the lighting variation as

a smooth process, in the sense the lighting at a pixel must

be very close to at least one of its neighbors. Formally we

represent this local constraints using a Markov random field

(MRF) model [6]. We define the clique energy at pixel x

due to lighting change as


l(x) = min
y2N (x)

kl(x) � l(y)k2

�2l
(2)

with N (x) describing all the four neighbors of pixel x. The

probability of observing lighting l given its neighborhood is

given by the Gibbs distribution g(ljN ) = ke�
l(x)=T , with

k being a normalization factor and T being the current tem-

perature. This model enables a continuous trend of lighting

pattern in arbitrary directions, such as the thin shadow cast

by twigs. But it discourages isolated sudden changes.

3. The Texture Model

A texture model describes how a texture pattern is pro-

duced. It is usually defined in the form of a MRF model,

p(�(x)j�x1
;�x2 ; : : : ;�xn

), with xi 2 N (x). It represents

the possibility of observing a color vector � given observa-

tions of its neighbors.

Analytical form of the texture model

p(�(x)j�x1;�x2; : : : ;�xn) is not available in our prob-

lem. And it is also not possible to enumerate the space


 = Cx1 � Cx2 : : : � Cxn, with Cxi representing the
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domain of colors observed at pixel xi. A practical way to

approximate this model is by texture pattern samples.

The texture model of [3] can be considered as a lookup

table f : 
 7! C(x). Colors in the neighborhood of a pixel

x define a query entry for the lookup table, indexing col-

ors at x. Given a training image, all query entries in it is

drawn and stored. This completes the training step. When

evaluating p(�(x)jN (x)) of a new texture pattern, we form

a query key using the color in the neighborhood of x. A

search is performed by comparing the query key with all

the query entries. The set of closest query entries provide a

set of color vectors representing color distribution at x. The

search process can be very costly depending on the size of

the neighborhood and the size of the texture samples. Wei

and Levoy [18] improves the search speed by storing the

query entry in a tree structure. In this research we study a

special set of texture patterns, the near regular patterns. We

show with this model a simple texture model can be defined.

Each tile of a near regular texture pattern has very simi-

lar appearance as that of a standard tile, but it is allowed to

have fluctuations in color and structure. Examples of such

patterns include bricks, carpet texture and they represent a

large set of texture models in interior and architectural de-

sign.

The advantage of adopting a near regular texture pattern

model is that we can locate each tile and conveniently define

a local coordinate system for it[11]. Once the origin of a

tile is determined, the color distribution of a pixel depends

on the relative location u alone. Similar to the previous

approaches, we define the texture model by samples. The

query entry in our case is just the relative pixel location u.

In the texture replacement problem, we define lighting

that illuminates the sample patch as the canonical lighting.

The cached color samples thus represent the color distribu-

tion at a location u under the canonical lighting, denoted as

p
(�ju). Assuming the color at pixel u is generated by the

same texture model t that generated the sample image, the

probability of observing color vector �̂ under lighting l is

given by

p(�jl; t; u) = p
(�̂:=lju) (3)

Here operator := is the inverse of :�, representing element-

wise division. On the other hand, if we know color observed

at u is not generated by t, the color has a uniform distribu-

tion.

p(�̂j�t; u) = 
 (4)

Here t and �t serve to flag the segmentation of textures.

4. Learning Statistical Models

In this section we present details of learning the texture

model (3) and the admissible lighting distribution p(l).

Our program asks a user to select a uniformly illumi-

nated region. This region indicates the intention of the user,

and serves as a training sample for our algorithm. A stan-

dard tile can be computed automatically using [11], or it can

be selected manually. A typical tile size is between several

hundred to one thousand pixels. Number of tiles in the se-

lected region is around several dozen. To locate the rest of

the tiles in a sample image, we correlate the standard tile

with the whole image. Local maxima of the correlation out-

put provides candidates for tile centers. Due to noises and

sub-structures in a texture pattern, spurious peaks may oc-

cur. To prune these spurious local maxima we apply the

region of dominance algorithm (ROD)[11], and it is proven

by our experiences to be very robust. This procedure pro-

vides us with a set of registered sample tiles, from which

the color samples at each pixel can be drawn and cached.

As a result the texture model (3) is defined.

Our next goal is to estimate the admissible lighting dis-

tribution p(l). As will become clear soon these statistical

models provide a powerful way to identify both the texture

segmentation and the lighting map.

The first step in estimating lighting samples is to regis-

ter the standard tile with tiles under different lighting, such

as those in the shadow. To register tiles robustly in the

presence of nonlinear camera effects such as clipping and

gamma-correction, we propose to use mutual information

based registration technique [17]. Besides its robustness to

nonlinear lighting changes, mutual information gives us a

quantitative measure of similarities between two tiles, and

in theory this measurement is independent of the nonlinear

camera transformations. Mutual information can be con-

sidered as a criterion to match structures of two tiles. The

registration is performed much like that by using correla-

tion. We compute mutual information of the standard tile

with all the image patches. After the computation local mu-

tual information peaks are detected using a 3 � 3 window.

Peaks with high mutual information scores signal a strong

candidate for estimating light samples. Peaks with mutual

information scores higher than a moderate threshold is used

to initialize our segmentation and lighting estimation algo-

rithm, which will be introduced in Section 5.

In the second step we estimate lighting samples l by

comparing the standard tile with a registered tile. The es-

timation is given by l̂ = �̂(u):=�
(u). It is valid given

that we are working on near regular patterns. We preclude

possible outliers by robust estimation techniques[12]. For

example, we estimate a median and a scale factor for each

channel (R,G, or B) of the l samples. Samples outside cer-

tain distance to the median is considered as outliers and is

not used to estimate the lighting distribution.

Finally, the samples l is used to estimate p(l), repre-

sented in cached statistics as described in Section 2.
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5. A Bayesian Framework and the

Stochastic Annealing Solution

Mutual information is a region based method and it can only

give us very coarse texture segmentation. Texture replace-

ment, however, requires pixel wise segmentation and light-

ing estimation. It is necessary to design an algorithm based

on the color observation at each pixel.

We incorporate the learned knowledge about the admis-

sible lighting distribution p(l) and the texture model (3),

into a Bayesian framework. Formally we are interested in

solving the maximum a posteriori (MAP) problem,

[t̂; l̂℄ = argmax
t;l

p(t; lj�̂; u) (5)

Applying Bayes rule,

p(t; lj�̂; u)

/ p(�̂jt; l; u)p(t; lju)

= p(�̂jt; l; u)p(lju)p(tju) (6)

Here we assume independence of t and l.

The lighting distribution p(lju) at position u is deter-

mined by two factors, namely, the global admissible light-

ing distribution, and the smoothness constraint imposed by

the Markov random field model(2). We define p(lju) =

p(l)g(ljN ).

To encourage connectivity of both the textured and non-

textured regions, we impose the final constraints via p(tju).

Denote n1 as the number of neighbors that has the same

labeling as u, and denote the total numbers of neighbors as

n2, we define p(tju) = an1
n2

+ b, with a > b > 0 and

a+ b < 1.

We solve the MAP problem (5) using the Markov Chain

Monte Carlo (MCMC) method[14]. To apply MCMC effi-

ciently a good initialization is important. In our case the

computed mutual information is reused for initialization.

Recall we detected all local peaks using a small window.

By setting an appropriate threshold, some of the peaks can

be discarded. The remaining peaks define a set of tile cen-

ters. We define one candidate tile on each of the peak loca-

tions. All the pixels covered by a candidate tile is labeled as

t, and others are labeled as �t. Thus a very coarse segmen-

tation is obtained. Lighting at location u is estimated as

�̂(u):=�
(u), with �

(u) denoting the color of the standard

tile at relative position u. In case multiple candidate tiles

cover a single pixel u, the lighting estimation given by the

tile with the highest mutual information score is accepted.

The thresholds, including the high mutual information

score (for estimating p(l)), moderate mutual information

score (to initialize the MCMC algorithm) and the constant

probability p(�̂j�t) are manually set. Given this is a graphics

application, we relax the requirement for theoretical analy-

sis of such thresholds and obtain them through user interac-

tion.

Starting from the initialization, the algorithm updates

each candidate tile in turn. The algorithm makes a pro-

posal [t; l℄ or �t. The a posteriori probability of the new

proposal is computed using (6). Denote the a posteri-

ori probability of the new proposal as pn, and that of the

current estimation as po. We accept the new proposal if

log(pn)� log(po) < Tlog(r), where r is a random number

drawn from a uniform distribution in (0; 1℄, and T the cur-

rent “temperature”. Initially the temperature is high and is

decreased at each step. The sampling process is illustrated

by a small patch as shown in Figure 2. At the first several

steps the initialization error is alleviated. And as tempera-

ture cools down only the ideal segmentation is kept.

6. Texture Replacement Results

A sample output of our algorithm is shown in Fig-

ure 4. ( Please visit http://www.cs.cmu.edu /�ytsin /re-

search/texture replacement/ for more results). The result is

visually pleasing. Our algorithm generated a correct texture

segmentation and a realistic lighting map. When replaced

with new texture patterns, occlusion and shadowing effects

are preserved. Notice the pink pipe on the left side of the

image. Our algorithm detected the region as a non-textured

pattern even though it has a color close to that of the original

brick pattern. This confirms the accuracy of our statistical

models p(l) around that area. However, we notice there ex-

ist artifacts in the output. Part of the pink pipe in the right

side of the image is misclassified as texture region. This is

due to the low signal to noise ratio in the shadow. Further-

more, there are misdetections (Figure 3a) and false alarms

(Figure3(b)). The misdetection is due to the fact we didn’t

choose a candidate tile at the heavily occluded region. And

the false alarm is largely due to a fake candidate tile and

color similarity between pixels in the image and the stan-

dard tile. So we need a mechanism to determine birth of

a new candidate tile and death of a current tile, much in

the spirit of the stochastic annealing framework. We leave

this as a future research. Despite all these artifacts, which

mainly occur in dark areas and highly cluttered areas, we

consider the replacement result in Figure 4 satisfactory.

7. Conclusions

We defined the real image texture replacement problem for

near regular planar patterns, and proposed a statistical algo-

rithm to solve it. Statistical information on lighting distribu-

tion, and the texture model, is systematically learned from a

sample image and tiles in the entire image. A Markov Chain

Monte Carlo algorithm is adopted to solve the texture seg-
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: The process of stochastic annealing. Temperatures from left to right are 2.000, 1.843, 1.699, 1.443, 1.041, 0.542,

0.147, respectively. Detected texture pixels are displayed by superimposing a light green mask.

(a) (b)

Figure 3: Known artifacts with current approach. (a) Mis-

detection. (b) False alarm

mentation problem and the color constancy problem. Visu-

ally satisfactory results have been achieved.
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(b)

(a)

Figure 4: The final replacement results. (a) The original images. (b) The texture replaced image.


