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1

Introduction

The digital representation of an image requires a verv large number ol bits. For
example. a 512 x 512 pixel, 256 gray level image requires over two million bits. This
large number of bits is a substantial drawback when it is necessary to store or transmit
a digital image. Prior to transmission or storage. one would like to have a system
that reduces this number as much as possible, while keeping the degradation in the
decoded image to a minimum. This is the goal of iiage compression, often referred
to as image coding.

Early efforts in image compression. solely guided by inlormation theory. led to
a plethora of methods. The compression ratio. starting at one with the first digital
picture in the early 1960's. appeared to have reached a saturation level around 10:1
in the early 1980's. This. however. did not mean that the upper bound given by the
entropy of the source had also been reached. First, this entropy is not known and
depends heavily on the model used for the source. i.e.. the digital image. Second.
information theory does not take into account what the human eve sees and how it
sees. Recently, techniques attempting to overcome these limitations are incorporating
properties of the human visual system (HV'S) and tools of image analysis into image

compression to achieve high compression ratios with sinall loss in visual quality. This



reasoning follows from the fact that in many compression applications. a human is
the final observer of the image operated upon. Applications of various models of
the 1IVS have in fact been empirically found to improve compression performance
[25. 43, 57, 71, 83].

One such technique is segmentation-hased image compression [7. 39, 43, 71]. In
segmentation-hased image compression, the image to be compressed is segmented.
i.e. the pixels in the image are separated into mutually exclusive spatial regions
based on some criteria. Once the image has been segmented. information is extracted
describing the boundaries (shapes) and textures (interiors) of the image segments. and
compression is achieved by efficiently encoding this information. Unfortunately. there
are limitations with segmentation-hased image compression. The main limitation is
due to the fact that the image data have been segmented into regions of constant
intensity. In complicated texture areas. a good representation of the texture requires
many small segments. However. in order to get low bit rates, the number of segments
must be limited and thus the quality is degraded.

We overcome the texture representation problem in the research described in this
report by proposing a methodology for segmenting an image into texturally homoge-
neous regions with respect to the degree of roughness as perceived by the HV'S. The
segmented 1mage information is then encoded for transmission. The proposed algo-
rithm is applied to three different types of imagery. The first is a head and shoulder
image with little texture variation. This image is typical of video teleconferencing
applications and one which the previously proposed segmentation-based compression
techniques are best suited. The second is a complex image with many edges and
the third is a natural outdoor image with highly textured areas. The previous pro-

poscd segmentation-based compression techniques do not work well for the second

o



and third images. However. the proposed texture-hased image compression technique
works well for not only the first hut also the second and the third type ol image.

In the proposed texture-based image compression algorithm. the fractal dimension.
the expected value, and the just noticeable difference (JND) are the measures used to
characterize the texture information. The measured quantities are incorporated into
a centroid-linkage region growing algorithm [32] which is used to segment each image
into three texture classes. The region growing algorithm is directed by the texture
feature distance between image hlocks. After segmentation. the image can be viewed
as being composed of region houndaries and texturally homogeneous regions. Since
the decoded images will be viewed by humans, our prime motivation is the production
of visually pleasing scgmented images which can be encoded with high compression
ratios.

The second aspect of this work is to propose appropriate compression techniques
for the three textural classes and the region boundaries. The three classes. I, 1I. and
I, are perceived constant intensity, smooth texture, and rough texture. respectively.
A binary map representing the boundaries of the regions is encoded using a modi-
fied adaptive arithmetic coder [62. 73. 76]. In our work. the represeutation of the
boundary information using blocks. not pixels. provides us with higher compression.
Regions which belong to class I are modeled as flat planes, hence they only need to
have their mean intensity value transmitted. The means are then encoded using a
modified adaptive arithmetic code. The highest compression ratio is achieved for class
[. Because of the sensitivity of the HV'S to middle range spatial {frequencies, regions
belonging to class II require a more accurate representation. Regions belonging to
class 111 contain the highest spatial frequencies. The HVS is less sensitive to the high

spatial [requencies. thus these regions can he more highly compressed. The texture



information in class II and III are modeled by polynomial functions. Iligher com-
pression is achieved for class I1I by allowing the error between the original image and
the modeled image to be greater than for class 1. The result is a segmentation-hased

image coding system with high compression and a small loss in visual quality.

In summmary, the main contributions of this report are:

a new technique for segmenting an image into texturally consistent regions:

use of the fractal dimension for relating the spatial frequency of textures to

the spatial frequency response of the human visual system:

a new algorithm for encoding the segmented image information; and

good quality compressed images at 0.2 to 0.4 bpp for higher textural images.

1

—

1 C'hapter 2, the prerequisite background material. emphasizing work which is
pertinent to the methods used in this research is covered, as are the properties of
the IIVS. In Chapter 3, fractal models in texture analysis are covered. The fractal
dimension and the power spectral density (PSD) of the fractional Browunian function
(I'BI") are derived and discussed. In Chapter 4. a complete description of the new
image compression system is given. In Chapter 5. image segmentation is developed
and evaluated using properties of the IIV'S and the fractal dimension. In C'hapter
6. the mixed coding scheme is described and the performance of the new image
compression system is evaluated using computer simulated data of actual images.

Finally. conclusions and further research are provided in C'hapter 7.



2

An Overview of Image Compression

2.1 Introduction

Many data processing applications involve storage of large volumes of data. For ex-
ample. to represent a 512 x 512 pixel. 256 gray level digital image, over two million bits
are required. In addition. the number of data processing applications such as in the
areas of meteorology. military reconnaissance, medicine, and electronic publishing is
increasing rapidly. At the same time. there has been a proliferation of computer com-
munication networks and teleprocessing applications. which involve massive transfers
of data over long-distance communication links. For example. to transmit an uncom-
pressed 512 > 512 pixel. 256 gray level digital image over a 61lkbit /s channel requires
more than thirty seconds. The requirements are even higher for a color image of
the same size. To reduce the data storage requirements and the data communication
cosis. there is a need to reduce the redundancy in the data representation. Image com-
pression techniques have attempted to reduce the amount of data needed to transmit
or store digital images. while keeping the degradation in the quality of the decoded
lmage to a minimum.

In this chapter. we briefly review the recent advances in image compression tech-

niques. In general. any image compression method can be broadly classified as heing
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either statistically-hased (algebraic) or symbolically-based (structural). The statis-
tical approaches to image compression are based on information theoretic principles
and the methods used usually involve very localized. pixel-oriented features of the im-
age. A summary of these techniques is presented in Section 2.2. However. due to the
limitations of the statistical approaches. researchers were interested in finding a new
approach to image compression for very low bit rate applications. Many of the new
approaches are known as symbolically-based (second generation [13]) image compres-
sion. Syvmbolically-based image compression methods employ tools of image analysis
and properties of the human visual system (ITVS) to achieve good image quality at
very low data rates. In symbolically-based compression. the geometric structure of
the image scene is emphasized, as opposed to the algebraic structure of the pixels
used by statistically-based compression methods. In Section 2.3 we summarize the
work in the developing area of symbolically-hased image compression.

Image compression methods can he further classified beyond the two main cate-
gories mentioned above. For example. the classification can be based on the techniques
the compression method employs and the distortion the compression method intro-
duces in the image. One possible classification of compression methods is as adaptive
or non-adaptive. In a typical image, the statistical characteristics of an image differ
considerably from one region to another. For example, walls and skies have approx-
imately uniform background intensities, whereas faces and trees have large. detailed
variations in intensities. To compensate [or this. parameters of the coder are adapted
to variations in the local statistics of the image. such as local image contrast. .\ coder
that employs such parameter variation techniques is classified as adaptive. 1f this type
of variation is not used. the compression technique is non-adaptive. Some examples

of adaptive image compression techniques are adaptive differential pulse code modu-



lation. adaptive delta modulation. and adaptive transform compression [27. 28, 90].

Another classification describes whether the method is distortionless or non distor-
tionless. If a compression method is distortionless then the decoded image 1s perfect
recreation of the original image. Nearly all distortionless techniques are based on
information theoretic approaches and usually attain data rates in the neighborhood
of two or four bits per pixel (bpp) for an original 8 bpp image [10]. Non-distortionless
compression methods introduce differences between the decoded image and the orig-
inal image. but they allow lower data rates. However. the decoded image must be

kept as close to the original as possible.
We briefly introduce the basic concept of the statistically-hased image compression

techniques and then describe in more detail the symbolically-based image compression

techniques.

2.2 Statistically-Based Image Compression Techniques

Most of the compression techniques developed from the early 1960's to the present
fit into the category of the statisticallv-based image compression technigues. A block
diagram of the general statistical image compression svstem is shown in Figure 2.1.
The statistically-based image compression techniques address the image compression
problem from an information theory viewpoint, with the focus on eliminating the
statistical redundancy among the pixels in the image.

Ideally. the most useful preprocessor. as shown in Figure 2.1, is a transformation
of the image to the most suitable domain for coding. The best one can do is find
a preprocessor that maps the data into uncorrelated spatial-domain data or a set of

independent transform-domain coeflicients. For example. the mapping might remove
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Image or
Preprocessor Encoder

s — —

equence (Decorrelator)

of images

Reconstructed
image or

- Decoder e (Channel) PS—
Sequence

of images

Figure 2.1: A general statistically-based image compression system

the mutual redundancy hetween successive pixels or take the discrete Iourier trans-
form of the image pixels. The desire for the pixels to be independent is based on
rate-distortion theory. Rate distortion theory defines the optimum coder to be the
coder that attains the hest possible signal fidelity for a given date rate. or the coder
that attains the best possible data for a given signal fidelity [26].

Shannon has shown that for any data source. hetter rates can be achicved by
coding blocks of data. rather than individual data points. In fact. the optimal coder
is achieved as ' — oc. where V' is the length of the block of data being coded [81].
An example of such a block coder is a vector quantizer [26]. Obviously. a coder with
infinite block lengtl is impossible, and even a coder with a reasonably long block
Jength is difficult to design and implement. Iowever, it has heen shown that N
coders of block leugth one are nearly as good as (within about 0.45 bits/sample) as
one coder of block length N, for the squared error distortion measure [33). Thus. if

the data samples can be transformed so that they are statistically independent. then



nearly optimum coder performance can be achieved with a coder of length one. i.c. a
simple quantizer. This fact forms the basis for statisticallv-hased image coding.

Many excellent reviews of statistical image compression techniques exist in the
literature. In 1966. Schreiber wrote an interesting review of the early vears of image
compression [79]. Pratt [67] presented an overall summary of the state of image com-
pression in 1979. Netravali and Limb wrote an informative review of image compres-
sion techniques in 1980 [56]. as did Jain in 1981 [36]. In addition. Jain [36] coutains
an extensive bibliography of publications in image compression and related areas.
Musmann. et al. [54] presented a review of the advances made in image compression
techniques since 1981, with special emphasis placed on advances in the coding of color
television and video-conference signals. In addition to these review papers, there are
many books and special issues of professional journals which deal exclusively with
image compression {19, 20. 29, 80].

In gencral. statistically-hased image compression techniques can be categorized
into five classes: predictive coding, transform coding. hybrid coding. interpolative
and extrapolative coding. and a miscellaneous category [56).

Predictive image compression operates directly on the pixel intensity values in an
image. The objective is to generate an error signal by subtracting a predicted pixel
value from the actual pixel value. The predicted pixel value is a weighted average
(adaptive or nonadaptive) of spatially and/or temporally adjacent pixels. The only
information that needs to be transmitted is the error signal.

Transform image compression maps an image into a domain where a large amount
of the image information is packed into a small fraction of the transform coeflicients.

(‘ompression is achieved by encoding only a fraction of the transform coeflicients.



IIvbrid coding refers to methods which utilize a combination of predictive and
transform domain information. Predictive and transform coding techniques each have
some attractive characteristics and limitations. The combination of these two tech-
niques has the capability of achieving higher compression than either of the two coders
individually and has the advantages of hardware simplicity of predictive coders and
high performance of transform coders. For more details. see [36, 51. 56. 75].

Interpolative and extrapolative methods extract a subset of the pixels in an image
by subsampling. This subset is then transmitted. and the decoder interpolates or
extrapolates to fill in the missing pixels. The subsampling of the image is done in the
spatial and/or temporal domains. Simple interpolative coding consists of the following
steps: 1) choose certain pixels for transmission, 2) construct an interpolation of the
nontransmitted pixels, and 3) evaluate the interpolation error. The interpolation
function can be zero. first-order. or higher order polynomials. It has been shown
that interpolation using straight lines is quite effective and not much is gained by
interpolation using polynomials of higher degree [7]. If higher order polynomials are
used in the interpolation. it may be necessary to transmit polvnomial coefficients.
and the subset of image pixels. In addition, the computation time involved in the
interpolation process grows rapidly with the degree of the fitting polynomial. For
more details. see papers [15. 21, 45. 55].

Examples of some important statistically-based techniques that do not fit into
any of the above categories include bit-plane coding. curve fitting methods, and run-
length coding [21. 31]. Some of these methods are simply one-dimensional compression

methods applied to two-dimensional image signals.
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Figure 2.2: A general symbolically-hased image compression system.
2.3 Symbolically-Based Image Compression Techniques

The statistically-hased image compression techniques. solely guided by iuformation
theory, led to a plethora of methods. The compression ratio appeared to have reached
a saturation level around one bpp [43] in the early 1980's. For many applications like
video telephony. entertainment video. and image transmission for meteorology. lower
bit rates were desirable. A new approach to image compression was necessary il high
compression ratios were to be attained. A new approach was introduced and has heen
known as symbolically-based or second generation image compression techniques. A
block diagram of a general symbolic iinage compression system is shown in Figure 2.2

There are two main limitations in the statistically-based image compression tech-
niques. First. since the entropy of the digital image is normally not known. the
upper bound based on an estimate of first-order eutropy cannot he expected to work

well.  Second. information theory does not take into account what a human. the
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final observer of the image information. sees and how it sees. Symbolically-based im-
age compression techniques hiave altempted to overcome these limitations combining
properties of the [1V'S and tools of image analysis to get high compression ratios with
small loss in visual quality. Global. rather than local pixel-oriented [eatures of the
image are emphasized. Examples of such global features include the size. shape. or
orientation of objects in the image scene. Extracting the types of features that can
be used to provide a symbolic description of the image scene is the ultimate goal
of the message extractor in a symbolic image compression scheme. This symbolic
description might take the form of a list of scene attributes, for example "there is a
chair in the upper left corner of the scene.” or "man in a red shirt is running {rom
left to right in the scene while turning his head and looking at the camera.” Notice
that these are high level descriptions of the scene and do not deal with actual image
pixel values, but with the scene content. The encoder then efficiently encodes these

scene descriptions or “messages”.

Since the symbolically-based image compression techniques are fairly new. there
have not been many general reviews of these types of compression methods published
vet. There are, however, several review papers of the second generation compression
techniques in the literature [43]. In addition to this paper. there is mention of some
second generation compression techniques in [54, 56].

To better appreciate the symbolically-based image compression techniques, the rel-
evant properties of the HVS are first described in this section. Following that is a dis-
cussion of the major symbolically-based image compression techniques; pyramidal im-

age compression [9]. directional decomposition-based compression [413]. segmentation-

based compression [7. 38], and fractal-hased compression [5. 35. 89).



2.3.1 The Human Visual System (HVS)

In maony applications like video phone. teleconferencing. TV. and medical imaging.
the final observer of the image data is a human. Thus it is very important thatl an
image coder be designed to meet the needs of the human observer. ldeally. no bits
should be required to encode the information in an image that is not important to
the human viewer and all the bits should be used to encode the information that is
important to human perception. For this reason, the more that is known about the
requirements of the HVS. the hetter the coding method can be designed. However,
the HVS is very complex and not completely understood. therefore, making image
coding a difficult problem.

Despite the complexity of the [IVS, a great deal of research has been done in
an effort to determine some of its basic properties. This research is generally hased
on experiuments with human subjects, so the results are necessarily subjective. Dis-
cussions of some of the basic techniques and significant results in the area of IIVS
research can be found in [43. 56. 79]. The books by Cornsweet [14] and Marr {52] are
useful references on human vision. llere we will hriefly sununarize some of the most
well established properties of the HV'S [79] for image coding applications.

A property of the HVS that has been studied extensively is contrast sensitivity.
C'ontrast sensitivity is measured by showing a subject a {est pattern. and varving the
intensity of neighboring regions in the test pattern until the diflerence in intensity is
just noticeable. There are many ways to measure the contrast sensitivity [11]. For
example. consider a patch of intensity 4+ AJ surrounded by a background of intensity
I. as shown in Figure 2.3a, The just noticeable difference (JND) A/ is to determined

as a [unction of I. The fraction NI/, called the Weber [raction, is plotted as a
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Figure 2.3: A simple contrast sensitivity measurement

function of I in I'igure 2.3b.

Figure 2.3b shows that the HVS has greatly reduced contrast sensitivity in very
bright or very dark intensity regions of an image. However. this experiment is time-
consuming. An alternative is a method introduced by Iamilton {30]. Tt is referred to
as a split-field technique, measures the JND quickly and reliably. Here. the display
is divided down the middle into two equal-size fields, see Figure 2.1. The left ficld
is a constant intensity reference field and the right field begins at the top with the
reference intensity and increases linearly up to 40 steps above the reference with each
level presented as a band 20 pixels in height. To perform the test. an observer simply
clicks the mouse at the point where the difference hetween the left and right fields
is no longer discernible. This point is the JND between the reference intensity on
the lelt and the test intensity on the right. To improve the results of the test. many

measurements are taken for many subjects and the resulls averaged.
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Figure 2.4: Perspective drawing of the split-field experiment

The contrast sensitivity of a human can be used for designing quantizers, as a
threshold for the split-merge condition in segmentation-hased compression, or for
human vision based image distortion measurements. More discussion of the use of
this technique and how we incorporate JND measurements into the proposed codec
will be given in Section 5..1.

A second important property of the HVS is the modulation transfer function
(MTF). The MTF is the response measured by an observer who was shown two
sine wave grating transparencies. a reference grating of constant contrast and spatial
frequency. and a variable-contrast test grating whose spatial frequency is set at some
value different from that of the reference [66]. The contrast of the test grating is
varied until the brightness of the bright and dark regions of the two transparencies

appear identical. The typical curve of the MTI" is shown in Iigure 2.5.

The shape of tlie MTF curve is similar to a band-pass filter and suggests that
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Figure 2.5: A typical MTF curve

the HVS is more sensitive to middle spatial frequencies and less sensitive to low and
high spatial frequencies. This implies that the middle spatial frequencies play a more
important role in perceived image quality than other frequencies. This property
is very important in segmentation-based image compression [38]. For example. if
an image is segmented into regions with respect to the information content at the
different frequencies. the image coder should require more bits to encode regions
which contain middle spatial [requencies to maintain quality, and use very few bits to

encode regions which contain low and high frequencies which the VS is less sensitive

to.
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A third property of the H\'S is saturation effect. The contrast sensitivity ol the
eve is known to decrease as the intensity of the visual stimulus moves away from
the middle range of intensity values [11]. That is. the eve has reduced sensitivity
to differences at very high grav levels and differences at very low gray levels. This
phenomenon can be used to reduce the dynamic range of the inage data.

Each of the above properties help to characterize the aspects of the TIVS that
are most important in the development of image compression techniques. We now

proceed to present the symbolically-based image compression techniqgues.

2.3.2 Pyramidal Image Compression

Pyramidal image compression [9] features a hierarchical representation for the im-
age. The hierarchical structure is similar to that of the nervous system and it uses
functions similar to those in the HV'S. The representation is generated using an it-
erative application of low-pass filtering. A block diagram of this system is shown in
Figure 2.6.

Starting with the original image a(m.,n), a low-pass version xy(m.n) is com-
puted using local averaging with a unimodal Gaussian-like two-dimensional impulse
response. The low-pass image, with a cutoff frequency of fy. can be viewed as a pre-
diction of a(m.n). The prediction error ¢;(m.n) is the difference hetween the original

image and the low-pass filtered image.
cifm.n)=x(m.n)—a(m.mn) (2.1)

('learly. if one coded the low-pass image and the prediction error this would be equiv-
alent to direct]ly coding the original image. Compression can be achieved with this

representation in two ways: (1) Since the error image is high-pass and the V'S has
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Figure 2.6: Block diagram of the pyramid coding method

less sensitivity at high frequencies. the error image can be coded with fewer bits
than the original image. (2) By the two-dimensional sampling theorem, the low-pass

filtered image can be represented with fewer samples than the original image.
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An advantage of pyramidal coding is that the procedure described above can be
applied iteratively. Specifically. the low-pass filtered image xy(m.n) can be filtered
a second time, at a Jower cut-ofl frequency f; (tvpically half the [requency of the
first filtering operation). This (wice-filtered image xz(m.n) is now a prediction for

ay{m,n). and the error for this prediction is
€lm.n) =a(m.n) —az(m.n) (2.2)

After n iterations. a series of prediction error images €y (m.n),...,e,(m,n) are oh-
tained. 1f these images are viewed as stacked one above the other. the result is
a pyramidal data structure. At each iteration the dimension of the error image is
reduced (throngh spatial decimation) by a factor equal to the ratio of the cutoff fre-
quencies used in that iteration and the previous iteration (typically a factor of two).
The resulting error images are quantized and transmitted to the receiver.

To reconstruct the received image data. interpolation filters are used to recon-
struct the error iimages from their decimated versions. A pixel-by-pixel sum of the
reconstructed error images vields the decoded image. A nice feature of this system is
that the quality of the decoded picture can be improved as desired at the expense of

a lower compression ratio. GGood quality images can be obtained around 0.8 hpp.

2.3.3 Directional Decomposition Based IImage Compression

The motivation of directional decomposition image compression [43] is largely due to
the existence of directionally-sensitive neurons in the HVS. In this method. the orig-
inal image is decomposed into a series of images using filtering operations employing
Ciaussian windows. The entire spatial frequency plane is covered with one low-pass

filter. plus a set of high-pass. directional filters. The purpose of each directional filter
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is to extract edges in the image with a particular spatial orientation. The filtered
versions of the original image are coded to form the compressed image.

The messages to be coded are the low-pass image and the directionally-filtered
images. The low-frequency component is suitable for transform coding. Each of the
directionally-filtered images is spatially decimated and then represented by coding the
positions and magnitudes of the edges in the decimated image. The edge positions
are coded using a run-length ITuffman code. and the magnitudes of the edges are
quantized and coded using 3 bit codewords. This coarse quantization is possible due
to the reduced contrast sensitivity of the IIVS at high frequencies.

To reconstruct the original image, the low-frequency component is obtained by
inverse transforming the coded coefficients and then the high-frequency directional
edge images are reconstructed by decoding the edge information and interpolating.
Once all the filtered images have been reconstructed, they are summed to form the
final decoded image. This method can achieve compression ratios around 0.2 to 0.5

bpp.

2.3.4 Segmentation-Based Image Compression

For segmentation-based image compression techuiques [7. 38]. the image to be con-
pressed is first segmented. In image segmentation. the pixels in an image are divided
into mutually exclusive spatial regions based on some criteria. Alternatively. the cri-
teria used could be as simple as the similarity of the pixel gray levels (viclding flat
image segments) [12. 72]. The criteria could be more complex. such as how well the
pixels fit a given planar model (facet-based segmentation) [80]. a two-dimensional
polynomial model [7]. a statistical model (texture-based segmentation) [69. 82. 88] or

a fractal model [38. G3]. Properties of the IIVS can also be incorporated into the cri-



teria to obtain a reconstructed image with a small visual loss. For example. contrast
sensitivity and the MTT, can be combined with classical segmentation algorithms.
In general. segmentation is carried out in three steps: preprocessing. region growiug.
and elimination of artifacts.

The purpose of the preprocessing is to reduce the local granularity ol original image
without aflecting its contours. so that very small-sized regions are not obtained after
region growing. A key problem in preprocessing is the reconciliation of two apparcntly
contradictory goals: namely, granularity removal and edge preservation. Most of the
granularity removal filters have low-pass characteristics and therefore smooth the
edges as well. An inverse gradient. filter [86] may be a solution of the problem. This
filter behaves likes a low-pass filter in areas free of contours and like an all-pass filter
in highly contrasted areas.

The mechanism of region growing is the following. Regions to be extracted must
be characterized with some property in the first step. The property might be, for
example. the gray level of a pixel. the variation of the gray level. or the energy within
a given frequency band. The selection of this property playvs a very important role
in the complexity of the method and in the exactness of the contours obtained after
segmentation. Then. starting with a given pixels in the picture, its neighboring pixels
are examined to see whether they share the same property. If this is the case. the pixel
is included in the region. and in turn, its neighboring pixels are examined, and so on.
When tliere are no more pixels left. connected to the region and sharing the same
property, the procedure stops and restarts at any other pixel which is not included
in the first region. The segmentation is complete when all the pixels of the picture
are assigned to some region. The above procedure can also apply to the block-hased

region growing algorithm if a feature set based on blocks of an image is defined.



Alter region growing. there are artifacts such as false contours. which do not
correspond to real objects in the original image. such as small regions generated by
noise. The number of these contours is much higher than that of the objects in the
original image. Two ways are available to remove this problem: elimination of the
small regions and merging weakly contrasted adjacent regions. I[ it is assumed that
regions containing a number of pixels less than a threshold are not significant, their
elimination drastically decreases the number of small regions. To avoid the creation
of holes in the image, these regions are included in one of their adjacent regions. To
minimize the corresponding distortion. the enclosing region is chosen as the adjacent
region whose mean gray level is closest to that of the small region to be included.
The second possibility to decrease the number of regions is to merge adjacent regions
whose contrast is below a certain level. The contrast hetween adjacent regions is
defined as the mean gray level difference calculated along their common horder.

After the segmentation is complete, the image cousists of a set of disjoint regions
separated by contours. Both the contour (boundary) information and the region
information must be encoded. The contours may be approximated with straight
lines and circle segments and then the information describing this approximation is
encoded [13]. Alternatively, a binary image describing where segment contours are
located in the image may be encoded [72]. The interior of a segment is represented
by encoding, for example, the coeflicients in a polynomial models describing each
segment. or for flat segiments. the average gray level of the pixels in each segment.

Kunt. ct al. [43] divided an image into segments using a region growing technique
based on information of intensity value. Contour coding is carried out in a three-mode
procedure: 1) approximation by line segments. 2) approximation by circle segments.

and 3) withont approximation. The cost, associated witl each mode, in terns of

(8]
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number of bits for coding. is evaluated and the cheapest mode is chosen. Texture
coding is used to encode the missing part of the messages with a two-dimensional
polynomial [unction. An underlving assumption is that within each region there is
no longer any sharp discontinuity. The order of the polynomial is determined as
a function of the approximation error and of the cost involved in coding polvnomial
coefficients. The approximation criterion used is the mean squared error (MSE) which
1s minimized over each region for polynomials of order 0. 1, and 2. The granularity
removed with preprocessing is added back in the form of a pseudo-random noise
to render the image more natural. The MSE between the original image and the
image reconstructed with a polynomial function is computed in each region. The
error is used to control the variance of a zero-mean Gaussian pseudo-random signal
added as microtexture. This method achieved a good reconstructed image with the
compression ratio around 50:1.

Biggar. €/ al. [7] made a performance comparison between segmentation-based
coding and transform coding techniques. In the segmentation-bhased method. a crite-
rion which minimizes the sum squared error (SSE) between the segmentation image
and the original image was used. The results of the comparison show that. in terms
of the objective SSII measure. the segmentation-based coder performs better than the
transform coder at low bit rates (below about 1 bpp) and favorably over the entire
useful range of rates. Furthermore. he extended his segmentation-based schemes for
video coding by applying segmentation to the frame difference signal [6]. When the
frame difference is segmented. a spatially dependent weighting function is combined
to encourage region bouncaries near those in the last frame. The results suggest
that eflective low rate video coding is achievable. Rajala, ¢/ al. [74] discussed aspects

of a scgmentation-based image coding in a packet-switched network environment.



Iu this environment. an image coder and the network must be treated as a whole.
Theyv suggested a set of requirements that need to be considered when designing
a codec. Segmentation-based compression methods typically achieve a compression

ratio around 0.2 to 0.7 bpp.

2.3.5 Fractal Based Image Compression

Fractal-hased compression is largely motivated by computer-generated {ractal images.
Maundelbrot [50], followed by Voss [85] showed that computer-generated fractals pro-
vided dramatically natural images such as clouds, trees, continents. planets and so on.
A distinctive feature of such fractal images is self-similarity on many different scales:
when magnified, a small portion of the image resembles some the larger part. it comes
from either exactly or very closely. Once written to produce the detail on scale. much
the same software can be reused in a loop to repeat the image on successively larger
(or smaller) scales. Thus remarkably complex fractal images blossom from a small.
simple piece of programs.

The self-similarity property of computer-generated fractal images intrigued Barns-
ley. In the early 1980's Barusley set out trying to use it to compress the data needed
to re-create an image. At a time when most work in fractals focused on producing
complex and realistic images from fairly compact computer programs, Barnsley was
attempting the opposite. Starting with a complex image, he attempted to find a set
of Iractals that would produce an image. or at least a close copy of it.

In early 1984 Barusley, ef al. [2] developed an iterated function system (IF'S) to
reduce an image to a set of fractals. Their system is described as follows. An image
is divided into segments which can be generated by fractals. The 1FS matches each

of the corresponding segments with IFS code that represents a fractal image close in



appearance to the segments. The IF'S lLunts for a similar-looking fractal image by
using a scale called the ITausdorfl metric. which measures how similar to two images
are in terms of their spectral and spatial characteristics. The codes that produce
the fractal images are called iterated function system (IFS) codes. They can be used
to re-create the original image. and are stored in place of the pixel information that
made up the original image. Therclore. very high compression can be obtained.

For example. an image of rain falling on a seashore might be broken down into
rain. rocks in the water near the shore, foam in the water near the rocks, the water
itself. birds in the sky, clouds, the sky itself. a strip of beacli. and some grass near
the beach. The images are first divided into segments. The IFS system then matches
each of the segments with code that represents a {ractal image close in appearance to
the scgment using the Hausdorfl metric. Jacquin [35] proposed a [ractal-based hlock
compression technique. The main characteristic of his technique is that image blocks
rather than an image are reduced to a set of fractals. Furthermore, his system can
be faster because it can be implemented in parallel.

Although these methods can achieve the high compression ratios. there are some
limitations. One limitation is that this method may work well only for immages which
have characteristics of self-similarity. Another limitation is that it is computation-
intensive in both the encoding and decoding phases because this method uses many
iterations to generate the fractal images. For example. the IF'S system carried ont on
Masscomp 5600 workstations with Aurora graphics took about 100 hours to compress

a T80 x 1024 pixel. 256 gray level digital image and 30 minutes to decode on the

Masscomp.

(8]
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2.4 Conclusions

In this chapter we provided an hriel review of the previous approaches to the image
compression problem which are called as the statisticallv-based image compression
techuniques. The statistically-based image compression techniques have a main Jimita-
tion that the data rates may have reached a saturation level around 1 bpp. We then
exanlined a new approach to image compression whicl is called as the symbolically-
based image compression techniques combining properties of the HIVS and tools of
image analvsis. The symbolically-based image compression techniques can achieve
lower data rates (below about 0.2 to 0.7 bpp) than the statistically-based image com-

pression techniques.



3

Texture Analysis

3.1 Introduction

Among the characteristics of images. texture has been recognized as one of the most
important. It is important because pixels can be grouped into relatively large. ho-
mogeneous regions and provide the essential structure information in an image. For
example. the grass. the sky. and a tree will define relatively large homogeneous re-
gions each with its own textural structure. When a relatively large region has a
single texture. the large amount of redundancy can be removed. A good represen-
tation of texture information in an image is necessary for developing a syvstem with
high compression.

Texture may be classified as being artificial or natural. Artificial textures consist
of arrangements of svmbols placed against a neutral background. These symbols may
be line segments, dots. stars. or alphanumeric characteristics. Natural textures. as the
name implies. are images of natural scenes containing semi-repetitive arrangements
of pixels. Examples include photographs of brick walls, terrazo tile, sand. grass. tree,
etc. Brodatz [8] has published an album of naturally occurring textures. A general

overview of texture analvsis can be found in Lipkin and Rosenfeld [46].

Of particular interest to this research are measures for discriminating different



textures. Haralick. et al. [31] proposed co-occurrence statistics as a texture distance
measure. It is based on the estimation of the second-order conditional probability
density [unctions corresponding to a pair of pixels separated by a distance in rel-
ative orientation. Texture features can be extracted using these density [unctions.
However. this method suffers from several problems; 1) co-occurrence statistics ob-
tained from different spatial dependence of a pair of pixels may provide the different
structure information of an image and 2) a large number of computations and some-
times excessive memory requirements are needed. Zucker. et al. [78] developed an
algorithm to find spatial relations that best capture the structure of textures when
the co-occurrence matrix representalion is used. Couners. ef al. [13] proposed a
compressed structural description of Ilaralick’s method. Unser [84] describes an al-
ternative to the co-occurrence method which is nearly as efficient. while requiring
substantially less memory. Laws [14] used texture energy as a texture distance mea-
sure. The texture energy measure is computed using filters of dimension 3 x 3 or
5 x 5 pixels which match local features like edge. spot, line, ripple. etc. Although
good results have been obtained. this approach remains heuristic. the filter set is in-
complete, and its elements are not mutually orthogonal. Other approaches to texture
analysis include antocorrelation functions [16. 68]. gradient vector histograms [70]
and resolution-dependence [88].

Most proposed texture analysis techniques have been used for the classification
and segmentation of textures regions: few have been used for texture coding. Kocher
and Kunt [{1] proposed a segmentation-based compression system by contour-texture
modeling. Image compression is achieved by approximating the contour information
and the texture information in each region. The contour information is given by the

location of the boundaries of each region and the texture information by means of



2-D polynomial functions. It was assumed that the texture within the region does not
contain any sharp discontinuity. thus a 2-D polynomial adequately models the texture
content. Unfortunately. in images containing complex textures. e.g.. trees and hushes
having many sharp discontinuities. their method does not work well. However. this
method can achieve a compression ratio around 0.2 to 0.6 bpp for images with low

texture content. like a head and shoulder image.

Most of the models discussed above are two-dimensional. not three-dimensional.
Use of two-dimensional models leads to difficulty if one wants to describe the three-
dimensional information and then relate that to the human perception of texture.
The fractal model developed by Mandelbrot [19] offers the potential of unilving and
simplifying these various two-dimensional texture descriptions, as well as the possi-
bility of interpreting them in terms of the three-dimensional structure of the image.
The principal advantage of describing textures in terms of fractals. rather than i any
of these other methods. is that it allows us to capture a simple phyvsical relationship
that underlines the texture structure. A relationship that allows us to interpret the
two-dimensional texture measurements in terms of the three-dimensional world. The
fact that this physical interpretation can be lost with most two-dimensional charac-
terizations of texture makes it advantageous to characterize texture problems in terms
ol the three-dimensional fractal surface model. Therefore. a promising approach to
texture modeliug for image coding is to use fractals. Some importaunt properties of

fractals in terms of immage coding are discussed in later sections.



3.2 Fractal Geometry in Image Analysis

If we regard the pixel intensity in an image as the height above a plane. then the
intensity surface of a texture image can be viewed as a rugged surface. The fractal
model provides an excellent explanation of the ruggedness of natural surlaces. An
application of the fractal model has been used in the graphical simulation of natural
phenomena like mountains. clouds. trees. human faces, and animals [, 3. I8. 23].
The fractal model has been applied to texture image analysis [60, 63. 64]. as well as
image coding (4. 35].

Oune important characteristic of a fractal is the fractal dimension D. which is
related to the metric properties, length and surface of a curve. D provides a good
measure of perceptual roughness of the curve or surface. with increasing values in D
representing perceptually rougher curves and surfaces [63].

There are a number of different fractal models [50] available to describe non-
random and random fractal objects. An typical example of non-random fractal ob-
jects is the Ioch curve [50] which a mathematically iterative program models by
superimposing smaller and smaller triangles. Other examples are a Clantor sel, a
Sierpinski triangle and so on. These non-random {ractal objects have exact scale in-
variance. i.e., the shapes are invariant under magnification. Ilowever, most ohjects
like coast-lines. trees. mountains and etc. are only statistically scale invariant. since
they are only invariant in an average sense. For example, magnification of coast-
lines are qualitatively identical, not quantitatively. These statistically scale invariant
objects are called as the random fractal objects. Many random fractal objects have
been by the iteration of complex functions (M set and Julia set curves) and the fractal

Browuian function (FBF) [50. 59]. The most useful fractal inodel has been the Brow-
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nian {unction (FBF) I(x. y) [47. 19] since it produce surfaces that closely resemble
natural surfaces. The FBF model belongs to the class of statistically self-alfine frac-
tals [63]. The FBF model regards naturally occurring rough surfaces as the end result
of random walks. Such random walks are basic physical processes in our universe. An
intensity surface of a texture image can also be viewed as the end result of a random

walk. so the FBI" can be used for the analysis of image texture.

3.2.1 Fractal Dimension

The definition of the fractal dimension is a sel for which the Hausdorfl-Besicovich
dimension is strictly greater than the topological dimension. We counsider object X in
an I’-dimensional space. N(¢) is the number of F-dimensional spheres of diameter ¢
needed to cover X. where E is an infeger and the E-dimensional space is the minimum
integer dimensional space among all possible integer dimensional spaces which can

envelop .X. Thus. if N(¢) is given by
. .1 p :
N(e) = K(-)". ase — 0. (3.1)

where I is a constant. X has Iausdorfl dimension D. If D is fractional, D is also
called the fractal dimension. For fractal objects, D is independent of e.

If the fractal dimension is to be used to characterize the texture in an image, we
need a method for estimating the fractal dimension from the given dataset. Many
different estimators have been proposed: box counting [1]. vardstick [17]. maximum
likelihood [48]. and blanket [61]. variance [63]. power spectrum [G3]. probability den-
sitv function [85]. In our case. a blanket metliod is adopted since it is computationally

efficient.
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The blanket method is described as follows. A one-dimensional object such as a
coastline is given. All points with distances to the coastline of no more than ¢ are
considered. These points form a strip of width 2e. and the suggested length L(c¢) of
the coast is the area -A(¢) of the strip divided by 2¢. As ¢ decreases. L(¢) increases.
Using Eq. (3.1), the length of coastline is given for each ¢ by

Ale)

€

=¢- - N(e)= NP (3.2)

Length =

where I is a constant. A one-dimensional illustration of a curve is shown in Fig-
ure 3.1. In extending Eq. (3.2) to swfaces, all points in the three-dimensional space
at distance ¢ from the surface are considered. covering the surface with a blanket of
thickness 2¢. The surface area is then the volume occupied by the blanket divided
by 2e. The covering blanket is defined by its upper surface U7, and its lower surface
B.. Initially, given the gray level function g(i.j), Up(i.j) = Bo(i.j) = g(i.J). For

e = 1.2.3..... two blanket surfaces are defined as follows:
Ui g)=max [ Uy (4, 7) + Lo max [ Uemy(mon) for S]] (3.3)

B.(i.j)=min [ B.y(i.j) — L. min [ B._i(m,n) for S]] (3.1)
where S = [ (m.n) : [(m.n) - (i.j)] < 1].

The image points (m.n) with distance equal to or less than one from (7. j) are the
four closest neighbors of (7. j). Similar expressions exist when the eight-neighborhood
is desired. The blanket definition uses the fact that the Llanket of the surface for
radius € includes all the points of the blanket for radius ¢ — 1, together with all the
points within radius | from the surfaces of that blanket. Eq. (3.3). for example,
ensures that the new upper surface I, is higher by at least 1 from {,_;. and also at

a distance at least 1 from [’,_; in the horizontal and vertical directions.
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Figure 3.1: A one-dimensional function is shown in (a) and its covering blanket for e
— 1. 2 are shown in (b) and (c). respectively. The blanketl areas are A(1) = 47 and
A(2) = 78. The respective measured lengths are L(1) = 47/2 = 23.5 and L(2) = 78/4

=

= 19.5.
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The volune of the blanket at scale ¢ is computed from {7, and B, by

V)= (Ui j) = Beli))) (3.5)

iJ

The volume can now be used to obtain an estimate of the surface area whicl leads

us directly to an estimate of the fractal dimension. The area A(¢) is given by

| =

Ale) = = = k&P (3.6)

[}
o

where I\ is a constant.

From a theoretical viewpoint, if a surface is a perfect fractal surface. then the
fractal dimension will remain constant over all ranges of scales e. In practice, there
are scale range limitations of fractal dimensions due to limitations in textural images.
For example. the resolution limit of the image systemn sets a lower limit on the fractal
scaling behavior. An upper limit may be set by the structure heing examined. Thus,
a real surface will be fractal over some range of scales rather than over all scales.
These limiting scales can be expressed as upper (€m,q,) and lower cutoff (¢,,:,) scales.

To compute the fractal dimension. we apply the log function to hoth sides of
Eq.(3.6). Then.

log A(e) = (2 - D)log(e) + K (3.7)

Using Eq. (3.7). we can define an algorithm for estimating the fractal dimension of
an image surface. I'irst, calculate the volume V7(¢) using Eq. (3.5). Second. calculate
the surface area A(c) for various scales € using Eq. (3.6). Thicd, use Eq. (3.7) to plot
log.1(¢) versus log(c). Fourth, choose €4, and €yin. €0, and €y, are found by the
experiment. Fifth. use a least squares linear regression to fit a straight line to the plot

of log.i(€) vs. log(e). Sixth. the fractal dimension D is equal to 2 minus the slope of

34



the straight line. Specifically. the algorithm for estimating the fractal dimension of

an image surface is as follows.

Algorithm I: Estimating the fractal dimension for an image surface.

Step 1) C'alculate the volume V(e).

Vie) = 3 _(U.(,j) — B.(i.}))

1

Step 2) C'alculate the area A(e).

Step 3) Take the log of hoth sides of A(¢) = K'e?~P vielding
logA(e) = (2 — D)log(¢) + IV

Plot logA(e) vs. log(e).
Step 4) Choose €4, and €,,n.
Step 5) Apply least-squares linear regression to fit a straight line to plot of log (<)
vs. log(c¢).

Step 6) D = 2 - slope.

For example. a natural image and its plot of measured surface area. A(¢€) versus
¢ in log-log scale are shown in Figure 3.2 and Figure 3.3 respectively for e = 1,--- 7.
The fit is good for € = 1.---,5, which implies that the natural image is a fractal

surface for e = 1.---.5. Therefore, €pqyr 15 5 and €,in 15 L. The value of the estimated

slope is -0.62729 using a least-squares linear regression. Therefore. the estimated

fractal dimension is 2.62729.
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3.2.2 Fractional Brownian Function

One of the most useful models for random fractals found in nature such as mountain
terrain. clouds. and trees is the fractional Brownian function (FBF). I(x: ) intro-
duced by Mandelbrot and Van Ness [51]. It has been shown that the FBF produces
surfaces that closely resemble natural surfaces. By modeling natural surfaces using
the FBE, we can extract important information about the texture surfaces. For ex-
ample. one can rclate the fractal dimension and the power spectrum density of the
FBF. As will be discussed later, we take advantage of this relation in our proposed
coding scheme.

The fraction Brownian Function I(x) is an expansion of the Brownian function.
Variations /(Ax) = I(22) — I{x1) are zero-mean Gaussian distributed with variance
proportional to the displacement difference magnitude Ax = |22 — x1] raised to the

power 21 [59).
< I{Ar)? >= K A\2?H (3.8)

where the hrackets < and > denote statistical expectation. I is a constant, 0 < H <
1. and H is called the Hurst coefficient. The case [ = 1/2 corresponds to standard
Brownian function in which < I(Az)? >= K Ax. The mean modulus of a Gaussian

variable is proportional to its standard deviation so the relationship can be written
< [(Ax)| >= K AP (3.9)

where K is a constant.

Voss [39] proved the fractal dimension of the FBF in one-dimensional case

D=2-H=FD+1-H (3.10)
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where D and ED are the fractal dimension and the Euclidean space dimension re-

spectively. In two-dimensional case.
D=3-HI=FED+1-101 (3.11)
A more detailed derivation of the fractal dimension of the FBF in a two dimensional
case is given in a paper [10].
Let us now derive a relationship hetween the fractal dimension and the slope of

the power spectrum density (PSD) of the FBF. If one defines I(k.T) as the Fouricr

transform a specific sample of I(x) for 0 < 2 < T,

/ I(x)emr?med (3.12)
then the PSD of I(k.T) is given by
Sik) = KT|I(kT)]* as T — oc (3.13)

where I is a constant.

The autocorrelation function of I{x) is given by
Gran = <I(x)= <I(x)>)I(x+ Ax)— < I{x + Ax) >) > (3.14)
= <I(x) (x4 Az) > - < 1>? (3.15)

The autocorrelation function G,y is directly related to the mean square incre-

ments of the FBF using Lq. (3.8)

<IAx)> = <|[[(22—rl) = I(21))* > (3.106)
= 2<l(a)(x+Av)>+2<I(x)? > (3.17)
= =2Gian+2<1*> (3.18)
= —2Gran + I (3.19)
= KA (3.20)



where I’} and I, are constants. Therefore. the autocorrelation function is given by
Gran = K1+ KpA02H (3.21)

Recall, the autocorrelation function and the PSD are related by the Wicner Khint-

chine relation [37].
Gron _/ 2R (3.22)

For certain simple power laws for Sy(k). G1ar) can be calculated exactly. Thus, the

I’SD of the FBF is given by

Sik) = 1\'15(/\)+1\2A2H+1 (3.23)

= M 6(k)+ Ky— !

o (3.24)

and, 3, =2H +1{for 0 < H < 1.

The procedure is easily extended to the two-dimensional function, 7(:¥). I(¥) must

satisfv the property given by
< I{AT)? >= K|y — a3 |1*H (3.25)
Eq. (3.20) can be extended to the & plane
< 1(AT)? > = =2Gpamn + 1 (3.26)
= KA (3.27)

as can Eq. (3.22) using Eq 3.27

C"l(i') = / / Q(}\ (JT“"”)TFI.({A' (328)
= / S(K)erFdaniaR (3.29)
= K, + K,A7 (3.30)
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Here & is a point in the two-dimensional (xy) plane and A¥ is a displacement in the
two-dimensional plane.
For this AT dependence to correspond to the Ax dependence of < J(Ar)? >, S(k)

is given taking the Fourier transform of Eq. 3.30 and using 3; = 2H + |

T . .1 q -
. -] o
1
= I\'lé(]\') + IX'QZE; (}}3)
(3.34)

Using the above equations, the relation between the slope /3; of the two-dimensional

PSD and 11 is given by
Py =2H +2 (3.35)

Using D = 3 — H in two-dimensional space, the relation the fractal dimension D and

slope 3, 1s given by

D = 3-H (3.36)
3, — 2
= 322 (3.37)
3
= i-= (3.38)

When D is close to either 2 or 3. 3, is close to 4 or 2 respectively, 3, is the negative
slope of the PSD. Therefore. the higher the value of D, the higher the spatial [requency

content. the rougher the waveform.
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3.3 Conclusions

In this chapter we provided a brief overall review of texture models in applications in-
cluding the classification, the segmentation. and the image coding. We then discussed
the fractal Browian function in detail. The relation of the fractal dimension and slope
of the power spectrum density of the fractional Brownian function was obtained. It
was shown that higher values of D provide the smaller negative slope of the power
spectrum density and the rougher image surface. We use this important relation for
segmenting an image into texturally homogeneous regions with respect to the degree

to roughness.
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4

A New Approach for
Segmentation-Based Image Coding

4.1 Introduction

In Chapters 2 and 3 we presented previous results in the areas of image coding and
texture analysis with particular attention to structurally-based coding and texture
analvsis using fractals. In the remainder of this report we present a method for
combining fractal-based texture analysis and properties of the human visual system
to segment an image for application in image coding.

In this chapter we define the structure of the new segmentation-hased image coder.
A description of both the transmitter and receiver will be given. Fundamental o this
coder is the technique for segmenting an image using properties of the [IVS and
the fractal dimension. In Chapter 5. we present in detail the proposed segmentation
technique and characterize its performance through computer simulation. In Chapter
G. we present the details of the mixed encoder and analyze the performance of the
coder by determining the sensitivity of the system performance to changes in svstem

paramelers.



4.2 The Codec

A general description of the system for segmentation-hased image coding is shown

in Figure 4.1. It consists of three components: the transmitter. the channel. and

Input Image
Transmitter

| |
t 1
' |
! Pre- :
: . Segmenter Encoder "
X processing ]
! :
e e e e e e e e e e e e e e e

po T T TTTT T 3
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Image : !

. l
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Receiver

Figure 4.1: The overall block diagram of the segmentation-based coder.

the receiver. The (ransmitter is responsible for generating the coded information
which is then sent over some communication channel. The output of the encoder
is a string of bits that represent the input image. In this work, it is assumed that
ihe communication channel is noiseless or any errors have been corrected. In this

ideal case. the output of the transmitter is equal to the input of the receiver. At
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the receiver. the image decoder reconstructs the image {from the string ol For human

viewing. the reconstructed image is typically displayed on a CRT monitor.

4.3 The Transmitter

Figure 4.2 shows a more detailed block diagram of the transmitter. It includes three
main stages: the preprocessor, the segmenter, and the coder. The main purpose of
the preprocessor is to alter the image so that the segmenter produces a high quality
segmented image. The segmenter divides the preprocessed image into disjoint regions
of common textural content. The segmenter is followed by a coder whicl generates

the codes for the boundaries and the three texture classes.

4.3.1 Preprocessing

In any segmentation-based compression algorithm. the information describing the
content of each segment must be encoded. Thus. the number of image segments and
the number of bits representing the textures of the segments are directly proportional
to the bit rate of the coded unage. Because of this. a minimum number of segments
and an efficient representation of the textures are critical. The preprocessing is de-
signed to alter the image in such a way that fewer segments and textures are produced
by the segmenter. but without degrading the visual quality of the segmented image.

Preprocessing will be required when the image data has been contaminated by
noise or the dynamic range has been compressed. In the former case. the preprocessor
is a linear or nonlinear filter designed to remove the noise from the signal. In the
latter case, the preprocessor is a clamping operation to enforce the dynamic range

reduction. Tt should be noted. however. that it is possible that no preprocessing will
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Fignre 4.2: The block diagram of the transmitter characteristics.

he required.

Many different noise cleaning filters exist in the literature [37, 87]. The particular
choice of filter depends on the type of noise one needs to remove. If the noise is
additive or white Gaussian noise. then it is useful to use a linear filter. 1f the noise

is salt-and-pepper or shot noise. then it 1s useful to use an out-ol-range filter or a



median filter.
The clamping process proposed in [71] reduces the dynamic range of the image by
setting all pixels with gray level above a threshold to that threshold and setting all

pixels below a second threshold to the second threshold. This can be expressed:

thy p<th
p=4q p thh <p<th (4.1)

thy p>thy
where p is the gray level of a pixel in the image. and thy and th; are the two clamping
thresholds. ('lamping is motivated by the contrast sensitivity of the eve, which is
known to decrease as the intensity of the visual stimulus moves away from the middle
range of intensity values [14]. The reasoning is that. since the eye has reduced sen-
sitivity to differences in very high gray levels and differences in very low gray levels.
variety in gray levels at these extremes of the gray level range is unnecessary. llow-
ever. the clamping operation greatly depends on the original dynamic range of the
image data and the experimental environment [65]. The clamping operation can no-
ticeably degrade the subjective quality of the image in a bad environment. Therefore.

one must be careful in using the clamping operation.

4.3.2 Image Segmentation

After preprocessing. the next step in the compression algorithm is the segmentation
of the image. In this work. centroid-linkage region growing [32] is used. An impor-
taut attribute of region growing segmentation is the production of disjoint segments
with closed boundaries. This is important because segmentation-based compression

requires a description of the boundary and texture of each image segment. Such a
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description would be impossible if the segients overlapped or did not have closed
bhoundaries.

An image is segmented into texturallv homogeneous regions with respect to the
degree of roughness as perceived by the IIV'S. The segmentation is accomplished by
thresholding the fractal dimension so that membership is in one of three textural
classes. The three classes are perceived constant intensity (class [). smooth texture
(class IT). and rough texture (class 11I). Regions belonging to the perceived constant
intensity have a fractal dimeusion less than D;. The second class coutains regions
with the [ractal dimension hetween D, and D,. The third class contains regions with
the fractal dimension greater than D,.

The output of the segmenter is a gray level image consisting of many segments.
The images are partitioned so that each segment contains the same degree of rough-
ness as perceived by the HVS. The objective now is to apply an eflicient coding
technique to the houndaries and each texture class to achieve high compression with

small visual degradation.

4.3.3 The Mixed Coder

The last stage in the transmitter is the encoding of the segments and their boundaries.
During {he segmentation. the segments are classified as one of the three texture
classes. The objective of the coding is to obtain an efficient representation of the
segmented image data for transmission or storage. The image coder should use more
bits to encode the information for which the HVS is more sensitive and use fewer
bits to encode the information which the HVS is less sensitive. To accomplish this
we propose a niixed coder. It consists of four separate stages; the boundary encoding

and three textural class encodings. see Figure -1.2.
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4.4 The Recelver

As can be shown in Figure 4.3, the two types of coded information come into the

nmixed decoder.

Boundary Region
Decoder Decoder
) Y

Boundary Region

Image Image

Decoded
Image
To Display

Figure 4.3: The block diagram of the receiver characteristics.

The boundary decoder generates the boundaries of the decoded image from the coce

data received the comnnmication channel. A general description of boundary coders
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will be given in the houndary coding.

The missing part of the decoded image after the houndaries are decoded is texture
information within regions. Since regions helonging to class 1 are perceived constant
regions. their mean values are painted within the appropriate regions. Regions be-
longing to class II and III are reconstructed by reproducing polynomial functions.
The information of the boundaries and the textures are combined to form the recon-

structed image.

4.5 The Basic Principle of the Mixed Coder

The goal of the mixed coder is to encode the boundaries and their regions in a
segmented image. Accurate representation of the houndary is necessary to describe
the location of the region boundary because of the HV'S sensitivity of the edges. As
a result. we chose an errorless coding scheme to represent the boundaries. A binary
image representing the boundaries is created. Then. the binary data is encoded using
an adaptive arithmetic codec [62. 72, 76].

After boundary encoding. we {hen need to encode the three texture regions. For
regions belonging to the perceived constant intensity class. only the mean intensity
values need be transmitted. It should be noted that in this case lossy compression has
already taken place since we are approximating each regions texture with a constant
value. We do not wish to introduce any further compression. so that the lossless
arithmetic code is again emploved to achieve further compression. Since an intensity
mean requires 8 bits. the mean intensity value is converted into a vector of an 8 » .V
binary array, where N is the number of segments belonging to perceived constant

regions. The mean vector is then encoded using the arithmetic code.
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The texture information in regions belonging to class 1I and III are not directly
encoded. To achieve compression the texture information is first modeled. Polynomial
models are used for each class. C'ompression is achieved by adjusting the amount of
error tolerated between the original image data and the modeled image data. The
lower the amount of error the better the approximation, but the higher the bit rate.
Because of the sensitivity of the HV'S to middle range spatial frequencies. a lower
error is chosen for class Il than class HI.

There are two critical components in this image coding system. The first is the
segmentation process and the second is the mixed coder. The segmentation algorithm
is a region growing-based technique which incorporates estimates of the fractal di-
mension and the expected value of the block to describe the texture content and the
JND to better adapt its decisions to the HVS. The mixed coder deflines appropriate
compression schemes for the textural classes and the segmentation houndary informa-
tion. The constant intensity regions (class I) are modeled by the mean intensity value
of each region while the smooth and rough texture classes (11 and 11I) are modeled
using polynomial models. After modeling. the data from class I and the boundary
information is encoded using an errorless arithmetic code. The data from class 11 and
IT1 are encoded using the arithmetic code.

In Chapter 5 we describe in detail the texture segmentation technique. In addition,
the results of an evaluation of the performance of the segmenter to changes in various
parameters is presented. Paraineters considered are the blocksize used to estimate
the fractal dimension and threshold of the fractal dimension.

In Chapter 6 we present the mixed codec and evaluated the performance for the
entire image coding system to parameter variations. The parameters are the fractal

dimension thresholds Dy and D, and the adjusting amount of error tolerated bhetween
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the original image data and the modeled image data for the smooth and the rough

texture classes.



)

Image Segmentation Using Properties of

the HVS and Fractals

In this chapter we describe a new technique for segmenting discrete gray level images.
In image segmentation. the pixels in an image are divided into mutually exclusive spa-
tial regions hased on some criteria, each having certain properties. Segmentation is
an important step in scene analysis. image understanding systems, and image coding,.
In a scene analysis application, for example, an image is first segmented into regions.
Regions are used to identify objects in the image scene. Such identification requires
accurate segmentation so that a one-to-one correspondence hetween the image seg-
ments and the objects can be made. Many image segmentation techniques have heen
proposed in the past [32. 42, 80]. These segmentation techniques can be categorized
mto the following six categories: (1) amplitude thresholding, (2) component label-
ing. (3) boundary-hased approaches. (4) region-based approaches and clustering. (5)
template matching. (6) and texture-based segmentation. Although a great deal of
work has been done on segmentation techniques, there are only a few texture-hased

segmentation techniques [11. 53. 69, 82, 88].

The purpose of image segmentation in image coding is fundamentally dilferent

from that in scene analysis discussed above. For compression applications. it is not



necessary to have a one-to-one correspondence between phyvsical objects and image
segments. It is only important to design the segmentation algorithm so that image
segments are allocated in a way that achieves high compression with small visual
quality loss. In the proposed new technique. this is accomplished by incorporating
properties of the HVS at various stages in the segmentation algorithm. By using
knowledge of properties of the VS to guide the image segmentation. the segments
can be chosen to produce a visually pleasing segmented image.

In seginentation-based image compression algorithms [6. 7. 43. 71, 74]. the infor-
mation that is encoded describes the houndaries and interiors of the segments in the
segmented image. Thus. the number of iiage segments and the method of coding the
interiors within segments will determine. for the most part. the bit rate of the com-
pressed image. I'or this reason, it is critical that an image with a minimum number of
segments is produced and that the interior of each segment is encoded efficiently. The
goal of the segmentation algorithin we propose is, for a given desired image quality.
to produce a segmented image which has not only the minimum number of image
segments but also will result in an efficient bit allocation of the boundary and interior

of each segiment.

The segmentation technique we present segments an image into texturally homo-
geneous regions with respect to the degree of roughness as perceived by the IIVS. The
segmentation algorithin uses a variation of centroid-linkage region growing [32]. The
region growing is directed by the texture distance measure between image blocks. In
Section 5.1. we describe segmentation algorithm. The measure of the roughness of
the textural regions is represented by the fractal dimension. In the actual segmen-
tation. the {ractal dimension is thresholded so that the textural regions are classified

into three textural classes: perceived constant intensity, smooth texture. and rough



texture. A description of the [ractal dimension was given in Chapter 3. Further
analyvsis of the sensitivity of the calculation of fractal dimension to blocksize will he
described in Section 5.2. In Section 5.3 we describe technique for choosing the {ractal
dimension thresholds that are used in the segmentation process. The other features
used in segmentation are the JND and the expected mean. A method for measuring

the JND and the experimental results are given in Section 5.4.

~

Experiments were performed on three test images given in Figure 5.1. Different
types of imagery were chosen to show that the proposed algorithm works well for a
wide variety of images. The first is a head and shoulder image, referred to as Miss
USA. 1t is typical of those found in video-telephone or video-conferencing applications.
In general, these images do not have highly complicated textural regions and thus, the
segimented image contains a small number of segments with relatively large regions.
The second is a complex image with many edges and is referred to as Lena. The last is
a natural outdoor scene and is referred to as House. In general. segmentation-based
compression techniques have not worked well for natural scenes such as in louse.
That is because it has highly textured areas which produce numerous segments in
the segmented image. The approach we propose overcomes these difficulties hecause
the image is segmented into texturally homogeneous regions. Each image consists of
256 x 256 pixels, with 256 gray levels. The images are viewed on a Sun 4 Workstation
with a Sony monitor with 256 possible gray levels. The monitor was calibrated so
that there was a linear relationship between gray level numeric value and output

luminance using a techniqgue proposed in [30].
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Figure 5.1: Original test images. Each image is 256 x 256 pixels, with 256 gray level

(a) Miss USA. (b) Lena. (c) House.




5.1 Image Segmentation

The goal of the image segmentation process is to decompose an image into fextu-
rally homogeneous regions with respect to the degree of roughness as perceived by
the HVS. Textural regions are classified into three classes; perceived constant inten-
sitv. smooth texture. and complicated texture. For example. the background in a
head and shoulder image or the sky in a natural image are considered as perceived
constant intensity. the face or the shoulder is considered as smooth texture, and the
trees and the bushes in a natural image is considered as rough texture. To extract
texture information for accomplishing textural-hased image segmentation, the fractal
dimension. mean. and just noticeable difference (JND) are used in the segmentation
algorithm. The segmentation algorithm is based on a region growing technique. A
unique of feature of the region growing process used in this research is that it is di-
rected by the texture feature distance between image blocks. The region growing is
achieved through a merging test condition between texturally homogeneous neighbor-
ing blocks. If the condition for merging is satisfied. an observing block can be merged
into a neighboring block. Otherwise, a new region is declared.

For our segmentation. we have used a centroid linkage region growing method
because it is guaranteed to produce disjoint segments with close boundaries and pro-
vides a sequential algorithm for growing region. The centroid linkage region growing
method is illustrated in Figure 5.2. The observing block [OB] is examined along with
its neighboring blocks [NBL], [NB2]. [NB3], and [NB4]. A classification of block [OB]
is made after comparing the feature set of block [OB] with the feature sets of its
neighboring blocks. The texture [eatures used are the mean. JND. and the class type

hased on the fractal dimension of the image block.
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l scan direction

Figure 5.2: Centroid linkage window

The class type is determined by thresholding the fractal dimension. 1f a block has
fractal dimension less than D;. it is assigned to class I (perceived intensity value). 1f
a block has fractal dimension greater than Dy and less than D. it is assigned to class
I (smooth texture). If a block has fractal dimension greater than D,. it is assigned
to class Il (rough texture).

Using the class type value, the mean of the image block and the JND. the seg-
mentation algorithm is as follows.

Texture-based segmentation algorithm:

Step 1) Divide the image into NR x NC blocks (NR and N are the numbers of
row and column blocks, respectively).

Step 2) C‘alculate the feature set: the class type. the mean, and the JND look-up
table for each block.

Step 3) (‘alculate the distance hetween the observing block and its d-connected

[\y ]
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neighboring blocks. The distance is given by

F(OB) < D,. Cog = (xBR.

[M(OB) — M(NDB)| < JND(OB. NB)
0 if or

D(OB.NB) = Dy < F(OB)< D,. Cop=Cpng

or

F(OB) > D,. Cogp=Cnp

| 1 otherwise

whereI'(OB) is the fractal dimension of the observing block. C'(OI3) and
C'(ND) are the class tyvpes of an observing block and its neighboring block
respectively. A (OB) and M(NB) are the means for the observing block
and its neighboring block respectively. JND(OB. N B) is the just noticeable
difference hetween the observing block and its neighboring block.

Step 4) I{ there is a neighboring block with distance 0. then merge the observing block
mto it: else declare a new region. If there are more than two good neighhoring
blocks. merge the observing block into a neighboring block whose mean value
is closest to the mean value of the observing block.

Step 5) Repeat step 3 to step 5 until all blocks are segmented.

Step 6) Stop.

The algorithm scans the image from top to bottom and from left to right.

In image segmentation. the block size for estimating the fractal dimension is a key
component. The appropriate block size is critical for good estimation of the [ractal
dimension and control of the computation requirements. In section 5.2, we investigate

{he variation in the fractal dimension estimate for variable block sizes.

Another issue is the choice of the fractal dimension thresholds Dy and D, in

the segmentation process hecause the values of Dy and D, affect the compression



ratio and the image quality. Iligher values of Dy give more regions belonging to
the perceived constant intensity in an immage. This results in a high compression
ratio because only the perceived gray level and boundary information of these regions
need to be transmitted. but generally the image quality is degraded. Lower values
of I, produce more regions belonging to the rough textural class. In the proposed
segmentation-based compression system. a larger amount of error is tolerated hetween
the original image data and the modeled image data for the rough texture class than
for the smooth texture class. Regions belonging to the smooth texure class contain
middle range spatial frequencies, thus require more attention and emphasis in order to
maintain image quality. We determine the range of fractal dimension for cacl texture
class. Based on the range of the fractal dimension for each class, the threshold values
for Dy and D, are proposed.

The last issue in segmentation process is selection of the threshold used to deter-
mine when regions belonging to the perceived constant intensity merge or split. We
ivestigate several different thresholds hased on the V'S properties. The threshold
that produces the best image quality is chosen in the proposed segmentation-based

image ('Oll]])l'(?SSiOl] system.

5.2 Determination of the Block Size for Estimating the

Fractal Dimension

When we compute the fractal dimension in an image. the pixel intensity in an image
is considered as a surface above a plane. All points in the three-dimensional space
al distance € from the surface were considered. covering the surface with a blanket

of thickness 2e. The algorithm for computing the fractal dimension was given in
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Subsection 3.2.1. A brief summary of that algorithm is reiterated here. First. calculate
the volume V'(¢) using Eq. (3.5). Second. calculate the surface area A{e) obtained
from the volume divided by 2¢. Third. plot log.4(¢) versus log(¢). Tourth. use a least
squares linear regression to fit a straight line to the plot log(e€) vs. log(¢). Finally. the
fractal dimension dimension D is equal to 2 minus to the slope of the straight line.
In the proposed compression algorithm. an image is divided into blocks and the
fractal dimension of eacli block is computed. It is important to choose the block size
in the image so that good estimates of the fractal dimensions are obtained and good
image quality can be maintained. When the block size is small. there mav not be
enough pixels to describe the texture within the block. For example, if the block
is 1 x 1. there is only one pixel in the block and it is not possible to characterize
its texture. When the block size is large. several different textures may be present
within the block and the estimated fractal dimension will not accurately represent. the
characteristics of the multiple textures. Another issue to be considered when choosing
the block size is the computation requirements. The computation requirement for the
large block is more expensive than the one for the small block. For example. consider
the block sizes 8 x 8 and 16 x 16. The number of pixels in the block size 16 x 16 is four
times larger than the number in the block size 8 x 8. Therefore, the computation time
to compute the fractal dimension in the larger block is more expensive. (‘onsidering
the issues discussed above. we conclude that the smallest feasible block size is the

hest block alternative.

5.2.1 Experimental Results for Determining the Best Block Size

To determine the hest block size in terms of the fractal dimension. three 30 > 30

subimages in each of the test images are taken. Each subimage is assumed to helong

61



to one of the texture classes. We investigated the variation of the fractal dimension
versus the block size for each class. Block size is varied from 2 to 30 and is increased
from the left. top corner. C'urves of the fractal dimension versus block size are given
in Figures 5.3. 5.4, and 5.5. In each plot, the x-axis represents the block size and the
v-axis the fractal dimension. The curve with a diamond symbol corresponds to the
perceived constant intensity (class I). the curve with a cross symbol to the smooth
texture (class II). and the curve with the square symbol to the rough texture (class
111).

Examining the curves in Figure 5.3, the fractal dimension corresponding to per-
ceived constant intensity (¢) has alimost a constant value. 2.0. for blocksize 2.---.30.
That is. there exists only a single texture of perceived constant intensity in each
block. The shape of the curve corresponding to smooth texture (+) are quite variable
for blocks between (2,---.7) and (19.---.30) but are nearly coustant for the middle
block sizes (8.---.18). The reason for variability in the smaller 2,.-..7 blocks is
the small number of pixels to characterize the texture. In larger 19.--- .30 blocks
more than one texture is present. The middle 8.--- .18 blocks have only one texture
and provide the least variable estimate of the fractal dimension. Note, the 30 x 30
subimage at the bottom of IFligure 5.3 has three different textures: the neck and two
sweaters. In general. when the block size is large, there is more likelihood that several
textures will be in the block. and the value of the fractal dimension will not remain
constant. The curve () corresponding to the rough texture blocks looks similar to
that of the smooth texture. At the small block sizes. there are too few pixels to
estimate the texture and at the large block sizes. multiple textures are present. in the
block. The curve is nearly constant for middle (8.---.18) block sizes. In Lena and

llouse. the shape of the curve corresponding to rough texture is nearlv constant for
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blocks greater than 7 x 7 block. Since the 30 x 30 subimages in the [eather in Lena
and in the tree in Ilouse have one texture. the fractal dimension of the regions within
the block remain nearly constant. In summary. the larger block sizes may not give
good estimates of the {ractal dimension because they contain several textures and the
smaller block may not contain enough pixels to characterize the texture.

Through extensive experimentation. we have found that biock sizes of 8 x 8 up
to 14 x 14 have almost a constant value. Thus these blocks meaningfully represent
the textural characteristics of a region. An estimate of the means and the standard
deviations of the fractal dimensions for the blocks in each class for the three test
images as a result of these simulations are given in Tables 5.1, 5.2. and 5.3.

We clhose an 8 x 8 block size for the block-by-block segmentation algorithm since
the smaller block size reduces the computation and storage requirement and as will be
seen later is consistent with giving the best image quality. I'urthermore, by comparing
the set of curves in each plot, curves on square. cross. and diamond symbols are the
top. middle. and bottom respectively for the mid sized blocks from 8 x 8 to 14 x 14

rougher texture produces higher fractal dimension.
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Figure 5.1: Plot of fractal dimension versus block size in Lena. Lena with fhree
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Table 5.1: Statistics of fractal dimension in Miss USA

class block size mean | standard deviation
class I |2 x 2 to 28 x 23 | 2.000705 0.000002

class IT | 8 x 8 to 19 x 19 | 2.072152 0.000110
class IIT | 8 x & to 11 x 11 [ 2.576650 0.000086

Table 5.2: Statistics of fractal dimension in Lena

class

block size

mean | standard deviation
classI | S x8to 14 x11]2.010403 0.000026
class II | 7T x 7 to 15 x 15 | 2.066312 0.000007
class ITI | 7 x 7 to 15 x 15 [ 2.698575 0.000140

Table 5.3: Statistics of fractal dimension in [House

class block size mean | standard deviation
class I | 2 x 2 to 28 x 28 | 2.000000 0.000000

class IT | 7 x 7 to 14 x 14 | 2.296010 0.00009 }

class IIT | 8 x 8 to 20 x 20 | 2.650985 0.000172
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5.3 Thresholds for the Fractal Dimension

A kev [eature of the fractal dimension in {he segmentation algorithm is the thresholds
Dy and D, used in order that the textural regions can be separated into textural
classes and betler image quality is obtained with a larger compression ratio. The
values of the thresholds D; and D, affect the compression ratio and the image quality.
Iligher values of D, give more regions helonging to the perceived constant intensity
class in an image. It results in high compression ratio because only the perceived
gray level and boundary information of these regions need to be transmitted. Bul
generally the image quality is degraded. Lower values of D, produce more regions
belonging to rough texture class. In the proposed segmentation-based compression
syvstem, a higher amount of error tolerated between the original image data and the
modeled image data is chosen for class III than class II because of the sensitivity of
the HIVS to middle range of spatial frequencies. Higher values of D and lower values
of D, result in high compression system, however. the image quality is degraded.
Therefore, it is important to have suitable thresholds D; and D, for compression and
image quality.

The relationship between the fractal dimension D and {he negative slope 3, of the
PSD of the FBF in two-dimensional case is given as derived in Subsection 3.2.2

D=4- 5

As D is close to cither 2 or 3. 3, is close to 4 or 2. respectively. This means that a
lower value of D corresponds to a larger negative slope of the PSD and a lower spatial
frequency content. Using this relationship, we would like to find the thresholds Dy

and D, based on properties of the H\V'S. One simple and good IIVS model uses
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Figure 5.6: A typical MTF curve

the MTF. The curve of a typical MTF is given in Figure 5.6. Using the MTF has
the advantage that it tells us which frequencies are more important for maintaining
quality. This can be used in the image coding. Once the NTI is specified. it would
be desirable to obtain an exact relation between the PSD of the textural regions in
an image and the MTI of the IIVS. The relation could then be used to specifv the
thresholds for the fractal dimension. lowever. it has proven to he very dilficult to
derive an analytic relationship between the two. Therefore, another alternative is to
define the thresholds for the fractal dimension empirically.

The shape of the MTF of the HVS is similar to a band-pass filter and suggests
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that the 1I1VS is more sensitive to mid{requencies and less sensitive to low and high
frequencies in Figure 5.6. Thus we have chosen to segment an image into three textural
classes (perceived constant intensity, smooth texture. and rough texture) based on
spatial frequency content. Since the fractal dimension of a shape corresponds to
roughness. regions which belong to the perceived constant intensity have a fractal
dimension less than D;. The second class contains regions with the [ractal dimension
between Dy and D, which corresponds to the midfrequencies, those regions which
are more sensitive to the human being. This implies that midfrequencies play a
more important role in perceived image quality than other {requencies and that these
regions require more attention and emphasis in order to maintain image (uality. The
third class contains regions with fractal dimension greater than D,. These regions are
perceived as the most rough regions, but ones to which a human has less sensitivity;
thus they can be more highly compressed.

To define the thresholds for the fractal dimension empirically, many subimages
which may belong to each class in the images are chosen. [ractal dimensions of

the subimages in each class are investigated and the range of fractal dimensions is

determined.

5.3.1 The Experimental Results for Determining Thresholds D, and D,

Five 8 x 8 subimages belonging to each class in each test image with 256 x 256 pixels.
and 256 gray levels are chosen. In this experiment, an 8 x 8 block size is used for
cach subimage because the block size is the smallest one to characterize meaningfully
the texture of a region as discussed in Subsection 5.2.1. TFor Miss USA, 5 subimages
in the background and sweater are chosen to represent class I, 5 subimages in the

neck. cheeks. and shoulder for class IL. and 5 subimages in the hair, eves. mouth. and



nose for class 1. For Lena. b subimages in the background and middle of the mirror
are chosen for class 1. H subimages in the hat. cheek. and shoulder for class 11. and
5 subimages in the feather and eves for class 111. For House. 5 subimages in the sky
and concrete wall are chosen for class 1. 5 subimages in the lawn and car for class 11.
and 5 subimages in the trees in the left and right of the image for class I11.

Images with five § x 8 subimages for each class are given in Figures 5.7 to h.15. The
mean and the standard deviation of the five subimages fractal dimensions are given
in Tables 5.4 to 5.12. The mean and the standard deviation of the fractal dimension
ol the fifteen subimages corresponding to class I are p = 2.007833 and ¢ = 0.000053.
respectively. The mean and the standard deviation of the fractal dimensions of the
fifteen subimages corresponding to class 1l are p = 2.194596 and o = 0.003807.
respectively. The mean and the standard deviation of fractal dimensions of the fiftecn
subimages corresponding to class 11 are g = 2.660297 and o = 0.023209. respectively.
A plot of the fractal dimensions of the fifteen subimages for each class is given in
Figure 5.16. In the plot. the x-axis represents the fractal dimension and the v-axis
the nuwmber of blocks at that fractal dimension. The curve with a diamond symbol
corresponds to the perceived constant inteusity (class I). the curve with a cross svibol
to the smooth texture (class 1I). and the curve with the square symbol to the rough
texture (class 11I). The fractal dimensions belonging to class I are distributed around
the [ractal dimension. 2.0. The curves of the fractal dimensions belonging to class 11
and class III are approximately bell-shaped around their means respectively. There
are gaps between the curves for each class. Through these results. the value of D,
should not be greater than the minimum fractal dimension belonging to class Il and
the value of D, should lie between the fractal dimension means ol class Il and class

111. In Chapter G. we determine the sensitivity ol the codec to variations in I and
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Figure 5

blocks in Mlss USA. Five 8 x 8 blocks are used.

Table 5

: Estimation of the fractal dimension for the perceived constant infensity

: Fractal dimensions for each blocks. The column and row index are ordered
from thf top left.

The fractal dimension of each subimmage is given in table (a).

mean g and the standard deviation o are given iu table (1)

(column,row) | fractal dimension
(109.17) 2.008697
(21141 7017080
(35.63) 2.000000

(100.221) 2.001205
(228.230) 2001512
(a)
J (22

2.008697 | 0.000011

Jange . 4o

from the top left.

rracieal e nsmons 101 €40 DiocKs.

(b)

mean g and the standard deviation o are given in table (1)

| (column.row) | fractal dimension |

The

1ne (Ullllllli (‘lll‘l row lll‘il"\ dl'e Qreerec
The fractal dimension of each subimage is given in table (a).

The



Figure 5.8: Estimation of the fractal dimension for the smooth texture blocks in Miss
USA. Five ‘1 x 8 blocks are used.

Table 5.5: Fractal dimensions for each blocks. The column and row mtha\ are ordered
from lhe top left. The fractal dimension of each subimage is given in table (a). The

mean g and the standard deviation o are given in table (D).

(column,row) | fractal dimension
(105,126) 2.137630
(150.126) 2211584
(180.180) 2.167482
(138.206) 2.101584
(138.222) 2.324481

(a)
H" o

2.189152 | 0.005951

(b)

Table 5.0: Fractal dimensions tor each biocks. ‘I he column and row index are ordereqd
from the top left. The fractal dimension of each subimage is given in table (a). The

mean y and the standard deviation o are given in table (b).
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Flguw 5.9: Eﬂuuatmn of the fractal dimension for the rough texture blocks in Miss

UUSA. Five 8 x 8 blocks are used.

Table 5.6: Fractal dimensions foy each hlocks. The rulumn and row index are ordered

from Hm top left. The fractal dimension of each subimage is given in table (a).
mean g and the standard deviation o are given in table (1»).

(column,row)

fractal dimension

(157.81)

2.631716

(107.107)

2.861825

Table H.6: Fractal dimensions for each hlocks.

from the top left. The fractal dimension of each subimage is given in table (a).
mean g and the standard deviation o are given in table (D).

(132.108) 21636496
(126,130) 2403171
(128.150) 2.617450
(a)
J a
2596571 | 0.025157
(D)

The

I'he column ﬂll(l Irow llll|9‘{ are (‘Ilf|t‘I(—‘t|

I'feahimam. row) | feractal dimesnsian |

The



Figure 5.10: Estimation of the fractal dimension for the perceived constant intensity

blocks in Lena. Five 8 x 8 blocks are use

d.

Table 5.7: Fractal dimensions for each blocks. The column and row index are or tlmﬂl

from Hlf‘ tup left. The fractal dimension of each subimage is given in table (a).

mean g and the standard deviation o are given in table ().

(column,row) | fractal dimension
(148.10) 2.0096 18
(37.97) 3.001016
(239.97) 2.021052
(2.107) 2.013692

(242.161) 2.001178
(a)
I o
2.011323 | 0.0000 {2
(h)

I'he

Table 5.7: Fractal dimensions for each blocks. The column and row index are ordered

from t]m top left. The fractal dimension of each subimage is given in table (a).

mean g and the standard deviation o are given in table (b).
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Figure 5.11: Estimation of the fractal dimension for the smooth texture blocks in
Lena. Five 8 x 8 blocks are used.

Table 5.8: Tractal dimensions for eacl) blocks. The column and row index are ordered
from lllo top left. The fractal dimension of each subimage is given in table (a). The

mean p and the standard deviation o are given in table ().

(column,row) | fractal dimension
(94.40) 2273487
(129.63) 2284637

(227.116) 2.231022
(120,156) 2.071251
(158.213) 2.019232
(a)
ft o

2.181936 | 0.010237

(b)

1anie .00 rractal ginensions 1 eacl DIOCKS. | e cunmm and row Uiex are oraered
from the top left. The fractal dimension of each subimage is given in table (a). The
mean g and the standard deviation o are given in table (D).

[ (column.row) | fractal dimension |



Figure 5.12: Tstimation of the fractal dimension for the rough texture blocks in Lena.
Five 8 x 8 blocks are used.

Table 5.9: TFractal dimensions for each blocks. The column and row index are order ed
fron the top left. The fractal dimension of each subimage is given in table (a). The

mcan g and the standard deviation o are given in table (b).

(column,row) | fractal dimension
(131.125) 2847027
(160.127) 2.591966
(63.141) 2.728663
(62.200) 2.5219.42
(70.226) 2.890308

(a)
G o

2.716161 | 0.020198

(h)

Table 5.9: I'ractal dimensions for each blocks. The column and row index are ordered
from the top left. The fractal dimension of each subimage is given in table (a). The

mean g and the standard deviation o are given in table (D).
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Figure 5.13: Estimation of the fractal dimension for the perceived constant intensity
blocks in House. Five 8 x 8 blocks are used.

Table 5.10: Fractal dimensions for each blocks. The column and row index are ordered
from the top left. The [ractal dimension of each subimage is given in table (a). The

mean g and the standard deviation o are given in table (b).

(column,row) | fractal dimension
(194.9) 2.000000
(96.12) 2.000000
(119.12) 2.000000
(11.229) 2.011151

(1:39.232) 2.018201
(a)
I o

2.006470 | 0.000064

(h)

Janie ). vl rractal (mensions lor €acy DIOCKS. 1 1€ COINI and row 1naex are oracrea
from the top left. The [ractal dimension of each subimage is given in table (a). The

mean p and the standard deviation o are given in table (b).

[ (column.row) | fractal dimension |



Figure 5.14: Estimation of the fractal dimension for the smooth texture blocks in
Iouse. Five 8 x 8 blocks are used.

Table 5.11: Fractal dimensions for eacli blocks. The colunmm and row index are ordered
from tlm top left. The fractal dimension of each subimage is given in table (a). The

mean y and the standard deviation o are given in table (b).

(column,row) | fractal dimension
(226.140) 2 ‘3143116
(181,154) 2.255769
(107,181) 2.180522
(168,189) 2.188989
(13,216) 2.223822

(a)
It o

2.212699 | 0.000716

(b)

Table 5.11: Fractal dimensious for eacl blocks. The column and row index are ordered
from “1(-‘ iop left. The fractal dimension of each snbimage is given in table (a). The

mean g and the standard deviation o are given in table (b).
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Figure 5.15: Estimation of the fractal dimension for the rough texture blocks in

[House. Five 8 x 8 blocks are used.

Table 5.12: Fractal dimensions for each blocks. The column and row index are ordered

from the top left. The fractal dimension of each subimage is given in table (a).

mean g and the standard deviation o are given in table (b).

(column,row) | fractal dimension
(30.23) 2715114
(114,53) 2 ?‘Jussr
(9.68) 2.84085(
(217.93) 2. 1574:3
(227.108) 3507764
(a)
It o
2.668157 | 0.017029
(b)

The

Jable 5.12: Fractal dimensions lor each blocks. 'I'he coliumn and row index are ordered

from the top left. The fractal dimension of each subimage is given in table (a).

mean g and the standard deviation o are given in table (b).
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Figure 5.16: A plot of the fractal dimensions of the fifteen subimages for each class.
The x-axis represents the fractal dimension and the y-axis the number of blocks at
that {ractal dimension. The curve with a diamond symbol corresponds to the perceive
constant intensity, the curve with a cross symbol to the smooth texture, and the curve
with the square symbol to the rough texture.



5.4 Selection of the Threshold for Regions Belonging to

Perceived Constant Intensity

In our proposed texture-based segmentation algorithm. textural regions are classified
into three classes: perceived constant intensitv. smooth texture, and rough texture.
To determine the merging-split condition hetween the regions belonging to the per-
ceived constant intensity, we use the visual threshold in the segmentation algorithm.
We investigate three different thresholds, two are based on IIVS properties. The
HV'S-based thresholds we propose are adapted to local intensity characteristics of the
mage. As the segmentation algorithm progresses spatially through the image, the
segmentation threshold is varied, depending on the intensity of the image in a local
area. The thresholds have heen designed for use on an image with 256 gray levels.
The third threshold is the simplest threshold possible. a single constant that is used
for the entire image. We refer to the coustant threshold as th,.

We incorporate the HVS properties in our segmentation algorithm using the JNI
as the visual threshold. The split-field method [30] to measure the JND discussed in
Subsection 2.3.1 is used since it measures the JND quickly and reliably. The image
display device is divided down the middle into two equal-size fields. The left field is
a constant refercnce intensity and the right field begins at the top with the constant
reference intensity and increases linearly up to 40 steps above the constant reference
intensity. To perform the tests, the viewer simply clicks the mouse at the point where
the difference hetween the left and right fields is no longer discernible. This point
is the JND between the reference intensity on the left and the test intensity on the

right. A plot of the average of five viewers is shown in Figure 5.17.

As a third threshold. the JND curve is approximated by three straight line com-



ponents. The motivation behind the straight line component approximation is to
determine whether a simple approximation to Figure 5.17 can be used. The thresh-
old is largest in the highest and lowest intensity areas of the image and smallest and
almost constant in the middle intensity areas. The JND curve is approximated by
using a least squares linear regression to fit straight lines to the JND curve. The third
threshold th,, is given by

ap+h for 0<p<p

thap pad (12]) + b2 .fo’]' I)l S p < 1)2
azp+ by for p; < p <255

v-intercept, 7 is a line index. and p is a gray level. see

o

where a; is a slope, b; 1s

Figure 5.18.

5.4.1 The Experimental Results

The thresholds described above were used to segiment the test images shown in I'ig-

5.1. These test images are 256 x 256 pixels, with 256 gray levels. The three

ures
segmentation thresholds were compared to each other in order to determine which
threshold resulted in the most visually pleasing segmented image.

First 1h, was examined. fhg, is used to decide when to merge two blocks
belonging to class 1. We wished to determine approximately which th,,, resulted
in the subjectively best visual quality segmented image. C‘omparing the segmented
images with a variety of th..n. the best visual quality segmented images were ohtained
with the,, = 5.5. The segmented images of test images are shiown in Figure 5.19 using
theon = 5.5. The numbers of segments belonging to the perceived constant intensiy

are given in Table 5.13.
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The second threshold was found using the JND. The test image size 1s 256 x 256
with 256 gray levels. Five test subjects were asked to take a measurement of JND.
Each test subject sat a distance of approximately six times the image height away
from the screen. The test subject was given approximately three minutes hefore the
start of the experiments. to allow for adaptation to the laboratory’s illumination. The
test subject was asked to take five seconds in each click to allow for adaptation to
the screcn. The mean of five subjects JND measurements is shown in Figure 5.17.
In the figure we see that the experiment agrees with the IIVS contrast sensitivity
properties [11]. The JND is largest in the lowest and highest intensity areas of the
image. The JND is smallest and nearly constant in the middle intensity areas of the
image. The segmented images of test iimages are shown in Figure 5.20 using this
threshold. The numbers of segments of the perceived constant intensity are given in
Table 5.1.1.

The third threshold is obtained by approximating the JND curve with three
straight line components using a least-square linear regression. The approximated
curve is described by six parameters: three slopes ay, a;. and az. and three y-
intercepts by. by. and bs. The parameters calculated are ¢; = —0.57282. «, = 0.0093 1,
as = 0.738G1. b, = 42.96975, by = 4.40066. and b3 = 6.05303. The original JND curve
and the approximated JND curve are overlaid for comparison in Figure 5.18. The
bold line corresponds to the approximated JND curve. The values of the JND and
the approximated JND are almost the same for the middle and high intensity areas
of the image and the values are a little different only for the lower intensity areas
of the image. llowever, since the human has the least sensitivity in the lower inten-
sit v areas. the difference does not affect the image quality. The segmented images of

{est images are shown in Figure 5.21 using the approximated JND. The number of



segmeunts belonging to the perceived constant intensity are given in Table 5.15
Comparing the segmented images in Figures 5.19 to 5.21. 1h., has heen shown
to be inferior to thyxp and th,,. From these sets of images it can be seen that 1h;xp
produces as good or slightly better quality segmented images than th,,. This is as
expected because thyyp better adapts the local properties of the images. The number
of segments belonging to the perceived constant intensity is approximately the same
for thynp and 1h,, and the number of the segments for thyjnp and thy, is less than the
one for th.,. In a segmentation-based image compression svstem, the number of the
segments is critical to the bit rate because the bhoundaries interiors of the segments
are encoded. Therefore, the best threshold is the one that produces not only a better
image quality but also the minimum number of image segments. thyyp or th,, can be
chosen as the threshold. We use thjyp as the threshold in the proposed segmentation

algorithm because thjnp produces slightly better quality segmented image than 1h,,.
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ﬁigure 5.19: The segmented images using th.,, = 5.5. (a) Miss USA. (b) Lena. (c)
ouse.

Table 5.13: The number of segments for test images using 1h.., = 5.5.

Image Miss USA | Lena | House
Num. of class I 448 821 851

Table 5.13: The number of segments for test images using 1h.,, = 5.5.

Image Miss USA | Lena | House
Num. of class I 448 821 8H1







Figure 5.20: The segmented images using thynp. (a) Miss USA. (b) Lena. (c) Ilouse.

Table 5.14: The number of segments for test images using thjxp.

Image Miss USA | Lena | House
Num. of class I 391 T 6RO
Image Miss USA | Lena | House

Num. of class I 391 e G0







(c)

Figure 5.21: The segmented images using th,,. (a) Miss USA. (b) Lena. (c) Iouse.

Table 5.15: The number of segments for test images using 1h,,.

Image Miss USA | Lena | House
Num. of class I 395 181 693
Image Miss USA | Lena | House

Num. of class I 395 TR1 693




5.5 Conclusion

In this chapter we discussed how to determine the block size for estimating the fractal
dimension because the block size is critical in good estimates of the fractal dimension.
Then we examined how to threshold the fractal dimension. The threshold values
of the thresholds D, and D, affect the compression ration and the image quality.
Finally. the selection of the threshold used to determine when regions helonging to
the perceived constant intensity merge was discussed. It was shown that the JND or
the approximated JND rather than the constant threshold produced better quality

segmented images and less number of the segments.
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6

A Texture Segmentation-Based Image

Coder

6.1 Introduction

In this chapter 1. a complete description of the new codec model was given. The
transmitter was divided in three major components; the transmitter, the segmenter,
and the mixed encoder. The preprocessor and the segmenter have heen discussed in
detail in C'hapters 4 and 5. respectively. In this chapter, we present the details of
the mixed euncoders. The purpose of using the mixed encoder rather than a single
encoder is that a higher compression image can be obtained by applying an efficient
coding technique to the boundary and texture classes. Furthermore. more hits are
used to encode the information for which the HVS is more sensitive and fewer bits
are used to encode the information for which the V'S is less sensitive.

After presenting the details of the mixed encoding. the performance ol the pro-
posed image coding technique will he addressed. The first issue concerns the segmen-
tation method. A modification will be proposed that allows for increased spatial detail
without decreasing the block size. The modification uses the concept ol overlaped
Llocks. The choice of overlap or nonoverlap blocks affects the number of segients

helonging to each class. Specifically. the number of segments belonging to the per-



ceived constant intensity is critical to the compression ratio since their perceived gray
levels need to be transmitted. We investigate the number of segments for each class
and the number of pixels for each class in the non-overlap and overlap segmentation.

The second issue is the performance of the proposed coding system with respect
to variation in Dy and D;. The values of Dy and D, aflect the compression and
the image quality. Higher values of D; give more regions belonging to the perceived
constant intensity in an image and lower values of D, produce more regions helonging
to the rough texture class. We examine bit rates and the change ol the number of
segments for each class with Dy and D, variable.

The texture information in regions belonging to class I and class 111 are encoded
using polynomial functions. The amount of error that can be tolerated between the
original image data and the modeled image data is. A lower error is chosen for class
1T than class 11l because of the sensitivity of the HVS. The last issue is to evaluate

the performance with variation in the amount of error.

6.2 The Mixed Encoder

The last stage in the transmitter encodes the boundaries and the interiors ol the
regions in the segmented image. In the proposed image segmentation. the regions
are classified as belonging to one of three classes. Classes I, 11, and 11 are perceived
constant value, smooth texture, and rough texture. respectively. In the proposed
coding approach, separate coding schemes are used for each class. We would like
the image coder to use more bits to encode the regions for which the HVS is more
sensitive. and use fewer bits to encode the regions for which the HV'S is less sensitive.

To accomplish this, the encoder is designed as separate stages: the encoding of the
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boundaries, and the encoding of each textural class. In the next section. the encoding

of the boundaries will be discussed.

6.2.1 The Boundary Coding

Since the HVS is sensitive to the edges. the accurate representation of the boundary
1s necessary to describe the location of the region houndary. Therefore, we clhose an
errorless coding scheme to represent the boundaries. A binary map is created to rep-
resent the boundaries. We examine three different errorless binary codes: runlength
code [22]. crack code [77]. and arithmetic code [73. 76].

Runlength coding is a technique which works well on sparse binary signals. for ex-
ample an image made up mostly zero. with a few ones. The image rows are catenated
together to form a vector. and all runs of consecutive 0's are found. The lengths of
these runs. separated by a symbol (referred to as a comma) to mark the end of a run
(i.e. the presence of a 1). completely describe the original image. The runlengthis and
commas are then coded using a source coding technique such as the one described
in [22]. This technique involves using n symbols in an n-ary arithmetic system to
represent the runlengths, and an n+1'th symbol to represent a comma. Details are
described in Appendix 9.1.

('rack coding traces the boundaries between regions. The lines that separate
pixels belonging to different regions are coded. This is a four-way connected line
diagram. in which links are from the four element set up, down. left. right. The
coded segmentation image consists of two independent sources; a list of coordinates
from which fo start tracing the edges and the edge description. The crack coding is

described in detail in Appendix 9.2.
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Arithmetic coding. introduced in the LIFO-form (last-in first-out) in Rissanen [76]
and subsequently modified to the important FIFO-form (first-in first-out) in Pasco [58].
encodes the strings. S consisting of the symbols 7 = 0.1.---.m. The basic encod-
ing operation in an arithmetic code requires an update of of the probability P(5) of
the so-far processed string S. which can be done by P(S)P(i/S). where P(i/S)is a
conditional probability of the symbol i given S. The arithmetic coding is described in
detail in Appendix 9.3.

In our approach, the boundary information was represented using blocks. not
pixels. Therefore, the number of bits to represent the houndaries is almost reduced
by the block size. The compression ratio of the boundaries does not govern the overall

compression ratio.

6.2.2 The Perceived Constant Regions

For regions which belong to perceived constant intensity class (class 1), only the
mean intensily values need he transmitted to describe the textures of the regions.
In this case, lossy compression has already taken place since we are approximating
each region texture with a constant value. We do not wish to introduce any further
conipression.

Since an intensity mean requires 8 bits, the mean intensity value is converted into
a vector of an 8 x N binary array, where N is the number of segments helonging
to perceived constant regions. The mean vector is then encoded using an arithmetic

code.

98



6.2.3 The Smooth and Rough Textural Regions

The texture information in regions helonging to class II and class 11T are not directly
encoded. To get higher compression. these regions are modeled first using polvno-
mial functions. The coeflicients of the polynomial functions are encoded hecause the
variance of the coefficients is less than that of the original data. Arithmetic code
1s used to encode the coefficients. A lower amount of error tolerated between the
original image data and the modeled image data is chosen for class II than class 111
because of the sensitivity of the HVS. In general, modeling these regions by functions
of higher order polynomials is computationally excessive. In this section. the use of
one or two dimensional polynomial functions is investigated and the performance of
the encoding system to variation of tolerated amounts for class Il and class III are
investigated also.

The functions that approximate a signal within each region using 2-D polynomials.

have the form:

order 0: z(i.j) = ao
order 1: =z(i.jJ)= ao+ ayi + ay)

order 2: z(i.j) = ao+art+azj+azy+ a4i? + asj?
In the 1-D case these reduce to:

order 0: :(i.j)= ay forall)
order 1: z(i,J) = agp+ ayt for allj

order 2: =(i.j) = ao+ ayi + azi® for all j

Regions belongmg to the smooth and rough texture class are modeled using 1-D or
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2-D polynomials by minimizing the SSE of the approximation given by
>3 (gling) — =)
i

where g(i,j) is the two-dimensional intensity field of the original image and i.j are
defined within each region. The selection of the 1-D or 2-D representation for regions
belonging to class 11 and class 111 depends on the SSE. Representation of the smooth
and the rough textures by the zero-order, first-order. and second-order 2-D polynomial
functions produces large SSE hecause these regions are changed to platcau. tilted
plane, and quadratic surfaces, respectively. If the SSE is large. the approximated
error is large and the image quality is very noticeably degraded. The other alternative
is to use the 1-D representation for these regions.

In the one-dimensional case, the sum of deviations hetween the original image
data and the modeled image data using the 1-D polynomial functions is used as the
amount of error. The amount of error is compared with the threshold. and if it is
less than the threshold, the next pixel is taken as the temporary end point. This
procedure is repeated until the sum of deviations is larger than the threshold. At
this point. the previous pixel examined will be taken as the end point of the modecled
function. The same pixel is also taken as the start point for the fitting function.

The sum of deviations for class 11 is set to be smaller than one for class I11. That is
why regions which belong to the class 11 require more attention in order to maintain
image quality because of the sensitivity of the HVS. For regions which belong to the
class I1I like the class 1. compression error can be tolerated because the IIVS is least

sensitive to these regions.
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6.3 Nonoverlap and Overlap Segmentation Method

During image segmentation. the image is segmented into three texture classes. The
number of pixels belouging to each class in an image affects the overall compression
ratio. In general. the more regions belonging to the class I. the higher the compression
ratio. An approach to obtain hLigher compression ratio and maintain high image
quality is considered. It is referred to as the overlap method. In the non-overlap
method. an image is divided into mutually exclusive blocks. In the overlap method.
the block subimages are allowed to overlap at their perimeters. The pixels at the
perimeter are computed in two or more blocks. If the pixels at the perimeter represent
perceived constant intensity, the overlap method produces more regions which belong
to the perceived constant intensitv. Thus, the compression ratio is increased while
the image quality is maintained or improved. An example of the overlap method is
shown in Figure 6.1.

In the figure. an 8 x 8 image counsists of three strips of textures. The block size is
1 » 4. Pixels in the first and second columns represent texture which corresponds to
the class 11. Pixels from the third through the sixth columns represent texture which
corresponds to the class I. Pixels in the last two column represents texture which
corresponds to the class II1. The 50 percent overlap method characterizes the texture
in the middle four columns while the non-overlap method does not characterize the
{exture exactly. as shown in the figure. However. some pixels are computed more
than once. and this increases the computation load. as shown in the figure. When an
image of 256 x 256 pixels is divided into 8 x 8 blocks, the number of blocks with 0.
50. and 75 percent overlaps are 32 x 32. 4 X 32 x 32, and 16 x 32 x 32, respectively.

There must be a trade-off between the overlap and compression ratio. Experimental
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results are given in the next section.
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6.4 The Experimental Results for the Nonoverlap and Over-
lap Segmentation

6.4.1 The Pixel Percentage for Each Class

In Section 5.3 of Chapter 5. we discussed how to determine the thresholds D, and
D; of the fractal dimension. It was shown that the curve of the fractal dimensions
belouging to the perceived constant intensity are approximately semi bell-shaped
around the zero and the curves of the fractal dimensions helonging to class 11 and
class 111 are approximatedly hell-shaped around their mean respectively. In addition,
there are gaps between the curves of the fractal dimensions for each class. By these
experiments. the value of D; should not be greater than the minimum of the fractal
dimensions belonging to class II and the value of D; should lie between the means
of class II and class III. Therefore, it is reasonable that the value of D, is chosen to
be half of the swm of the maximum fractal dimension corresponding to the perceived
constant intensity and the minimum fractal dimension corresponding to the smooth
texture. D, = M}”ﬂ = 2.035. The value of D, is chosen to be half of the sum
of the maximum fractal dimension corresponding to the smooth texture and the
minimum fractal dimension corresponding to the rough texture, 23242492 = 9 363,
With D; = 2.035 and D, = 2.363, the class type images for the test images with
0. 50. and 75 % overlap are shown in Figures 6.2, 6.3, and 6.4. Blocks with fractal
dimension less than D;. between D; and D,, and greater than D, are represented
with an intensity value of 0. 127. and 255 respectively at all pixels in their blocks for
visual purposes.

In Miss USA, almost all of the blocks in the large background and some blocks on

the sweater correspond to class I, some blocks around the neck correspond to class I1.
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and blocks around the eyes, noses. and mouth correspond to class 1II. In Lena. most
blocks on the background and many blocks on the black {frame of the mirror and the
within mirror correspond to class I. blocks on the cap. the chin. and the shoulder
class 11, and all the blocks on the feather correspond to class 1. In House, all the
blocks on the sky on the top and some blocks on the wall on the bottom correspond
to class 1. Some of the blocks on the lawn correspond to class I and II. Almost all of
the blocks on the trees on the left and right. and the bushes, correspond to class HI.
In addition, blocks on the windows of the house correspond to class 11 since shadows
of trees are on the house.

The percentage of pixels within each class in the test iimnages is given in Tables 6.1.
6.2, and 6.3 with the different overlaps. When the overlap is 50 percent, the percentage
of pixels belonging to class [ is greatly increased. This means that the compression
ratio for 50 percent overlap will be much higher than that for a zero percent overlap.
When the overlap is 75 percent. the percentage of pixels belonging to class I is almost
the same as for 50 percent overlap. Since the number of computation is increased
for the 75 overlap method and computation rate is not significantly decreased, we

determined that the best overlap is 50 percent.
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Figure 6.2: The class type images of Miss USA. (a) 0 percent overlap. () 50 percent
overlap. (c¢) 75 percent overlap.

Table 6.1: Pixel percentage of each class in Miss USA

overlap | class I % | class II1 % | class III %
0% | 7321 20.11 6.65
50 % 85.49 10.29 4.22
75 % 88.59 7.50 3.85

Table 6.1: Pixel percentage of each class in Miss USA
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Figure 6.3: The class type images of Lena. (a) 0 percent overlap. (b) 50 percent
overlap. (c¢) 75 percent overlap.

Table 6.2: Pixel percentage of each class in Lena

overlap | class I % | class II % | class III %
0 % 29.49 45.89 24.62
50 % 52.05 26.14 21.81
75 % 59.79 20.08 20.13

Table 6.2: Pixel percentage of each class in Lena
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Fignre 6.4: The class type images of House. (a) 0 percent overlap. (b) 50 percent

overlap. (¢) 75 percent overlap.

Table 6.3: Pixel percentage of each class in House

overlap | class I % | class II % | class III %
0% 16.99 37.89 15.12
50 % 24.26 30.26 4548
75 % 29.18 26.37 41.15

Table 6.3: Pixel percentage of each class in House



6.4.2 Variability of D, and D,

In this subsection, we examine the percentage of pixels within each class as a function
of Dy and D,. Higher values of D; force more pixels into the perceived constant
intensity class and generally there will be both a larger number of regions belonging
to the perceived constant intensity class and more pixels per region. Lower values of
D2 produce more regions belonging to the rough texture class. We investigate the
changes of the percentage in pixels within each class for the following values of D, and
D,. Dy = 2.035 is the hLalf of the sum of the maximum of the curve corresponding to
the perceived constant intensity. D; = 2.363 is the half of the sum of the maximum
of the curve corresponding to the smooth texture and the minimum of the curve
corresponding to the rough texture, 2.021 is the maximum of the curve corresponding
to the perceived constant intensity, 2.049 is the minimum of the curve corresponding
to the smooth texture, 2.324 is the maximum of the curve corresponding to the
smooth texture. and 2.408 are the minimum of the curve corresponding to the rough
texture in Figure 5.16. We examined the changes of the pixels of each class with
507 overlap since the 50% overlap was used for the proposed coding algorithn. The
percentage of the pixels within each class with variation in Dy and D, are given in
Tables 6.4 to 6.9. These results show that higher values of D; produce more pixels
helonging to the perceived constant intensity and lower values ol D, produces more

pixels belonging to the rough texture.
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Table 6.1: Percentage of the pixels in each class in Miss USA with 50% overlap. D,
variable, and D, = 2.363.

Table 6.5: Percentage of the pixels in each class in Miss USA with 50% overlap.

D, class I % [ class I1 % | class III %
2.021 76.70 18.40 4.88
2.035 85.49 10.27 4.2
2.049 90.62 5.88 3149

Dy = 2.035, and D, variable.

Table 6.6: Percentage of the pixels in each class in Lena with 50% overlap. D, variable,

and D, = 2.363.

D, class I % | class II % | class III %
2.324 85.4Y 10.27 1.22
2.363 85.49 10.27 4.22
2.408 85.1Y 10.40 4.10

D, class I % | class I1 % | class III %
2.021 30.51 41,79 24.68
2.035 52.05 26.14 21.80
2.049 65.89 15.23 I8.87




Table 6.7:

) . . . . .
Percentage of the pixels in each class type in Lena with 50%

Dy = 2.035. and D, variable.

D, class I % | class II % | class 111 %
2.324 52.0H 26.14 21.80
2.363 52.05 26.14 21.80
2.408 52.05 26.63 21.31

overlap,

Table 6.8: Percentage of the pixels in each class in House with 50% overlap, D,

variable, and D, = 2.363.

Table 6.9:

D, class I % | class I1 % | class III %
2.201 17.45 35.05 47.48
2.035 22.58 31.42 45.99
2.049 35.18 21.72 43.09

Percentage of the pixels in each class in House with 50% overlap.
D, = 2.035, and D, variable.

D, class I % | class II % | class III %
2.324 22.58 31.03 46.38
2.363 22.58 31.42 145.99
2.408 22.58 31.88 45.53

113



6.4.3 The Boundary Coding

In this subsection we present the results of compressing the boundaries of the regions
in the segmented image using the three different lossless coding techniques; runlength
code. crack code, and arithmetic code. The segmented images were obtained with
D; = 2.035 and D; = 2.363 and 50% overlap. Information about the number of
segments and the boundary points is summarized in Table 6.10. The number of
the bits to represent the boundaries is given in three different coding techniques in
Table 6.11. These results show that the arithmetic code achieves lower bitl rate than
the runlength code and the crack code. Tlerefore. we will use the arithmetic code in

our codec.
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Table 6.10: Summary of the numbers of the total segments and the houndary points
using Dy = 2.035 and D, = 2.363. .

number of | number of
image total boundary
segments points
Miss USA 298 1908
Lena 699 3801
House 289 1984

Table 6.11: Summary of bits to represent the boundary using the three different

coding.

number of bits | number of bits | number of bits

image for runlength for crack for arithmetic
code code code
Miss USA 3636 1463 370
Lena 7244 2915 T3
House 3781 1521 384




6.4.4 Coding of the Constant Regions

In this subsection we present the results ol encoding of the constant regions using the
three lossless coding techniques; runlength code. crack code, and arithmetic code. To
encode the regions belonging to the perceived constant intensity. their mean values
are converted into an 8 x N binary. Eachh mean value is represented by 8 bits and
there are N segments belonging to the perceived constant regions. The results are
shown in Tables (.12 and 6.13. The total number of the regions and the number
of constant regions are given in Table 6.12 while the number of bits to represent the
constant regions for each coding technique is summarized in Table 6.13. These results
again show that the arithmetic code is better than the runlength code and the crak

code.
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Table 6.12: Summary of the numbers of the total segiments and the perceived constant

regions using D; = 2.035 and Dy = 2.363.

number of | number of
image total constant
segments regions
Miss USA 298 242
Lena 699 576
House 289 199

Table 6.13: Sumunary of the number of bits to represent the constant region.

number of number of number of
image bits for bits for bits for
runlength code | crack code | arithmetic code
Miss USA 3690 1484 375
Lena 8782 3534 879
House 3034 1889 308
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6.4.5 Coding of the Smooth and Rough Textural Regions

In this subsection we first examine the SSE's of 1-D and 2-D polynomial functions
to determine which dimensional polynomial functions is used to represent textural
regions. and then the results of compressing the smooth and rough regions by 1-D
dimensional polvnomial functions are presented. In the 2-D case, the coefficients ¢

are chosen to minimized the SSE of the approximation
3D (gli) = =i 5)°
i

where g(i.j) is the 2-D intensity field of the original image and z(:.j) is the 2-D
polynomial function. We examine how well the 1-D and 2-D polynomial functions
approximate the original image data. First consider the 2-D case. A 32 x 32 subimage
around the trees in House was chosen to represent a rough textural region and a 32x32
subimage around the chin in Miss USA was chosen to represent a smooth textural
region. Recall from Chapter 5. the trees in the House and the chin in Miss USA
were classified as rough and smooth textural classes. respectively. The zero-order
(platean). first-order (tilted plane). and second-order (quadratic) representations for
the rough textural and the smooth textural subimages are given in Figures 6.5 and 6.6.
respectively along with the original subimages, the zero-order model, the first-order
model. and the second-order model. The SSE's for each representation are given in
Tables 6.14 and 6.15 below the figures. As shown in the tables, the SSE for each
order is so large that the representation using lower order 2-D polynomial [unctions
is not likely to be useful in the proposed compression system. An alternative is {o
use higher order 2-D polynomial functions or 1-D lower order polynomial functions.

However, the computation time to minimize a higher order 2-I polvnomial functions



is very expensive. Therefore, the 1-D polynomial function are considered.

In the 1-D case. the same original images were used. The zero-order (platean).
first-order (tilted plane). and second-order (quadratic) representations for the rough
textural and the smooth textural subimages are given in Figures (.7 and 6.8, re-
spectively along with the original subimages. the zero-order model. the first-order
model, and the second-order model. The SSE's for each representation are given in
Tables 6.16 and 6.17 below the figures. As shown in the tables, the SSE in the 1-D
case is less than one in the 2-D. It means that the 1-D functions represent the smooth
and the rough textures better than the 2-D functions and with fewer computation
and lower bit rates.

In the 1-D ase. we adjust. the amount of error tolerated between the original image
data and the modeled image data. A lower error can be chosen for class 11 than class
II. Information about the number of regions and the number of bits to represent these
regions is summarized in Table 6.18 using the 1-D first-order polynomial function.
The first order polynomial functions were used because the SSE of the first order
polynomial function is not much greater than the SSE of one of the second-order
polvuomial function The sum of deviation hetween the original image and the modecled
image were used to calculate the amount of error. The thresholds for class Il aud class
11 are 25 and G60. respectively. The largest values of the thresholds which produced
the good image quality by experiments were chosen because the largest {hresholds
give the lower bit rates. Further analysis of the codec performance as a function of

the choice of thresholds is given in Subsection 6.4.7.
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Figure 6.5: Modeling a rough texture r;lgion using a 2-D polynomial. From left to to
right are the 32 x 32 tree subimage in House; the original, the zero-order model, the
first-order model, and the second-order model.
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Table 6.14: The sum of squared error (SSE) values for each model.

order | zero first second
SSE | 1449139 | 1326727 | 1271754
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Table 6.15: The sum of squared error (SSE) values for each model.

order

zZero

first

second

SSE

371751

250527

180449
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re 6.7: Modeling a rough texture region using a 1-D polynomial. From left to to
ng t are the 32 x 32 tree subimage in House; the original, the zero-order model, the
first-order model, and the second-order model.

Table 6.16: The sum of squared error (SSE) values for each model.

order

zero

first

second

SSE

1365865

1146474

953608
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Figure 6.8: Modeling a smooth texture region using a 1-D polynomial. From left
to to right are the 32 x 32 chin subimage in Miss USA; the original, the zero-order
model, the first-order model, and the second-order model.

Table 6.17: The sum of squared error (SSE) values for each model.

order | zero first second

SSE | 217724 | 113491 | 79801
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Table 6.18: Summary of the numbers of the segments in the smooth and rough textu-
ral regious and the number of bits to represent those regions using a 1-D polynomial.
ree R . . . . N

I'he polynomial coeflicients were encoded using the arithmetic code.

number number of
image of bits for
segments | these regions
Miss USA 56 3127
Lena 123 14320
House 90 28183




6.4.6 Bit Rate Computation

To compute the total number of bits required to transmit an image. the three numbers
of bits calculated for the boundary. constant region. smooth /rough texture are added.
The bit rate is the sum of the number of bits divided by the total bits of an image.

The bit rate. BR is given by

SP+CP+ RP

BR =
256 x 256 = 65536

where SP is the number of bits required for encoding of the boundaries, (‘P is the
number of required for encoding of the constant regions, and R is the number of
required for encoding of the smooth and rough texture regions. For example, we
calculate the bit rates of test images with the following paramemters: the thresholds
of the smooth and the rough texture classes are 25 and G0 respectively, I); = 0.035
and D, = 0.363. The number three numbers of bits calculated for the houndary,
constant region. and smooth/rough texture as given in Tables 6.10. 6.12, and G.18 are
added. We see that Miss USA requires 370437543127 = 3872 bits for encoding. Lena
requires 7374879+ 14320 = 15936 bits. and House requires 384 +303+28183 = 28875
bits for this coding method. The compression ratios. BI! for the test inmages are
3872/65536 = 0.06. 15936/65536 = 0.24. and 28875/65536 = 0.41 bit per pixel.
respectively.

The decoded images for each test image are given in Figure 6.9. The image quality
of the decoded images are good with these bit rates as shown in Figure 6.9. Through
our experiment. our segmentation-hased image compression method works well for a
wide variety of images including a natural image with highly textural areas referred

as IHouse.
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Figure 6.9: The decoded images of the test images with Dy = 2.035 and I, = 2.363.
(a) The decoded 1mage of Miss USA. (b) The decoded image of Lena. (¢) The decoded
image of House.



6.4.7 Performance Evaluation of the CODEC

In this subsection. we evaluate the entire image coding svstem as parameclers are
varied. The parameters are the fractal dimensions Dy and Dj. and the model error
thresholds for classes Il and 111. First. the compression ratios were computed with
only D, varying and the remaining parameters fixed. The thresholds for the smootl
and rough regions are 25 and 60 respectively. Second. the compression ratios were
obtained with D, varying and the remaining parameters fixed. Third. the compression
ratios were computed with the thresholds for the smootl and rough regions varving
and Dy. D, fixed. Signal-to-ratio (SNR) values are computed in each case. SNR is

defined as:

) o?
SNR = 1010‘(/10[%]

error
where
) 1 P P
Jimags = 73_2' Z Z[gl} - ll]z
=1 3=1
1 P P
2 N
Terror = F; Z E[gl.] -9 — /’e]2
=1 j=1

where g;; the input image. §;; the decoded image. i the mean of ¢i; and g, the mean
of the error signal, g;; - §;;. P is the size of the image (P x P) and /. are indices o
the image array.

The bit rate. the SNR, and the number of segments of each class are summarized
in Tables 6.19 to 6.21 with D, variable and D, fixed. Some plots of the SNR with
Dy variable and D, fixed are given in Figures 6.10 and 6.11. In the tables, NT.

NI1. N2, and N3 represent the total number of segments. the number of segments
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belonging to class 1. the number of segments belonging to class 11, and the number of
segments belonging to class 111, respectively. These results show {hat higher values of
Dy produce lower hit rates and lower SNR's. That is why lower values ol Dy increase
the number of segments belonging to the perceived constant intensity as shown in the
tables.

The bit rate. the SNR. and the number of segments of each class are summarized
in Tables 6.22 to 6.24 with D; fixed and D, variable. A plot of the SNR with D,
fixed and D, variable for House is given in Figure 6.12. These results show that lower
values of D, produce lower bit rates and lower SNR's. That is why lower values of
D, increase the number of segments helonging to class I1I as shown in the tables. In
the proposed coding system. regions belonging to class 111 are less emphasized than
regions belonging to class II because of the sensitivity of the ITVS.

To evaluate the performance with variations in the amount of error for class 11 and
class IT]. a summary of information about the bit rate. the SNR. and the number of
segments for each class with variation in amount of error is given Tables 6.25 to 6.30.
D, = 2.035 and D, = 2.363 were used. A lower amount of error for class class 1
and ITI produces higher bit rates and higher SNR’s while the number of segments for
eacl class remains the same. To increase the image quality of the regions belonging
to class 11. a lower error for class 11 is chosen. If we wish to increase the image quality
of the regions belonging to class III, a lower error for class 111 is also chosen. Since
regions belonging to class II are sensitive to the HVS. amount of error for class 11
should. in general. be chiosen to lower than class 1.

Tvpical reconstructed images at rates of 1 bit/pixel and 0.2 bit/pixel for all test
images are given in Figures 6.13 to 6.15. The reconstructed image at rates of |

bit /pixel have a very good image quality. This means that the visual loss at these



rates is ignored. The reconstructed images at rates of 0.2 bit/pixel have a good image
guality except Lena which contains block boundary artifacts. Since the proposed
coding svstem is based on blocks notl pixels. when a higher value of D, is chosen.
more blocks are classified as the perceived constant intensity and artifacts are more

noticeable.
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Table 6.19: Summary of coding information in Miss USA. Dy is variable and D, is
fixed to 2.363.

D, rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.001 0.15 1839 | 73 ¢ 31 | 12 | 30
2.005 0.15 1839 | 73 | 31 | 12 ] 30
2.01 0.13 18.03 | 122 | Sl 10 | 31
2.015 0.11 1730 L 170 | L7 | 19 | 35
2.020 0.09 16.64 | 211 | 153 | 25 | 33
2.025 0.08 16.27 | 230 | 197 | 28 | 25
2.030 0.07 16.01 | 252 | 202 | 28 | 22
2.035 0.06 1590 | 298 | 242 31 | 25
2.040 0.05 15.56 | 313 {262 | 28 | 23
2.050 0.04 15.20 | 358 {306 | 30 | 22
2.060 0.03 1473 ) 376 ) 332 | 27 | 17
2.080 0.02 14.29 | 398 | 377 | 10 | 11
2.10 0.02 14.11 | 401 {3951 O 6
2.15 0.02 1401 [ 401 1395 0 6
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Table 6.20: Summary of coding information in Lena. D, is variable and 7, Is fixed
to 2.363.

D, rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.001 0.60 17681 60 | 2 | 12 | 46
2.005 0.59 17.54 1 105 | 42 | 16 | 47
2.01 0.54 16.77 | 220 | 152 | 21 | 47
2.015 0.48 15.66 | 327 { 216 { 22 [ 59
2.020 0.45 15.05 | 424 [ 329 | 34 | Gl
2.025 0.39 14.501 | 528 | 421 | 51 | 56
2.030 0.3¢ 1413 1 622 | 503 | 65 | 5l
2.035 0.30 13.62 | G99 [ 576 | 76 | 47
2.040 0.27 13.20 | 774 | 657 | 74 | 43
2.050 0.22 12.60 { 901 | 793 | 77 | 31
2.060 0.18 12.15 | 968 | 859 [ 79 | 30
2.080 0.16 12.00 { 988 | 883 | 75 | 30
2.10 0.12 11.90 | 991 [ 889 | 72 | 30
2.15 0.10 11.81 | 991 [ 889 | 72 | 30




Il‘al;licﬁj?l: Summary of coding information in Ilouse. D, is variable aud D, is fixed
0 2.363.

D, rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.001 0.55 12.89 | 60 T 39 | 14
2.005 0.51 12.86 | 64 14 ] 36 | 1)
2.01 0.53 1299 1 92 | 35 | 11 | 16
2.015 0.52 1267 | 136 | 67 | 54 | 15
2.020 0.51 1253 | 183 § 108 | 57 | I8
2.025 0.50 1235 |1 212 | 136 | 60 | 16
2.030 0.49 1221 ] 255 | 172 67 | 16
2.035 0.48 12,12 | 289 {199 | 73 | 17
2.040 0.46 1174 1 357 1266 | 74 | 17
2.06 0.42 147 | 436 | 341 74 | I8
2.08 0.29 10.19 | 741 | 675 | 45 | 21
2.10 0.23 946 | 876 | 841 | 3 32
2.15 0.23 946 | 876 | 841 ] 3 32
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Table 6.22: Summary of coding information in Miss USA. D, is fixed to 2.035 and
D, is variable.

D, | rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.21 0.06 1590 | 298 {242 31 | 25
2.26 0.06 15.90 | 298 | 242 | 31 | 25
2.31 0.06 1590 | 298 | 242 | 31 25
2.36 0.06 15.90 | 298 | 242 | 31 | 25
2.41 0.06 1594 | 297 | 241 | 30 | 26
2.46 0.06 1596 | 296 | 241 | 29 | 26
2.51 0.06 1599 1 291 | 241 | 28 | 25
2.56 0.06 16.05 | 292 | 240 | 26 | 26
2.61 0.06 16.06 | 286 | 210 | 24 | 22
2.66 0.07 16.10 | 281 | 240 ] 21 | 20
2.71 0.07 16.12 1 271 {240 | 19 | 12
2.76 0.07 16,14 1 269 | 240 | 19 | 10
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Tal}lél‘ 16.‘23: Summary of coding information in Lena. D is fixed to 2.035 and D, is
variable.

D, | rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.21 0.30 13.62 | 699 | 576 | 76 | 47
2.26 0.30 13.62 | 699 | 576 | 76 | 47
2.31 0.30 13.62 | 699 | 576 | 76 | A7
2.36 0.30 13.62 | 699 | 576 | 76 | 17
2.41 0.31 13.63 | 700 | 576 | 74 | 50
2.46 0.32 13.64 | 695 [ 576 | 71 | 48
2.51 0.33 13.72 | 682 | 576 | Gl 45
2.56 0.35 13.79 | 668 | 576 | 51 | 4l
2.61 0.36 13.86 | 658 | 575 | 43 | 10
2.66 0.38 13.95 | 645 [ 575 | 32 | 38
2.71 0.40 1106 | 645 | 576 | 29 | 40
2.76 0.42 [4.16 | 638 | 578 | 26 | 34




Table 6.24: Summary of coding information in House. Dy is fixed to 2.035 and D, is
variable.

D, | rate, bit/pixel | SNR | NT | N1 | N2 | N3
2.21 0.47 1211 ] 289 | 199 | 73 13
2.26 0.47 12,11 | 289 | 199 | 77 13
2.31 0.47 12,01 | 287 (199 | 75 | 13
2.36 0.48 1212 1 289 | 199 | 73 | 17
2.41 0.49 1216 1 292 1199 | 71 22
2.46 0.19 12,16 | 292 1 199 | 71 22
2.51 0.50 1221 | 288 | 198 | 6Y | 21
2.56 0.51 12.30 | 280 | 198 | 63 19
2.61 0.54 1244 |1 281 1 198 | 53 | 30
2.66 0.58 12.67 | 279 | 198 | 41 19
2.71 0.62 12.90 | 283 [ 198 | 40 15
2.76 0.67 13.20 | 289 | 198 | 36 | 55
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T‘able 6.25:_ Summ_ary of Foding information in Miss USA. D, = 2.035. D, = 2.363,
_711.5,.2 = (»O_ a.1}(l TH,, is variable, where T'H,,; and TH,,, are the thresholds of
regions beloinging to the smooth and the rough textures respectively.

TH,., |rate,bit/pixel | SNR
5 0.11 16.19
10 0.08 16.12
15 0.07 16.05
20 0.06 15.98
25 0.06 15.90
30 0.06 15.84
35 0.05 15.77
40 0.05 15.71
45 0.04 15.6Y9

Table 6.26: Summary of coding information in Lena. D, = 2.035. D, = 2.363.
TH.., =060 and T H,,, 1s variable.

TH,., |rate, bit/pixel | SNR
5 0.51 13.78
10 0.40 13,75
15 0.36 13.71
20 0.32 13.G6
25 0.30 13.62
30 0.28 13.57
35 0.27 13.52
40 0.26 13,46
45 0.25 13.42
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Table 6.27: Summary of coding information in House. D; = 2.035. D), = 2.3G3.
TH,., =060 and TH,,; 1s variable.

T, |rate, bit/pixel | SNR
5 0.80 12.28
10 0.63 12.24
15 0.55 12.20
20 0.51 12.16
25 0.48 12.12
30 0.46 12.09
35 0.44 12.06
40 0.43 12.03
45 0.41 12.00

Table 6.28: Summary of coding information in Miss USA. D, = 2.035, D, = 2.363.
TH,..y =25 and TH,,, is variable.

TH., |rate, bit/pixel | SNR
25 0.07 16.22
30 0.06 16.18
40 0.06 16.09
50 0.06 16.01
60 0.06 15.90
70 0.05 15.85
80 0.05 15.76
90 0.05 15.73
100 0.50 15.66
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Table 6.2‘9; Sum{nary of coding information in Lena. D; = 2.035. D, = 2.363.
TH.. =25 and TH,,, is variable.

T'H.., |rate, bit/pixel | SNR
25 0.35 11.50
30 0.34 11.38
40 0.32 .12
50 0.31 13.86
60 0.30 13.62
70 0.29 13.37
80 0.28 13.17
90 0.28 12,99
100 0.27 12.85

Table 6.30: Summary of Codingl{ information in Ilouse. D, = 2.035. D, = 2.363,
TH., =25and 1'H,,; 1s variable.

TH,,, |rate, bit/pixel | SNR
25 0.67 15.91
30 0.63 15.20
40 0.56 13.92
50 0.52 12.95
60 0.48 12,12
70 0.45 1148
80 0.42 11.03
90 0.41 10.65
100 0.40 10.31
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Figure 6.10: Plot of SNR versus rate, bit/pixel for Lena. D, is variable and D; is
fixed to 2.363.
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Figure 6.11: Plot of SNR versus rate, bit/pixel for House. D, is variable and D, is
fixed to 2.363.
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is variable.
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Figure 6.13: The reconstructed images for Miss U'SA. The images on the top and the
bottom are coded at 1.0 bit/pixel with Iy = 2.001 and Dy = 2.76 and 0.2 bit/pixel
with Dy = 2.005 and D, = 2.36 respectively.




Figure 6.11: The reconstructed images for Lena. The images on the top and the
hottom are coded at 1.0 bit/pixel with Dy = 2.005 and D, = 2.71 and 0.2 bit/pixel
with Dy = 2.050 and D, = 2.361 respectively.




Fignre 6.15: The reconstructed images for Honse. The images on the top and the
bottom are coded at 1.0 bit/pixel with Dy = 2.005 and D, = 2.71 and 0.2 bit/pixel
with Dy = 2.06 and D; = 2.41 respectively.




6.5 Conclusion

These results indicate that. using tle texture-based segmentation-based image com-
pression system, compression ratios in the neighborhood of 0.08 to 0.3 hpp are at-
tainable with good image quality. These ratios are almost the same as those achieved
by a segmentation-based compression method using flat segments [71]. However, the
proposed compression technique produces better image quality and is quite uscful
for a wider variety of images. This is because our segmentation compression met hod
was developed using texture features as well as gray levels. Specifically, our tech-
nique works well for images with highly textured areas, while previous compression
techniques were not useful for those immages.

In addition to working well for a wide variety of images. there are also other
advantages to using the method. One advantage is that the block-by-block method
for segmentation-based compression is a more parallel approach than the pixel-by-
pixel one. This allows for a fast implementation for the coding algorithm. The
algorithm hased on the pixel-by-pixel method is not conducive to being done in a

parallel fashion.

Another advantage of our segmentation-based compression is that it allows more
readily for compression ratio/image quality trade-offs. By varying parameters, the
compression ratios can be easily controlled. For example. higher values of D, give
more regions belonging to the perceived constant intensity in an image. Lower values

of D, produce more regions belonging to rough textural class.
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Conclusions

In this report we proposed a new segmentation-based image compression technique
using fractals and properties of the HVS. which achieves compression in the neigh-
borhood of 0.08 to 0.3 bpp. The segmentation is good and conforms to the human
perception of roughness. The proposed method works well for a variety ol images.
The proposed compression technique is different in several key ways [rom other
segmentation-hased image compression schemes. First, an image is segmented into re-
gions with respect to perceptual roughness. Regions are classified as belonging to one
of three classes; perceived intensity value, smooth texture, and rough texture. Thus
the segmentation method takes advantage of properties of the IIVS to achieve the
image compression system with higher compression and small visual loss. An arith-
metic code was used to encode the houndaries and the means of the regions belonging
to perceived constant intensity value. A polynomial coding technique was applied to
regions belonging to the smooth and rough texture. Second. an overlap method in the
segmentation algorithm was proposed to improve a nonoverlap method. The overlap
method produces the number of pixels belonging to the perceived constant intensity.
This results in higher compression. Third. our compression system is developed hased

on texture characteristics. Image segments are represented by the degree of roughuess
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using fractals. Other segmentation-hased techniques have {vpically represented the
inlage segments as the mean gray values within their segments. Their applications
are very limited since they are not useful for images with textural areas.

There are many aspects of the work presented here that offer avenues for further re-
search. First. it is possible to improve our compression technique. A better technique
for coding each class could be found. In relation to this. a higher order polynomial or
adaptive coding technique can be used. In addition. regions belonging to rough class
can be coded using an iterated function system developed by Barnsley [2]. Second.
other segmentation techniques such as variable block size or quad-tree segmentalion
can be used. Further work needs to be done to verifv which segmentation works
best. Third, A postprocessing filter can be used to reduce the artifects. Fourth. our
technique can be extended to image sequences. This is why a [ractal dimension or
segmentation is used as the frame difference signal. Finally, our segmentation-based

compression technique for video transmission over a packet-switch network is applied.
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9

A ppendices

9.1 Runlength Coding

In this appendix we describe a technique proposed by Llias for coding a sparse binary
image. Suppose a binary image is mostly 0's with only a few 1's. The rows of the
N x N iniage are concatednated together to form a vector of N'? gray level values, and
all runs of consecutive 0's in this vector are found. The lengths of these runs. separated
by a symbol (referred to as a "comma”) to mark the end of a run (i.e. the presence of
a 1), completely describe the original binary image. lias has proposed coding these
runlengths (viewed as decimal numbers) using an n-ary arithmetic system. and using
an n+1'th svmbol to represent a comma. For example, for n=3 the runlengths are
represented in a ternary svstem. The comma requires an additional svimbol. for a
total of four systems. These four symbols are represented using a two bit code. One

possible choice to represent the four symbols is: 00=comma, 01=0. 10=1. 11=2.

(‘onsider the following 40 bit binary sequence:
00001 10000000000010001000000000100000000

The runlengths for this sequence are: 4. 0. 11. 3. 9.8, and the ternary representa-

tions for these runlengths are: 11. 0,102, 10. 100, 22. Finally, using the representation



described above. the Elias code representation for the original binary sequence is:

1010 00 01 00 100111 1001 00 100101 00 1111

We have represented the original 40 bit sequence using 36 bits.

9.2 Crack Code

Crack code determine a boundary by specifying a starting point and a sequence of
moves around the boundary. Figure 9.1 illustrates a way in which this can be done
by moving a sequence of cracks between the points S and the adjacent points of the
complement 5.

If we follow the cracks around a bounday, at each move we are going either left,
righ, up, or down; if we denote direction 90z, by i, these moves can be represented
by a sequence of 2-bit numbers; 0, 1, 2, 3. For example, the sequence in Figure 9.1c
is represented by 00303332112121. This representation is called as a crack code. A

boundary is specified by giving the coordinates of a starting crack together with a

crack code.
A 8
C N At Blsrat c- ‘:.-
Fo Ft ExC:C!AaAt
«
(a) (b)

Figure 9.1: A crack code. (a) Set S: each point is labeled with a different latter. (b)
Clockwise sequence of cracks around the border, beginning with the crack A, at the
top of A. The subscripts of t,r, b./ denote top, right, bottom, and left, respectively.

155



described above, the Elias code representation for the original binary sequence is:

1010 00 01 00 100111 1001 00 100101 00 1111

We have represented the original 40 bit sequence using 36 bits.

9.2 Crack Coding

Crack code determine a boundary by specifying a starting point and a sequence of
moves around the boundary. Figure 9.1 illustrates a way in which this can be done
by moving a sequence of cracks between the points S and the adjacent points of the
complement §.

If we follow the cracks around a boundary, at each move we are going either left,
righ, up, or down; if we denote direction 90z, by i, these moves can be represented
by a sequence of 2-bit numbers; 0, 1, 2, 3. For example, the sequence in Figure 9.1b
is represented by 00303332112121. This representation is called as a crack code. A

boundary is specified by giving the coordinates of a starting crack together with a

crack code.
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Figure 9.1: A crack code. (a) Set S; each point is labeled with a different latter. (b)
Clockwise sequence of cracks around the border, beginning with the crack A at the
top of A. The subscripts of ¢,r,b,! denote top, right, bottom, and left, respectively.
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9.3 Arithmetic Coding

Let the alphabet consist of the sviubols ¢ = 0.1.---.m. An arithmetic code encodes
the string to be compressed. symbol for symbol from left to right. When encoding
the symbol /. immediately following the so-far processed string s. the code requires
as input the data that represent the conditional probability P(i/s) of the symbol’s
occurrence at its context. Such parameters are provided by the so-called modeling
unit. The modeling unit should update for each symbol 7 not only the count but also
the cumulative counts which are aflected by the count. An arithmetic code constructs
the code string as a cumnlative probability of the strings that precede the considered

one in the lexical order of the strings.



