
Texture Segmentation-Based Image
Coder Incorporating Properties of the

Human Visual System

Jongwhan Jang

Center for Communications and Signal Processing
Department Electrical and Computer Engineering

North Carolina State University

TR-90j18
November 1990



Contents

List of Figures

List of Tables

1 Int.roduction

2 All Overview of Tmage Compression

2.1 Introductiou .

2.2 Stat.istically-Based Image Compression Techniques .

2.:3 Syrubolically-Based Image Compression Techniques

2.:J.l The I-I Hillall Visual System (II\TS) . . . . . .

2.:3.2 Pyramidal Image Compression . . . . . . . .

2.:3.:3 Directional Decomposition Based. Image Compression

2.:3.-1 Segmentation- Based Image Compression

2.3.5 Fractal Based Image Compression .

2.-1 Conclusions .

3 Texture Analysis

:3.1 Illt.ro(luetioll...............

:3.2 Fractal Geometry ill Image Analysis . .

:3.2.1 Fractal Dimension .

:3.2.2 Fractional Brownian Function

3.3 Conclusions . · . · . · · · · .. · . · .

4 A New Appr-oach for Segrnerrtat.ion-Based Image Coding

..j.1 III trod uct.ion · · · ·

..j.2 1'he Codec · · · . ·

4.:3 1'he Trausmi t. t.er

4.:J.l Preprocessing

11

v

IX

1

5

27

42

-1~

-! :J

-1·J

.J -1



4.3.2 Image Segmentation

4.:3.3 The Mixed Coder ..

4.-1 The Receiver .

..I.!) The Basic Principle of t.he Mixed Coder

~ G

-17

-18

-J ~)

5 Irnage Segrnent.ation Using Properties of tile HVS and Fractals 52

G.l ] 1l1ag~ Segiuent.at.ion 57

5.2 Determination of the Block Size for Esl.iruat.iug the Fractal Dimension GO

5.2.1 Experimental Results for Determining the Best Block Size .. Gl

5.3 Tllreslloltls for the Fractal Dimension . . . . . . . . . . . . . · · · .. GS

5.3.1 The Experimental Results for Determining Thresholds D 1 and

D 2 .••••••.•••••••••••••.. • • • • • •• • •• 70

5.-1 Selection of the Threshold for Regions Belonging to Percei ved Const.au t

IIItensi t ~ - . . . . . . . . . . . . . . . 8:}

5.4.1 1'11e Experimental Results 8-1

5.5 (~OllcltlSion.............. ~)1

6 A Texture Segmentation-Based Image Coder 95

6.1 Introeillctioll........... 95

G.2 l'lle Mixed Encoder . . . . . . . . . . . . . ~)G

G.2.1 l'he Boundary Coding . . . . . . . ~)7

6 ') ') TI P · 1C R' 0._._ Ie erceivec 'onst.ant eglolls.. ~ ) 0

6.2.:} The S11100t,11 and Rougll Textural RegioJ1S ~ ) ~ )

G.3 Nonoverlap and Overlap Segmentation Met.hod . . . 101

(i.! The Experimental Results for the Nonoverlap aud Overlap Segilleut,at.ioni 0:1

G.-!.1 rl~hf' Pixel Percentage for Each Class 10:1

G.-1:.2 \ "ariability of D I and D 2 • • • • 111

6.4.:3 1'!Je Boundary Coding . . . . . . . . . 11-1

6.-1.4 Coding of the Constant Regions . . . . 11()

6.-1:.5 Coding of the Smooth and Rough Textural Regions 118

6..J.6 Bit Rate Computation . . . . . . . . . . 12.1

6.4.i Performance Evaluatiou of the ('0 D E ( ~ . 128

G.!j (~ollcltlsiol1..................... 1-J!j

7 COI1CIusiollS

8 Bibliography

III

146

148



9 Appenclices 155

9.1 !l unlength Coding 1:)5

U.2 Crack Coding l ~ ) G

9.:} Ari tluuet ic Coding j ~)7

IV



List of Figures

2.1

2.2

2.:3

2.-1

2.5

2.6

3.1

4.1

4.2

-1.:3

-1.1

r: ').i.:

5.:3

A general statistically-based image compression system · ·

A general symbolically-based image compression system.

A simple contrast sensitivity measurement ... · .

Perspective drawing of the split-field experiment

r\ t.YI)ica.ll\lrl'F curve . . . . . . . · . · . . . .

Block diagram of the pyramid coding method

A one-dimensional function is SIIO'Vl1 in (a) and its covering blanket for

f = 1.. 2 are ShOWl1 in (b) and (c), respect.ively. The blanket areas are

A( 1) = -17 and A(2) = 78. The respective measured lengths are L( 1)

= 47/2 = 23.5 and L(2) = 78/4 = 19.5.. · .. · · · .. · · · .

A natural image · · · · . · .

'I'he calculation of the Fractal dimension of a natural image. l ' I H ~ values

of the estimated slope and estimated fractal dimeusiou are - O . ( j 2 7 2 ~ ) and

2 . G 2 7 2 ~ ) .. respectively, . . . . . . . . . . . . . . . . . . . . · · · · · . .

The overall block diagram of the segmentation-based coder...

TIle block diagram of tile transmitter characteristics.

l'lle block diagram of tile recei ,·er characteristics. . . . . . . .

Original test images. Each image is 256 x 2!jG pixels, wit.h 2!JG gray

levels. (a) l\liss lTSA. (b) Lena.. (c) House. . . . . . . . . . . . .

Centroid linkage window . . . . . . . . . . . . . . . . . . . . . . . . .

Plot of Fractal dimension versus block size ill Miss llSA. Miss lJSA

with three subimages is given on the top. Three subimages 01) t.he

top, middle .. and bottom belong to perceived constant intensitv, rough

t.ext.ure ~ and 811100t.l1 tex ture respect.i velv. A plot of Iract.a I eli Il icusion

versus block size is given on the bottom. The curves wit.h a diamond

symbol. a cross symbol .. and a square symbol correspond to perceived

constant intensity, rough texture, and Sl1100th texture respect.ivelv...

11

J-1

]!j

J()

18

56

58



!j.l Plot of Irar t al dimension versus block size ill Lena. Lena wi: h t.brf'f'

subimages is given on t.ho top. Three subimages on t he t.op. t.he bot t.om

and k-It corner .. and the bot tOl11 and right corner belong to percs-i "f'd

cousl.ant iut.eusitv.. rough texture .. and smoot h texture respect ivr-lv. A

plot of fractal dimension versus block size is given 011 the bot.tom. The

curves with a diamond symbol .. a CfOSS svmbol .. and a square symbol

correspond to perceived constant intensitv, rough texture .. and SI1100t h

texture respect.ivelv. . . . . . . . . . . . . . . . . . . . . . . . . . . .. G!)

5.!) Plot of fractal dimension versus block size. House witli tliree subiiuages

is on the top, Subimages 011 t.he to}) and left corner. the top and

right corner. and the bottom cHICI right corner in the image belong

to rough texture .. perceived constaut int.eusitv.. and SI1100{.11 texture

respectivelv. A plot of fractal dimension versus block size is gi veu

on the bottom, The curves with a diamond symbol. a cross sviubol.

and a square S ~ · 1 1 1 J ) ( ) 1 correspond to perceived constant intensity. rough

text.ure .. and S11100t.ll texture respectively. . . . . . . . . . . . . . . .. fiG

!j.G j\ tvpical 1\J OfF curyc . . . . . . . . . . . . . . . . . . . . . . . . . .. 6!J

0.7 Est imat.ion of the fractal dimension for the perceived constant iuteusit.y

blocks ill Miss llSA. Fiye 8 x 8 blocks are used. . . . . . . . . . . .. 7:i

5.8 ERt imat.ion of the fractal dimension for the smooth texture blocks ill

l\Iiss lJSf\. Five 8 x 8 blocks aTe used. . . . . . . . . . . . . .. 7-!

!j.9 Est.imatiou of the fract al dimension for the rough texture blocks ill

Miss {JSI\. Five 8 x 8 blocks are used. . ° 'I!)

5.10 Est j 111a tion of the fractal dimension for the perceived constant int ensi t.~o

blocks in Lena. Fi\-e 8 x 8 blocks are used, . . . . . . . . . . . . . .. 7(;

!J.ll Est.imatiou of the fractal dimension for the smooth texture blocks ill

Lena. Fi,"e 8 x 8 blocks are used. . · 0 • • •• I I

5.12 Estimatiou of t.he Iract.al dimension for the rough texture blocks in

Lena. Fiye 8 x 8 blocks are used. . . . . . . . . . . . . . . . . . . .. 78

5.1:} Est.imat.ion of the fractal dimension for the perceived coust.ant inteusitv

blocks ill House. Fiye 8 x 8 blocks are used. . . . . . . . . . . . . .. 7 ~ )

5.1-1 Est ima tion of the fractal dimension for tile smooth text ure blocks in

IIouse. l:jye 8 x 8 blocks are used.... 0 •••••••••• • • • • •• 80

5.]!j Est.ima t i()11 of the Iract.al dimension for t.he rough texture blocks ill

Ilollse. Fiyp 8 x 8 blocks are used · . · . . . .. 8J

\"1



87

5.16

5.17

5.18

5.19

0.20

5.21

G.l

G.2

G.3

6.-1

6.5

G.G

G.7

6.8

G.9

G.lO

A plot of the fractal dimensions of t.lie fifteen subimages for each class.

The x-axis represents the fractal dimension aud tile y-axis the n umber

of blocks at that fractal dimension. The curve wit h a diamond symbol

corresponds t.o the p--rcei ve constan t 111 t.ensi ty. the ell rye w i t.h a cross

svmbol t.o the smooth texture. and the curve with the square symbol

to the rough texture. . · . . . . . · . . . · · · ..

The Inean of five subjects" .JND measurements · . · · . · .. · .

The original .JND curve and the approximated JND curve. The bold

line corresponds to the approximated .JND curve · . · . ·

The segmented images using th con = 5.5. (a) Miss lJSA. (1)) Lena. (c)

House. . . . . . . . . . . . . · · · . . . . . . · . · · . · · . · · · · . ·

The segmented images using thJ1VD. (a) l\liss lTSA. (1)) Lena.. (c) House. ~ ) 1

The segmeuted images using fila])' (a) Miss lJSA. (1)) Lena. (c) House. ~ ) : l

Comparison of the nonoverlap and overlap method. All image size and

block size are 8 x 8 and -! x 4: respectively. . . . . . . . . . . . . . 102

The class type images of l\Iiss {JSr\. (a) 0 percent overlap. (1)):j0

percent overlap. (c) 75 percent overlap. . . . . . . . . . . . . . . . .. 106

1'}1e class t ~ " l ) e images of Lena. (a) 0 percent overlap. (1)) 50 percent

overlap. (c) 75 percent overlap. .. . . . . . . . . . . . . . . . . . .. ]08

The class t . ~ ~ l ) e images of House. (a) 0 percent overlap, (1)) 5U percent

overlap, (c) 7!J percent overlap. .. . . . . . . . . . . . . . . . . . .. 110

Modeling a. rough texture region using a. 2-D polynomial. From left.

to to right are the 3 ~ x 32 tree subimage ill Ilouse: t.he original" t.he

zero-order model, the first-order 11lO(leI" and the second-order 1110del.. 120

Modeling a S11100th texture region using a 2-D polynomial. From leIt

t.o to right are the 32 x :32 chill Sl11)i111age in Miss trs1\ : t.he original,

t.llp zero-order model. the first-order model. and the second-order 1110d{\1.121

Modeling a. rough texture region using a ]-1) polynomial. From k-It

to to right. are the 32 x :l2 tree subimage ill House: the original, t . I H ~

zero-order model, the first-order model, and the second-order I l l O ( l t · ~ I . . 122

Modeling a. smooth texture region using a I-I) polyuomial. From left

to to right are the 32 x 32 chin subimage ill Miss l J S A ~ the original,

the zero-order 1110(lel, the first-order 1110(lel" 811(1 the second-order 1110(1('1.1 :!:J

TIle decoded images of the test images with D] = 2.0:1!j an (I D2 =
2.:3G:3. (8) The decoded image of l\Iiss lTSA. (1)) The decocled image of

JJf'lla.. (c) TIle decoded image of IIouse. . . . . . . . . . . . . . . . .. 127

Plot of SNR versus rate, bit/pixel for Lena. D 1 is variable a.B(1 !J'}. is

fixed to 2.:36:3. . · · · · . · · . . . . . . . . . . . . . . . . . . . . . .. 1~10

vu



6.11 Plot of SNR versus rate .. bit/})ixf'l for House. D 1 is variable and D'}. is

fixed to 2.:36:3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1·10

G.12 Plot of SNR versus rate .. lJit/!)ixel for House. D 1 is fixed 2.0:3:) and L)l

is variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1~ 1

6.1:3 ']'he reconstructed images for Miss llSA. The images 011 t.he t.op and

the bottom are coded at. 1.0 lJit/l)ixe} with D 1 = 2.UOl and D2 = 2.76

aucl 0.2 lJit./I)ixe} wit.h D t = 2.00!) and D2 = 2.:36 respectively. .. .. 1J2

6.1! The reconstructed images for Lena. The images 011 the tOI) and the

1JOt.tOl11 are coded at 1.0 bit/})ixel with D 1 = 2.005 and D 2 = 2.71 and

0.2 bit/IJixel with D1 = 2.050 and D2 = 2.361 respectively. . . . . .. 1-1:3

6.15 The reconstructed images for House. The images on the 1.01) and the

bottom are coded at 1.0 bit/l>ixel with D1 = 2.U05 and U2 = 2.71 and

0.2 bit/l)ixel with D t = 2.06 and D 2 = 2.41 respectively. ... ll l

9.1 A crack code. (a) Set ,5': each point is labeled with a different lat.ter.

(b) Clockwise sequence of cracks around the border. beginning wit.h

the crack At at t.lie 1.01> of A. Tile subscripts of t ~ 1\ b, I denote top,

righ t , 1)0t. t.Ol11., and left" respectively. . . . . . . . . . . . . . . . . . .. 156

YIll



List of Tables

5.1 Statistics of fractal dimension ill l\liss lTSA 6i

5.2 Statistics of fractal dimension in Lena . . . Gi

5.:3 Statistics of fractal dimension ill House . . Gi

5.4 Fractal dimensions for each blocks, The column and 1"0\" index are

ordered from the top left. The fractal dimension of each subirnage is

given in table (a). Tile mean I' and the standard deviation (7 are given

in table (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7:3

5.5 Fractal dimensions for each blocks. The coluuui and row index are

ordered Iroin the top left. TIle fractal di mension of earII su bimage is

given ill table (a). The mean l' and the standard deviation (7 are given

ill table (1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. i-1

5.6 Fractal dimensions for each blocks. The column and 1"0\" index are

ordered from the top left. The fractal dimension of each subimage is

given ill table (a). The mean I' and the standard deviation (7 are given

in table (1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. i5

5.7 Fractal dimensions for each blocks, The COlUll11l and 1'0'" index are

ordered from t.he top left. The fractal dimension of each subimage is

given ill table (a). The mean Ii and the standard deviation (7 are given

ill t. abIe (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7(.

5.8 Fractal dimeusions for each blocks, The COIUlll11 (\.11<.1 row index are

ordered [rom the t.O}) left. The fractal dimension of each subimage is

given in table (a). TIle mean Ii. and the standard deviation (7 are given

ill table (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I I

5.9 Fract al dimensions for each blocks, The COlUl111l and row index are

ordered from the tOI) left. The Iract al dimension of each su hi mage is

given in table (a). The mean I' and the standard deviatiou o are given

ill t.a ble (1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78

IX



5.10

5.11

5.12

5.1 :3

5.14

5.15

6.1

c ')u.z

6.:3

G.-!

6.5

6.6

G.I

6.8

G.9

6.10

s.u

G.12

Fractal dimensions for each blocks. The col umn and 1'0"· index are

ordered Irom the top left. The Iract al dimension of each su bimage is

given in ta1)le (a). The mean II and the standard deviation (j are given

ill table (b) " " . " .

Fractal dimensions for each blocks. The COI\111111 and row index are

ordered from t.he top left. 1'11e fract-al dimension of each subiuiagr is

given ill t.able (a). Tile mean JI 0.11<.1 the standard deviation a are gi ven

ill table (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fractal dimensions for each blocks. TIre column and row index are

orclered from the tOI) left. The fractal dimension of each subimage is

gi ven ill table (a). TIle mean I' and the standard deviation a are given

ill table (1»). . . . . . . . . " . . . . . . . . . . . . . . . . .

The number of segments for test images using thcon = 5.5.

The number of segments for test images using thJ r: D.

The 11umber of segments for test images using t hap.

Pixel percentage of each class in l\Iiss l.TSA

Pixel percentage of each class ill Lena ...

Pixel percentage of each class ill House ..

Pr-rcent.age of the pixels in each class ill Miss lTSA wit.h 50 (A'. overlap.

1)1 variable .. and D 2 = 2.:3(;::1. . . · . . . . . . · · · · · . . . . . . . . .

Percentage of t.he pixels in each class ill l\liss lTSA with 50(/(, overlap,

D t = 2.0:3,) .. and D 2 variable, · . · . · · . · · · . · .

Percentage of the pixels ill each class in Lena wit h 50(;(, overlap .. D 1

variable .. and D'2 = 2.3G:_J. · · · · · .. · .

Percentage of the pixels in each class type in Lena with !jO(j{, overlap ..

D I = 2.0:J5 .. 0.11(1 D'2 variable. · . · . · · · · .... · .. · .. · · ...

Pcrceutage of the pixels in each class ill House with ! j O ~ 1 overlap .. D 1

variable. and J)2 = 2.:jG3. · · · · · .. · · .. · . · .. · . · · · · · · .

Percentage of the pixels ill each class ill House with 50(/(\ overlap .. D1 =
2.0:3,) .. aucl D'2 variable. . . . . . . · · . . . · . . · · · . · · . · · . . .

Summary of the numbers of the total segments and the boundary points

using D1 = 2.0:3·5 and D2 = 2.:363. · · . · · · . . . · . · . · . . · · · .

SU111111ar~· of hits to represent the boundarv using the three (lifrerent.

cocliug. . · . . · . . . . . . . . · . . . . . . . . . . . . . . . . . . . . .

Sunnnarv of the numbers of the total segments and the l>erct'i,oed ("011-

staut regions using D 1 = 2.0:35 and D 2 = 2.::16:3. . .

Summary of the number of bits to represent tlie const-ant, rpgioll .

x

80

81

8~J

lOG

IO~

110

112

112

112

II!)

II !j

j Ii

J J i



6.1! The SUI11 of squared error (SSE) values for each model. 120

G.1!) The SUl1l of squared error (SSE) values for each 1110d('1. l ~ l

G.16 The sum of squared error (SSE) values for each 1110<.1(:'1. 122

(j.lT The sum of squared error (SSE) values for each model. 1~:J

(i.18 S11111111ary of the 1111) nlx-rs of t.he segmen t.s ill the smooth and rougl 1

textural regions and the number of bits to represent those regions using

a 1-D polvnomial, '!'he polynomial coefficients were encoded using the

arit.luuetic code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-1

6.19 Summarv of coding information ill l\Jiss lfSA. D1 is variable and })2 is

fixed to 2.:36:3 0 0 • • • • • • • • • • • •• J:31

6.20 Summary of coding information ill Lena. D 1 is variable 0.11(1 D'), is fixed

to 2.:JG:J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 132

6.21 Summarv of codiug information in House, D1 is variable and D'2 is

fixed to 2.:363. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1:3:J

6.22 Sunnnary of coding infonnatiou ill l\liss lJSA. D 1 is fixed to 2.0:3!j and

D 2 is variable. . . . . . . . . . . . . . .. J:JJ

6.2:3 SUl1111)Clry' of coding information ill Lena. D 1 is fixed to 2.U:j!j and D 2

is variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. J:3!j

G.24 Sununarv of coding information ill House. D1 is fixed to 2.0:35 and D'2
is variable. . . . . . . . . . 0 • • • • • • • • • • • • • • • • • • • • • •• 1:3G

6.25 S1l111111a.r~· of coding iuformat.ion in l\Iiss lTSA. D 1 = 2.0:l!j~ D 2 = 2.:lf;:3'1

7'11f31'2 = 60 and T 11t;Tl is variable. where T II f3 1o. and T lIEl''), are t.he

thresholds of regions beloiugiug to the Sl1100th and the rough textures

respectively.. · · · · . . . . . . . . . . . . . . . . . . . . . . . 1:37

6.26 Summary of coding information ill Lena. D 1 = 2.0:j!j~ D 2 = 2.:3G:J~

T 11e1' 2 = GO 01](1 T H elo] is variable. . . . .. 1:37

G.27 SU111111Clf3· of coding information ill Ilouse, D 1 = 2.0:3.)'1 D'2 = 2.:lG:3~

1'//'31'2 = liO and T lIt: r 1 is variable. . . . . . . . . . . . . . . . . 1:38

6.28 Summary of coding information in Miss (TS.lt\. D1 = 2.U:3.'j~ D'2 = 2.:3():J~

]'H f 1· ] = 25 and 1'1Ie1'2 is variable, . . . . . . . . . . . . . . . . 1:38

G.2~) Suuunary of coding information ill Lena. D 1 = 2.0:35, D2 = 2.:3G:3"

]'Hf l · ] = 25 0.11([ 1' j 1 f. 1·2 is variable. . . . .. 1:3U

G.:30 Summary of coding information in House. D 1 = 2.0:35" D 2 = 2.:3G:J"

1'Hf3 1·] = 25 and T IIf3T2 is variable.. · . . . . . . . . . . . . . . . . .. 1 : 3 ~ )

Xl



1

Introduction

The (ligital representation of an image requires a verv large number of bits. For

example, a ·512 x 512 pixel, 25G gray level image requires over two million bits, This

large number of bits is a. substantial drawback when it is necessary to store or transmit

a, digital image, Prior to transmission or storage" one would like to have a svstcm

that reduces 1.11is number as 11111Cl1 as possible. while keeping the degraclat ion ill th«

decoded image to a minimum. This is tile goal of image compression, often referred

to as image coding.

EaTI," efforts ill image compression, solelv guided 1 ) ~ · inlonuation theorv, led t.o

a plethora of methods, TIle compression ratio" st.art.iug at one with t.he first digital

picture ill the early 1960"s" appeared to have reached a saturation level around 10:1

ill the early 1980"s. This, however. (lid not mean that the upper bound given bv t.hp

entropy of the source had also been reached, First." this entropy is not known aud

depends heavily on the 1110(lel used for the source" i.e ... the cligital image. Second,

informat iou t hcory does 110t. take into account what the human eye sees and 1I0\r it.

Sf'es. Receut lv. techniques attempting to overcome these limit at ions are incorporat iug

properties of the human visual system ( J I \ ~ S ) ancl tools of image analysis into image

compression t.o achieve high compression ratios with small loss in visual qualitv, This

1



reasoning follows Irom t.he fact that ill many compression applirat ions __ a human is

the final observer of the image opera t.ed u1>011. A pplica t.ions of yo rious 1110d(,Is of

tile II\rs have ill fact been empiricallv found to i11IprOYC compression performance

[ 2 ! j ~ -13 __ 57, 71 ~ 83].

One such technique is segmentation-based image compression [ 7 ~ 3 n ~ - l ; 3 ~ 7J]. In

segmentation-based image compression. the image to be compressed is segmented,

i.e. the pixels ill tile image are separated into mutually exclusive spatial regions

based 011 some criteria. Once the image has been segmented, information is extracted

describing the boundaries (shapes] and textures [interiors] of the image segment s __ and

compression is acllieved by efficiently encoding this informat.iou. Unfortuuatelv, t here

a re Iimi t.at.ions wi t.h segment at.ion-based image compression. The main limi t.ation is

due to the fact that the image (lata have been segmented into regions of constant

intensity. III complicated texture areas __ a good representation of the texture requires

many small segments, However, ill order to get 10\'" bit rates, the number of segments

must l)e limited and thus the quality is degraded.

We overcome the texture representation problem ill the research described ill this

report 1)j9 proposing a methodology for segmenting all image into texturally homoge­

neous regions with respect to the degree of roughness as perceived l)y t.lie I-I\9S. The

segmented image information is then encoded for transmission. The proposed algo­

rit hm is applied to three different t.ypes of imagery. The first is a head and shoulder

image with lit.tle texture variation. This image is typical of video teleconferencing

applications and one which the previously proposed segment.at ion-based compression

techniques are best suited. TIle second is a complex image with mauv edges and

t.he third is a natural outdoor image with highly textured areas. The previous pro­

posed segmeut.ation-based compression techniques (10 110t. 'York well for the' second
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and third images. However. the proposed texture-based image compression t.echnique

works well for not only the first but also the second and the third t.\"l)(' of image.

III t lie proposed texture-based image compression algorit lun. t.he Iract al dimr-usiou ..

t.IH~ expected value .. and t.he just noticea ble difference (.JND) are the measures used to

characterize the texture information. The measured quant.ities are incorporated iut.o

a c~llt.roid-Jillkage region growing algorithm [:32] which is used to segment each image

iuto three texture classes. The region growing algorithm is directed l)y the texture

feat.ure distance l)pt,,,eell image blocks. After segment.ation .. the image can be viewed

as being C0111])Osecl of region boundaries 0.11(1 texturallv homogeneous regions. Since

the decoded images will be viewed by humans, our prime motivation is the production

ratios.

The second aspect of LItis work is to propose appropriate compression t.echniques

for the three textural classes 0.11([ the region boundaries, The three classes, I .. IJ~ and

A binary map representing the boundaries of the regions is encoded using a 1110di­

Iiecl aclapt ive arit.lunet.ic coder [G2 .. 7:3. To]. III our work .. the represeut.ation of thp

bounclarv information using blocks .. Bot pixels .. provides us with higher compression.

Regions which belong to class I are modeled as flat planes .. hence tllf'y onlv need to

have their mean intensity value transmitted. The means are then encoded using a

modified adaptive arithmetic code, TIle highest compression ratio is achieved for class

I. Because of the sensitivity of the I-I\··S to 111j(1<.1Ie range spat ial frequencies .. regions

belonging t.o class II require a 1110re accurate representation. Regions lx-longiug t.o

class III contain the highest spatial frequencies. The II\.TS is less sensitive to thc high

spal.ia] frequencies .. thus these regions call be more highly compressed. The text tire
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information in class II and III are modeled bv polynomial Iunct ions. Higher COI1)­

pression is achieved for class III bv allowing the error between t.lie original image and

the modek-d image to be greater t l1a11 for class II. The result. is a segmeutat ion-based

image coding system wit.li high compression and a s111al110ss in visual quality.

In SU111111ary, the main cont.ributious of this report are:

• a new technique for segmenting an image into text.urally consistent regions:

• use of the fractal dimension for relating the SI)a t.ial freq Heney of t.ext.ures t.o

the spatial frequency response of the human visual system:

• a new algorithm for encoding the segmented image information: and

• good quality compressed images at. 0.2 to 0.-1 1)1>1) for higher text.ural images.

In Chapter 2, the prerequisite background material. emphasizing "York which is

pertineut to t.lie methods used ill this research is covered, as are the properties of

the II\rs. III Chapter 3., fractal models ill texture analvsis are covered. The fractal

dimension and t.lie power spectral density (PSD) of the fractional Brownian fuuct.iou

( I ~ } 3 F) are clerived 0.11(1 discussed. III Chapt.er 4_ a complete description of tlu- new

image compression system is given. III Chapter 5 ~ image segrnent.at.ion is developed

and evaluated using propert ies of the II\?S and the fractal dimension. III Chapter

( ) ~ t . I H : ~ mixed coding scheme is described and the performance of t.hp new image

compression svst.em is evaluated using computer simulated clat.a of actual images.

Fiuallv, conclusions and further research are provided ill Chapter i.



2

An Overview of Image Corrrpr-esaiori

2 .1 Introduction

Manv dat.a processing applications involve storage of large volumes of dot-a. For ex­

ample, t.o represent a 512 x 512 pixel, 25G gray level digi t.al image. OYf')" t.wolui lliou bits

are required. III addit ion, the number of data processing applications such as ill t.IIP

areas of meteorology, military reconnaissance, medicine, and electronic publishing is

increasing rapicllv. At the same time .. there has been a proliferation of computer com­

municat ion net works and teleprocessing applications .. which ill '·0] ve massive transfers

of dat.a over long-distance communication links. For example .. to transmit all uucom­

pressed 512 y 512 pixel, 256 g r a ~ · level digital image over a G-!l\hit/s channel requires

more t han t.hirt y seconds. TIle requirements aTP even higher for a color image of

the Sa.IIIC size. To reduce the (lata storage requirements and the (lata conunuuicat.iou

costs. there is a llPpd to reduce the redundancy ill the data representat.iou. Image corn­

pression techniques have attempted t.o reduce the amount of data needed 1.0 transmit

or store digital images .. while keeping the degradation in the qualit y of t lie decoded

image to a minimum.

III this chapter, we briefly review the recent advances ill image compression tech­

uiques. III general. any image compression method call be broadly classified as lJt\ing
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ei t.her statist icallv-based (algebraic] or symbolicallv- based [st ruct ural). The st.at.is­

tical approaches to image compression are based on informatiou thr-orctic principles

aud the met 110ds used usually involve verv localized. pixel-oriented ff'at ures of tho im­

age. A sununarv of these techniques is presented ill Section 2.2. However. due to t.he

limitations of t.he st.at.ist.ical approaches. researchers were interested in finding a new

approach t.o image compression for very 10,Y bit rate applications, Many of the 11e,,­

approaches are known as symbolically-basecl (second generation [.1:3]) image C01l11>)"PS­

sion. Syinbolicallv-based image compression methods employ tools of image ana lysis

and properties of the human visual system (11\7'S) to achieve good image quality at.

verv low data rates. III symbolically-based compression, the geomet.ric structure of

t . I H ~ image scene is emphasized, as opposed to tile algebraic structure of the pixels

used bv statistically-based compression methods. III Section 2.:3 we su nunarize t.he

work in the developing area of symbolically-based image compression.

Image compression methods can be further classified beyond t.he two main cate­

gories mentioned above. For example, the classification can be based 011 the techniques

t.he compression method employs and the distortion the compression 111eth()(1 iut.ro­

duces ill the image. One possible classification of compression methods is as adaptive

or non-aclaptive. In a typical image, the stat.ist.ical characteristics of all image differ

considerablv Iroin one region to another. For example, walls and skies have approx­

imatr-lv uniform background intensities, whereas fa.ces and trees have large, dot.ailed

variations in intensifies. To compensate for this. parameters of the coder are adapted

to variations ill the local statistics of the image. such as local image cont rast . .4\ coder

that employs such parameter variation techniques is classified as adaptive. If t.his t.Yl)P

of variat ion is not used, the compression technique is non-adaptive. Some examples

of adaptive image compression techniques are adapt ive clillerent.ial pulse code modu-
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lation , aclapiive delta modulation. and adaptive transform compression [:n. 28.90].

Auot.lier classificatiou describes whet her the method is distort ionless or non dist or-

tionless, If a compression method is dist.ortionless then the decoded image is perfect

recreat ion of the original image. Nearlv all distort.ionless techniques are based 011

information theoretic approaches and usuallv attain data rates in the neighborhood

of two or lour bits })pr pixel (1)1)})) for an original 8 bpp image [-10]. Non-distortionless

compression methods introduce differences between the decoded image and t.he orig­

inal image .. but they allow lower (lata rates. However .. the decoded image IllUS{. bp

kept as close to tile original as possible.

techniques.

2.2 Statistically-Based Image Compression Techniques

l\lost of the compression techniques developed from t he early 1 ~ ) 6 0 " s to t.he present

fit into t.he category of the statisticallv-basecl image compression techniques, 1\ block

cliagraui of tIle gr-ueral st.atist.ical image compression svstern is shown in Figure 2.J.

']'IJe st.at ist.icallv-basecl image compression techniques address t.lie image compression

problem Irom all information theory viewpoint, with the focus 0]1 eliminatiug t ltp

st.at.ist.ical redundancy among the pixels in the image.

IdeaII,\".. the 1110st useful preprocessor... as shown ill Figure 2.1 .. is a t.ransformat.ion

of the image to the most sui ta ble domain for coding. The best one ran do is fi nd

a pre-processor that l11a})S the (lata into uncorrelat ed spat ial-domain data or a s('t. of

independent transform-domain coefficients. For example. the mapping might rp1l10YP
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Figure 2.1: A general statistically-basecl image compression system

the mutual redundancy between successive pixels or take the discrete Fourier trans­

form of the image pixels, TIle desire for the pixels to l)e iudependeut is based on

rate-distortion theory. Hate distort.ion theory defines t.he optimum coder to he the

coder that attains the best possible signal ficlelit y for a given elate rate, or t.he coder

that attains the best possible (lata for a given signal ficlelity [26].

coding blocks of (lata" rather than individual (lata points, III fact" t.he optimal coder

is achieved as 1\7 ~ 00" where l\T is the length of the block of (lata being coded [81].

All example of such a block coder is a vector quant.izer [26]. Obviously.. a coder wit.h

infinite block Ieugth is impossible, and even a coder wit.h a reasonably long block

length is difficult to design and implement. IIo''''C'Yf'l\ it bas l)pel) shown that l \ ~

coders of block leugth one are nearly as good as (wit hill about O . ~ ! j l)it.s/salll}'](') (is

011(' coder of block length ]\i" for the squared error distort ion measure [3:1]. Th us" jf

t.he dat.a SC\.111IJles call l)e transformed so that thev are statistically indepeudcnt , 1.11<'11
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nearly optimum coder performance can l)e achieved with a coder of lengt h one, i.c. a

simple quant.izer. This fact forms the basis for st.at.isi ically-based image coding.

Manv excellent reviews of st.at istical image compression techniques exist in 1lie

lit.erat.ure. III 1 9 G 6 ~ Schreiber wrote all interesting review of the early vears of image

compression [79]. Prat t [67] presented all overall sununary of the state of image C0111­

pression ill 1979. Net.ravali and Limb wrote an informative review of image COllI pres­

sion techniques ill 1980 [56]. as did Jain ill 1981 [:36]. III addition..Jain [:36] contains

an extensive bibliography of publications ill image compression and related areas.

1\1 usmann, et al. [!J-l] presented a review of t.he advances made ill image compression

techniques since 1981'1 with special emphasis placed on advances in the coding of color

television and video-conference signals. III addition to these review papers, there arc

many books and special issues of professional journals which deal exclusively with

i111age compression [ l ~ ) . 20. 29., 80].

III general. statistically-based image compression techniques can be categorized

into five classes: predictive coding, transform coding .. hybrid coding. iut.erpolalive

and extrapolative coding, and a miscellaneous category [,5G].

Predictive image compression operates directly on the pixel intensitv values ill all

image, The objective is to generate cUI error signal bv subtracting a predicted pixel

value Irom t.IIE' actual pixel value. TIle predicted pixel value is a weight pd average

(Cl(IClI)t ive or nonadaptive] of spat.iallv and/or temporally adjacent pixels, The only

informat ion that neetls to be transmitted is the error signal.

Transform image compression 111allS all image into a domain whore a large amount

of t.he image inforrnation is packed into a small fraction of the transform coefliciout s.

Compression is achieved 1 ) ~ · encoding only a Iract ion of t.he trausform coefficients.



l Ivbrid coding refers to methods which utilize a combiuation of pr--clict ive and

translorm domain information. Predict ive and trausforrn coding techniques each have

some att ract ive characteristics aud Iimilat.ious. The combination of these two tech­

niques lias the capability of achieving higher COI11})ressio11 than either of the t.wo coders

individually and has t.he advantages of hardware simplicitv of predictive coders and

high performance of transform coders. For more details" see [:36., !j 1" !j(L ;5].

Interpolative and extrapolative methods extract a subset of the pixels in all image

1 ) ~ ' subsampliug. This subset is then transmitted .. and the decoder interpolates or

extrapolates to fill ill the missing pixels. TIle subsampling of the image is done ill the

spatial and/or temporal domains. Simple interpolative coding consists of the following

steps: 1) choose certain pixels for transmission, 2) construct an iuterpolation of t.he

nont.ransmit.ted pixels, all <.1 :3) evaluate the interpolation error. The interpolation

function can be zero .. first-order, or higher order 1 ) 0 1 ~ " 1 1 0 I l l i a l s . It has been shown

that interpolation using straight lines is quite effective a11(1 not much is gained by

ill terpola tion using polynomials of higher degree [i). If higher orcler 1 ) 0 1 ~ · 1 1 0 1 1 1 i a . l 8 are

used in the interpolation, it may l)e necessary to transmit polynomial coefficients ..

and the subset. of image pixels. In addition .. the computation t.ime involved in the

intr-rpolat.ion process grows rapidly with the degree of the fit.ting polynomial. For

1110re det-ails. see papers [15" 21., 45" 55].

Examples of some important st.at.ist.ically-based techniques t.hat <10 not. fit. into

any of tlie a bove categories include bit-plane coding .. curve fitting methods, and run­

length coding [21" 31]. Some of these methods are simply one-dimensional compression

methods applied to two-dimensional image signals,
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Figure 2.2: A general symbolicallv-based image compression svstem.

2.3 Symbolically-Based Image Compression Techniques

The st.atist.icallv-based image compression techniques .. solelv guided bv iuforruat iou

theorv .. led t.o a plethora of methods, The compression ratio appeared 1.0 have reached

bit rates were desirable. A 11e,Y approach t.o image compression was necessarv if high

known as symbolically-based or second generation image compression t.eclmiques. A

1)10ck diagram of a general S ~ · 1 1 1 1 > o l i c image compression system is 8ho',"11 ill Figure 2.2

There are t,YO main limit.at.ions ill the st.at.ist icallv-based image compression tech-

uiques. First .. since the entropy of the digit al image is normally not known .. t.h~

upper bound based on an estimate of first-order eut ropy cannot. 1 ) ~ expect.ed to work

'Yell. SeCOll(1.. information t heorv does not take into account what a human. 111P
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final observer of the image informa t ion. sees and 110'" it sees. S ~ · l l l b o l i c a l l y - based im­

age compression techniques have <lttellll>tf.'d to overcome these limitations corubiuing

propert ies of the I I \ ~ S and tools of image analysis to get high compression ratios with

small loss ill visual quality, Global, rather than local pixel-oriented Ieat.ures of the

image are emphasized. Examples of such glolJal feat tires include the size" shape. or

orientation of objects ill the image scene. Extracting the tvpes of features t.hat can

l)e used to provide a symbolic description of the image scene is t.he ultimate goal

of the message extractor ill a symbolic image compression scheme. This symbolic

description might take tile form of a list of scene at.tribut es. for example "there is a

chair ill the u l>j)er left corner of the scene." or "" 1110.11 ill a reel shirt is running from

left. to right ill the scene while turning his head and looking at the camera." Notice

t.hat these are high level descriptions of the scene and (10 not (leal with actual image

pixel values, but with the scene content, The encoder then efficicnt.ly encodes t hese

scelle descriptious or "messages "'! •

Since the symbolically-based image compression techniques are Iairlv new _ there

have not l)pell many general reviews of these types of compression methods published

vet. There are" however, several review papers of the second geuerat ion compression

techniques ill the literature [-1:3]. III addition to this paper, there is mention of some

second generation compression techniques ill [!j4, 5G].

1'0 better appreciate the symbolically-based image compression techniques, the l"f']­

evant properties of the H\'S are first described ill this sect.ion. Following t.hat is (t dis­

cussion of the major syrnbolicallv-based image compression t . t : ' C l l l l j q t l e S ~ pyramidal im­

age compression [9]" directional decomposition-based compression [-13]" segment.at ion­

based compression [7" 38], and Iract al-based compression [!)'l 35" 89].
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2.3.1 Tile H'urnan Visual Syst.em (HVS)

III mauy applications like video phone, teleconferencing. T\·. and medical imaging,

the final ubser,-er of the image data is a human. Thus it is very important that. all

image coder ]Je desigued to meet the needs of t.he human observer. Ideallv, no bits

should ]Je required to encode the information ill all image t.hat is not important to

the 111l111o.Il viewer and all the bits should be used to encode the iuformat ion that. is

important to human perception, For this reaSOII., the 1110re that is known about. t.he

requirements of the IJ\·rs" the l > E ~ t t e r the coding method can be designed. However.

the I I \ ' ~ S is very complex and not completely understood. therefore, making image

coding a difficult problem.

Despite t he complexity of the II\,rS., a great (leal of research has been done in

all effort to determine some of its basic properties. This research is generally based

011 experiments with human subjects, so the results are necessarily subjective. Dis­

cussions of some of t.he basic techniques and significant results ill the area of II\·TS

research can lJe {OtIIlCl ill [43" ,56~ 79]. TIle books by Cornsweet [1-1] and Marr [52] are

useful references on human vision. Here we will briefly suuunarize some of t.he 1)108t.

well established properties of the ll\rs [7f)] for image coding applicat.ions.

A propert y of the ]1\'S that has been studied extensively is contrast seusit ivitv,

Contrast sensitivity is measured by showing a subject a test pattern. and varviug the

intensity of neighboring regions in the test. pattern until the difference in iutensitv is

just. noticeable. There are many ways to measure the contrast sensitivitv [1-1]. For

example, consider a patch of intensity.. I +~I surrouuclcd by a background of iut.eusit.v

I .. as shown ill Figure 2.:30.'1 TIle just noticeable difference (.JND) ~l is to deternli])f\el

as a function of I. TIle fraction ~ I / I., called the Weber Iract.ion. is plot tf'd as a
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Figure 2.3: A simple contrast seusit.ivity measurement

function of I ill Figure 2.:3b.

Figure 2.:31) sI10\,"s that the JJ\iS has greatly reduced contrast sensitivity in verv

bright or verv dark intensitv regions of all image. However, this experiment is time­

consuming. All alternative is a 111etl10d introduced by Hamilton [:30]. It. is referred t.o

as a split-field technique, measures the .JND quickly and reliably. Here. t.he display

is divided clown the middle into two equal-size fields, see Figure 2.-1. The left 11('1<1

is a constant intensity reference field and the right. field begins at the t.Ol) wit.h the

reference intensity and increases linearly til) to -10 steps above the reIcreuce wit.h each

lCY('1 presented as a baud 20 pixels in height To perform the test" an obse-rver simplv

clicks t.he mouse at the point where the difference l)et,,"epll t.he left and right. fields

is no longer discernible. This point is t.he .JND l)et.\veen the reference iut.ensitv 011

the k-It and t.he test intensity 011 the right. To improve the results of the t.est , mauv

mcasurcrnent.s are t.aken for 111an~· subjects and the results averaged.



Figure 2.4: Perspective drawing of the split-field experiment

The contrast sensitivity of a human call be used for designing quant.izers, as a

threshold for the split-merge condition ill segmentation-based compression. or for

human vision based image distortion measurements, More discussion of t.he use of

this technique and how we incorporate .JND measurements into t.he proposed codec

will be given ill Section 5 . ~ 1 .

A second important property of the II\lS is the modulat.ion transfer Iuuct.ion

(l\ITF). TIle l\ITF is the response measured l)y all observer who was shown t.,YO

SiIU:' wave grating transparencies, a reference grating of const.aut contrast and spat.ial

frequency, and a variable-contrast test grating whose spatial frequency is set at. some

value different from that of the reference [66]. The contrast of the test grating is

varied until the brightness of t.11E' bright and (lark regions of the t.wo transparencies

a-j)J)f.'ar ident.ical, TIle typical curve of the M'I'F is ShO'YII ill Figure 2..1.

TIle shape of the :t\ITF curve is similar to a baud-pass filter and suggests that
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high spatial frequencies. This implies that the middle spatial frequencies plav a more

import.aut role in perceived image quality than other frequencies. This proportv

is verv important ill segmentation-based image compression [38]. For eXc1.1111>le" if

all image is segmented into regions with respect to t.he information content. at. the

different frequencies. the image coder should require 1110re bits 1.0 encode regions

which contain 11li<I<.1Ie spatial Irequeucies to maintain quality, a)1<.1 USf' very Iew bits to

encode regions which contain 10,'" and high frequencies which the I-I\·l'S is less sensitive

t.o.
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A third propert y of the lI\"S is saturation effect. The contrast sensit.i v it v of t he

eve is known to decrease as t he in tensi tv of the visual st.imulus 1110YPS aw av from

the middle range of intensitv yalues [1.1]. That is, the Pyf' bas reduced sensit.ivit.v

to differences at very high gra~· levels and differences at verv low gray levels. This

l)hellOlllenOll call be used t.o reduce the dynamic range of the image data.

Each of the a bove properties hell) to characterize the aspects of the II \ rs tliat

are 1110St important in the development of image compression techniques. \\:e now

proceed to present l.he syiubolically-based image compression techniques.

2.3.2 Pyr-amidal Irnage Compression

Pyramidal image compression [9] features a hierarchical representation Ior t.he im­

age. The hierarchical structure is similar to that of the nervous system and it. uses

functions similar to those ill the II\:'S. The representation is geuerated using all it.­

erat i'''e applicat iou of 10\"'-I>a88 filtering. A block diagram of this system is shown ill

figure 2.6.

Starting wit h the original image ~ r ( 1 1 l ' l 1 1 ) ' 1 a low-pass version ~ r l ( 1 H ' \ 11) is COll1­

j>uted using local averaging with a unimodal Gaussian-Iike two-dimensional impulse

response. The 10\\"-}Jas8 image, wit.h a cutoff Irequeucy of .fl'\ call be Yie'\,,(:lc.1 (\S a pre­

cliction of ~ r ( 111" '11). Tile prediction error (1 (171" 11) is the difference between t.he original

image and tlre low-pass filtered image.

(2.1 )

<- 'learlv. if one coded the 10'\,,-1)o.S8 image and the prediction error this would he equi v­

alent t.o directlv coding the original image. Compression call be (\('hie\"ed wit.h this

rf'])reSellt.atio11 ill two wavs: (1) Since the error image is high-pass and t.he II\'S has
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Figure 2.6: Block diagram of the pyramid coding method

}PSS seusit.ivitv at. high frequencies .. the error image call be coded wit.li Iewer bits

tlian t lie original image, (2) B~· the two-dimensional sampling theorem. tile iO\Y-IJaSS

filtered image call l)e represented with fewer samples than the original image.
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An advantage of pvramidal coding is that the procedure described above call be

al)})lie<l iteratively. S } ) e c i f i c a J l ~ : , .. the low-pass filtered image ~ r l ( 1 1 1 .. 11) call he filtered

a second t.i me, at a lower cu t-off frequency .(2 (t vpicallv half the Ireq ur-ncv of t lie

first. filt.erillg operat.ion ), This t wire-filtered image ~ r 2 ( 111 .. 11) is now a prediction for

~l' 1 (111 .. 11 ) .. and t he error for this predict ion is

(2.2 )

After n iterations .. a series of prediction error images fl (111 ..11)., ... ., f n (111., 11) are 01)­

t.ainecl. If these images are viewed as stacked one above the other. the resul t. is

a. pyramidal (lata structure. At each iteration the dimension of the error image is

rpdllcpd (t.hrongh spatial decimat ion) 1))7 a facto r equal t.o t.h~ ratio of t.he cutoff frp­

(lUPJICies used ill that iteration aucl the previous iteration (t.ypically a factor of t.wo).

The resul tiug error images are quan t.ized (\.11(1 transmi t t.e(l to t.he recei ver.

1"'0 reconstruct tlie received image data... int.erpolat.iou filters are used to recon­

st.ruct tlu.l ('1'1'01' images from their decimated versions. A pixel-by-pixel sum of the

reconstruct f ~ d error images vields the decoded image. A nice Ica t.ure of this svst cui is

t.hat the quality of tlie decoded picture can l)e improved as desired at. the expense of

a lower compression ratio. Good quality images call be obtained around 0.8 bpp.

2.3.3 Dir-ect.ional Decornposit.ion Based Image Compression

1 ~ he mol ivation of directional clecomposi tiou image compression [43] is largelv d ue to

the existence of direct.ionallv-sensitive neurons ill the H\rs. In this met.hod. the orig­

inal image is decomposed into a series of images using filtering operations emploving

C;allssiall windows. TIle entire spatial frequency plane is covered with one ]O\Y-])ClSS

filter .. plus a set of high-pass, directional filters. TIle purpose of each directional f i l t . ~ r

19



is to extract edges ill the image wit li a particular spatial orientation. The filtered

versions of the original image are coded to Iorm t.he compressed image.

The lllessnges to be coded are t.he low-pass image and the direct.ionally-filt.ered

images. The low-frequency component is suitable for t.ransforrn coding. Each of the

direct ionallv-filterecl images is spatially decimated and then represented bv coding the

posi t ions ancl magni t udes of the edges in the decimated image. The edge posi t iOIlS

are coded using a run-length II ullman code I! a.11(1 t11e magni t udes of t.he edges are

quantized and coded using 3 bit coclewords. This coarse quantization is possible due

to tile reduced contrast sensitivity of the II\.!S at high frequencies.

1'0 reconstruct the original image, the low-Frequency component is obt ained bv

inverse transforrniug the coded coefficients and then the high-frequeucy dircctioual

edge images are reconstructed l ) ~ r decoding the edge information and int.erpolating.

Once all t.he filtered images have been reconstructed, they are summed to Iorrn the

final decoded image. This method call achieve compression ratios around 0.2 to o.!)

1)})}>.

2.3.4 Segrnentation-Based Image Compr-ession

For segmentation-based image compression techniques [7.. 38] I! the image to l)e com­

pressed is first. segmented. In image segmentation. the pixels ill all image are divided

iJJ1.0 lllll t ually exclusi ve spatial regions based 011 some cri l.erin. AIt.erua t.iYP].'YI! tilt.) cri­

t.eria used could 1)e as simple as the similarity of the pixel gray leyels (yielding flat

image segments] [12.. 72]. TIle criteria could l)e 1110re complex, such as how 'Yell the

pixels fit a given planar model (facet-based segment.at.ion ) [80] I! a t we-dimensional

1 ) 0 1 ~ · 1 1 0 1 1 1 i a l l l 1 0 < . l e l [i]I! a statist.ical model (texture-based segmentation] [ 6 U ~ 821! 88] or

a fractal 1110(lel [:38 .. G3]. Properties of t.he II\tS can also be incorporated iut.o t.he cri-
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t.eria to obtain a reconstructed image wit h a small visual loss, For example, contrast

sensit ivity and the l\ITF, call be combined with classical segmcut.at iou algorithms.

In general. seglllE'lltat.ion is carried out. in three steps: preprocessing. region growing.

and elimination of artifacts.

The purpose of the preprocessing is to reduce the local g r a l l u l a r i t ~ · of original image

,vit.liout affect iug its contours, so that very small-sized regions are not. obtained after

region growing. A key problem in preprocessing is the reconciliation of 1.'''0 apparcntlv

cont.radir torv goals; namely. granularity removal and edge preservation. Most of t.he

gra-lItllarit~o removal filters have low-pass characteristics an <.1 therefore smooth the

edges as well, Au inverse gradient filter [86] may be a solution of the problem. This

Iilt.er behaves likes a 10\"'-I>as8 filter ill areas free of contours a11(1 like all all-pass filter

ill highly contrasted areas.

TIle mechanism of region growing is the following. Regions to be extracted must

be characterized with some property ill the first step, Tile property might be, for

example, the g r a ~ o level of a pixel, the variation of t.lie grav level, or t.he energy within

a given frequency l)a11(1. The selection of this propert Y plays a verv i1111)01't.all t. role

ill the complexity of the method and ill the exactness of tile contours obtained after

segmentation. Then. starting with a given pixels ill the picture, its ueighboring pixels

are examiued t.o see whether they share the same property. If this is the rase .. the pixel

is included ill the region, and ill turn, its neighboring pixels are examined, aud so OIL

'''''Ilell there are 110 1110re pixels left." COIl nected t.o the region and sharing t hf-l same

property.. t.lie procedure stops and restarts at any other pixel which is not. includr-d

ill the first region. The segmentation is complete when all t.he pixels of th« picture

are assigned to some region. The above procedure call also {\})l)ly to the block-based

region growing algorithm if a feat ure set. based 011 blocks of all image is defined.
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Alter region growing. there are artifacts such as false contours, which do not.

correspond to real objects in the original image. such as 8111all regions gCllel'Clt.cd bv

noise. The nU1111)er of these contours is much higher than that. of t he objects ill t hp

original image. Two \ Y a ~ 9 S are available to remove t.his problem: oliminat.icn of t.li«

small regions and merging weakly contrasted adjacent regions. If it is assumed that

regions coutaiuing a number of pixels less than a threshold are llot siguilicant.. their

elimination drast.ically decreases the number of s111al1 regions. To avoid t.he creation

of holes in t.he image, these regions are included in one of their adjacent regions. 1'0

minimize the corresponding distortion, the enclosing region is chosen as the adjacent

region whose mean graj· level is closest to that of the 8111a11 region to be included.

The second possibility to decrease the number of regions is to merge adjacent regions

whose contrast is below a. certain level. The contrast between adjacent regions IS

defined as the mean gray level difference calculated along their C0I11111011 border.

After the segmentation is COI111)J~t.e'l t.he image consists of a set of disjoint. regions

separated bv contours, Both the contour (boundary] iuformation and the region

inlormat ion must 1)E' encoded. The contours may be approxunated with straight

lines and circle segments and then the information describing this approximation is

encoded [·13]'1 Alternatively. a biuary image describing where segment contours are

located ill t.he image may be encoded [72]. The interior of a segment is represented

by encoding. for example. tile coefficients ill a polynomial models descri bing PRell

seguient, or for flat segments, the average gray level of the pixels in each segment.

Kuut .. ct al. [-1:3] divided an image into segments using a region growing technique

based on information of intensity value, Contour coding is carried out ill a three-mode

procedure: 1) approximation bv line segments, 2) approximatiou 1 ) ~ · circle segments,

and 3) without approximation. The cost, associated wit.h each 1110dp'l ill terms of
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nurnber of bits for coding, is evaluated and the cheapest 1110(1(:' is chosen. Text ure

coding is used to encode the missing part. of t lie messages with a t.,Yo-dinl~llsiollaJ

polynomial Iunct.ion. All underlving assumpt.ion is that within each region t.here is

110 longer any sharp discont.inuit.v. Tile order of t.he polynomial is detcnui IHld as

a Iuuct.ion of the approximation error and of the cost involved ill coding polvuomial

coefficients. The approximation criterion usee! is the mean squared error ( ~ I S E ) which

is minimized oyer each region for polynomials of order 0" 1'\ and 2. The granularit v

removed with preprocessing is added back ill the form of a pseudo-random noise

t.o render the image more uatural. The ~ I S E between the original i1l1age and t be

iJllC\ge reconstructed wit 11 a polynomial function is computed ill each region. The

error is used to control the variance of a zero-mean Caussian pseudo-random signal

acldecl as niicrotexture. This method achieved a gOO(! reconstructed image with the

compression ra t.io around 50:1.

Biggar, ctal. [7] made a performance comparison l)et,yeell segrnen ta tion- based

coding and t.rausfonn coding techniques. III the segmeuf.at.iou-based method. C\ crite­

rion which minimizes the sum squared error (SSE) l>et,veell the segmentation image

0.11(1 tile original image was used. The results of the comparison show that" ill tenus

of the objective SSE measure, the segmcntatiou-based COtler performs bett.er than t.lJf'

transform coder at low bit rates (below abou t 1 bll}» and Iavorably oyer the out.ire

useful range of rates. Furthermore, he extended his segmeut.at.iou-based schemes for

video coding 1 ) ~ · applying segmentation to the frame difference signal [0]. "9hcu t.he

frame difference is segmented, a spatiallv dependent weight ing Iuuct.ion is combined

to encourage region boundaries Ileal' those ill the last frame. The result s suggest.

that p f r ~ ( " t j , · e I(),," rate video coding is achievable. Rajala. et al. [74] discussed as)l(-lc1.s

of a sflgnlcllt,at.ioll-l)asetl image coding ill 0 packet-switched network environment.



III this environment. all image coder and t.he network must l)e treated as a whole.

Tliev suggested a set of requirements that. need to be considered when designing

a codec, Segment.at.iou-basecl compression methods t.ypicallv achieve a compression

ratio around 0.2 to 0.7 bl)l).

2.3.5 Fractal Based Image Compression

Fractal-1)asf.'(1 compression is largely motivated by computer-generated Iractal images.

Maudelbrot [50], followed by Voss [85] showed that computer-generated fractals pro­

vided dramatically natural images SUCll as clouds, trees, continents. planets and so 011.

A distinctive feature of such fractal images is self-similarity 011 many diflereut scales:

when magnified. a small portion of the image resembles SOl11e the larger part., it. comes

fro III either exactly or very closely, Once written to produce the detail 011 scale, much

the same software can be reused ill a 1001) to repeat the image on successivelv larger

(or smaller ) scales. Thus remarkablv complex fractal images 1)}OSSOI11 from a small.

simple I)iece of programs.

The self-similarity propertv of computer-generated fractal images intrigued Barns­

ley. III the early 1 ~ ) 8 0 " s Barusley set out. tryiug to use it to compress the dat-a Heeded

t.o re-create an image, At a time when 1110st 'York ill fractals focused on producing

complex and realistic images from fairly compact computer programs, Barusley was

at tcmpt.ing the 01)IJOsit e. Start.ing with a C01111>lex image, he attempted to find a. Sf't.

of fractals that would produce an image, or at least. a close COI>.Y of it.

III early 1984 Barusley, ei ale [2] developed an iterated Iunct ion system (IFS) to

reduce an image to a set of Iractals, Their system is described as 1'0110\\"8. An image

is divided into segments which call be generated by fractals, The IFS matches each

of the corresponding segments wit.h IFS code that represents a. fractal image close in
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appearance to the segments. The IFS hunts for a similar-looking Iract.al image b.,"

using a. scale called the Hausdorff metric. which measures how similar to t,YO images

are ill terms of their spectral and spa t ial charact erist ics. The codes tha t prod uce

the fractal images are called iterated Iunci ion svstem (IFS) codes. TIley call be used

to re-create t he original image, and are stored ill place of the pixel information t.hat

rnade HI) the original image, Therefore, verv high compression can be obt.ainod.

For eXaI11]>}e, an image of rain falling Oil a seashore might 1)(' broken clown iut.o

rain, rocks ill tile water Ileal' the shore, foam ill the water near the rocks" the water

itself, birds ill the sky, clouds, tile sky itself, a strip of beach. and some grass near

t.lic beach. The images are first. divided into segments. The IFS system then matches

each of the segments with code that represents a fractal image close in appearance to

t.he segment using the Hausdorff metric . Jacquin [:l.'j] J>rOI)Ose<1 a Fractal-based block

compression technique, Tile main characteristic of his technique is that image blocks

rather than all image are reduced to a set of fractals. Furthermore. his S~·St.f'1l1 can

1){:' faster because it. call be implemented ill parallel.

Al though t hese methods call achieve the high compression ratios. there are some

limit at ions, One limit.at ion is that this method niav 'York well onlv for images which

have characteristics of self-similaritv, Another limit ation is that it. is computation­

iutensi ve in both t.lie encoding and decoding phases because this met hod liSPS 1110lly

itcrations to generate the fractal images, For example. the IFS system carried out on

Masscorup 5GOO workstations with Aurora graphics took about 100 hours t.o compress

a 780 x 10:2-1 pixel, 256 gray level digital image and :30 minutes to decode 011 t.lie-

1\ IaSS(01111)·
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2.4 Conclusions

III tlris chapter we provided au brief review of the previous approaches to the image

compression problem which are called as the st.at.ist.icallv-bascd image compression

t.echuiques. The st.at.ist.icallv-based image compression techniques have a main limit a­

tiou t.hal the (lata rates 111ay have reached a saturation level around 1 1Jl)P. \':e t licn

examined a new approach to image compression which is called as the svmbolically­

based image compression techniques combining properties of the II\'I'S and tools of

image analvsis, The symbolically-based image compression techniques can achieve

lower (lata rates (below about 0.2 to 0.;- bl)})) than the stat.ist.ically- based image C0111­

pression techniques.
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3

Texture Analysis

3.1 Introduction

AIIIOllg the characteristics of images, texture has been recognized as one of the 1l10St.

import-ant. It. is important because pixels call be groUI)ed into relat.ively large, ho-

mogeueous regions and provide the essential structure iuformat.iou ill an image. For

example, tile grass, the sky, and a tree will define relatively large homogeneous re­

gious each with its O'YIl textural structure. When a relat.ivelv large region has a

single texture. t.he large amount of redundancy call be renlOVf'(l. A good rr-presen-

tat JOIl of texture information ill all image is necessary for developing a system with

11iglJ compression.

Text ure may ]-,e classified as being artificial or uatural. Artilicial t.ext.ures consist

of arrangements of symbols placed against a neutral background. These symbols mav

be line segments, clots, stars, or alphanumeric characterist.ics. Nat ural textures. as the

name implies, are images of natural scenes contaiuing semi-repet.it.ive arrangcmr-nts

of pixels. Examples include photographs of brick walls, terrazo t.ile. sand. grass, tree,

et c. I3ro(latz [8] lias published an album of nat urally occurring textures. A gPIl~r(d

overview of texture analvsis call be found in Lipkin and Rosculekl [-16].

Of particular interest to this research are measures for discriminat iug differpnt
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textures. Haralick .. et ale [:31] proposed co-occurrence statistics as a texture distance

measure. It is based on the estimation of the second-order conditional probability

densit.v functions correspoudiug to a pair of pixels separated by a dist ance ill 1'(,1­

ative orientation. Texture Icatures call be extractecl using these densit.y Iuuct.ious.

However .. this met.hod suffers from several problems: 1) co-occurrence st.at.ist.ics oh­

t.aiued from different spatial dependence of a pair of pixels may provide the different

st ruct.ure information of an image a11<.1 2) a large number of computations 011d some­

times excessive memory requirements are needed. Zucker, et ale [78] developed all

algorit.lun 1.0 find spatial relations that best capture the structure of textures when

t.he co-occurrence matrix representation is used. Conners. et ale [13] proposed a

compressed structural description of Ilaralick's Il1et.IlO(1. Unser [84] describes all al­

t.eruative to the co-occurrence method which is nearly as efficient. .. while requiring

subst.ant.iallv less memory, Laws [4-4] used texture energy as a texture distance 111Pa­

sure. The texture energy measure is computed using filters of dimension :3 x 3 or

:) x !j pixels which match local features like e ( l g e ~ spot, line. ripple, etc. Although

good results have been obtained. this approach remains heurist ic .. t.he filter set. is ill­

C O l l 1 1 J I e t e ~ and its elements are not mutually orthogonal, Other approaches to texture

aualvsis include autocorrelation functions [ 1 6 ~ 6 8 ] ~ gradient vector histograms [70]

and resolu t.ion-dependcnce [88].

Most proposed texture analysis techniques have been used [or t.lie classification

and segmentation of textures regions: few have been used for texture coding. Kocher

and 1\un t [4 J] proposed a segmentation-based compression system b ~ " COil tour- text ure

modeling. Image compression is achieved by approximating t.he contour inforrnat.iou

and the text ure information ill each region. TIle contour information is given 1 ) ~ · t.he

locat.ion of t h ~ boundaries of each region aB(1 the texture iuformat.iou 1>)" means of

28



2-D polynomial Iunct iOIlS. It was assumed that the texture within the region does 110t

cont.aiu anv sharp cliscontinuitv.. thus a 2-D polvnomial aclequat.elv mock-Is the tr-xt.ure

content" Uuforf.unatr-lv .. in images cont.aiuing complex textures .. P,g... trees and hushes

having mauv sharp discout.inuit ies .. their met.hod does Bot work well. IIo,,·e,"er .. this

mothod can achieve 0 compression ratio around 0.2 to O.G lJ!>}l for images wit h 10''"

texture content .. like a head and shoulder image.

l\Iost. of the models discussed above are two-dimensional .. not three-dimensional.

lTse of two-dirnensional models leads to difficulty if one wants to describe the t hree­

dimensional iuforrnat.ion aud theu relate that t.o t.he human percept ion of texture.

The fractal model developed l)y Mandelbrot [·-19] offers the potential of uuily iug and

simplifying these various two-dimensional texture descriptions, as 'Yell as the possi­

bilitv of interpreting them ill terms of the three-dimensional structure of the image.

The principal advautage of describing textures ill terms of fractals'! rather than ill anv

of these other methods .. is that it allows us to capture a simple physical relationship

that underlines the texture structure. A relationship that allows us to interpret t.he

two-dimensional texture measurements ill terms of the three-dimensional world. The

fact that this physical interpretation call be lost with 1110st two-dimeusioual cliarac­

terizat ions of texture makes it advantageous to characterize texture problems ill terms

of t.lie t.hrce-dimeusional Iractal surface 1110(lel. Therefore .. a promising approach to

texture mod--liug for image coding is to use fractals. Some import.aut propert.ies of

[ractals ill terms of image coding are discussed ill later sections.
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3.2 Fractal Geollletry in Irnage Analysis

If we regard the pixel inteusity in an image as the height above a plane. then t.he

iuteusitv surface of a texture image can be viewed as a rugged surface. The fract.al.

model provides an excellent explanation of the ruggedness of natural surfaces, An

application of the fractal 1110(le111as been used in the graphical simulation of natural

phenomena like mountains, clouds. trees. human faces 'I 0.11<1 animals [1'\ :3'1 18.. 2:3].

1'11e Iract.al model has been applied to texture image analysis [GO" G:J'I 6-1]. as well as

image coding [ - ! ~ 3G].

One important characteristic of a fractal is the fractal dimension D" which is

related to the metric properties. length and surface of a curve, D provides a good

measure of perceptual roughness of the curve or surface .. with increasing values in D

represen ting perceptually rougher curves and surfaces [63].

There are a 11ll1111)er of different fractal models [50] available t.o describe non­

random and random fractal objects. An typical eXa1111)le of non-random fractal ob­

jects is the Koch curve [50] which a mathematically iterative program models I).,'

superimposing smaller and smaller triangles. Other examples are a Cantor set." a

Sicrpinski triangle and so 011. These nOll-ro.l1(10111 fractal objects have exact scale ill­

variance .. i.e., the shapes are invariant under magnification. However. 1110st objects

like' coast-lines .. trees, mountains and ctc, are only statistically scale invariant., since

they are only invariant ill all average sense. For example, magnification of coast­

lines are qualit at.ively identical. Bot quanl.it.at.ively. These st.al.ist.icallv scale invariant

objects are called as the raU(10111 fractal objects. 1 \ l a n ~ · random Iract al ohject.s have

been l ) ~ · the iteration of C0111!llex functions (1\1 set and Julia set. curves ) and t . h ~ fractal

Brownian function (FBF) [GO .. 59]. The 11108t useful fractal 1110dp] has been t.he Brow-
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niau Iunct iou (I;'BF) 1(.1'. .'1) [-17. -!!}] since it produce surfaces that closclv rflsf'lllblc

natural surfaces. TIle FBF model belongs to the class of stat ist.icallv self-affine Irac­

t.als [G:3]. 1'111e FBF model regards nat urallv occurring rough surfaces as t.he eud result

of ral1(10111 walks. Sueh random walks are basic physical processes ill our UBi verse. An

intensitv surface of a texture image can also l)e viewed as t.he end result. of a random

walk, so the FBF' can be used for the analysis of image texture.

3.2.1 Fractal Dimension

1 ' 1 I H ~ definitiou of the fractal dimension is a set for which the Hausdorfl-Besicovich

dimension is strictly greater 1.110.11 the topological dimension. ":e consider object. .\. ill

all E-(linlel1siollal space, j\';( f) is the number of E-llilllensiollal spheres of diameter (

needed to cover ..Y" where E is an inl eger 0.11(1 the E-(li111(,llsional space is the minimum

integer dimensional space al11011g all possible integer dimensional spaces which can

a /3 f --+ 0"

where !\"' is a constant. ..\. has Hausdorff dimension D. If D is fractional. D is also

called the fractal dimension. For fractal objects, D is independent of f.

If t.lre fractal dimension is to be used to characterize the text ure in au image, we

need a met 110(1 for estimating the fractal dimension from the given dataset. ~ l n l l Y

(liffercllt. estimators have been proposed: lJOX count ing [I]" yardst.ick [17]" 1l1axi)IlU11I

Iik--lihoocl [-1~]~ aucl blanket [61]" variance [ 6 3 ] ~ power spectrum [ G : 3 ] ~ probabilit y dell­

sit v Iuuct ion [85]. In our case, a blanket method is adopted since it. is comput.at.ionallv

efficient.
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The blanket met.hod is described as follows. A one-dimensional object such as a

coastline is given. All points with distances to the coast.line of 110 more tliau ( are

considered. These points Iorm a strip of width 2 E ~ and the suggest.eel length L( f) of

t he coast is the area ..4 (f) of tile st ri p di vided by 2t. As c decreases, L(() increases.

I ..4(f ) 7\ t () 1 .. 1- D
Leugt 1 = -- = f . J" t = \ {

2t
(:3.2 )

where Iv.. is a constant. A one-dimensional illustrat.iou of a curve is SIIO\r11 ill Fig-

lire :3.1. III extending Eq. (3.2) to surfaces, all points in the t.hree-dimensioual space

at distance f from the surface are considered .. covering the surface with a blanket of

f = 1.2 .. 3..... " t.wo blanket surfaces are defined as follows:

The image points (71,,, 71) with distance equal to or less than one from (i"j) are t.h«

four closest. neighbors of (i"j). Similar expressions exist when the eight-Ileighl)orhood

is desired. TIle blanket definition uses the fact that the blanket of the surface for

radius f includes all the points of the blanket for radius f - 1 'I t.og~tber '",ii II nil i be

points wit hiu radius 1 Irom the surfaces of that blanket Eq. (:3.:3)'1 for example,

ensures t.ha1. tlie new upper surface I. r~ is l1igher l)y a t least. 1 from [7't:_1" and also at

a dist.ance at least] from lT~_l in t.he horizontal and vertical direct ions.
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Figure :J.1: A one-dimensiona I fu net-ion is shown in ((\) and its roveri ng 1)IaII kr-t [or f

= 1 ~ ~ are shown ill (b) and (c). respect ively. TIle blanket areas are A ( 1) = ..J 7 and

A( 2) = 78. The respective measured lengt.hs are L( 1) = 47 /2 = 2:3.!J and J ~ ( 2) = 78/-1

= 1!).!j.



The volume of the blanket at scale ( is computed from L', and B~ by

1 •.1

The volume can now be used to obtain an estimate of t.he surface area which leads

tIS directly to an estimate of the fractal dimension. The area J ~ l ( () is gi,"en bv

l'~ }" 2-D
~ 4 ( f) == -) == \ e

:"'€

From a theoretical viewpoiut , if a surface is a. perfect fractal surface, then t.lie

fractal dimension will remain constant oyer all ranges of scales E; In pract ice, there

are scale range Iiuiit.at.ions of fractal dimensions due to limitations ill textural images.

For example, the resolution limit of the image S}Tst.eI11 sets a lower limit OJI t.he fractal

scaling behavior. All upper limit may l)e set l)y the structure being examined. Thus,

a real surface will be fractal oyer some range of scales rather t.han over all scale'S.

To COII1I)ute the fractal dimension, we apply the log function to hoi h sides of

Using Eq. ( 3 . 7 ) ~ we call define all algorithm for estimating tile fract.al dimension of

au image surface. First, calculate the volume l' (() using Eq. (3.5). Second .. calculate

the surface area ~ 4 ( ( ) for various scales e using Eel. (:3.6). Third, use Eq. (:3.7) to plot

log .. l( ( ) versus log( c). Fourth, choose (nloJ' and f ,11i n · (,nO.1· and {nli" are found bv the

experirueut . Fifth .. use a least. squares linear regression to fit. a straight line t.o the }>10t.

of JOgA~( e) vs. log(e]. Sixth, the fractal dimension D is equal to 2 111illUS the s)O})C of



the st raight line. Specifically. the algorithm for estimatiug tlie fractal dimension of

all image surface is as follows.

Algorithm I: Estimating the fractal dimension for an image surface.

Step 1) Calculate t.Ile volume l · ( f ) ~

lJ

Step 2) Calculate the area A ( f ) ~

Step 3) Toke t lie log of both sides of A(f) = !\"t2- D yielding

logA(f) = (2 - D)log(f) + I{

Plot log ..4( f) vs. log( f).

Step 5) AI)I)I.y least-squares linear regression to fit a straight line to plot of log .. ~l( ( )

vs. JOg(f).

Step 6) D = 2 - sIOI)e.

for example. a natural image and its plot of measured surface area, ..4(f) versus

( ill log-log scale are SI10''''11 in Figure 3.2 and Figure 3.:3 respcct.ivelv for f = l~···" 'i.

TIle fit is good for ( = 1,,··· ~ 5 ~ which implies that the natural image is a fractal

surface for f = 1". · . ~ 0. Therefore, (nUl.:r is ,5 and (ruin is 1. TIle value of t.he estimated

slope is -O.()2i2~) using a. least-squares linear regression. Therefore. the estimated

fract-al dimension is 2.()2i29.
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Figure :3.2: A natural image
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3.2.2 Fractional Brownian FUllctioll

One of t.he most useful models for random fractals found in nature such as mouul aiu

t.erraiu. clouds. and trees is the fractional Brownian function (FIJF)_ 1(.1': 1/) iut.ro­

duced 1 ) ~ · Maudolbrot a11(1 Van Ness [Gl]. It. has l)een shown t.hat t.lie FlJF produces

surfaces that closely resemble natural surfaces. B ~ · modeling natural surfaces using

the FBF" we can extract important information about t.he texture surfaces. For ex­

ample. one call relate the fractal dimension and the power spectrum densitv of the

FDF. As \",iII be discussed later, we take advantage of this relation in our proposed

cocli ng scheme.

TIle Iract.ion Brownian Functiou I (~r) is an expansion of the Brownian Iuuction.

Variations J ( ~ . r ) = I(~r2) - I(~rl) are zero-mean Gaussian distributed with variance

proportional to the displacement difference magnitude t l ~ r = l~r2 - .r11 raised to the

power '2!! [59].

where t lie brackets < and > denote statistical expectation. I\ is a constant. 0 < H <

1" 011<1 II is called the 11 urst coefficient. The case If == 1/2 corresponds to standard

Brownian function in which < I( ~;r)2 >= !\r ~~r. The mean modulus of a C:aussiall

variahlc is proport ional to its staudard deviation so the relationship can l J ~ writ.t.cn

w here I ~ is a constan t..

\ 'oss [.)~)] proved the Iractal dimension of the FDF ill one-dimensional case

D == 2 - /1 == E D + 1 - If
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where D and ED are the fractal dimension and the Euclidean space dimension r ~ ­

spect.ivelv. III two-dimensional case.

D = 3 - 1/ == ED + 1 - 1/ (:3.11 )

A more detailed derivation of the fractal dimension of the FBF ill a t.,YO dimensional

case is given in a }>al)er [10].

Let. us now derive a relationship between the fractal dimension and the slope of

the power 8}>('ct.r1.1l11 density (I>SD) of the FBF. If one defines ! (A~ ~ T) as the Fourier

transform a specific sample of 1Cr) for 0 < ~r < T.,

1(/.:, T) = ~ iT I(;I')f-j2trb'<!;",

then the PSD of I( k, T) is given by

jS'1(A~) = !\.'"TII(A\T)1 2 as T --t 00

where !\'" is a constant.

The autocorrelation Iunct.ion of I Cr) is given by

< (I(~r)- < I(~r) > )(ICr + ~~l')- < I(~r + ~~l') » >

< l(~r)I(~r + ~~r) > - < I >2

(:3.12 )

(:3.1-1 )

(:3.1!) )

The aut.ocorrclat.iou Iuuction (;(1 ~ r ) is direct.ly related t.o the mean square inrre­

ment.s of t.he FOF using Eq. (:3.8)

< II(~r2 - .1'1) - I(~r1)12 >

- 2 < I (.1' ) J (J' + ~;1') > +2 < J (.1' )
2 >

-2Gf1(~.r) + 2 < [2 >

= -2(;1(~;r) + 1\'1

1\"2~;r21{
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where A'1 and A'2 are constants. Therefore. the autocorrelaliou Iuuct ion if; given h ~ ·

G' J"}" \ 2H'I(~.r) == \1 + \2~,r

Recall. t.bp autocorrelation Iunction and the PSD are re-latccl by the "-i(,llf'l" Kliiut-

chi lie rela tion [37].

For certain simple power laws for ,5']( h-) .. C;](~.).) call 1)E' calculated exact.lv, Thus .. the

IlSD of the FflF is given 1 ) ~ -

A'I fJ (/':) + /\'2 1 . . 2 ~ +1

/{1s(1..) + t:2/3
" ../ 1

aI1(1. /31 = 2H + 1 for 0 < If < 1.

The procedure is easily extended to tile two-dimensional function .. I(;r). 1 (~r) III ust

I \ -I 2 } ~ I -I -I 12H< (....l ~ r ) > == \ .r2 - .r1 (
') ') r: ).J • ...,,)

(:t:!G)

( ' ) ')-)•.) • ..., I
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Ilore ~ r is a point ill the two-dimensional (xv ) plane and ~ j ~ is a displacement ill lhe

t wo-clirneusional plane.

For this ~ , r dependence to correspond to tlie ~ ~ r dependence of < I (~.I')'2 ». ,S' (r)
is given taking t.he Fourier transform of Eq, 3.:30 and using 1-'1 = 2/1 + 1

~ r 1
/\ 1b(k) + /\2 ".2H+2

1\"lb("' ) + 1\"2 ".J3~+1

Using the above equations, the relation between the sIOI)e /32 of the two-dimensional

IlSD and II is given by

Using D = :3 - II in two-dimensional space, the relation the fractal dimension D and

D 3-H

/32 - 2
3----

2

\\·IIell D is close to either 2 or 3" /3'2 is close to 4 or 2 respectively, /J,2 is t.he negative

slope of the IlSD. Therefore, the higher tlie value of D" the higher the s})at ial Irequeucv

content. t.he rougher t.he waveform.
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3.3 Conclusions

In 1his chapter we provided a brief overall review of texture models in applications ill­

eluding the classificat.ion , tIH:~ segmentation. and the image coding. \\"e t heu discussed

tile Irart al Browian Iuuction ill (let-ail. The relation of the fractal dimension and slope

of the power spectrum density of tlie fractional Brownian function \YC\.S oht.aiued. It

was S]10\Yl} that higher values of D provide the smaller negative slope of the power

spectrum deusity and the rougher image surface. We use this important relation for

segment iug au image into texturally homogeneous regions with respect to the d e g r ( ~ e

t.o roughness.
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4

A New A ppr'oach for

Segmelltation-Based Image Coding

4.1 Introduction

III Chapters 2 and :3 we presented previous results ill the areas of image coding and

texture analysis with particular attention to struct urally-based coding and texture

analysis using fractals. III the remainder of this report we present a method for

combining fractal-based texture analysis ancl propert.ies of the human visual system

to segment all image for application in image coding.

In t.liis chapter we define the structure of the new segment.at.ion-based image coder.

A description of both t.he transmitter and receiver will be given. Fundatuent.al t.o t.his

coder is the technique for segmenting all image using properties of the II \"S and

the fractal climeusion. In Chapter 5" wr- present in detail the proposed segmcul.at ion

technique and characterize its performance through computer simulation. III Chapter

G" we present the details of the mixed encoder and analyze the perforruance of t IIp

cocler 1 ) ~ ' determining t lie sensitivity of the system performance to changes in svstcm

parameters.

42



4.2 The Codec

A genera] description of the system for segment.ation-based image coding is 8110\"11

ill Figure -l.L It consists of three components: the t.rausmitt.er. the channel. and

Input Image
Transmitter

~ - - - - - - t _
I I

I I

I I

I Pre I

~ - - Sezment --- Encode ~I gmenter r I

I pr~g I

I I

I I

I I

~~-------------------------------------------~---~

Channel

I
I

I

I
_I

Decoder ---I
I

I

I

I

------~--------

Reconstruced

Image

Receiver

figure 4.1: TIle overall block diagram of the segmeut.at.iou-based coder.

which is thcn sent oyer some communication channel, The output of the encoder

is ;t string of bits t.hat represent the input image. In this work, it. is assumed t liat

t.he commuujcat.ion channel is noiseless or any errors IlC\.Yf' 1)~~1l corrected. In this

ideal case .. the output of the transmitter is equal to the iUI)Ut. of the receiver. At
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the receiver, the image decoder reconstructs the image from the st ring of For human

viewing. the reconstructed image is typicallv displavecl 011 a (~RT monitor.

4.3 TIle Transmitter

Figure 4.2 shows a 1110re detailed block diagram of the transmitter. It. includes t hrf'e

main stages: the preprocessor. the segmenter II and t.lie coder. The main l)ttl"pose of

the preprocessor is to alter the image so t.hat the segmenter produces a high quality

segmented image. The segmenter divides the preprocessed image into disjoint regions

of COl111110n textural content. TIle segmenter is followed 1)~· a coder which generates

t IH~ codes for the boundaries and the three texture classes.

4.3.1 Pr-eprocessing

III any segmeutatiou-based compression algorithm, the information describing t.lie

content of each segment must l)e encoded. Thus .. the number of image segments and

the 111l1111)er of bits representing t.lie textures of the segments are directly proport ional

to t.he bit rate of t.he coded image, Because of this, a minimum number of segments

and an efficient representation of the textures are critical. The preprocessing is df'­

sigur-cl to alter the image in such a way that fewer segments and textures are produced

by t.}H.' segmenter. but without degrading the visual quality of the segment ed imago.

Preprocessing will be required when the image (lata has been coutarniuated hv

noise or the dynatnic range has been compressed. In the former case, the preprocessor

is a linear or nonlinear filter designed to remove the noise from t.he signal. III t.he

lat tor case, the preprocessor is a clamping operation to enforce t.he dynamic range

reduct ion. It should l)e noted. however. that it is possible t.hat no l)rPl)r()cf'Rsillg 'rill
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Figure -1.2: TIle block diagram of the transmitter charact.erist ics.

l)e req uired.

Manv dillereut noise cleaning filters exist. in the literature [ : 1 7 ~ 8i]. The part irular

choice of filter depends 011 tlie type of noise one needs to remove. If the noise is

additive or white C ~ a l 1 S S i a l l noise" then it. is useful to use a linear filter. If t.hr- noise

is salt-and-pepper or shot noise" t heu it is useful to use an out-of-range filter or a



median filter.

The clamping ])rOCe8S proposed in [71] reduces t.he dynamic range of t.he imago h."

set liug all pixels wit h gray level above a threshold to that threshold and set.ting 011

pixels below a second threshold to the second threshold. This can l)e expressed:

(-1.1 )

w here ]J is the gray level of a pixel in the image .. 0.11(1 thI and i h2 are the two clamping

thresholds. Clamping is motivated 1Jy' the contrast sensitivity of the e ~ · e ' l which is

known to decrease as t.he intensity of the visual stimulus 1110yeS away from t.he middle

range of intensity values [14]. TIle reasoning is that. since the f.')te has reduced sen­

sit ivity to differences ill very high gray levels 0.11(1 differences ill very 10\\" gray levels,

variety ill gra~· levels at. these extremes of the gray level range is unnecessarv. Ilow-

image data and the experimental environment [65]. The clamping operation can IlO-

ticeably degtade the subjective quality of the image in a bad environment. Therefore ..

one must be careful in using the clamping operation.

4.3.2 II11age Segmentation

After preprocessing. the next step ill the compression algorithm is the segment.at.ion

of t.he image. III this work, ceut.roid-Iinkage region growing [:l2] is used. An i111J)Or­

t.aut attribute of region growing segment.at.ion is the production of disjoint sogruout.s

wit h closed boundaries. This is important because segmentation-baso.l compression

requires a description of the boundary and texture of each image segment. Such a
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description would 1J(-:' impossible if the segments overlapped or clid Hot have closed

boundaries,

All image is segmented into texturally homogeneous regions with respect t.o tlie

degree of roughness as percei ved 1)y the II \"S. TIle segmentation is accomplished by

t.hreshokliug tile fractal dimension so that membership is in one of three textural

classes. The three classes are perceived constant iutensity (class I)" smooth texture

(class 11).0.11(1 rough texture (class III). Regions belonging to the perceived constant.

intensity have a· fractal dimension less than DI . Tile second class contains regions

with t.he fractal dimension between D 1 aud D 2 . The third class contains regions with

t he fractal dimension greater than D 2 •

The out put of the segmenter is a gray level image consisting of 11Ian~- segments.

The images are partitioned so that each segment contains the same degree of rough­

ness as perceived l ) ~ y the I-I\tS. The 01) jective IlO\V is to apply an efficient. coding

technique to the boundaries and each texture class to achieve high compression wit.h

small visual degradation.

4.3.3 Tile Mixed Coder

The last stage ill the transmi tter is the encoding of the segments and their boundaries.

Du ring the segmeut.ation. the segments are classified as 011f.' of t.he throe text ure

classes. The objective of the coding is to obtain all efficient representation of the

s ~ g l l l e l l t . e d image data for transmission or storage. The image coder should use more

bits 10 encode the informat.ion for which tile II\·'S is 1110re sensitive and use Iewr-r

bits to encode the information which the I I \ ' ~ S is less sensitive. To accomplish this

we ]lrO})OSe a mixed coder. It. COI1Sists of four separate stages: the bouudary encoding

a 1)<.1 three t.cxt.ural class encocliugs. see Figure ..1.2.
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4.4 The Receiver

As can l)e ShO\,"l1 in Figure -1.3 ~ the t \,"0 t.vpes of coded iulorurat ion come j n tot he

Boundary

Decoder

Boundary

Image

Decoded

Image

To Display

Region

Decoder

Region

Image

Figure -1.3: The block diagram of tile receiver characterist ics,

The bounclarv decoder generates the boundaries of the ( l ~ r o d ~ d image from t liP coded

data r ~ c ~ i Y e d t.he conunuuicat.ion channel. A general description of bouudary coders
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'rill be given in t.he bounclary coding.

The n iissing part of the decoded image aft er the boundaries are dpcoded is texture

iuforrnation wit bin regions. Since rpgions belonging 1.0 class I are pf'rcf'iy('d ronstant

regions .. their mean values are painted within the appropriate regions. }{egiolls be­

longing to class II and III are reconstructed by reproducing polynomial functions.

The inforrna tion of the boundaries and the textures are COIII1Jil1ed to form the recou­

structed image.

4.5 The Basic Principle of t he Mixed Coder

l'IIE' goal of the mixed coder is to encode the boundaries and their reglolls III a

segmented image. Accurate represcntat.ion of the boundary is necessary to describe

the location of the region boundary because of the II\"S sensitivity of the edges. As

a result .. we chose all errorless coding scheme to represent the boundaries. A binarv

image representing the boundaries is created, Theu .. tlie binary data is encoded using

a 11 adapt.ive ari tlunetic codec [62 .. 72 .. 7G].

After boundary encoding .. we then need to encode the three texture regions. For

regions belonging to the perceived constant intensitv class .. only t.hp mean int.ensitv

values need lJE' transmitted. It should be noted that in t.his case lossy compression has

already taken place since we are approximating each regions texture wit It a const.ant

value. \-'·e do not wish to introduce any further compression .. so that the lossless

arit lunet ic code is again employecl to achieve further compression. Since all int cnsitv

111('011 requires 8 bits .. the mean intensity value is converted into a vector of all 8 y j\~

binarv array, where j\r is the number of segments belonging to perceived constant

regions. TIle mean vector is then encoded using the ari thmetic code.
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The texture information in regions belonging to class II and III are Hoi direct.lv

encoded. To achieve compression the texture informat.ion is first modeled. Polvuomial

models are used for each class. Compression is achieved by acljusting the amount of

error tolerated between the original image data and the modeled image data. The

lower the amount of error the better the approximation. but the higher the bit rate,

Because of the seusitivity of the II\:'S to middle range spatial frequencies" a lower

error is chosen for class II than class III.

There are two crit.ical components ill this image coding system. The first. is the

segmentation j1rOCeSS aud the second is the mixed coder. The segmentation algorithm

is a region growing-based technique which incorporates estimates of the fractal eli­

mensiou and t.he expected value of the block to describe the texture content and the

.JNJ) t.o bet t.er adapt its decisions to the fI\lS. The 111ixe(1 COtler defines appropriate

compression schemes for the textural classes and the segmentation boundary inforrna­

tion. 'I'he constant intensity regions (class I) are modeled bv the mean intensity value

of each region while the SIIIOOt.ll and rough texture classes (II and III) are moclelecl

using polynomial models. After modeling. the data from class I and the boundarv

information is encoded using an errorless arit.hmet.ic code. The dat.a from class II and

III a re ell cocled using t.he ari t.lnuet.ic code.

III Chapter !j we describe ill detail the texture segmentation t.ecIluique. III adclitiou.

the results of all evaluation of the performance of the segmenter to changes in various

parameters is presented. Parameters considered are the blocksize used to est.ituate

t he Iract.a I dimension and threshold of the fractal dimension.

I II Chapter G we present the mixed codec and evaluated the performance for t.lie

f'll t ire image coding system to pararnet er variat iOIIS. The parameters a re the Iract al

dimension thresholds D 1 and D2 and the adjusting amount of error tolerated )Jf't wr--u
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the original image dat-a and t.lie modeled image dat a for the smoot hand t IJ~ r0l1g11

text ure classes.
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5

Image Segmentation U sing Properties of

t he HVS and Fractals

III 1.11is chapter we describe a new technique for segmenting discrete g r a . ~ · leyel images.

In image segmentation __ the pixels in an image are divided into mutually exclusive spa­

tial regions based OIl SOl11e criteria.., each haying certain properties. Segmentat.ion is

all important s t ~ l ) ill scene analysis __ image understanding systems, and image coding.

III a scene analysis application. for example, all image is first. segmented into regions,

Regions are used to identify objects ill t.he image scene. Such ideut.ification requires

accurate segmentation so that a one-to-one correspondence bet.ween t.he image seg­

ment.s and the objects can be made. Many image segmentation techniques have bpen

proposed in the past [:32 __ 42 __ 80]. These segmentation techniques can l)e categorized

into the following six categories: (1) amplitude thresholding, (2) component label­

ing. (:3) boundary-based approaches .. (--1) region-based approaches and clustering __ (!j)

tem pl a t f' rna t ching, (6) and text ure-based segruent.a tion. Al though a grea t. deal of

work has been dUJIE' 011 segmeutat.ion techniques, there are onlv a Iew texture-based

segment.at.ion techniques [11 .. 53 __ 69'182., 88].

The purpose of image segmentation ill image coding is Iundameutallv diffprf'llt.

Irom that in scene analysis discussed above, For cotupressjon applications __ it. is 110t.
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necessary to have a one-to-one correspondence bet ween physical objects aucl lJnag(-~

segments. It is only important to design the segmentat.ion algorit hill so that 1111age

segmeut s are allocated in a wav t.hat achieves high compression wit h small visual

quality loss. III the proposed lIE"'" technique. this is accomplished by incorporat illg

properties of the ll\/'S at various stages ill the segment.at.ion algoritlun. By using

kuowlerlg« of propert ies of the II\.TS to guide the image segment.ation. t.he segments

can be chosen to produce a visually pleasing segmented image.

III segmentation-based image compression algorithms [6'1 7" 'I 4:3" il 'I i 4]" the inlor­

mat ion t.liat is encoded describes the boundaries a11(1 interiors of t.lie segments ill t.he

segment eel image. Thus, the 11l11111)er of image segments (\.11(1 the method of coding t lip

i 11 t.eriors within segments will determine, for the 1110St part, the bi t ra te of the C0I11­

pressed image. For this reason, it is critical that all image with a minimum number of

segments is produced and that the interior of each segment is encoded efficiently. l ' I H ~

goal of the segmeutat ion algorit.lun we propose is., for a given desired image qualit v,

to produce a segmented image which has not only the minimum number of image

segments but also will result ill all efficient bit allocation of the boundarv and interior

of each segment.

The segment.atiou technique we present segments an image into t.ext urallv homo­

g ~ n p ( ) t 1 s regions with respect to the degree of roughness as perceived bv the II\tS. The

segment.ation algorithm uses a variation of cent roid-Iiukage region growing [32]. The

region growing is directed 1Jy the texture distance measure between image blocks. III

Sec t i011 5.1'1 we describe segmentation algorithm. The measure of the roughness of

tho text ural regions is represented by the fractal dimension, III the art ual segmr-n­

t.ation, t.lie fractal dimension is threshokled so that the textural regions are classified

int o three textural classes: perceived constant intensit y, smooth texture. and rough
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texture. A descript iou of the fractal dimension was given III Chapter 3. Further

analvsis of t.he sensitivitv of t.he calculat.ion of [ract.al dimension to Llocksize wil] hp

described ill Section 5.2. III Section 5.:3 we describe technique for choosing t.he Iract al

dimension thresholds that are used in the segment.at.ion process. The ot her Ieat.ures

used in segmentation are tile JND and the expected mean, A method for measuring

t.he .JNI) and the experimental results are given in Section 5.-1.

Experiments were performed 011 three test images given in Figure G.l. Diffr-rr-nt

tvpes of i magery were chosen to show that the l)rOI)OSe(1 algori thm works well for a

wide variety of images. TIle first is a head an <.1 shoulder image, referred to as Miss

lJSA. It is typical of those {OUIlCI in video-telephone or video-couferencing applications.

III general, these images do not have highly complicated textural regions and thus, t.he

segmented image contains a small number of segments with relatively large regions.

The second is a complex image with many edges and is referred to as Lena. The last is

a natural outdoor scene anti is referred to as House. III geueral, segmcut.at.iou-basecl

compression techniques have not worked well for natural scenes such as in House.

That is because it has highly textured areas which produce numerous segments ill

t.he segmented image. Tile approach we propose overcomes these diflicult.ies because

t h(3 image is segmented into text urally homogeneous regions. Each image consists of

2!j6 x 256 pixels, wit.h 256 gray levels. TIle images are viewed on a Sun -l Workst.at.ion

wit.h a Sony monitor with 2,)6 possible gray levels. The monitor was calibrated so

that there was a linear relationship between gray leyel 1111111eric value and out put.

luminance using a technique proposed ill [:30].
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(c)

I~igur~ 0.]: Original test images. Each image is 256 x 2:jG pixels, with 2!j(i gra~· levels.
(0) Miss l)Sl\. (I» Lena, (c) House.



5.1 Jrnage Segillentation

The goal of the image segmeut at ion process is to decompose all image iut o t oxt u­

rall ,'9 homogeneous regions wit.h respect to the degree of rough ness as pr-rrr-i ,"('<1 hv

t.he II\:S. Textural regions are classified into three classes: perceived constant iuten­

sit.v.. smooth texture .. and complicated texture, For example .. the background ill a

head and shoulder image or tile sky ill a natural image are considered as perceived

constant iut.ensit.y.. the face or the shoulder is considered as SI1100th texture. and t.he

trees and tile bushes ill a natural image is considered as rough texture. 1'0 extract

texture information for accomplishing textural-based image segmentation. the fractal

dimension .. mean .. and just noticeable difference (.IND) are used ill t.he segment.at.ion

algori tlun. TIle segmentation algorithm is based 011 a region growing technique. A

unique of feature of the region growing process used ill t.his research is that it. is di­

rected 1 ) ~ · the texture feature distance l)et,veell image blocks" The region growing is

achieved through a merging test condition between texturally homogeneous neighbor­

ing blocks. If the condition for merging is satisfied. an observing block can b ~ inergecl

int.o it neighboring block. Otherwise" a l1C'''' region is dec1ared.

For our segmentat ion .. we have used a centroid linkage region growing uiet.hod

because it is guaraut.eed to produce disjoint segment s with close boundaries and ])1'0­

"ides a sequential algorit luu for growing region. The centroid liukage region growing

]11('t hod is illustrated in Figure 0.2. The observing block [013] is examine-d along ,,,it h

its neighboring blocks [NUl], [NU2]~ [NB3]., and [NB·!]. A classification ()f block [()B]

is made after comparing the feature set of block lOB] with the feature sct.s of its

I)(~jg]d)orillg blocks. The texture Ieat.ures used are the mean, .JND .. «111<1 t he (']«1RS tYJ){~

1)ClS('([ (HI t.hc fractal dimension of t I H ~ image block.

57



!window

NB2 NB3 NB4 I ..
NBI OB

!scan direction

Figure 5.2: Centroid linkage window

The class t ~ ~ l ) e is determined by thresholding the fractal dimension. If a block has

Iract.al dimension loss tliau D 1 .. it. is assigned to class I (percei vccl ill teu si t.v Yo] lie). If

a block has Iract.al dimension greater than D 1 all (1 less than D 2 .. it. is assigned t.o class

II (smooth text.nre ). If a block has fractal dimension greater than D'l .. it is assigned

to class III (rough texture},

Using the class tvpe value, the mean of the image block and t.he .JNI).. t.he S(\g­

meut.ation algorit.hm is as follows.

Texture-based segmentat.ion algor-ithm:

Step 1) n:vide t.lie image into J \ ~ 17 x j\. C' blocks (1'- R and . i ' ~ C-' are the numlx-rs of

row and COIUIllll blocks, respect.ivelv ].

Step 2) Calculate the feat ure set: the class tYI)e.. t.he mean. and the .IN D look-up

table for each block.
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1 otherwise

o if

F( OB) :s /)10 ('OB = (-';YRo

IJJ(OB) - JJ(~\·B)I < .JNJJ(OB_ i\·B)

or

J)1 < F(OB) :s D 2- ('OB = (-'iva

or

j;'(OB) > D 2 - ('OB = (-'lYB

,yhereF(OB) is the fractal dimension of the observing block. ("'(0/1) and

( - ' ( j \ ~ 1 3 ) are the class tvpes of all observing block and its neighboring block

respect.ivelv. A/(OB) and AJ(.i\"rB) are t.he means for t.he observing block

and its neighboring block respectively. .JND(OB_.i\rB) is t.h~ just. uoticeable

difference between the observing block and its neigh boring block.

Step 4) If there is a neighboring block with distance 0_ then merge the observing block

into it: else declare a new region. If there are more than two good neigh bori ng

blocks. merge the observing block into a neighboring block whose mean value

is closest to the mean value of tlie observing block.

Step 5) Repeat st.ep 3 to step !j until all blocks are segmented.

Step 6) St.O}>.

1
WJle

algorit lun scans the image from top to 1)01 tom and from left to right.

III image segmeutatiou. the block size for estimat iug the fractal dimension is (\ kr-v

COl111)OI}(~11t. The appropriate block size is critical for good estimation of t.he Iraci.al

dimension and control of the computation requirements. III section 5.2'1 ,Y€, investigate

the varia tion ill t he fractal dimension est imate for varia ble block sizes.

AII01I1Pl' issue is tlie choice of the fractal dimension thresholds /)1 and 1)'2 in

the segmcutat ion process because the values of D 1 and D'}, affect t lie compression



ratio and t.he image qualitv, Higher values of D 1 gJye 1110re regions belonging t.o

the perceived constant intensitv ill all image. This results ill a high compression

rat io because onlv the perceived g r a ~ · Jey('] and bounclarv inlormatiou of t hE'SP regiolls

need t.o be transmit ted. but generally the image qualitv is degraded. Lower values

of ])'2 produce more regions belonging t.o the rough textural class, III tllf' proposed

segmcnt.at.ion-basecl compression system. a larger amount of error is tolerated between

t.lie original image (lata and the modeled image data for the rough texture class thall

for the SI\lOOtII texture class. Regions belonging to the Sl1100t.h texure class cont.aiu

middle rallge spatial frequencies. t hus require 1110re at.tention and emphasis in order t.o

maintain image quality. We determine the range of fractal dimension for each texture

class. Based Oil the range of the fractal dimension for each class, t.he threshold values

for D 1 and D'2 are proposed,

The last issue in segmentation process is selection of the threshold used to det.er­

mine when regions belonging to the perceived constant intensity merge or split \\·(1

iuvest.igat.e several different thresholds based OIl the II\·S properties. The threshold

t.hat produces t.he best image qualit.v is chosen ill tlie proposed segmentat.iou-bascd

i mage compression syst ern.

5.2 Deterrnination of the Block Size for Estimating the

Fractal Dimension

"·hpll we compute the fractal dimension ill an image, the pixel iutcnsit..v in all imag«

is considered as a surface above a plane. All points ill the three-dimeusioual space

at clistance f from the surface wore considered. covering the surface wit II a hlankct

of thickness 2(. The algorithm for computing t.he fractal dimension ,,·(\S given in
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Subsection 3.2.1. A brief summarv of that algorithm is reiterated here. First. .. calculate

the volume '·(f) using Eq, (3.5). Second. calculate the surface area ~ 4 ( t ) obt.aiued

from t.lre volume diyj(lecl 1 ) ~ · 2f. Third .. plot log;l( ( ) versus !<)g( f). Fourt IL usr a least

squares linear regression to fit a straight line to the plot logf e) '·S. Iog(f). Finallv .. the

fractal dimension dimension D is equal to 2 minus to the slope of the straight line.

III t he proposed compression algorithm .. an image is divided into blocks and the

fractal dimension of each block is computed. It is important to choose t hc block size

ill tlie image so that good estimates of t.he fractal dimensions are obt.ainecl and good

image qualit.y call be maintained. When the block size is 8111al1" there may Hot be

enough pixels to describe the texture within the block. For example, if the block

is 1 x L, there is only one pixel ill the block «11Cl it is not. possible to characterize

its texture. \'-llell the block size is large" several different textures mav lJP present

within the block and the estimated fractal dimension will not accuratelv represent t.lJP

characteristics of the multiple textures. Another issue to be considered when choosing

t.he block size is the compul.ation requirements. The coruput.at.ion requirement for the

Jorge block is 1110re expensive than the one for the s111011 block. For example .. consider

t.he block sizes 8 x 8 and 16 x 16. The 11Ull11)er of pixels ill the block size 16 x 16 is Iour

times larger t.han the number in the block size 8 x 8. Therefore. the comput.atiou time

to compute the Iractal dimension ill the larger block is 1110re expensive, Considcriug

tlre issues discussed above .. we conclude that the smallest feasible block size is t.he

best block alternative.

5.2.1 Experill1elltal Results for Determining the Best Block Size

1'() (lC:'tel'llline the best block size ill terms of the fractal dimension .. t.hroe 30 x :30

subirnages in each of the test images are taken. Each subimage is assumed to lx-loug
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to one of t.he text ure classes. '''·e iuvcstigated the variat ion of t.lie Iract.al dimension

versus the block size for each class. Block size is varied Irom 2 to :30 and is increased

Irom 'the left, top corner. Curves of the Iract.al dimension Y(,l'SUS block size are giYPlJ

in Figures 5.3. .'j.J. and 0.5. III each plot. the x-axis represeut.s tile block size and the

v-axis the fractal dimension. The curve with a diamond symbol corresponds to t.he

perceived constant int.ensitv (class I). the curve with a cross symbol to the s111001.h

texturc (class II). and the curve wit h t.he square symbol t.o the rough texture (']<188

I I ] ).

Examining the curves in Figure .'j.:3. the fractal dimension corresponding to per-

ceived constant intensity (0) lias almost a constant value. 2.0'1 for blocksize 2. · .. ,,:JO.

That is. there exists only a single texture of perceived constant inteusitv in each

block. 1'11f.' shape of the curve corresponding to Sl1100th texture (+) are quite variable

for blocks between (2'1' · . ,,7) and (19.· ... 30) but are nearly coust.aut for the middle

block sizes (8~··· 'I 18). The reason for variability ill the smaller 2,,· · . ,,7 blocks is

the small number of pixels to characterize tile texture. In larger 19"", ,,:30 blocks

and provide the least variable estimate of t.he fractal dimension. Not.c, the :30 x :30

subimage at. the bottom of Figure 5.3 has three different. textures: t l H ~ neck and t \,"0

sweaters, III general. when the block size is large. t here is more likelihood that severnl

textures will be in the block. and the value of t.he fractal dimension will nut remain

coust.aut., The curve (C) corresponding to the rough l.exture blocks looks similar to

that of t.he smooth texture. At the small block sizes. there are too few pixels 1.0

estimate the texture and at. the large block sizes. multiple textures are present ill t.])f'

block. The curve is nearly constant for middle (8.··· .18) block sizes, III Lena and

House. the shape of the curve corresponding to rough text ure is uea 1'1,'· coust.an t for



blocks greater t.hau 7' x 7' block. Since the 30 x :30 subirnages ill the Ieat.hcr ill l A ~ I I ( l

and in the t.ree ill House have one texture. the fractal dimension of t.he regions within

the block remain nearly constant. In sunuuary, t.he larger block sizes mav not gi,·p

good estimates of the fractal dimension because they contain several textures and t.he

smalIt'r block 111a}· not. contain enough pixels t.o characterize t 1 J ~ texture.

Through extensive experimentation. we have found t.hat block sizes of 8 x 8 HI)

to 1-1 x 1·1 have almost a constant value. Thus these blocks meaniugfullv represent

the textural characteristics of a region, An est imat e of the means and t.he standard

deviations of the Iract.al dimensions for the blocks ill each class fur t.he three test

images as a result of these simulations are given ill Tables 5.1 .. 5.2'1 and G.:1.

"\;e chose au 8 x 8 block size for the block-by-block segmeut.at.ion algorii hill since­

the 81110.l1er block size reduces the comput.at ion and storage requirement and as will he

seen later is consistent with giving the best image quality, Furthermore, bv comparing

the ~ e t of curves ill earl] ]lI01'1 curves Oll square, cross, aud diamond symbols are t IH"'

top .. middle. and bottom respect ivelv for the mid sized blocks from 8 x 8 t.o 1·J X 1·1'1

rougher textu re produces h igher fractal dimension.
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Ta ble 5.1: St.at.istit's of Iravtal eli mension in Miss l.TS1\

class block size mean staudard deviation
class I 2 x 2 t.o 28 x 28 2.00070!j 0.0000U2
class II 8 x 8 to 1 ~ " ) x 1~) 2.07215~ 0.U00110
class III 8 x 8 to J ! x 1-1 2.!)7G650 0.OOOO8()

Table 5.2: Statistics of fractal dimension ill Lena

class block size mean standard deviation

class I 8 x 8 t.o 14 xl! 2.010-10:l 0.000026

class II 7 x i to ].) x 1.1 2.066:312 0.000007

class III i x i to 15 x 1!j 2.GU8!ji!j U.OO01~JO

Ta ble 5.1: Statistics of fractal dimension ill House

class block size mean standard deviation

class I 2 x ~ to 28 x 28 2.000000 0.00('000

class II i x 7" to 14 x l·t 2.29GO 10 O.UO(UH) I

class III 8 x 8 t.o 20 x 20 2.G50!)85 0.000172
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5.3 Thresholds for tile Fractal Drmension

A kev Ieature of the fractal dimension ill the seglllelltat.ion algorit luu is the thresholds

D 1 and D 2 used in order that t.lie text.ural regions ran 1)f' separated into text.ural

classes aucl better image quality is obt.ained with a larger compression ratio, The

values of the thresholds D1 and D2 affect. the compression ratio and the image qualit.v,

Higher values of D1 give more regions belonging to the perceived constant inteusitv

class in all image, It. results ill high compression ratio because oulv the perceived

g r a ~ · level and boundary iuformatiou of tllese regions need to be t.ransmit.tecl. Out.

generally the image quality is degraded. Lower values of D'l produce more regions

belonging to rough texture class. III the proposed segmental ion-based compression

system, a higher amount of error tolerated between the original image data and the

modeled image (lata is chosen for class III than class II because of the sensit.ivitv of

t he II\iS to middle range of spatial frequencies. Higher values of D 1 and lower values

of D 2 result ill high compression system, however, the image quality is d~grad(-'d.

Therefore, it is important to have suitable thresholds D 1 and D2 for compression aud

tillage quality.

The relationship between the fractal dimension D and 1he negative slope /3'2 of the

rSD of t.he FEF in two-dimensional case is given as derived in Subsection :3.2.2

D=--!_;32
2

As D is close to either 2 or 3. /31, is close t.o 4 or 2'1 respectivelv. This 111f'anS that a

lower value of D corresponds to a larger negative sIOI)P of t.he PSD and a lower spatial

Frequency content. Using t.his relat ionsliip, we would like t.o find tlie thresholds [)t

and D'l based OJ) properties of t.he II\'"S. One sirnp]« and good II\·'"S mode-l uses
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qualit v. This can be used ill the image coding. Once the M'I'F is specified. it. would

thresholds for t lie fractal dimension. IIowever .. it has IlrOY('Jl to 1)(' verv difficult. t.o

clef 1)(' the thresholds for the fractal dimension empirically.

1"J1(, shape of the M'TF of the II\rs is similar to (l band-pass filter and suggest.s
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that the II\"S is more sensit ive to midfrequencies and less sensitive t.o I(),,,, and high

frequencies in figure 5.6. Thus we have chosen to segment an image into three t.exl.ural

classes (perceived constant iuteusitv, SIlIOOt.}l texture. and rough texture] baspd Oil

spat ial frequency content. Since the fractal dimension of a shape corresponds to

roughness, regions which belong to the perceived constant intensi ty have a fractal

dimension less than D I . The second class contains regions with tile Iractal dimension

between DI a11<.1 D2 which corresponds t.o tile midfrequencies, those regions which

are more sensitive to tile human being. This implies that mirlfrequencies plav a

1110re important role ill perceived image quality than other frequencies and that. these

regions require more at.tention and emphasis in order to maintain image quality. The

t.hird class contains regions wit h fractal dimension greater than D 2 • These regions are

perceived as the most rough regions, but ones to which a human lias less sensitivity:

t.hus t.hey call be 1110re highly compressed,

To define the thresholds for the fractal dimension empirically, 1 1 1 a ' } 1 ~ · subimages

which may belong to each class in the images are chosen. Fractal dimensions of

t.he subimages in each class are investigated and the range of fractal dimensions is

cl eo term i IIecI.

5.3.1 TIle Experimental Results for Det.errnining TIlresllolds D. and ])'2

Five 8 x 8 subimages belonging to each class ill each test image with 2!j6 x 25G pixels.

and 2!jG gra~· levels are chosen. In this experiment ~ an 8 x 8 block size is used for

«ach subimage because the block size is the smallest one to characterize rueauiugfully

t.lie texture of a region as discussed in Subsection 5.2.1. For l\Iiss lTSA" !j subimages

ill the background a11<1 sweater are chosen to represent class I" !j subimages ill the

neck. cheeks, aud shoulder for class II. and .'j subimages ill the hair" eyes, 1110Ut li, and
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nose for class 111. For Lena .. !j subimages in the background and middk- of thc mirror

are CIIOSf'll for class I .. !j subimages ill the hat" cltepk .. and shoulder for class )1 .. and

!) subimages in t lie feather and f'yes for class III. For House, !) subimages ill t lit' sky

and concrete wall are chosen for class I" !j subimages ill the lawn and car for class II.

and !) subirnages ill t.he trees ill the left. and right of thc image for class Ill.

Images with five 8 x 8 subimages for each class are given in Figures !j.7 to !').1!). 'flip

mean and the st.andard deviation of the five subiruages fractal dimensions are given

ill Tables 5.--1 t.o .1.12. The mean and t.he standard deviation of the Iract.al dimension

of t.he fifteen subimages corresponding to class I are I' = 2.00i85:l and a = O.OOOO!j:J ..

respect ive-lv, The mean (\.11d the standard deviation of t.he fractal dimensions of thf'

fifteen subimages corresponding to class II are I' == 2. J9-!!jDG and (J' == O.OOG8U7 ..

respect.i vcly, The mean and the standard deviation of fractal dimensions of the fiIt (-'ell

subimages corresponding to class III are I' = 2.6G0297 and a = 0.02120!J .. respr-ct.ivelv.

1\ J)]01. of t lie fractal dimensions of t.he fifteen subimages for each class is given ill

Figure 5.1 (l. In the plot .. the x-axis represents the fractal dimension and t lie v-axis

t.lie number of blocks at that fractal dirncusion. The curve wit.h a diamond svmbol

corresponds 1.0 t lie perceived constant int.ensitv (class I) .. t.lie curve w ith a cross sv mbol

to 1he SI1100t 11 text ure (class II). and the curve with t.hp square svrnbol to the rough

t exture (class III). The fractal diruensious 1)eIoIlg111g to class I are dist ribnted around

the Iractal dimension, 2.0. The curves of the fractal dimensions belonging to class II

and class III are approximately bell-shaped around their means respectivelv. There

are gal)S between the curves for each class. Through these results .. thc value of D]

should not be great.er thau the minimum fractal diniension belonging t.o class II and

t 11f' value (J[ D2 should lie bet ween the fract.al dimension means or class ] I and class

IJ I. IJl Chapter G.. we determine the sensitivity of the rodec to variations ill [)1 and
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where D I 1Ira r is the maximum fractal eli 111f.'11SlOll belongi ng to class I .. D1/ I1Hl.r is t.he

maxinuuu fractal dimension belougiug l.o class 11 .. 0.1)(1 !)/IIl11i71 is t.he miniuuuu Iract.a]

dimension belonging to class II I.



Figure 5.7: Est.imation of the fractal dimension for the perceived const.ant intensitv
blocks ill I\Iiss l JS r\ . Five 8 x S blocks are used.

T;=d>]e 5. I: Fracta I dimensions for each blocks. The column and row index are or.k-recl
Irom t.lle t.op leIt.. The fractal dimension of each subimage is given ill tabk: (a). 'I'he
mean I' aut! tlie standard deviation (J are given ill table (b).

(colUlllil ,row) fractal dirnension

(1O~ ~ 17) 2.008697

(2j I .4-1) 2.()j 7080

( :j!j~G~J ) 2.000000

(100~221 ) 2.001:205

(')')8 ')(3(') 2.0018-12-- ~.." )

(a)

I' (j

2.008697 0.000011

J i"n)Je ~ J . r : r rC1Cl,i11 ((Jlllf"II~J('>JlS lor ~ C 1 C J l I ) I O C K ~ . 1. He CU11111111 C111(( rovv (lI((ex a.re orcure-u

Iroiu t.he t.op left. The fractal dimension of each subimage is given ill t.abk: (a). 'I'he

mean I' and the standard deviation (J are given ill table (1)).

I (column.row) I fractal dimension I



Figure 5.8: Estima t ion of the fractal dimension for the smooth texture blocks in I\l iss
lTS,\. Five 8 x 8 blocks are used.

Table ,).5: Frart.al dimensions for p<tcl. blocks. The ~ ( ) 1 1 l 1 1 1 1 1 and row index are ordered
Irom the top left. 'I'he frart.al diruension of each subimage is given in table (a). 'I'lie
111{,ClIl I' and the standard devia tiou a are given in t.able (1)).

( COIUll111,row) fractal dimension

( lO!j~ 126) 2.l :3'TG:JO

(1!j0.12G) 2.211!l8-1

( 180~180) 2.167-182

(1:38,206 ) 2.101!)8-l

(1:38~222) 2.:324 ~lS 1

(a)

2.1891!J2 0.00!)951

(b)

') a IJle ;).;): rra ct.al <I] Blf.'11 SlOBS tor ea cJ. I> lacks . ., lip ~()11I 11111 an (I row \11dex a re oruorrxt
from the top left. 'I'he fractal dimension of each subimage is given in table (a). 'I'lie
111{,ClIl I' and the standard dcvia t.iou a are given in t.able (1)).

I (rol1111111.row) I fr-act.al rl irrrension



Figure ! j . ~ : Est.ill1atiol1 of the fractal dimension for the rough texture blocks ill Miss
l lS f\. Five S x 8 blocks are used.

l 'Cil,lp 0.{): Fract.al dimensions for earh blocks. The rOI\111111 and 1'0\" index are orrlerecl
from the t op leIt . The Iract.al dimensiou of each subimage is gi"ell in t.abl« (a). 'rite
mean I' and the st.audarcl deviation a are givell ill t.able (b).

(column.row) fractal dimension

(1,)7.81 ) 2.6:l1716

(J07.107) ~ . 8 G 1 8 2 5

(1:3~.1 U8) 2.·!68G9G

(12G,1:30) 2.-103171

(128.11)0) 2.6J 7400

(a)

I'
0.021)J !j7

Table 0.{): Frar t.al dimensions for each blocks. The rOht11111 and 1'0\" inrlex are orderecl
Irom the top left . The fractal climeusion of each subimage is given in t.abl« (a). 'rite
mean I' and the standard deviation a are given ill ta ble (b).

I (rnl111~11,rn'W) I fr~rt.~l nil11Pl1~iol1



Figure !1.1 0: Est imat ion of t he fractal dimension for t.lie perceived constant int.ensity
blocks ill Lena, Five 8 x 8 blocks are used.

Table 5.7: Fractal dimensions for each blocks. The column and row index are ordered
f'rom the top left. The fract.al dimension of each subimage is given in table (a]. rrltc
mean II and t.he standard deviation a are giveu ill table (1)).

(colU 11111,row) fractal dirneusion

(1-18_10) 2.00~)G 18

(:37 ,!J7) 2.0010JG

(2:J9.97 ) 2.U210~j2

(2~107) 2.01:3692

(2 ·!2~lG! ) 2.011178

(a.)

JI a

2.011:32:3 0.000012

Table 5.7: Fractal dimensions for each blocks. The column and row index are ordered
Irom the top left. The fract.al dimension of each suhimage is given in table (a). rrltc
mean II a1}(1 the standard deviation a are giveu ill table (1)).



Figure 0.11: Esf.ima! ion of t.lie fractal dimension for the Sl1100th texture blocks ill

Lena. Five 8 x 8 blocks are used.

Table 0.8: Frart.al dimensions for each blocks. The C011111111 and row index arp orclerecl
from the t.()J) left. The fractal dimension of each subimage is given ill table (a ), The

mean II and the st audard deviation a are given in t.able (b).

(colurnn.row] fractal dimension

( ~ ) - ! .40) 2.27:J-!87

(129~G3 ) 2.28~G:3i

(22i~116) 2.231022

(120,156 ) 2.071~51

(158~218) 2.0-19282

(a)

I' a
2.181~):3G 0.0102:37

(b)

J CiIHP ~ ) . c = , : r rar t.at cumeusrous lor eaCJJ I)JOCKS . .I. ue COI11J1111 anu row mnex are oruere«
from the t.()J) left. The fractal dimension of each suhimage is given ill table (a}. 'rite
mean II and the standard deviation a are given in table (b).

I (column.row) I fractal dimension I



Figure 5.12: Estimation of the fractal dimension for the rough texture blocks in Lena.

Five 8 x 8 blocks are used.

Tal>1(3,).9: Fractal dimensions for each blocks. The ('0IU11111 a]1(1 1'()\Y index are orderpel
from the top lelt , The fract.al dimension of each 8 1 . . 1 b i l 1 1 a g E ~ is given in table (0'). The

111('(\.U I' and the standard deviation a are given in ta ble (b).

(CO}Ull111,row) fractal dimension

(J:3 t .12!j) 2.8-!7~)27

(1(.0~ 127) 2.5 ~J 1 ~) () ()

(6:3 ~ 1-11 ) 2. 728()():~

(G2~2UO ) 2.52] q-12

(-0 ')·)f) 2.890:308I ...... _)

(a)

I' (7

2.716161 0.020198

r-J'ahl(3,).9: Fractal dimensions for each blocks. The ('0IU11111 and I'()\Y index are ordered
from the top left. The fractal eli mension of ea ch 81..1 bi 111agE~ is giveu in t.able (0'). The

111('(\.U I' and the standard deviation a are given in t.able (b).



Figure 5.1:1: Est.imation of the fractal dimension for the percei vecl constant int .eusitv
blocks ill House. Fi ve 8 x 8 blocks are used,

Table 0.10: Fract.al (ljnleJl~ion~ for each blocks. The ro11111111 and 1'0'" index arr- orrlcred
fr()111 the top left. The Iractal dimension of each subimagc is given ill table (a). The
111eCln I' and the standard deviation a are given ill t.able (1)).

(column.row) fractal dimension

(19-1,U) 2.00U()O()

(~)6_12 ) 2.00UOOO

( llQ,12) 2.000000

( ll_22V) z.mns:
(1:J!J,232) 2.018201

(a)

I' (J'

2.006-170 0.00006-1

J anie :).1.,: r raClaJ (ll mensrons lor part] UIOCKS. J UP ("011111111 ann 1'0'" 1 J U I ~ X etr(-- ()J"(u·r(·(1

fr()111 the top left. The Iractal dimension of each subimago is given ill table (a). The
111eCln I' and the st.auclard deviation a are given ill t.able (1)).

I (COlUll111 ..row) I fractal dimension I



Figure 5.1-!: Estimation of the fractal dimension for the smooth texture blocks ill
Ilouse. Five 8 x 8 blocks are used.

Ta hle 5.1 J: Fractal dimensions for each blocks, The COltHl111 and row index are orrlered
fro 11 1 the t.op left.. The fractal dimension of each suliimage is given in t.ahle (a). The

mea n I' ancl the standard deviation a are given in ta ble (b ).

(column.row) fractal dimension

(226,140) 2.21 ,4: -1~)6

( 181 ~ 1!j,t ) 2.25!)j(i9

(107,181) 2.180522

( 168~189) 2.188~J8!)

(13,216) 2.223822

(a)

JI a

2.212G~n) 0.000716

(b)

Ta ble 5.1 J: Fractal climeusious for each blocks, The COltHl111 and row index are orrlered
fro 11 1 the t.oJ) left.. The Irart.al dimension of each sulrimage is gi veu in t.able [a}. The

mean I' ancl the standard deviation a are given in ta ble (1)).



Figure ,).15: Est.imation of the fractal dimension for tIle rough texture blocks III

House. Five 8 x 8 blocks are used,

1'0 ll1p ').l2: Fractal dimensions [or each blocks. The CO]11111)) and 1'0"· index are orck-rr-d
fr()111 the t.op left. The fractal dimension of each subimage is given ill table (a). The
mean JI and t.he standard deviation (J are given ill table (b).

(COIUll111,row) fractal dimension

( : 3 U ~ 2 : 3 ) 2.71!jlll

(1·1.1,5:3) 2.72~)585

(9~68 ) 2.8-108,)0

(217~93) 2.~1!j7 47:3

(227 ~ 1OS) 2.!j~)77()4

(a)

Jt (J'

2.668157 O . 0 1 7 0 2 ~ )

(b)

'j '0 hlp !J.l:l: Fractal dunensions lor each blocks. 'I'he column and 1'0"· index are ordered
fr()111 the top left. The fractal dimension of each subimage is given ill table (a). The
mean JI and t.he standard deviation (J are given ill table (b).
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Figure 5.16: A plot of the fractal dimensions of t.he fifteen suhimages for each class.
The x-axis represents the fractal dimension and the y-axis the 1111111),er of blocks at.
that fractal dimension. Tile curve wit.li a diamond S ~ · J l 1 b o I corresponds to the perceive
coustant intensitv.. the curve with a cross svmbol to the Sl1100t.Il texture, and the curve
with the square symbol to the rough text-tire.
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5.4 Selection of the Threshold for Regions Belonging to

Perceived Constant Intensity

III our proposed texture-based segment at.ion algorit lnn. textural regions are classified

into three classes: perceived constant intensitv, smooth texture, and rough text lire.

To determiue the merging-split condition l)e1.,Yeen the regions belonging t 0 t.he ))('1'­

ceived constant intensity.., we use the visual threshold ill the segmentation algoritlun.

"'·e investigate three different thresholds, 1.\'90 o.re based 011 II\rs propert.ies. The

II\9S-1)ase(1 thresholds we propose are adapted to local intensitv characteristics of t.he

image, As the segmentation algorithm progresses spatially through the image, t.he

segment atiou threshold is varied. depending OIl the intensity of the image ill a 10(0.1

area, The thresholds have been designed for use 011 0.11 image with 2!)G grav If.'yels.

The third threshold is the simplest threshold possible, a single constant that is used

Ior the eut.ire image. ";e refer to the constant threshold as th co71 •

"-e incorporate the Il\·'S properties ill our segmentation algorit.luu using t.lic .J N]J

as the visual threshold. The split-field method [30] to measure the .JND discussed ill

Subsection 2.:3.1 is used since it measures the .JND quickly and relial.lv. The image

display device is divided clown the middle int o two equal-size fields. The left. Iiekl is

a constaut reference intensity and the right field begins at the tOI> with t.he constant

reference intensity Cl11(1 increases linearly HI) to -10 steps above the constant reference

int.cnsitv. To perform the tests" the viewer S i 1 1 1 1 ) 1 ~ · clicks the 1110use at the point whore

t.lie difference between the left and right fields is 110 longer discernible. This point

is the .JND between the reference iut.ensitv 011 the left. and t.he test iutr-nsitv 011 t.he

right. A plot of the average of five viewers is SI10\"11 ill Figure 0.17.

83



ponent.s. The motivat.ion behind the straight line component approximation is t.o

cleteriuine whether a simple approximation to Figure 5.17 call he used. 1 ~ 1 J e thresh­

old is largest in the highest. and lowest int.ensitv areas of t.lie image and smallest and

almost constant ill the middle int.ensitv areas. The .JND curve is approximated b ~ ·

using a least squares linear regression to fit straight lines to t.he .JND curve. The third

threshold i hop is given by

{

(ll}) + hI ~f 01" 0 ~ }J < ])1

th01) = (/2}' + b2 .f01" ])1 ~ ]) < })2

(1.3]' + b3 .f01" ].J2 ~ }' ~ 2})')

Figure 5.18.

5.4.1 Tile Experimental Results

TIle thresholds described above were used to segment t.he test. iuiages SI10\\'ll ill Fig-

ures 5.1. These test images are 256 x 2!JG pixels, with 256 gray levels. The three

segment.at.ion thresholds were compared to each other ill order to determine which

threshold result.e(l in t.he 1110st visually pleasing segmented image.

ill t.lie subjectively best visual quality segmented image. (toJl1})oring the S ( 3 g I l 1 ( ~ l I t ' ( ' ( . 1

images with a variety of th coll 'I the l J ~ s t visual qualit ~ ~ segmented images were obtained

with f hcon = 5.5. TIle segmented images of test images are shown ill Figure G . l ~ ) usi ng

f !leoll = 5.5. The numbers of segments belonging to t lie perceived constant inteusity

a I'P gi ven in Table 5.1:3.
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The second threshold was found using the .J ND. The lest image size is 2!)(i x 2!jG

wit h 256 gra.y levels, Five test subjects were asked to take a measurerucnt of .JNI).

Each test subject sat a (listance of approximately six times t lie image hpight awav

from tlie screen. TIle test subject was given approximately three minutes b ~ f o r ~ the

start of the experiments .. to allow for adaptation t.o the laborat.orvs illuininat.ion. The

test subject was asked to take five seconds ill each click to allow for adapt.ation to

t he screen. TIle mean of five subjects .IN D measurements is SI10\"'11 ill Figure !j.17.

III the figure we see that. the experiment agrees with tile II\,rs contrast. sensil.ivit.y

propert.ies [1 J]. TIle .JND is largest ill the lowest and highest inteusitv arr-as of t.he

image. TIle .JND is smallest and uearlv constant ill t.he middle iutensit.v areas of the
" .

nuage. The segmented images of test images are SIIO\Yll in Figure !j.20 using this

threshold. TIle numbers of segments of the perceived constant iutensity are given ill

st raight liue components using a least-square linear regression. The approximated

iut erccpts [,1 .. [,2 .. a11(1 b3 • The parameters calculated are (11 = -0.!)7282 .. (/2 = 0.009:11 ..

(/3 = O.7:18(jl. hi = 42.96975 .. b2 = -1.40066 .. and 1>3 = 6.0!j30:J. The original .JND curve

and t.he approximated .JND curve are overlaid for comparison in Figure S.18. The

1)01<.1 line corresponds to the approximated .JND curve. The values of the .JND and

.. he approximated .JND are almost the same for t.he middle and high intr-usitv areas

of the image a11<1 tile values are a Iittle different only for the lower iutensitv areas

of the image. However .. since the human bas the least sensit.ivity ill the 10"·(-'1" iutr-u­

sit v areas .. t he difference does 110t. affect the image quality. The segmented images of

test images are shown in Figure 5.21 using the approximated .JND. The number of
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segments belonging to the perceived constant iuteusitv are given in Table 5.1!j

Compariug the segmeuted images in Figures 5.19 to 0.21 .. f hco ll has J)PPJ) sItO\YIl

to he inferior t.o th J JY D and fh ap • }:'rOl11 these sets of images it can be seen t.ha] fh J JY D

produces as good or slightly better quality segmented images than fh a p . This is as

expected because fhJJ\TD better adapts the local properties of the images. The number

of segments helonging to the percei vet! constant iutensit.y is approxi mat elv the same

for thJf~:D and lh a p and the number of t.he segments for th JND and fh a p is less t.hau the

one for t hCOrl' In a segmentation-based image compression system, the number of t.IJe

segments is critical to the bit rate because the boundaries interiors of the segments

are encoded. Therefore, the best threshold is the one that produces not 0111.,· a better

image qualit y but. also the minimum number of image segments. tb ir:» or th o l l can be

chosen as t.he threshold. \\:e use t hJ,\TD as the threshold in the proposed segmeut.at.iou

algorithm because ib.mo produces slightly better quality segmented image than fh
t l 1

) .
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(a)

(h)



(c)

Figure 5.1U: TIle segmented images using th con = 5.5. (a) l\Iiss lJSA. (1)) Lena. (c)
House.

Table }).1:1: TIle 1111111ber of segments for test images using f!leo1l == 5.0.

1111age Miss USA Lena House

Num. of class I 4~8 821 8·1)]

Table }).1:1: TIle 1111111ber of segments for test images using f!leo1l == 5.0.

1111age Miss USA Lena House

Num. of class I 4~8 821 8·1)]



(a)

(b)



(c)

Figure 5.20: TIle segmented images using thJ 1V D . (a] l\liss l.TS;-\. (b) Lena. (c) House.

Table 5.14: The number of segments for test images using thJJ\.D.

Irnage Miss USA Lena House

NUll1. of class I :391 77.! (i8U

- -- " - --- - ------- - - - - - - 0 - --- - -· -· - -- - - .--- ---- - -0 · -- -- -----0 - - · V J ' L/ ·

Irnage Miss USA Lena House

NUll1. of class I :3~) 1 77.! fi8U





(c)

Figure 5.21: TIle segmented images using th o1J' (a) Miss lTSA. (1») IJenC\.. (c) House.

Table 5.15: The number of segments for test images using th a p .

1111age Miss USA Lena House

Num. of class I 39.) iRl ()~):~

1111age Miss USA Lena House

Num. of class I 39.) iRl ()~):~



5.5 Conclusion

In this ellapt.er we discussed how to determine the block size for est iJ11a t ing the Iract.al

clinu-nsion because the block size is crit.ical in good estimates of the Iract.al dimension.

Then we examined how to t lireshold the fractal dimension. The threshold val ues

of the thresholds D 1 and D2 affect the compression ration 0.11(1 the image quality.

Finally" t.he selection of the threshold used to determine when regions belonging to

the perceived constant intensity 111erge was discussed. It. was s1l0',"11 that. the .JNIJ or

the approximated .JND rather than the constant threshold produced bet.tor qualit y

segmented images and less number of the segments.
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6

A Texture Segmelltation-Based Image

Coder

6.1 Introduction

III this chapter 4 .. a complete description of the new codec 1110del was given. The

transmit.ter was divided ill three major components; tile transmitter, t.he segmenter.

and the 111ixe(1 encoder. TIle preprocessor and the segmenter have been discussed in

df'tail ill Chapters -l all (1 5 .. respectively, In this chapter, we present the details of

tile mixed encoders. The purpose of using the 111ixf'(1 encoder rather t.hau a single

encoder is that a higher compression image can be obtained bv applying all elficient

coding technique to t.he bouudary and texture classes. Furt hermore .. more bits are

used to encode the information for which the I I \ ' ~ S is more sensitive and Iewer bit.s

are used to ell code the inforrnat ion for which the I I \ ' ~ S is less sensitive.

After preseut.iug the details of the 111ixe(1 encoding, tile perforrnauce of t.be pro­

posed image coding technique will be addressed, TIle first issue concerns the spgnlell­

t.at.ion method. A modifica tion will be proposed t.hat allows for iucreased 81)a t.ia I det.aiI

wit hout decreasing the block size. The modification uses t.he concept of overlaped

blocks. The choice of overlap or nonoverlap blocks affects the number of segments
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ceived constant intensity is critical to t.he compression ratio since their perceived grav

levels need t.o be transmitted. \\:e invest.igate the number of segments for each class

and the number of pixels for each class ill the non-overlap and overlap segment at.ion.

The second issue is the performance of the proposed coding system witlr respect

to variation ill D1 and D2 . The values of D1 and D2 affect the compression and

the image quality. Higher values of D1 give more regions belonging to the perceived

constant intensity ill an image and lower values of D2 produce more regions belonging

to the rough text ure class. \\le examine bi t rates and the change of tile n umber of

segments for each class with D 1 and D 2 variable.

TIle text. ure information ill regions belonging to class I I and class II I are encoded

using })01)9110111ia.l functions. The amount of error that can be tolerated between the

original image (lata 0.11(1 the modeled image (lata is. f\ lower error is chosen for class

II than class III because of the sensitivity of the H \ · ~ S . The last issue is to evaluate

tJ1E' performance with variation ill the amount of error.

6.2 The Mixed Encoder

The last stage ill the transmitter encodes t.he boundaries and t.he interiors of t.he

regions ill the segmented image, III the proposed image segmentation. the regions

are classified as belonging to one of three classes. Classes I" II" and III are perceived

constant value, smooth texture, and rough texture, respecti vely. In t.he proposed

cocliug approach, separate coding schemes are usee} for each class. ""e would like

t.he image coder to use more bits to encode the regions for which t.he II\·'S is more

sensitive. and use fewer bits to encode the regions for which the lI\TS is less sensitive.

To aCCOIIl!)Iish this, the encoder is designed as separate stages: the encoding of the
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boundaries, and the encoding of each textural class. In t.he next section. tilt' encoding

of the boundaries will l)e discussed.

6.2.1 TIle Boundary Coding

Since the II\7S is sensitive to the edges, the accurate representation of t.he boundary

is necessarv to describe the location of tile region boundarv, Therefore __ we chose all

errorless coding scheme to represent the boundaries. A binary 111(1) is created 1.0 rpp­

resent the boundaries, \';e examine three different errorless binary codes: ruulengt Ii

code [22]. crack code [77]. and arithmetic code [7:3 __ 76].

R unlength coding is a technique which works 'Yell 011 sparse binarv signals. for ex­

ample all image made up 1110stl~~ zero. with a few ones, TIle image rows are catenated

together to form a vector. and all runs of consecutive G's are fOtl11(1. The lengths of

these runs, separated 1 ) ~ · a symbol (referred to as a conuna.) to mark the end of a run

(i.c. the presence of a 1). completely describe the original image. The ruulengt lis and

COll1111as are then coded using a source coding technique such as the one described

ill [22]. This technique involves using 11 symbols ill an n-ary arit lunet.ic svst.em t.o

represent t lie runlengt hs, and all 11+1-t It S~·1111)ol to represent (l ("01111110. Details are

described in Appendix 9.1.

Crack coding traces the boundaries between regions. The lines t.hat separate

pixels belonging to different regions are coded. This is a four-way connected line

diagram. ill which links are from the four element set ttl), (10''''11_ left __ right TIle

coded segmentation image consists of two independent sources: a list of coordinates

[rom which to st.art tracing the edges and the edge description. The crack coding is

described ill (let-ail ill Appendix D.2.
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Arit.luuet.ic coding. introduced in t.he Ll l-'Ovform [last-in first-out l ill Hissauen [ifi]

and subsequently modified to the importaut FIFO-forI11 (first-in first-out) in Pasco [ ! ) ~ ] .

encodes t.lie strings. IS' consisting of t.he symbols i == O. 1..... 111. The basic eucod­

iug operation in an arithmetic code requires an update of of the probabilitv P( IS') of

t.he so-far processed string .5'. which can be <lone by P(.S')P(i /.5'). where P(i I,S') is a

conclit.ional probability of the symbol i given S. The arithmetic coding is described ill

detail ill Appendix 9.:3.

In our approach, the boundary information was represented using blocks. not.

pixels, Therefore" the number of bits to represent the boundaries is aII1108(. reduced

bv the block size. TIle compression ratio of the boundaries does IIOt g O \ ~ ( ' r l l the overall

compression ratio.

6.2.2 TIle Perceived Constant Regions

For regions which belong to perceived constant iutensity class (class I). oulv the

mean intensity values need be transmitted to describe t.he textures of the regions.

In t.his case, lossy compression has alreadv taken place since we are approximat.ing

each region texture with a constant value. \\;e <.10 110t wish to iutroduce anv Iurt.her

compression.

Since all iuf.ensity mean requires 8 bits, the mean iutensitv value is converted into

a vector of an 8 x J\"" binary array, where j\; is the n Ul111)er of segment s lx-louging

to perceived constant regions, TIle mean vector is then encoded using all arit.lunet.ic

coclo.
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6.2.3 Tile Sl1100tll and Rough Textural Regions

The texture information ill regions belonging to class II and class III are not direct.ly

encoded. To get higher compression, these regions are modeled first using 1)0).\'110­

mial funct ions, The coefficients of the polynomial Iunctions are encoded because the

variance of the coefficients is less than that of the original data. Arit.lunetic code

is used to encode the coefficients. A 10,Yer amount of error tolerated between the

original image (lata and the modeled image (lata is chosen for class II than class III

because of the sensitivity of the I I \ · ~ S . III general, modeling these regions bv Iuuct.ions

of higher order 1>0]YII01llia]s is computationally excessive. In this section. the lise of

011e or t,YO dimensional polynomial functions is investigated a11(1 the performance of

tile encoding system to variation of tolerated amounts for class II and class III are

The Iunctious that approximate a. signal within each region using 2-D 1)()1~·1l011)ials_

have the form:

order 0: .:(i'lj) = ao

order 2: .:(i_j) =

In the 1-D case these reduce to:

order 0: =(i~j) = au for a.II j

order 1: =(i~j) = oo+at i for (l.ll j

order 2: .:(i~j) = . '2 for all j0.0 + al' + (12
'

Hegiolls belonging to t.lie smooth and rough text ure class are modeled using 1-]) or
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LL(9(i~j) - ::(i.j))2
1 .J

where g(i.,j) is the two-dimensional int.ensitv field of t he original image (H1<.1 i.j are

defined within each region, The selection of the I-D or 2-D representatiou for regions

belonging to class II and class III depends on the SSE. Represent.at.ion of the smoot h

and the rough textures by the zero-order, first-order. and second-order 2-D polynomial

functions produces large SSE because these regions are changed to plateau, t.iltcd

plane, and quadratic surfaces, respectively. If the SSE is large, the approximated

error is large and the image quality is very noticeably degraded. T I H ~ other alternative

is to use the I-D represeut.ation for these regions,

III the one-dimensional case, the SUlll of deviations l)et,vpen t.he original image

data and the modeled image data using the 1-D polynomial functions is used as the

amount of error. TIle amount of error is compared with the threshold. and if it, is

less than the threshold, the next pixel is taken as the temporarv end point. This

procedure is repeated until the sum of deviations is large}' than the threshold. J\t

t his point. the previous pixel examined will be taken as t.he end point of the modeled

fUIIC1.i()lL The same pixel is also taken as t.he start point for the fit.t.iug fuuct ion,

The SUIIl of deviations for class II is set. to be smaller than one for class III. That is

whv regions which belong to the class II require 1110re attent ion in order to maintain

image qualitv l)ecause of the sensit.ivity of the H\TS. For regions which belong 1.0 t ])(~

class III like the class I ~ compression error can be tolerated because the II\rs is least.

scnsitive to these regions,
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6.3 Nonoverlap and Overlap Segmentation Method

During image segmentation. the image is segmented into three text ure classes. The

number of pixels belonging to each class ill on image affects the overall compression

rat io. In general, the more regions belonging to the class 1'1 the higher t.he compression

ratio. All approach to obtain higher compression ratio and maintain high image

qua li t~9 is considered. It is referred to as the overla1) 111etI10el. In the non-overlaP

method. all image is divided into mutually exclusive blocks. In tile overlap method.

t.IH:' block subimages are allowed to overlap at their perimeters. The pixels at. the

perimeter are computed in two or more blocks, If the pixels at the perimeter represent

perceived constant intensity, t.he overlap method produces more regions which belong

to the perceived constant intensity, TIllIS, the compression ratio is increased while

the image quality is maintained or improved. All example of tile overlap method is

SI10""11 ill Figllre G.l.

III the figure. all 8 x 8 image cousist s of three strips of textures. The block size is

-I ~ -l, Pixels ill the first (\.11(1 second COIUll111S represent texture which corresponds to

the class II. Pixels from tile third through the sixth COIUlll11S rel)reSPllt texture which

corresponds to the class I. Pixels in the last t,YO column represents texture which

corresponds to the class III. TIle 50 percent overlap method characterizes the texture

ill the middle four COlU11111S while tile 11011-0,rerIa}) method does not characterize t.he

text ure exact I ~ - ' 1 as S]10'Vll in the figure. However, SOl11e pixels are computed more

than once. and this increases the comput.atiou 10a<L as 8ho\\'11 in t.he figure. \\-hell all

image of 256 x 2!j6 pixels is divided into 8 x 8 blocks, t.he nUIlII)('r of blocks wit 11 0,

.10'1 and 7.1 percent overlaps are 32 x 32'1 ..J: x :32 x 32'1 and IG x :32 x :32~ respert.ively.

There 111tlSt. be a trade-off between t.he overlap and compression ratio. Experime-ntal
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results are given ill the next section.

blockO, , blockl, ,
,

o 0 0 010 0 0 0

I
o 0 0 010 0 0 0

I

o 0 00 10 0 0 0
I

o 0 0 0 10 0 0 0
I--------,--------

o 0 0 0 10 0 0 0

I
o 0 0 010 0 0 0

I
o 0 0 010 0 0 0

I

o 0 0 0 1 0 0 0 0
I

I I I

001 0 0 I 0 0 I 0 0

I I I
001 0 0 I 0 0 I 0 0

- - - ~ - - - -1- - - - ~ - - --
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Figure G.l: Comparison of the nonoverlap and overlap method. All image size and
block size are 8 x 8 and ..J: x 4 respectively.
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6.4 The Experimental Results for the Nonoverlap and Over­

lap Segmentat.ion

6.4.1 TIle Pixel Per'cent.age for Each Class

III Section 5.3 of Chapter 5" we discussed I10\v to determine the thresholds D 1 aud

D'}, of the fractal dimension, It was SI10''''11 that the curve of the fractal d imcnsious

belonging to the perceived constant intensity are approximately semi bell-shaped

around the zero and the curves of the fractal dimensions belonging to class II and

class III are approximatedly bell-shaped around their mean respectively, In addition.

there are gttps between the curves of the fractal dimensions for each class. B.," these

experiments, the value of D 1 s110l1Icl 110t be greater than the minimum of the fractal

di mensicus belonging to class II and the value of D 2 should lie between the means

of class II and class III. Therefore, it is reasonable that the value of D 1 is chosen to

be half of the sum of the maximum fractal dimension corresponding t.o t.he percei ved

constant intensity and the 11IillilIlUIII fractal dimension corresponding to t.lie smooth

texture. D 1 == 2.021t2.049 == 2.03,). TIle value of D 2 is CIIOS~ll to lJE' half of the SUIll

of tile 11I<lxilllU111 fractal dimension corresponding t.o the S11100t.ll texture and t . I H ~

· · f I 1" I' ttl Itt 2 324+2 403 ') ')6'3JIlIJll11ltllll racta (1lIIeIISJOll COrreS}lOI1( lllg ,0 . Ie rOtlg 1 ·ex . u r e ~ . 2' == _..J)••

'''''itI} D] == 2.035 an(1 D 2 == 2.363., the class type images for the test. images wit.h

0'1 50'1 and 75 (~) overlap are S110\Yl1 ill Figures "6.2., 6.3., and 6.4. Blocks with fractal

dimension less than D1" between D1 and D2 ~ and greater than D2 are represented

with an intensity value of O ~ 127'1 and 255 respectively at all pixels in their blocks for

III Miss lTSJ-\'l almost all of t he blocks in the large background and S0111<:' blocks on

tile sweater correspond to class 1'1 some blocks around tile neck co1'r('8})011(1 to class 11'1



and blocks around tile eyes, noses, and 1110uth correspond t.o class III. III Lena. most

blocks 011 the background and many blocks on the black frame of the mirror aud the

within mirror correspond to class I" blocks on t.lie ra}>. t.he chin, and t.he shoulder

class II" and all t.he blocks on the feather correspond to class Ill. In House, all t.lie

blocks 011 the sky 011 the top and some blocks on the wall on the bottom correspond

to class I. Some of the blocks on the lawn correspond to class I and II. Almost all of

the blocks on the trees 011 the left and right, 0.11(1 the bushes, correspond to class II I.

III addition, blocks 011 the windows of the house correspond to class III since shadows

of trees are 011 the house.

TIle percentage of pixels within each class ill the test images is given ill Tables 6.1.

6.2" and 6.:3 with the different overlaps, When the overlap is 50 percent, the percentage

of pixels belonging to class I is greatly increased. This means that the compression

ratio for 50 percent overlap will l)e much higher than that for a. zero percent overlap,

When the overlap is i!j percent, the percentage of pixels belonging to class I is almost

t he same as for 50 percent overlap, Since the number of computation is increased

for the i5 overlap method and comput.at.ion rate is not significant.ly decreased, we

determined that the best overlap is .50 percent.
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(a)



(c)

Figure 6.2: The class t ~ Y l ) e images of I\.fiss lTSA. [a] 0 percent overlap. (1)) 50 percent

overlap, (c) 75 percent overlap.

Table 6.1: Pixel percentage of each class ill Miss lJSf\

overlap class I % class II % class III %

0% 7 : ~ . 2 ~ 1 20.11 6.65

50 % 85.-19 10.29 4.22

75 % 88.59 7..56 3.85

Table 6.1: Pixel percentage of each class ill Miss lJSf\



(a)



(c)

Figure 6 . ~ : The class tYI)E' images of Lena. (a.] 0 percent overlap, (1)) JjO percent

overlap, (c] 7·5 percent overlap,

Table 6.2: Pixel percentage of each class ill Lena

overlap class I % class II % class III %

0% 29.49 4 ! j . 8 ~ 2-1.62

50 % 52.05 26.14 21.81

75 % 59.79 20.08 20.13

Table 6.2: Pixel percentage of each class ill Lena





Figure 6.4: The class tYIJe images of House. (a) 0 percent overlap. (1») 50 percent

overlap. (c) 75 percent overlap.

Titble 6.3: Pixel percentage of each class ill House

overlap class I % class II % class III %

0% 16.99 37.89 ~ ! j . 1 2

50 % 2-1.26 30.26 4!j.-!8

75 % 29.-18 26.37 ~!.l!j

Titble 6.3: Pixel percentage of each class ill House



6.4.2 Variability of D 1 and D 2

III this subsection. we examine the percentage of pixels within each class as a function

of D 1 and D 2 • Higher values of D 1 force more pixels into the .perceived constant

iutensi tv class and generally there will l)e both a larger number of regions belonging

t.o the perceived constant intensity class and more pixels per region. Lower values of

D 2 produce 1110re regions belonging to t.he rough texture class. We investigate the

changes of t.he percentage ill pixels within each class for tile following values of D 1 and

D2 • D1 == 2.035 is the half of the sum of the maximum of the curve corresponding to

the perceived constant intensity, D 2 == 2.:363 is the half of the sum of t.he rnaxinnuu

of the curve corresponding t.o the S11100tll texture and the minimum of t.he curve

corresponding to the rough texture, 2.021 is the maximum of the curve corresponding

to the perceived constant intensity, 2.0-19 is the minimum of the curve corresponding

to t I H ~ smooth texture, 2.324 is the maximum of the curve correspouding t.o the

smooth texture ~ a 11<.1 2.408 are the minimum of the curve correspondi ng to t.he rough

texture ill Figure 5.16. We examined the changes of the pixels of each class wilh

!j0(j{1 overlap siuce the 50(,/(, overlap was used for the proposed coding algorit.lnu. The

percentage of the pixels within each class with variation ill D1 and D2 are given ill

Tables G..! to 6.9. These results show that higher values of D 1 produce more pixels

belonging to the perceived constant iuteusity and lower values of D'2 produces more

pixels belonging to the rough texture.
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Table G.-!: Percentage of the pixels ill each class in l\liss lTSA with !jO(/(', overlap, D1

variable. and D'2 = ~.:~G:j.

1)1 class I % class II % class III %

2.021 7G.TO 18.-10 4.88

2.035 85.49 10.27 4.:l~

2.049 ~ ) O . 6 2 5.88 :3.·1U

Table 6.5: Percentage of the pixels ill each class ill Miss (T51"\ with 50(/r, overlap,
VI = 2.0:35" and D 2 variable.

1)2 class I % class II % class III %

2.324 8·5.,49 10.27 1.22

2.363 85.-19 10.27 4.2:l

2.408 85. !~) 10.10 4.1U

1'0.1)](-' G.O: Percentage of the pixels ill each class ill Lena with . ' j 0 ~ 1 overlap, D1 variable.
aut! D'2 = 2.:3G:3.

n, class I % class II % class III %
2.021 so.s: -1-1.79 24.68
2.035 52.05 2G.l-l 21.RO

2.049 G ! j . 8 ~ ) 1!j.2:3 18.87

1] 2



Table- 6.i: Pf>l'c('ntage of t.he pixels in each class type in Lena with GO% overlap.
D 1 = 2.0:3.1_ and 1)2 variable.

D2 class I % class II % class III %
2.324 52.0r) 26.14 21.80
2.363 5 ~ . 0 ! j 26.14 21.80
2.408 52.0:) 2G.fi3 21.31

T~ l)lp fi.8: Percentage of the pixels ill earl} class ill House with 50(/(, overlap, D]
variable, and D 2 = 2.:jG:3.

D 1 class I % class II % class III %
2.201 17.45 35.0!j 47.48

2.035 22.58 :31.42 45.99

2.049 ~ 3 ! j . 1 8 21.72 4:3.0~)

Tahle fi.!): Percentage of t.he pixels III each class III House with 50(/r, overlap,
D 1 = 2.U:j!j'l a11(1 D2 variable.

D2 class I % class II % class III %

2.324 22.58 31.0:3 4G.:l8

2.363 ~ 2 . 5 8 31.42 4!).9U

2.408 22.58 :31.88 4!). !):l
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6.4.3 TIle Boundary Coding

III this subsection ,YC present the results of compressing t.he boundaries of the regions

ill the segmented image using the three different lossless coding techniques: runlength

code" crack code, and arithmetic code. The segmented images were obtained with

D 1 = 2.0:3,) 0.11<1 D2 = 2.363 and 5 0 ~ , overlap. Information about the number of

segments and the boundary points is summarized in Table 6.J O. The number of

the bits to represent the boundaries is given in three different corliug techniques in

Table 6.11. These results show that the arithmetic code achieves lower bit rate than

the runleugt.h code and the crack code. Therefore, we will use the arithmetic code in

our codec.
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Table 6.1 0: Summarv of t.he numbers of the total segments and the boundary points
using VI = 2.U:3!j and D'2 =: 2.:36:3. .

nurnber of number of
mrage total boundary

segments points

Miss USA 298 1908

Leila 6 ~ ) 9 :3801

House 2 8 ~ ) 1984

Table G.11: Surumary of bits to represent the boundary using the three different
coding.

number of bits number of bits number of bits.
for runlength for crack for arithrnet.icimage

code code code

Miss USA :363G 1463 :1iO

Leila 72-1-! 2~) l!j i:Ji

House 1781 I 1!j21 3R-!

115



6.4.4 Coding of t he Constant Regions

III t.his subsection we present t.he results of encoding of the constant regions using t.hp

three lossless coding techniques: ruulengt.h code, crack code, and arithmet ic code. To

encode the regions belonging to the perceived constant intensity, their mean values

aTP converted into all 8 x AT binary. Each mean value is represented 1 ) ~ · 8 bits and

t.lrere are 1\: segments belonging to the perceived constant regions. TIle results are

ShO"911 in Tables G.12 and 6.13. The total number of tile regions and the number

of constant regions are given ill Table 6.12 while the number of bits to represent t.hp

constant regions for each coding technique is summarized ill Table 6 . 1 ~ 3 . These results

again show that the arithmetic code is better than the runlengt.h code and the crak

code.
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Table G.l 2.: Summary of t.lle uu nibers of t.lie total segments and the percr-ived constant
regions USlllg D 1 = 2.U:3:j and D2 = ~.:36:3.

11Ul11ber of number of

1111age total constant

segments regions

Miss USA 2 ~ 8 2-12

Lena 6 ~ ) 9 !j76

House 2 8 ~ ) J9D

Table G.I:3: Summary of the number of bits to represent the constant region.

number of number of number of

image bits for bits for bits for

runleugth code crack code arithmet.ic code

Miss USA :jG90 1-!8-1 :375

Lena 8782 3·5:3-1 87~)

House 30:3-1 188~) :308
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6.4.5 Coding of tile Smooth and Rough Textural Regions

III this subsect.ion we first examine the SSE's of I-D and 2-D polynomial Iunct ions

to det errnine which dimensional polynomial functions is used to represent textural

regions" and then the results of compressing the Sl1100th and rough regions bv 1-1)

dimensional polvuornial functions are presented. In the 2-D case" the coefficients a,

are chosen to minimized the SSE of the approximation

LL(9(i"j) - ::(i,,)))2
l j

where g(i"j) is the 2-D intensity field of the original image and =(i"j) is the 2-D

1)olyl10111ia.I function, We examine 110"" well the 1-D and 2-D polynomial functions

approximate tile original image (lata. First consider the 2-D case. A 32 x :32 su himage

around the trees ill House was chosen to represent a rough textural region a.11<1 a 32 x 32

subimage around t.he chin ill Miss lTSA was chosen to represent a smooth text.ural

region. Recall from Chapter 5" the trees ill the House and tile chin in Miss lTS 1\

were classified as rough and smooth textural classes" respectively, The zero-order

(plateau] .. first-order (tiltecl plaue}. and second-order [quadratic] represent.at ions for

t.he rough textural and the Sl1100tll textural subimages are given ill Figures G.G aud G.()"

respec! ivelv along with t.he original subimages, the zero-order 1110<1<:,1., t.lie first-orck-r

mock-I, and the second-order IIlOc1('l. The SSE"s for each representation are given ill

Tables G.l·! and 6.15 1)E'10,,,, the figures. As SI10\"'11 in the tables, the SSE for each

order is so large that the represeutat.ion using lower order 2-D polynomial Iuurt.ious

is not likelv to be useful ill the proposed compression system. Au alt.ernal iyf' is to

use higher order 2-1) polynomial Functions or 1-D lower order polynomial functions.

However, tile computation time to minimize a higher order 2-D polynomial functions
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is very expensive. Therefore, the I-D polynomial function are considered.

In the 1-1) case" the same original images were used. The zero-order [plat eau ).

first-ordr-r (tilted plane), and second-order (quadratic) represeut.at ions for tllf' rough

tcxt.ural and tIle smooth textural subimages are given in Figures G.7 and G.8'l re­

spectively along with the original subimages, the zero-order 1110(lel" the first-order

1110(leI" (1)<.1 t.he second-order 1110(lel. The SSE"s for each representation are given ill

Tables 6.1 G and 6.17 below the figures. As S110'Vl1 ill the tables, t.he SSE ill the 1-D

case is less than one ill the 2-D. It means that the I-D functions represent the smooth

and the rough textures better than the 2-D functions 0.11(1 with fewer comput.at ion

and lower bi t ra t.es.

III the I-D ase, we adjust tile amount of error tolerated bet.ween t.he original image

do ta (1)(1 the modeled image data. A lower error call be chosen for class I I than class

I II. Information about the number of regions and the number of bits to represent these

regions is summarized ill Table G.lS using the l-D first-order polynomial Iuuct.ion.

The first order polynomial functions were used because tile SSE of t.he first. orde-r

polvnomial fuuct ion is not much greater than the SSE of one of the second-order

polvuomial funct.iou TIle sum of deviation between the original image and t.lie modeled

image were used to calculate tile amount of error. The thresholds for class II aud class

III are 25 and 60_ respectively, TIle largest values of the thresholds which produced

t.lie good image quality 1)}" experiments were chosen because the largest thresholds

give the lower bit rates. Further analysis of the codec performance as a Iuur t.ion of

t he choice of thresholds is given ill Subsection 6.-1.7.
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Figure 6.5: Modeling a rough texture region using a 2-D polynomial. From left to to
right are the 32 x 32 tree subimage in House; the original, the zero-order model, the
first-order model, and the second-order model.

Table 6.14: The sum of squared error (SSE) values for each model.

order zero first second
SSE 1449139 1326727 1271754
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Figure 6.6: Modeling a smooth texture region using a 2-D polynomial. From left
to to right are the 32 x 32 chin subimage in Miss USA; the original, the zero-order
model, the first-order model, and the second-order model.

Table 6.15: The sum of squared error (SSE) values for each model.

order zero first second
SSE 371751 250527 180449
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Figure 6.7: Modeling a rough texture region using a I-D polynomial. From left to to
right are the 32 x 32 tree subimage in House; the original, the zero-order model, the
first-order model, and the second-order model.

Table 6.16: The sum of squared error (SSE) values for each model.

order zero first second
SSE 1365865 1146474 953608
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Figure 6.8: Modeling a smooth texture region using a 1-D polynomial. From left
to to right are the 32 x 32 chin subimage in Miss USA; the original, the zero-order
model, the first-order model, and the second-order model.

Table 6.1i: The sum of squared error (SSE) values for each model.

order zero first second

SSE 21ii24 113491 i9801
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Table 6.18: S11111nlar~· of the nu tubers of the segments ill the smoot h and rough text u­
ral regions and the number of bits to represent. t.hose regions using it 1-D polvuouiial.
The ] ) O l ~ · 1 l 0 1 1 1 i a l coefficients were encoded using the arit.luuet.ic code,

number number of

image of bits for

segments t hese regions

Miss USA .5G :3J 27

Lena 12:3 1"1:320

House ~ o 2818:3
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6.4.6 Bit Rate Computation

To couiput e the total uuuiber of bits required to transmit all image. t.he t hree uumlx-rs

of bits calculated for the bouudary. constant region, smooth/rough texture are added.

The bit rate is tile sum of the number of bits divided by the total hits of all image.

The bit rate. ER is given by

BR= SP+CP+RP
256 x 25G = 60536

where Sl? is the IIlIIII1)er of bits required for encoding of the boundaries, Cl? is the

11l11111)er of required for encoding of the constant regions, and fir is the number of

required for encoding of the SIll00tIl all (1 rough texture regions. For example, we

calculate tlie bit rates of test images with the following paramemtcrs: t.he thresholds

of the smooth and t.he rough texture classes are 25 0.11(1 GO respectively, D 1 = 0.0:3.1

constant region .. and smooth/rough texture as given in Tables 6.10" 6.12, and G.18 are

added. \\·e see t.liat Miss lTSA requires 370+375+:3127 = :3872 bits for encoding; IA'IHl

requires .:3.+R7!J + 14:320 = 1.59:3G bi ts, and House requires 38-1 + :308 + 2818:3 = 2887.1

hi ts for this coding 111etllO(1. TIle compression ratios" B R for t.he test images are

:J872/G!j!j36 = 0.06~ 1593G/G55:36 = 0.24. and 28875/655:3G = 0.-1-1 l)it p('r pixel,

The decoded images for each test image are given ill Figure G.!). The image quality

of the decoded images are good with these bit rates as SI10\'·ll ill Figure 6 . ~ L Through

our experiment, our segrnentatiou-based image compression method works well for a

wide variet.v of images including a natural image wit h liighlv textural areas l'eff"rred

as Il()use.
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(a)



(c)

Figure 6.9: The decoded images of the test images with D1 = 2.0:l!) and D'l = 2.:1G:l.
[a) The decoded image of Miss lJSA. (b) The decoded image of Lena. (c) The decoded

image of House.



6.4.7 Performance Evaluation of tile CODEC

III this subsection .. we evaluate the entire image coding system as paramct PI'S are

varied. The parameters are the fractal dimensions D 1 and D 2 .. and the 1110<1(,1 error

t.luesholds for classes II and III. First .. the compression ratios were computed wit.h

0111)· D 1 varying and the remaining parameters fixed. The thresholds for t.lie smooth

and rough regions are 25 and 60 respect.i vely. Second, the compression ra t.ios were

obtained with D2 varying and the remaining parameters fixed. Third .. t.he compression

ratios were computed with the thresholds for the smooth and rough regions varviug

anti D 1 .. D 2 fixed. Signal-to-ratio (SNR) values are computed ill each case. SNR is

defined as:

(J'7
sr:n - 101 [unagt: ]

s.: '\ - og10 2

O'f1"l'Or

where 9ij t.he input image .. 9;j the decoded image .. I' the mean of 9ij and lit: the mean

of t he error signal, gij - 9;.1· P is t.he size of the image (P x P) and i .. ) are indices t.o

thc image array.

The bit rate .. the SNR., and the number of segments of each class are sununarizcd

in Tables 6 . 1 ~ ) to 6.21 with D 1 variable and D2 fixed, Some plots of the S N I ~ with

1)] varia ble and D'l fixed are gi ven ill Figures G.lO and 6.11. In t.h(\ t.a bles, N'I ..

N I. N2. and N:3 represent the total number of segments. tlre number of S('gllH'IIt.S
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belonging to class L the number of segments belonging to class I I. and t he number of

segments belonging t.o class III .. respect.ivelv. These results show t hat higher values of

1)1 produce lo\rer bit rates and lo\yer SNn"s. That is whv lo',"er values or l)J incroase

the number of segments belonging to the perceived constant iutensit.v as 8110"·11 ill tlie

tables.

TIlE' bit rate .. the SNR .. and the number of segments of each class are summarized

in Ta.1Jlf's 6.22 to 6.2-1 with D 1 fixed and D 2 variable. A plot of the SNR wit h D I

fixed and D 2 variable for House is given ill Figure 6.12. These results show that lower

values of Dl, produce lower bit rates 0.11(1 lower SNR 's. That is why 10,Yer values of

D 2 increase the number of segments belonging to class III as shown in the tables, In

the proposed coding system, regions belonging to class I II are less ell) pliasizcd than

regions belonging to class II because of t.lie seusit.ivity of the II\:"S.

1'0 evaluate the performance with variations ill t.he amount of error for class II and

class III .. a. SUlll111aT~· of information about the bit rat.e. the SNR .. and the number of

segments for each class wit.h variation ill amount of error is given Tables 6.2!j t.o G.:30.

D 1 = 2.0:35 and D 2 = 2.36:3 were used. A lower amount of error for class class I [

and III produces higher bit rates and higher SNR"s while the number of s e g l l \ ~ J l t . S for

each class remains the same, To increase the image qualitv of t.he regions lx-louging

to class II .. a lower error for class II is chosen. If we wish to increase t.he image qua litv

of t.lie regions belonging 1.0 class III" a lower error for class III is also chosen. Since

regions belonging to class II are sensitive to the fI\TS .. amount of error for class I I

should .. ill gellera] .. be chosen to lower than class III.

Typical reconstructed images at. rates of 1 l)it/})ixel and 0.2 bit./])ixel for all test

images are given ill figures 6.1:.l to 6.15. The reconstructed image at. rates of 1

)Jit/])ixel have a very good image quality. This means that t.lre visual loss at t.!tpse
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rates is ignored. The reconstructed images at. rates of 0.2 l)it./!)ixelltavp a good image

qualitv except Lena which contains block boundarv art.ifacts, Since the proposed

coding system is based on blocks not pixels .. when a higher value of D 1 is chosen,

more blocks are classified as t.hp perceived constant intensitv and artifact.s are more

not.iceahle.



Table fi.I ~): Summary of coding information ill Miss l)SA. D1 is variable and D'2 is
fixed to 2.3G:l.

Vi rate, bit/pixel SNR NT Nl N2 N3

2.001 0.1.5 18.:3!) i:3 :31 12 :30

2.005 0.15 18.39 i:3 31 12 :30

2.01 0.1:3 18.0:3 12~ 81 10 :31

2.015 0.11 ] 7.31 lil IIi 19 :3!j

2.020 0.09 16.6-:1 211 15:} 25 3:3

2.025 0.08 16.27 2:30 J77 28 25

2.030 O.Oi 16.01 252 ~u~ 28 22

2.035 O.OG 1·5.90 2~)8 2!~ 31 25

2.040 0.05 15.56 :31:l 262 28 2:1

2.050 0.04 15.20 :3!j8 30() :30 2~

2.060 O.O:J 1-1.7:3 :376 :3:32 -n 17-,
2.080 0.02 14.29 :398 :377 10 11

2.10 0.02 14.] J 401 :3~)!j 0 6

2.15 0.02 1-:1.11 ~OI :J~r) () ()



Table 0.20: Summary of coding information ill Lena. D1 is variable and I).}, is fixed
to 2.:3G:3.

DI rate, bit/pixel SNR NT N1 N2 N3

2.001 0.60 17.68 GO 2 12 46

2.005 0.59 17..5·! 10·5 4~ 16 4i

2.01 0.·5-1 If).77 220 152 21 -Ii

2.015 O.-IS 1.5.GG :327 2-16 22 59

2.020 0.-15 15.05 42-1 32!J 34 61

2.025 O.3D 14.51 ·528 -12J 5J 5G

2.030 0.:31 1·t.1 :3 6')') !jO:i 6!j 51)--

2.035 0.:30 13.62 6~)~) 57(j 7G 4i

2.040 o-r: j :3.21 77-1 657 7-1 4:J._,
2.050 0.22 12.60 90-1 79:j -- 31,,
2.060 0.18 12.1!J U68 85D 7!) 3U
2.080 O.lG 12.01 USS 88:3 7!J 30
2.10 0.12 11.90 991 889 r» :30,-
2.15 0.10 11.81 ~~) 1 889 v» :JO,-



l"~l)lp 6.21: Summary of coding iuformat ion in House. D 1 is variable aud D'}. is fixed
Lo :!.:3G:J.

D I rate, bit/pixel SNR NT Nt N2 N3

2.001 0.!j5 1:!.89 60 , 39 1J

2.005 0.51 12.86 (l-! ]-t 36 I-J

2.01 0.·5:3 12.7!J 92 35 ~1 J6

2.015 0.52 12.67 1~6 67 5! 15

2.020 0.51 12.5:3 18:3 108 57 18

2.025 0.50 12.35 212 ] :36 60 16

2.030 o.-!!) 12.21 255 1-') 67 IG1-

2.035 0.48 12.12 28~) 1~}9 i:J 1i
2.040 O.-!G 11.74 :357 2{)6 7-1 17

2.06 0.-12 11.47 -1:36 3-1 J 7-1 18

2.08 O.2V 10.19 7~11 6i!) ~!j 21

2.10 0.23 9.46 8iG 841 3 :J2

2.15 0.2:3 9.46 876 8-11 :3 :3~



Table 6.22: Summary of coding inforrnat.ion ill l\Iiss l.TSA. D] is fixed to 2.0:}!j aud
1)1. is variable.

D2 rate, bit/pixel SNR NT N1 N2 N3

2.21 O.OG 15.90 298 2-12 31 25

2.26 0.06 15.90 2H8 2-12 31 21)

2.31 O.OG 15.90 298 242 :}] 25

2.36 O.OG 15.90 2 ~ ) 8 242 31 25

2.41 0.06 1·5.94 29i 2~! 1 ao 2G
2.46 O.OG 15.96 2 ~ ) ( ) 2·J 1 29 2()

2.51 O.OG 1!j.9~) 291 2-lJ 28 2!)

2.56 0.06 16.05 2 ~ ) 2 2-10 26 2()

2.61 O.OG 16.06 28G 2-10 2-1 22

2.66 O.Oi 16.10 281 2·!O 21 20

2.71 0.07 1G.12 271 240 19 12

2.76 0.07 1G.14 2G!J 2-!U 1 ~) JO



Table 6.23: Summary of coding information ill Lena. D 1 is fixed to 2.0:}!j and D2 is
vari able.

1)2 rate, bit/pixel SNR NT Nl N2 N3

2.21 0.:30 13.62 699 !ji6 7G 47
2.26 0.:30 1:3.62 69D 57G 76 ·17

2.31 0.30 1:j.62 G99 !j76 76 ·17

2.36 0.30 1:3.62 ()!)~) 576 76 -I7

2.41 0.:31 ] :3.6:3 ,00 576 7t 50

2.46 0.:32 1:l.6-! 69!j !j7G 71 -i8

2.51 0.:1:1 J:l.72 682 5,fi 61 ,~ !)

2.56 0.31) 1:l.7~) 668 !lin 51 41

2.61 0.:3ti 1:3.86 6·58 57!j 4:3 -10

2.66 0.:38 1:3.95 6J!j !j7!j 32 :38

2.71 0..10 1-1.06 6-1!j 57G 2~) -10

2.76 0.-12 1-1.16 638 578 26 :34



Table G.2-l: Summarv of coding informatiou in l louse. D1 is fixed to 2.0:15 and 1)2 is
variable.

D 2 rate, bit/pixel SNR NT Nl N2 N3

2.21 0.47 12.11 28~~ 19!J 7:3 1:3

2.26 0.47 12.11 289 199 77 J:3

2.31 0.47 11.11 287 1U~) 75 1:3

2.36 0.48 12.12 289 1~)9 73 17

2.41 O.-1U 12.16 2!J2 l~)D 71 21

2.46 O . ~ 1 9 12.16 2~}2 1!)~J 71 22

2.51 O.!JO 12.21 288 1~)8 fi9 21

2.56 0.51 12.:30 280 198 6:l 1~)

2.61 0.·54 12.4~1 281 1US !J:l :30
2.66 0.58 12.G7 279 IUS ·11 -1 ~)

2.71 0.62 12.90 2R:l 1~)8 40 -I!)

2.76 0.67 1:3.20 28~) 198 :3G 55
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Table G.25: SUlll111ar)T of coding iuformation in Miss l TSA. D 1 = 2.0:15 .. Dl. = 2.:l():l,
1'11F.1·2 == no and T ]ff1-t is variahle. where I'H f T 1 all (1 1'11(1'2 ore the t.hresholds (,1'
regions beloingiug to the 811100t.l1 and the rough textures respect.ively.

Tu.; rate, bit/pixel SNR

5 0.11 16.1~)

10 0.08 IG.12

15 0.07 1 6 . 0 ~ )

20 O.OG I 0. ~)8

25 0.06 15. ~)O

30 0.06 15.8-1

35 0.05 l!j.77

40 0.05 15.71

45 (l.O4 1 !}'l6~) I

Table 6.2G: Summary of coding information ill Lena. D 1

T'H f 1' 2 == GO and 1'He r 1 is variable.

T IIe1·! rate, bit/pixel SNR

5 0.51 1:1.78

10 0.40 1:l.70

15 O.:J6 1:1.71

20 O.:J2 I :J.6fi

25 0.:30 1:j.6~

30 0.28 1:3.57

35 U -r: 1:1.·5~._1

40 0.26 13.~()

45 0.25 1 : 3 . - t ~



]~fll,le ().2~: Sl1nln1ar~T?f co(:Iing information in House. D 1

1 Iff 1'2 = ()(J and T IIer } IS variable.

T tt, 1'1 rate, bit/pixel SNR

5 0.80 12.28

10 0.6:3 12.2-1

15 0.55 12.20

20 0.51 12.] G

25 0.48 12.] 2

30 0.46 12.0H

35 0.-14 12.06

40 0.-13 12.0:3

45 0.41 12.00

Tnbl~ 0.28: Summary of coding information ill l\Iiss lISA. D 1 = 2.0:35'1 D2 = 2.:3():J'I
1'/1e r l = 25 and T IIf r 2 is variable.

THf T2 rate, bit/pixel SNR

25 0.07 IG.22

30 0.06 is.rs
40 O.OG j 6,(19

50 O.OG jel.OJ

60 0.06 15. ~)O

70 0.05 1!>.8!l

80 O.O!) 15.;f)

90 0.05 15.;:3

100 0.50 15.(if)



Table 6.29: SUllnllary of coding information in Lena. D
1

]'H f2 7'1 = ~!j and I'Ht:7'2 is variable.

]'11t:7'2 rate, bit/pixel SNR
25 0.:3!J 11.;,0

30 0.:34 11.:38

40 0.:32 1-1.12

50 0.:31 1:J.8(i

60 0.30 1:1.62

70 0.2~ 1:3.:37

80 0.28 1:3.17

90 0.28 12.!J!J

100 o -r: 12.8!)._1

~ a b l e 6 . : ~ ~ ~ S u n ~ l ~ H u ' Y ? f c o ~ l i l l g iuformation in House. D1

1 J-ff 7>! = _.J and 1 H f 7>2 IS variable,

Tu.; rate, bit/pixel SNR

25 O.G7 I!).!) 1

30 U.G:3 1!J.20

40 O.5G 1:3. ~)2

50 0.52 12.9!>

60 O. -is 12.12

70 0.-15 J1.-18

80 0.42 11.01

90 0.41 J0.65

100 0.40 LO.:31
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Figure 6.10: Plot of SNR versus rate, bit./pixel for Lena. D 1 is variable and D l is
fixed to 2.:j():J.
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Figure <l.II: Plot of SNR versus rate, bit/l)ixel for House. D 1 is variable and [)2 is
fixed t.o 2.:3G:3.
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Figure ().12: Plot of SNR versus rate, l)it./})ixel for Ilouse. D 1 is fixed 2.0:3!J and D2

is variable.
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Figure 6.] :3: The reconstructed images for 1\Iiss 1TS ..A. The iJl1agf'S on t hp t OJ> it nd t.he
bot tom are coded at. 1.U lJit/)ixeJ with 1)1 == 2.U01 and D'l == ~.7G aud U.:! bit./pix('1
with L)1 == :2.005 and 1)2 == 2.:36 respectivelv,



Figure G.l ·J: The reconstructed images for Lena.. The images 011 the top and tl)(l

bot t om are coded at 1.0 bit/IJixel with 1)1 = 2.005 and D2 = :l.71 and O . ~ bit./pixel
witIl D, == 2.0!iO and D2 == 2.:3G1 respect.ivelv.



Figure G.15: The reconstructed images for Honse. The images on t h~ top and the
bot.tom are coded at 1.0 bit jpixel with D 1 = 2.005 and D 2 = 2.71 all <.1 0.2 bit jpixel
with D 1 == 2.06 and D 2 = 2.41 respectively.



6.5 Conclusion

These results indicate that. using the text lire-based segmeutat.ion-based imag: COIll­

pression system. compression ratios ill the neighborhood of 0.08 to 0.:3 hpp are at­

tainable with good image qualitv, These ratios are almost the same as those achieved

1 ) ~ · a segment at-ion-based compression method using fiat segments [71]. However, t.he

proposed compression technique produces better image quality and is quite useful

for a wider variety of images, This is because our segmentation compression met hod

was developed using texture features as well as grav levels, Specifically. our t.cch­

Ili(IU(' works well for images with highly text ured areas 'I while previous compression

techniques were not useful for those images.

III addition to working well for a wide variety of images, there are also other

advantages to using the method. One advantage is that the block-by-block met hod

for segmentation-based compression is a more parallel approach than the pixel-bv­

pixel one. This allows for a fast. implement.at iou for the coding algorit.lun. 1"he

algorithm based OIl the pixel-by-pixel method is not conducive to being done III a

para llel Iash ion.

Another advantage of our segmentation-based compression is that it allows more

readily for compression ratio/Image quality t.rade-ofls. By varying parameters, the

compression ratios can be easily controlled. For example. higher values of l), giyp

more regions belonging to the perceived constant iut.ensity ill an image. Lower values

of D2 produce more regions belonging to rough textural class.

1-15



7

Conclusions

In this report we proposed a new segmentat.ion-bascd image compression technique

using fractals and properties of tile II\'S __ which achieves compression in the neigh­

1)01'1100(1 of 0.08 to 0.3 1)})}). TIle segmentation is good and (011£Orl11s to the human

percept ion of roughness. Tile proposed method works well for a. variety of images.

'flu:' proposed compression technique is different ill several key ways Irom other

segmenl.at.iou-based image compression schemes. First'! an image is segmented int.o re­

gions with respect to perceptual roughness. Regions are classified as belonging to one

of three classes; perceived intensity value, smooth texture, and rough texture. Thus

t.he segment.atiou method takes advantage of properties of tho II\TS to achieve the

image compression system with higher compression and 8111all visual loss, An arith­

uiet.ic code was used to encode t.he boundaries and the means of the regions belonging

t.o perceived constant intensity value. A polynomial coding technique was applied to

regions lx-longing to the smooth and rough texture. SeCOII(l __ an overlap method in the

segmentat.ion algorithm ',"as proposed to improve a nonoverlap method. The overlap

method produces the number of pixels belonging to the perceived constant inteusitv.

This results in higher compression. Third __ our compression system is developed l>{\.sed

011 t.ext.ure characteristics. Image segments are represented by the degree of roughness

I-lG



using Iract.als. Other segrueut.at.iou-based techniques have t vpicallv re-preseuled the

image segments as the mean g r a ~ · values within their segments. Their applications

are verv limited since t.liev are BOt. useful for images with textural arr-as.

There are many aspects of the work presented here that offer aVf311UeS for Furthe-r re­

search. First" it is possible to improve our compression technique. A lx-t.ter tpchlliqu(3

for cocling each class could l)e found. In relation to this. a higher order polynomial or

adapt.ive coding technique can be used. III addition, regions belonging t.o rough class

can 1)(:' coded using all iterated function system developed 1)y Barnsley [2]. Second.

other segmentation techniques such as variable block size or quad-tree segment.at iou

can be used. Further work needs to l)e done to verify which segmentation works

best , Third, A postprocessing filter call be used to reduce the artifects. Fourth. our

technique Cal} lJe extended to image sequences, This is why a fractal dimension or

segmeutat.ion is used as the frame difference signal. Finally, our scgment.ation-based

compression technique for video transmission oyer a packet-switch network is applied.

1-17
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9

Appendices

9.1 Runlength Coding

III this appendix we describe a technique proposed b ~ · Elias for coding a sparse binarv

image. Suppose a binary image is 1110Stl~· U's wit h only a few 1's. The rows of t.he

J\T x l\~ image are concatednated together to form a vector of l\r2 gra~· level values. and

all runs of consecutive U's in this vector are found. The lengths of these runs, separated

bv a svmbol (referred to as a ". COll1111a"') to mark the end of a run (i.e. the presence of

a 1) .. completely describe the original binary image. Elias has proposed coding lhese

ruuk-ngt hs (viewed as decimal numbers] using all n-arv arit.lunet.ic system .. and using

all n-l-I 't h svmbol to represent a comma, For example .. for n=3 t lie runk-ngt.hs aTP

represented ill 0 ternarv svst em. The COl111110 requires on additional svuibol .. for a

tot.al of Iour systems. These four Syl11})0Is are represented using a. t.wo bit code. O l H ~

possible choice to represent the four s}·1111)0}s is: 00=('01111110,01=0" 10=1" IJ=2.

<. 'ousider the following 40 bi t binary sequence:

0000110000000000010001000000000100000000

The runlcngths for this sequence are: 4 .. O. 11" 3" 9,,8'1 and t.he tcrnarv represent.a­

t ions for these ruulengt lis are: 11" 0.. 102" 10.. 100" 22. Finally, using the r ~ p r ( ' s ( ~ I I t . ( \ t ion
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described above. the Elias code representation for the original binary sequence is:

1010 00 01 00 100111 1001 00 100101 00 1111

We have represented the original 40 bit sequence using 36 bits.

9.2 Crack Code

Crack code determine a boundary by specifying a starting point and a sequence of

moves around the boundary. Figure 9.1 illustrates a way in which this can be done

by moving a sequence of cracks between the points S and the adjacent points of the

complement S.

If we follow the cracks around a bounday, at each move \ve are going either left,

righ, up, or down; if we denote direction 90io by i, these moves can be represented

by a sequence of 2-bit numbers; 0, 1, 2, 3. For example, the sequence in Figure 9.1c

is represented by 00303332112121. This representation is called as a crack code. A

boundary is specified by giving the coordinates of a starting crack together with a.

crack code.
A S

C .
• D

. ::

• F
(a)

At Bt SrJt E. Fj

Fe Ft EIC~C~ A~At

(b)

Figure ~ . 1 : A crack code. (a) Set S: each point is labeled with a different latter. (b)
Clockwise sequence of cracks around the border, beginning with the crack At at the
top of .4. The subscripts of i, r, b. I denote top, right, bottom .. and left, respectively.
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9.3 Arithmet.ic Coding

Let t.he alphabet consist of the svuibols i == 0.1'1· .. ,,111. All arit lnnet.ic code encodes

t . h ~ string to be com pressed, symbol for svm bol from left to rigl: t., \ Vhen cnrocli ng

tlie symbol i • immediately Iollowing the so-far processed string S'I the code requires

as input the data that represent t.he conditional probabilit.y P( i /.~) of t.he svmbol's

occurrence at its context. SUC]l parameters are provided 1 ) ~ - the so-called modeling

unit. The modeling unit should update for each S ~ · 1 1 1 1 ) o l i not only the count. but. also

t.he cumulative CQUIlts which are affectecl bv the COUIlt. All aritlunet.ic code constructs

t.lie code string as a cumulative probabilit.y of the strings that precede the considcrccl

one ill the lexical order of tile strings.
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