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Abstract

Texture segmentation is a difficult problem, as is appar-

ent from camouflage pictures. A Textured region can contain

texture elements of various sizes, each of which can itself

be textured. We approach this problem using a bottom-up

aggregation framework that combines structural character-

istics of texture elements with filter responses. Our process

adaptively identifies the shape of texture elements and char-

acterize them by their size, aspect ratio, orientation, bright-

ness, etc., and then uses various statistics of these proper-

ties to distinguish between different textures. At the same

time our process uses the statistics of filter responses to

characterize textures. In our process the shape measures

and the filter responses crosstalk extensively. In addition,

a top-down cleaning process is applied to avoid mixing the

statistics of neighboring segments. We tested our algorithm

on real images and demonstrate that it can accurately seg-

ment regions that contain challenging textures.

1 Introduction

Camouflage is a striking evidence that segmentation can

be hard not only for computers. Animal fur, painted care-

fully to match the color and texture of its habitat, provides

a hiding place for a predator and a safe refuge for a prey.

Computer systems often have difficulties to properly seg-

ment even simpler images. In particular these systems face

difficulties when the image includes complex textures. This

∗Current address: Dept. of Applied Math, Brown University
†Research was supported in part by the European Commission Project

IST-2000-26001 VIBES and by the Israeli Ministry of Science, Grant No.

2104. The vision group at the Weizmann Inst. is supported in part by the

Moross Foundation.
‡Research was supported by grants No. 295/01 from the Israel Science

Foundation, US Air Force 5408-05-sc-0007, GIF 3982 and by the Carl

F. Gauss Minerva Center for Scientific Computation at the Weizmann In-

stitute of Science.The authors thank D. Ron for highlighting remarks and

useful discussions.

paper presents a novel approach to texture segmentation.

Our approach manages to accurately segment real images

that contain challenging textures.

We approach the problem of texture segmentation us-

ing a framework that combines structural characteristics of

texture elements with filter responses. Our process adap-

tively identifies the shape of texture elements and character-

ize them by their size, aspect ratio, orientation, brightness,

etc., and then uses various statistics of these properties to

distinguish between different textures. For these statistics,

the texture elements need not be identical, or made of uni-

form shade of gray. Instead, they may vary in shape and

size, and their spacing may be irregular. Texture elements

are identified at multiple scales, and their statistics (densi-

ties of various element properties) are used to influence the

segmentation process, including the identification of larger

texture elements, allowing for example to identify texture

elements that themselves are textured. At the same time

our process uses the statistics of filter responses to char-

acterize textures. Most importantly, these responses can

be averaged while avoiding mixing the statistics of neigh-

boring textures. The two components, the shape measures

and filter responses crosstalk extensively during the algo-

rithm. The shape of texture elements determine what filter

responses are considered relevant. At the same token filter

responses may affect the formation of texture elements.

The importance of properties such as size, aspect ratio,

orientation, brightness, and density of repeated texture ele-

ments was noted already in the classical perceptual studies

of Julesz [7] and Beck [1]. However, only few attempts

(e.g., [15]) were made to directly use these principles in

computational studies due to their limited applicability to

complex, natural textures. A popular alternative approach

has been to characterize texture by measuring their response

to filter banks [10, 16, 9]. Filter responses characterize the

frequency, size and orientation of the texture elements, but

without explicitly isolating them. (An interesting recent

variant attempts to identify the “textons” by clustering the

filter outputs [8].)
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While filter banks clearly provide a useful characteriza-

tion of textures, their application poses some difficulties in

texture segmentation. In particular, filter outputs along the

boundaries of a segment can significantly differ from their

output within the segment both because they mix the statis-

tics of neighboring segments [13] and because boundary

edges (if exist) may invoke strong response in the direc-

tion of the edge [9]. This, at best, may lead to inaccurately

detecting the boundaries of segments, and in more severe

cases to either missing or hallucinating segments. Adap-

tive scale selection [9, 4] only partially solves this problem,

because some textures cannot be characterized by a single

scale, such as when a texture is composed of several el-

ements that are differently spaced, or when the elements

themselves are textured.

Our multilevel method of bottom-up weighted aggre-

gation of picture elements, which involves also some top-

down iterative feedback, is different from other approaches

to texture in the following three principles: (1) Mini-

segments at various scales are isolated, and various statis-

tics of their individual properties are collected and used to

characterize large-scale textures. (2) Mixing of statistics

between neighboring texture regions can be avoided. (3)

Texture measures characterize picture aggregates at every

scale (except for the few finest levels), playing a central

role in defining the way these aggregates are combined to

create the next-coarser-scale aggregates. These principles

are incorporated into an intensity-based segmentation pro-

cess [12, 13] allowing the detection of both textured and

non-textured regions.

2 Multiscale graph partitioning

We implement our treatment of texture using the frame-

work presented in [12, 13]. In this framework, given an

image, we construct a graph in which every pixel is a node

and neighboring pixels are connected by an edge. A weight

is associated with each edge reflecting the contrast in the

corresponding location in the image. A multiscale proce-

dure is used to find optimal partitions of the graph. Below

we describe the multiscale framework and its use for image

segmentation. Our description explicitly highlights the re-

lations of this framework to the normalized cuts algorithm,

and provides a clearer intuition of the method.

Let G = (V, W ) be a weighted graph with nodes vi ∈ V

and undirected, weighted edges wij > 0. We conveniently

treat W as a symmetric matrix with its diagonal elements

set to zero.

To evaluate segments we define a saliency measure as

follows. Every segment S = {v1, v2, . . . , vm} ⊆ V is as-

sociated with a state vector u = (u1, u2, . . . , uN ), where

N = ‖V ‖, and

ui =

{

1 if vi ∈ S

0 if vi �∈ S.
(1)

The saliency associated with S is defined by

Γ(S) =

∑

i>j wij(ui − uj)
2

∑

i>j wijuiuj
, (2)

which sums the weights along the boundaries of S normal-

ized by the internal weights. Segments that yield small val-

ues of Γ(S) are considered salient1. In matrix notation Γ
can be written as

Γ(S) =
uT Lu

1
2uT Wu

, (3)

where L is the Laplacian matrix whose elements are

lij =

{ ∑

k (k �=i) wik i = j

−wij i �= j.
(4)

If we allow arbitrary real assignments to u the minimum for

Γ is obtained by the minimal generalized eigenvector u of

Lu = λWu (minimal λ > 0). (5)

This equation is in fact equivalent to the normalized cuts

solution [14].

Our objective is to find the best partitions (0-1 as-

signments of u) for this graph. We do this recur-

sively by executing the following procedure. The finest

graph (s=0) is denoted by G[0] def
= G. Given a graph

G[s−1] = (V [s−1], W [s−1]), and denote by u[s−1] =

(u
[s−1]
1 , u

[s−1]
2 , . . . , u

[s−1]

N [s−1]) the state vector at level s − 1,

we first examine all single-node partitions. For those par-

titions u[s−1] contains 1 in one entry and 0 in all other

entries, and Γ is the ratio between the diagonal elements

of L[s−1] and W [s−1] (whose values are computed recur-

sively as is explained below). After accounting for the

single-node partitions we proceed to finding partitions that

in the current scale involve multiple nodes. For these par-

titions we seek to produce a smaller graph (that contains

about half of the original nodes) whose partitions can ap-

proximate these multiple-node partitions. Denote by u[s] =

(u
[s]
1 , u

[s]
2 , . . . , u

[s]

N [s]) the state vector at level s, we seek a

sparse, N [s−1] × N [s] matrix P such that

u[s−1] ≈ Pu[s]. (6)

P = P [s−1] is called the inter-scale interpolation matrix.

Assuming that such P can be found then the saliency mea-

sure Γ can be written as

u[s−1]T Lu[s−1]

1
2u[s−1]T Wu[s−1]

≈
u[s]T PT LPu[s]

1
2u[s]T PT WPu[s]

, (7)

1To avoid division by zero we will ignore single pixel partitions.
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where L = L[s−1] and W = W [s−1]. The right hand side

of this equation determines a graph with N [s] nodes whose

weight matrix, defined by W [s] = PT W [s−1]P , includes

the edge weights in the off-diagonal elements and internal

node weights in the diagonal elements. The (generalized)

Laplacian of level s can be computed by L[s] = PT LP , as

resulting from (7), or be more cheaply approximated by a

relation to W [s] as in (4).

To build the coarse graph we should still specify how to

select P . One popular method to produce a coarse graph

is through node contraction (e.g., [6, 17]). In this method

strongly connected pairs of nodes at level s−1 are replaced

each by a single node at level s. This, however, may lead to

premature assignments of nodes and lead to poor approx-

imations of u[s−1]. A better way is to follow the graph

coarsening method that yields a fast multilevel solver for

the eigenvalue problem (5). Such a fast solver, called Alge-

braic Multigrid (AMG) [3, 2], yields the following proce-

dure. We begin by selecting a set of coarse representative

nodes V [s] ⊆ V [s−1] = {1, 2, . . . , N [s−1]}, so that every

node in V [s−1] \ V [s] is strongly connected to V [s]. A node

is considered strongly connected to V [s] if the sum of its

weights to nodes in V [s] is a significant proportion of its

total weights. Then, we construct the inter-scale interpola-

tion matrix, P = P [s−1], where for any i �∈ V [s] {pik}
N [s]

k=1

are chosen to be proportional to {w
[s−1]
ik }N [s]

k=1 such that
∑

k pik = 1, while for i ∈ V [s], pii = 1 and pij = 0
for all j �= i.

Assuming that the original graph is only locally con-

nected, and since every node is strongly connected to C,

there exists such a sparse interpolation matrix P . Therefore,

the weights w
[s]
kl can be computed efficiently by weighted

aggregation [12].

This coarsening procedure is repeated recursively, so in

fact we only evaluate Γ for single nodes at all levels. As a

result of this process we obtain a full pyramid representa-

tion of the image. Nodes associated with low values of Γ
represent salient segments. The rest of the nodes can each

be thought of as representing a weighted aggregate of pixels

that may at a higher scale be part of a salient segment. The

weight pij = p
[s−1]
ij can be thought of as the probability

of a node i ∈ V [s−1] to belong to an aggregate j ∈ V [s].

These probabilities are compounded from level to level, so

that eventually, at a high level s, almost every pixel (a node

in V [0]) belong with probability close to 1 to one and only

one aggregate in V [s], while few pixels near the boundaries

between aggregates may still remain undecided.

This multiscale partitioning procedure can be used for

image segmentation in the following way. Given an image,

we begin by constructing a 4-connected graph G = (V, W ),
where every pixel is represented by a node vi ∈ V , and

every pair of neighboring pixels are connected with an edge

with weight wij . The weight reflects the contrast between

the two pixels i and j, e.g.,

wij = e−α|Ii−Ij |, (8)

where Ii and Ij denote the intensities of the two neighbor-

ing pixels, and α is a positive constant.

If we now apply the multiscale procedure to find the

best partitions of the graph, we will obtain a full, irregular

pyramid of graphs whose salient nodes represent the salient

partitions of the graph. However, these partitions will re-

flect segments that are distinctive only by fine contrast be-

tween pixels, and so they may not be attractive perceptu-

ally. A popular approach to overcome this problem is to

determine the weight in (8) according to the responses of

filters that take into account the contrast between neighbor-

hoods of pixels. Unfortunately, this can lead to mixing of

statistics of different segments and hence over-smoothing of

weights and consequently to inaccurate partitions. To solve

this problem [13] proposed a method to combine multiscale

measures during the construction of the pyramid. At each

coarsening step, we first determine the next coarser graph

using the weighted aggregation procedure. This will pro-

duce a graph that is roughly equivalent to the finer level

graph. Then, we modify the weights in the new graph to

incorporate coarser measures of differences between neigh-

boring aggregates. This idea was demonstrated using in-

tensity statistics (which allows to only a limited extent the

handling of certain textures, see a comparison in Section 4)

and boundary integrity measures computed for each of the

aggregates.

3 Texture segmentation

Texture elements are identified at multiple scales, and

their statistics are used to influence the identification of

larger texture elements. The bottom-up aggregation pro-

cess adaptively identifies the shape of texture elements and

characterize them by their size, orientation, brightness and

density. In addition, filter response statistics are used to

characterize texture and affect the formation of texture el-

ements. Conversely, the shape of texture elements deter-

mines through a top-down process which of the filter re-

sponses are relevant.

We begin with the same graph as in Section 2 and per-

form an aggregation process. During the aggregation pro-

cess we accumulate statistics of the aggregates formed. At

the first few levels (typically 3-4) we use only the intensity-

related properties to determine the aggregates. From a cer-

tain level and on we use also the shape measures and the

filter responses to determine the aggregates. We compare

these multiscale regional properties of neighboring aggre-

gates and modify the weights between them according to
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• Given an image define a four-connected graph G[0] = (V [0], W [0])
where V [0] is the set of image pixels and W [0] is defined according

to (8). Calculate, for each pixel, short line-integral responses in four

directions (21).

• For s=1,2,... construct G[s] from G[s−1], as follows:

1. Select a representative set of nodes V [s], such that V [s−1] \
V [s] is strongly connected to V [s].

2. Define P = P [s−1] the inter-scale interpolation matrix.

3. Calculate W [s] ≈ P T W [s−1]P by weighted aggregation.

4. For each node in V [s]

(a) calculate first and second order moments (12) and solve

(13) to find length, width and orientation.

(b) calculate average intensity and multiscale variance (11).

(c) accumulate average properties of sub-nodes (10).

(d) perform a top-down process to accumulate filter re-

sponses (see section 3.3.2).

5. modify W [s] according to these regional properties (24).

Table 1. Outline of algorithm

the result of this comparison. This allows neighboring ag-

gregates of similar textures to merge at the next levels of the

aggregation process and aggregates of different textures to

stand out. Our multiscale regional properties include the av-

erage dimensions (length and width) and orientation of sub-

aggregates. Filter statistics include the average response of

fine, edge-shaped filters obtained at the sub-aggregates. An

outline of the algorithm is given in Table 1.

3.1 Accumulation of regional properties

All of the measures that we apply are in fact averages of

some properties within a region, and so they can be accu-

mulated during the aggregation process. Formally, given an

aggregate k at scale s, let Q̄
[r][s]
k denote a weighted average

of a certain r-scale property a[r] = (a1, . . . , aN [r]), i.e.,

Q̄
[r][s]
k =

∑

j cjka
[r]
j

∑

j cjk
, (9)

where cjk are the appropriate weights. More precisely

cjk = c
[r][s]
jk is the element j in the the kth column of the

relevance matrix, P [r] · · ·P [s−1], i.e., the matrix product of

the interpolation matrices from fine level r up to coarse level

s. Recall that P [r] relates level r with level r+1, and so on.

Practically, the average properties are calculated very ef-

ficiently, without using the explicit relation above (9), but

by the following recursive rule: for an aggregate k at level

s, the average of an r-scale property a[r] can be computed

directly from its sub-aggregates at level s − 1.

We define the following row vectors

Q[r][r] def
= a[r], C [r][r] def

= 1T = (1, 1, . . . , 1),

Q[r][s] def
= a[r] · P [r] · · ·P [s−1] = Q[r][s−1]P [s−1],

C [r][s] def
= 1T · P [r] · · ·P [s−1] = C [r][s−1]P [s−1].

Note that C
[r][s]
k in fact accumulates the number of sub-

aggregates of level r that compose the aggregate k at scale

s. In particular, C
[0][s]
k is the volume of the aggregate k at

scale s in pixel units.

Given the interpolation matrix P [s−1] and also Q[r][s−1]

and C [r][s−1], the relevant Q and C for scale s can be

computed immediately using the recursive relations above.

Then, equation (9) simplifies to

Q̄
[r][s]
k =

Q
[r][s]
k

C
[r][s]
k

. (10)

These recursion rules can be used to compute not just

averages, but also variances and histograms. For example,

if we set a[0] to be the intensities of pixels, then we obtain

the average intensity of an aggregate, denoted by Ī
[0][s]
k for

aggregate k at level s. If we set a[0] to be the squared in-

tensity of pixels we obtain the mean squared intensity of an

aggregate that can be used to determine its variance. We

can also compute the average variance of sub-aggregates by

starting the accumulation with a[r] set to be the variances

of aggregates of level r. This way we can characterize an

aggregate k at scale s by a multiscale variance vector

−→ν
[s]
k = (ν̄

[1][s]
k , ν̄

[2][s]
k , . . . , ν̄

[s][s]
k ), (11)

as in [13]. Similarly, if we set the property a
[r]
j to be a vec-

tor (and hence a[r] to be a matrix) its accumulation would

produce a histogram of values.

Computing and maintaining these multiscale measure-

ment vectors is done in linear time in the number of image

pixels. Denote the number of pixels in the image by N .

Because at every level of the pyramid the number of nodes

reduces by about half, the total number of nodes in the pyra-

mid is about 2N . At every level s we store O(s) or O(s2)
measurements, but since the number of nodes decreases ex-

ponentially with s, whereas the number of measurements

grows only polynomially, the total number of measurements

is still O(N).

3.2 Shape elements

We compute for every aggregate its length, width, and

orientation. Other shape moments could be added. Then,

we use these quantities to produce shape statistics for the

aggregates. In particular, for every aggregate we compute

the average length and width of its sub-aggregates at all

finer scales. In addition, we construct an orientation his-

togram of the sub-aggregates at all finer scales. Below we
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describe these statistics and how we accumulate them as we

construct the pyramid.

The dimensions and orientation of an aggregate can be

computed using the second-order principal moments of the

aggregate [5]. As explained above an efficient way to com-

pute those principal moments is from the moments of the

sub-aggregates (10). In this case the property a[0] can be

the x or y coordinates of the image pixels, their product, or

the squared values of these coordinates. In this manner, we

obtain the second-order moments, associated with the shape

of an aggregate k at scale s

x̄
[0][s]
k , ȳ

[0][s]
k , xk · y

[0][s]
k , x2

k

[0][s]
, y2

k

[0][s]
. (12)

Higher order moments could similarly be accumulated. A

short notation for (12) will be used: x̄, ȳ, x · y, x2, y2.

The two principal directions are determined by the eigen-

value system

Se = ωe, (13)

where S is the covariance matrix

S =

(

x2 − x̄2 x · y − x̄ · ȳ

x · y − x̄ · ȳ y2 − ȳ2

)

. (14)

The corresponding eigenvalues, of the eigenvectors e =
(cosθ, sinθ)T and e⊥, are the squared dimensions (length

and width) of the shape.

For any emerging aggregate k at level s the second order

moments are first calculated using (10). Then (13) is solved

to find the principal direction, the length and the width. We

denote the length of the aggregate by L
[s][s]
k , and the width

by W
[s][s]
k . The orientation of the aggregate is specified by

the angle θ between the principal direction and the positive

X-axis. To remove ambiguity we set θ so that 0 ≤ θ < π.

In general, θ can be reliably estimated only for elongated

(anisotropic) texture elements, and so we will use θ only

for aggregates whose length to width ratio exceeds a certain

threshold (typically 3).

Usually, coherent texture regions are characterized by

the shape of finer texture elements and their density of ap-

pearance. An efficient way to code these properties is by

introducing multiscale measurement vectors that accumu-

late the average width and average length of all finer texture

elements that compose a coarser aggregate.

For an aggregate k of scale s we denote by L̄
[r][s]
k the

average length of its sub-aggregates of scale r. These av-

erages are calculated recursively using (10), with a[r] being

the vector of length s of all the aggregates at scale r. Per-

forming this computation for all r ≤ s we obtain a vector

of average lengths,

−→
L

[s]

k = (L̄
[1][s]
k , L̄

[2][s]
k , . . . , L̄

[s][s]
k ). (15)

To reflect the measure of similarity between two texture

regions, represented by two aggregates k and l at level s, a

normalized distance is defined

D(L)
[s]
kl =

( s−2
∑

r=1

(

L̄
[r][s]
k − L̄

[r][s]
l

L̄
[r][s]
k + L̄

[r][s]
l

)2)1/2

. (16)

The normalization is due to the natural increase of the di-

mensions with scale. Similar description is suitable for the

average width
−→
W

[r][s]

k , yielding the corresponding normal-

ized distance D(W )
[s]
kl

The orientation of elongated texture element provides an

important cue in texture segmentation. We find the princi-

pal orientation of elongated aggregates (whose aspect ratio

exceeds a certain threshold) using (13). We then prepare

for every aggregate a histogram depicting the distribution

of orientations of its sub-aggregates at all finer scales. Each

aggregate k at scale s holds a two-dimensional s × n his-

togram, where n is the number of direction bins. Each row

r in the histogram contains the number of elongated texture

elements of scale r in each direction bin. The histogram is

filled recursively along the aggregation process, using

H
[r,j][s]
k =

∑

i

pikH
[r,j][s−1]
i , (17)

which is exactly the calculation of the numerator in (10).

This accumulation process begins as follows. Given

an elongated aggregate i of scale r whose direction is θ,

0 ≤ θ < π, and let b be the integer, b = 0, . . . , n − 1, for

which π
n · b ≤ θ < π

n · (b + 1). Then the entry H
[r,j][r]
i in

the histogram is determined by the linear anterpolation (the

adjoint of the linear interpolation):

H
[r,j][r]
i =



















(b+1)·π/n−θ
π/n j = b

θ−b·π/n
π/n j = b + 1 if b < n − 1

θ+π/n−π
π/n j = 0 if b = n − 1

0 otherwise.

(18)

For each aggregate k at scale s we count in each his-

togram bin H
[r,j][s]
k how many elongated sub-aggregates of

scale r had their principal direction associated with bin j.

We define a measure of distance between two aggregates k

and l of scale s as

D(H)
[s]
kl =

( n−1
∑

j=0

s
∑

r=1

(

H
[r,j][s]
k

C
[0][s]
k

−
H

[r,j][s]
l

C
[0][s]
l

)2)1/2

. (19)

In this equation each bin is normalized by the volume of the

corresponding aggregate so that the measure will reflect the

density of the finer texture elements in each direction.
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3.3 Filter responses

We employ a technique that can incorporate filter re-

sponses from all scales and orientations. This method inte-

grates well with the multiscale framework and maintains the

adaptive support of measurements. Since filter responses

have very different values near the boundaries between dif-

ferent textures, an accurate way to collect filter response

statistics on texture regions is to use the interior support of

the aggregates calculated by our bottom-up process. By a

top-down process, we can collect statistics only from inter-

nal filter responses, while neglecting outer filter responses.

As mentioned above, this can be useful for any kind of fil-

ter at any scale. However, our experience indicates that in

this context our main need is for filter responses at the finest

(pixel) level, to capture fine texture elements, such as hair

or grass, that may not be captured as aggregates due to lack

of sufficient contrast. The details of the procedure follows.

3.3.1 Fine edge filter responses

For each pixel (i, j), we calculate the line integrals in four

directions:

L1
i,j =

1

4
Ii,j−1 +

1

2
Ii,j +

1

4
Ii,j+1

L2
i,j =

1

4
Ii−1,j +

1

2
Ii,j +

1

4
Ii+1,j

L3
i,j =

1

4
Ii−1,j+1 +

1

2
Ii,j +

1

4
Ii+1,j−1

L4
i,j =

1

4
Ii−1,j−1 +

1

2
Ii,j +

1

4
Ii+1,j+1, (20)

where Ii,j denotes the intensity at pixel (i, j). We use these

integrals to obtain the absolute responses of edge filters:

F 1
i,j = |L1

i−1,j − L1
i+1,j |

F 2
i,j = |L2

i,j−1 − L2
i,j+1|

F 3
i,j = |L3

i−1,j−1 − L3
i+1,j+1|

F 4
i,j = |L4

i+1,j−1 − L4
i−1,j+1|. (21)

We can compute the average of the absolute responses at

any scale s recursively using (10), with a[0] standing for one

of the properties F d, d = 1, . . . , 4 of all pixels. However,

this calculation will be biased by strong filter responses at

the boundaries of segments. To solve this problem we per-

form a top-down process that eliminates such undesired ef-

fect. This top-down process is explained below. As a result

of this top-down process, we obtain for an aggregate k at

any scale s a filter response distribution vector denoted by

−→
F

[s]

k = (F̄ 1
k , F̄ 2

k , F̄ 3
k , F̄ 4

k )[s]. (22)

The similarity between two textured regions is defined

by the correlation coefficient

D(F )
[s]
kl =

Cov(
−→
F

[s]

k ,
−→
F

[s]

l )

σ(
−→
F

[s]

k ) · σ(
−→
F

[s]

l )
. (23)

As with shape-related measurements above, various inter-

scale histograms can be accumulated based on F̄ d
k and sim-

ilar averages obtained with larger (and perhaps wider) fil-

ter masks. Our experience (see below) has shown that even

the simple similarity measures (23) already yields much im-

proved segmentation.

3.3.2 Top-down process

Filter responses have very different values near the bound-

aries between different textures. To eliminate this effect

we perform a top-down ”cleaning” process in which we

eliminate responses from pixels whose relevance values are

small. Specifically, for each aggregate k at scale s we first

find the pixels that belong to k, or in other words the support

of measurements calculated for aggregate k by the bottom-

up aggregation process. To do so we begin with the char-

acteristic state vector u[s] which is set to 1 at the k’th entry

and 0 elsewhere. By repeating interpolations from scale s

all the way down to scale 0, using (6), we obtain for each

pixel its relevance value. A pixel whose relevance value is

below 0.5 is considered outside the aggregate and its filter

response statistics will not be taken into account. Only the

pixels whose relevance values are higher than 0.5 will con-

tribute to the statistics, and their responses will be averaged

with their relevance values as weights. Extension of this

top-down process to wider and longer filter masks will re-

quire to generalize the definition of outer filter responses,

e.g., if ”most” of the pixels in the filter mask demonstrate

low relevance, this filter response should be neglected in the

statistics accumulation.

This top-down process raises the linear complexity of

the algorithm by a log factor. In principle we can main-

tain linear complexity if we bound the top-down process to

go down a bounded number of levels.

3.4 Weights update induced by regional proper-
ties

Each edge weight w
[s]
kl of two aggregates k and l at level

s is calculated by using weighted aggregation. Then, to re-

flect the measure of similarity between two texture regions,

this weight is modified by multiplying it by

e−α̃D(I)
[s]

kl · e−βD(ν)
[s]

kl · e−ρ(1−|D(F )
[s]

kl
|)

·e−γ(D(L)
[s]

kl
+D(W )

[s]

kl
) · e−ωD(H)

[s]

kl , (24)

where D(I)
[s]
kl and D(ν)

[s]
kl are defined as in [13]. The posi-

tive constants are explained in the next section.
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4 Experiments

We have implemented our method and tested it on nat-

ural images. We selected a set of challenging images that

contain animals in camouflage. While humans may use

high-level information to segment such images, we ap-

proach this problem using data-driven, low-level process-

ing only. For comparison we show segmentation results ob-

tained with the algorithms described in [13] and in [9]. [13]

performs weighted aggregation that includes a limited han-

dling of texture using only brightness measures (variance

of sub-aggregates, Eq. (11)). [9] combines a filter-based

texture segmentation and intensity based segmentation in a

normalized-cuts framework. A gating mechanism is used

to overcome boundary problems. Our process in contrast

does not determine a-priori whether segmentation should be

based locally on texture or intensity contrast, but combines

these measures uniformly throughout the image.

In our implementation, we set the parameters around

α = 10, α̃ = 4, β = 0.5, γ = 3, ω = 3, ρ = 1 and

n = 4. In any of the experiments below we did not apply

the boundary integrity process suggested in [13]. Our appli-

cation takes 5 seconds to complete the bottom-up aggrega-

tion of a 400 × 400 image using a Xeon 1.6 Ghz processor.

Together with the top-down cleaning process implemented

to the pixel level the runtime increases to 10 seconds.

Figure 1 shows a typical set of results. The table contains

(from left to right) the original images, the results obtained

with our method, results obtained using [13] and [9]. In all

pictures we show the original image along with an overlay

of the segmentation results. In all five animal examples the

animal was segmented in one piece by our method outper-

forming the other two algorithms. Notice in particular that

our method managed to accurately segment both the leop-

ard (third row) despite gradual variations in texture and the

polar bear (fifth row) despite differences in intensities. In

contrast, both [13] and [9] lead to over-fragmentation of the

images and in some cases to leakage problems. The bottom

image shows a natural composition of textures. Notice the

accurate separation of the two parts of the brick wall in our

method.

5 Conclusions

We have presented a novel method for texture segmen-

tation and demonstrated that it can achieve state-of-the-art

results when applied to challenging textures. We chose to

characterize textures by a collection of statistics that include

shape, intensity variability, and filter responses. While we

generally find this set to be adequate for a large variety of

textures, it is possible to incorporate additional statistics in

our framework. For example, we can use higher order shape

moments or variance of filter responses. One important is-

sue is how to combine the various statistics into a single

weight. We are currently exploring ways to cast this prob-

lem in a Bayesian formulation so we can learn from real

images how to optimally combine the different statistics.

It is important to note that the segmentations produced

by our approach are hierarchical, and with their associated

statistics they can be used directly for recognition and re-

trieval, because every segment in our method comes with

an identifying list of numbers describing its shape, texture,

and its sub-segments along with their own descriptors.
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Original images Our Results Brightness only [13] Normalized cuts [9]

Figure 1. Experimental results
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