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Abstract

Texture segmentation is one of the early steps towards identifying surfaces and objects in an image.

Textures considered here are de�ned in terms of primitives called tokens. In this paper we have developed

a texture segmentation algorithm based on the Voronoi tessellation. The algorithm �rst builds the

Voronoi tessellation of the tokens that make up the textured image. It then computes a feature vector

for each Voronoi polygon. These feature vectors are used in a probabilistic relaxation labeling on the

tokens, to identify the interior and the border regions of the textures. The algorithm has successfully

segmented binary images containing textures whose primitives have identical second-order statistics and

a number of gray level texture images.

1 INTRODUCTION

The natural world abounds with textured surfaces. Any realistic vision system that is expected to work

successfully, therefore, must be able to handle such input. The process of identifying regions with similar

texture and separating regions with di�erent texture is one of the early steps towards identifying surfaces

and objects. This process is called texture segmentation and is the major focus of this paper.

Texture segmentation has been studied for a long time using various approaches. The most popular

approach performs texture analysis directly upon the gray levels in an image. This includes gray level co-

occurrence matrix (GLCM) [10], autocorrelation function analysis [10], generalized co-occurrence matrices

(GCM) [8], second order spatial averages [9], and two-dimensional �ltering in the spatial and frequency

domain [6,5,24,25,20]. Another approach operates at a symbolic level where a textured image is organized
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or represented in terms of primitives. Examples of this can be seen in Julesz's work [13,12] and in syntactic

texture analysis. There has also been recent interest in texture analysis approaches based on statistical

modeling such as Markov random �elds (MRF) [7,17,16]. Some texture analysis methods, for example, Beck

et al. have examined the role of spatial frequency channels (signal processing level) and perceptual grouping

(symbolic level) in texture segregation [1,2].

Julesz had conjectured [14,15] that texture pairs with identical second-order statistics cannot be preat-

tentively discriminated by humans, but he later gave counterexamples to this conjecture [13]. An important

factor in the preattentive discrimination of such texture pairs appears to be certain shape features of the

texture primitives. These features include closure, linearity, terminations, etc. which are called textons [13].

The important questions that need to be answered in this theory are whether the list of textons is complete

and how to extract textons from images. One approach to this problem is to formulate a general framework

for feature detection so that the detected features capture the texton information. If this is accomplished

then we no longer have to list all the textons. This is the main motivation in this paper. Shape features of

the Voronoi polygons are used to perform texture segmentation and they seem to capture the perceptually

necessary information for this task. Furthermore, the features so extracted depend on local properties of the

image.

The textures that are of interest to us are de�ned in terms of texture primitives which we call tokens.

These tokens can be either dots or points (simplest case) or they can be more complex primitives such as

arrows and triangles. Primitives can be extracted from the gray level images as a result of some low-level

processing (Section 3.3) or they can be generated synthetically in order to control precisely the various spatial

and statistical properties of the texture [13].

In this paper we propose a method of obtaining shape features from tokens at a symbolic level which will

be useful for texture segmentation. This is accomplished by �rst computing the Voronoi tessellation of the

input texture and then extracting the shape properties of the resulting Voronoi polygons. Shape features

of the polygons are represented by their moments of area which are able to capture not only the �rst-order

di�erences in textures (such as density di�erences) but also higher order statistical di�erences in textures

(e.g., two textures with the same dot density but di�erent orientation tendencies). The Voronoi tessellation

has been used as the underlying geometric representation in other problems such as grouping of dot patterns

[23]. The latter, however, did not involve the computation of textural properties.

Our texture segmentation scheme consists of the following three basic steps: (a) De�ne local relationships

between texture primitives or tokens using a graph structure. We use the Delaunay graph (Voronoi diagram)

for this purpose. (b) Identify the degree of \inconsistency" of the edges in the Delaunay graph. The edges

in the interior regions of a homogeneous texture region will be \consistent" and those between two di�erent

texture regions will be \inconsistent." The degree of inconsistency of the Delaunay edges are computed

using the shape features of each Voronoi polygon (Section 3.1). (c) The initial labeling in (b) is re�ned using

probabilistic relaxation labeling, which uses the Gestalt constraint of boundary smoothness. Algorithm 1
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Input: Gray level texture image.

1. Extract tokens.

2. Construct the Voronoi tessellation.

3. Compute initial BREAK probabilities for Delaunay edges based on moments of area of polygons. (See

Section 3.1).

4. Perform a probabilistic relaxation labeling to identify interior and border tokens. P
(k)
i (�) is the prob-

ability of label � for the ith token at the kth iteration. (See Section 3.2).

5. The �nal label on token i is � if P
(k)
i (�) = max

�0
P
(k)
i (�0)

Output: Output labeling identi�es interior regions and borders of regions.

Algorithm 1: The overall algorithm for the texture segmentation.

shows the steps of the texture segmentation algorithm.

Section 2 describes the Voronoi tessellation and the computation of the textural features from it. Section 3

describes our segmentation algorithm and the probabilistic relaxation labeling scheme. Section 4 gives

experimental results and Section 5 makes some concluding remarks.

2 VORONOI TESSELLATION

Our texture segmentation algorithm uses the Voronoi tessellation to establish local relationships among the

tokens. The features of Voronoi cells are then used to group the tokens belonging to the same texture. In

this section we give a de�nition of the Voronoi tessellation and the texture features we compute from it.

Let S denote a set of three or more points in the Euclidean plane. Assume that these points are not all

collinear, and that no four points are cocircular. Consider an arbitrary pair of points P and Q belonging

to S. The bisector of the line joining P and Q is the locus of points equidistant from both P and Q and

divides the plane into two halves. The half plane HQ
P (HP

Q ) is the locus of points closer to P (Q) than to Q

(P ). For any given point P , a set of such half planes is obtained for various choices of Q. The intersection\
Q2S;Q6=P

HQ
P de�nes a polygonal region consisting of points in the Euclidean plane closer to P than to any

other point. Such a region is called the Voronoi polygon [26] associated with the point P . The set of complete

polygons for all points in S is called the Voronoi diagram of S [22]. The Voronoi diagram together with the

incomplete polygons in the convex hull of S de�ne a Voronoi tessellation of the entire plane. Two points

P;Q 2 S are said to be Voronoi neighbors if the Voronoi polygons of P and Q share a common edge. The
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Feature Computation

f1 m00

f2
p
x2 + y2

f3 tan�1 (y=x)

f4

�
[(m20�m02)

2+4m2

11]
1

2

[(m20�m02)2+4m2

11]
1

2+m20+m02

� 1

2

f5 tan�1 (2m11=(m20 �m02))

Table 1: The computation of texture features from moments.

dual representation of the Voronoi tessellation is the Delaunay graph which is obtained by connecting all the

pairs of points which are Voronoi neighbors as de�ned above.

In the following discussion, �rst we consider textures de�ned in terms of dots and then generalize our

approach to arbitrary tokens. In order to segment the textured image, we compute local features in the dot

pattern and then group dots with similar features to construct uniform texture regions. This also helps in

identifying borders separating such uniform regions. Moments of area of the Voronoi polygons serve as a

useful set of features that reect both the spatial distribution and shapes of the tokens in the textured image.

The (p + q)th order moments of area of a closed region R with respect to a point or dot with coordinates

(x0; y0) are de�ned as [11]:

mpq =

Z Z
(x;y)2R

(x� x0)
p(y � y0)

q dx dy (1)

where p+ q = 0; 1; 2; . . .. These moments are computed with respect to the coordinates of the dot to which

the polygon belongs, so that they are comparable for each polygon across the dot pattern. The details of

e�cient computation of these moments for polygonal regions can be found in [27]. The lower order moments

(small values of p and q) have well de�ned geometric interpretations. For example, m00 is the area of a

polygon, m10=m00 and m01=m00 give the displacement of the polygon centroid with respect to (x0; y0) in

the x and y directions, respectively. The m20, m11, and m02 can be used to derive the amount of elongation

of a polygon, and the orientation of its major axis. The higher order moments give even more detailed shape

characteristics of the polygons such as symmetry, etc.

Let (x; y) be the coordinates of the polygon centroid, where x = m10=m00 and y = m01=m00. We have

used the features derived from moments of area shown in Table 1. f2 gives the magnitude of the vector

from the dot to the polygon centroid, f3 gives its direction, f4 gives the overall elongation of the polygon

(f4 = 0 for a circle), and f5 gives the orientation of its major axis. The feature vector for a dot then is

< f1; f2; f3; f4; f5 >.

How do we compute the Voronoi tessellation when the texture primitives are arbitrary shaped tokens

as in Figures 3{5? We have chosen to regard a token as consisting of dots. We compute a generalized
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Delaunay graph to de�ne the neighborhood relationship among the tokens and compute the shape feature

for the token in terms of the features of its constituent dots' polygons. Let T be the set of tokens. The

generalized Delaunay graph for the tokens is de�ned as follows: two tokens ti; tj 2 T are neighbors or have

an edge between them if there exist two dots pk 2 ti and pl 2 tj such that pk and pl are neighbors in the

Delaunay graph for the dot pattern making up the tokens. The feature vector for the token is computed

based on the features of its constituent dots. The simplest such feature for a token is the average of the

feature for the dots. Note that this is an ad hoc measure, but it appears reasonable for the texture examples

we have used. Let fk be the average of the kth feature. Then we de�ne the feature vector for the token as

< f1; f2; f3; f4; f5 >.

3 SEGMENTATION ALGORITHM

In this section we discuss the main steps of the segmentation algorithm. We �rst describe computation of

the probability that a Delaunay edge eij , connecting two tokens i and j, is broken (i.e., whether the edge is

inconsistent). Next we describe the probabilistic relaxation labeling to disambiguate and identify the borders

of the regions.

3.1 Initial Break Probabilities on Delaunay Edges

Let eij be the Delaunay edge connecting tokens i and j. Let Ni be the set of neighboring tokens (immediate

neighbors and neighbors of neighbors) for token i. Similarly, de�ne Nj for token j. If the Delaunay edge

eij lies within a single textured region, then the textural properties of the two sets of neighbors Ni and Nj

should be similar. If eij connects tokens belonging to two di�erently textured regions, then the two sets of

neighbors Ni and Nj will have di�erent properties. The probability Pij(NB) that the edge eij is not broken

is de�ned in terms of the similarity of the features of sets Ni and Nj .

Let Fk = (fk1 ; . . . ; f
k
5 ) be the feature vector associated with token k. These are the derived features

discussed in Section 2. We use the Kolmogorov-Smirnov (KS) statistic [19] to compare the set of features

associated with the two neighborhoods Ni and Nj . Let Sk(f
k
l ) be the unbiased estimator of the cumulative

distribution function of the lth feature associated with Nk. If the feature values f
k
l are sorted, then Sk(f

k
l )

is the function giving the fraction of the values to the left of fkl . The KS statistic Dl
ij for comparing the

similarity of the two neighborhoods Ni and Nj based on the lth feature is de�ned as

Dl
ij = max

�1<xl<1
jSi(xl)� Sj(xl)j: (2)

Dl
ij would be close to zero for two neighborhoods which are within a single texture. We use Pij(NB) =

1 � max
l
fDl

ijg. It is possible that some of the moments of area (and thus the derived features) will have

similar values even if the two neighbor sets belong to di�erent textures. For example, two textures with the

same average dot density, but with di�erent orientation trends, will have comparable zeroth- and �rst-order
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moments but di�erent second-order moments. We assume the worst case and pick the feature with the

largest di�erence in the two cumulative distribution functions to compute Pij(NB) for the Delaunay edge

eij . A high value of Pij(NB) means that the two tokens i and j belong to the same texture and thus the

Delaunay edge eij should not be broken. We also de�ne the probability Pij(B) that the edge eij is broken

as Pij(B) = 1� Pij(NB).

3.2 Identi�cation of Textured Regions by Probabilistic Relaxation Labeling

The probabilities Pij(NB) computed in the previous section are a good starting point for the region seg-

mentation, but they rely only on local information and do not enforce Gestalt constraints such as border

smoothness. To smooth local irregularities and enforce border smoothness, we formulate a probabilistic

relaxation labeling scheme.

Probabilistic relaxation labeling is a technique of parallel constraint propagation for obtaining locally

consistent labels for a set of objects [21,28]. It consists of a set of objects T = fti; i = 1; 2; . . . ; ng to be

labeled and a set � = f�i; i = 1; 2; . . . ;mg of labels. Let Pi(�) be the probability that the label � is \correct"

for the ith object, such that
X
�

Pi(�) = 1.

The probability P
(k+1)
i (�) of label � on object i at iteration (k + 1) is obtained by using the following

rule:

P
(k+1)
i (�) =

P
(k)
i (�)[1 + q

(k)
i (�)]X

�0

P
(k)
i (�)[1 + q

(k)
i (�0)]

; (3)

where

q
(k)
i (�) =

X
j

wij

�
max
�0

frij(�; �
0)P

(k)
j (�0)g+min

�0
frij(�; �

0)P
(k)
j (�0)g

�
: (4)

In Equation 4, rij(�; �
0) is the compatibility of the labels � and �0 on objects i and j and wij is the coe�cient

which determines the contribution of the jth object towards the change in probability for the ith object. The

rij values incorporate the border smoothness constraint. The quantity q
(k)
i (�) is in the range [-1,1], and

it determines whether P
(k+1)
i (�) is increased, decreased, or remains unchanged after the probabilities are

normalized. The iteration continues until either (i) all the probabilities in Equation (3) converge, or (ii) the

number of iterations exceeds a prespeci�ed limit.

We now look at the speci�c formulation of the relaxation labeling for our segmentation problem.

(a) The set of objects to be labeled are the n tokens in the texture image, T = fti; i = 1; 2; . . . ; ng.

(b) The set of labels � = fI; E;N;W; Sg, indicate whether the token is an interior token (I), or it lies on

the border of a region with direction 0 degrees (E), 90 degrees (N), etc. The sense of the direction

is chosen according to the right hand rule; that is, when facing in the direction of the border label,

the interior of the region lies on the right hand side. In this algorithm we have decided to use four

quantized directions for the border labels. One can increase the resolution by using a larger number

of border directions.
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(c) The initial label probabilities are computed from the initial Pij(NB) computed before. For example,

P
(0)
i (I) =

1

jNij

X
j2Ni

Pij(NB) (5)

This is based on the expectation that in the interior of a homogeneous textured region most Delaunay

edges will have high values of Pij(NB). The initial probability for a border label bk 2 fE;N;W; Sg is

computed by

P
(0)
i (bk) =

( PNB

WNB

+ PB
WB

)

2
(6)

where

PNB =
X
j

Pij(NB)
2(�2 � �)

�
(7)

WNB =
X
j

2(�2 � �)

�
(8)

PB =
X
j

Pij(B)
2�

�
(9)

WB =
X
j

2�

�
(10)

In the above expressions, the terms PNB=WNB and PB=WB are weighted averages of the Pij(NB)

and Pij(B) probabilities, respectively, around the token i. The weights depend on the angle � that the

Delaunay edge eij makes with the border label bk (see Figure 1(a)). Edges are expected to be linked

along the border label direction (thus the weight 2(�2 � �)=� for the NB label) and they are expected

to be broken away from the border label direction (and hence the weight 2�=� for the B label). The

angle � can take on values in the range [0; �2 ]. The initial probabilities for those dots whose Voronoi

polygons are incomplete are computed di�erently, because in these cases we know a priori that the

dot is not an interior dot. This computation takes advantage of the fact that the interior regions lie

on the non-empty side of the border. In this case, we assign P
(0)
i (I) = 0, and proceed with the above

analysis for the probabilities of border labels.

(d) The Gestalt constraint of border smoothness is enforced through the proper use of compatibility coef-

�cients. These compatibilities between pairs of neighboring tokens are computed based upon the local

evidence for the token being in the interior or lying on the border and the enforcement of local border

smoothness to obtain more perceptually meaningful segments. In the following formulas, Pi(bk) is the

probability of token i having border label bk 2 fE;N;W; Sg, �ij is the angle formed by the edge from

token i to token j with the x-axis, and �k is the angle of the border label bk with the x-axis (see Fig-

ure 1(b)). The compatibilities rij(�; �
0) between two tokens i and j with labels �; �0 2 fI; E;N;W; Sg

are computed as follows:

rij(I; I) =
Pi(I) + Pj(I)

2
(11)
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Figure 1: (a) The de�nitions of angles in the interior-border compatibilities. (b) The de�nitions of angles in

the border-border compatibilities.

rij(I; bk) =

�
1 + sin(�ij � �k)

2

�
Pi(I) + Pj(bk)

2
(12)

rij(bk; I) =

�
1� sin(�ij � �k)

2

�
Pj(I) + Pi(bk)

2
(13)

rij(bk; bl) =

�
Pi(bk) + Pj(bl)

2

�
Sangle (14)

where

Sangle =
1

2

�
1 +

�
cos 2(�k � �ij) + cos 2(�l � �ij)

2
cos(�k � �l)

��
(15)

In these expressions, Pi and Pj provide the local evidence for the particular labels whose compatibilities

are computed. The sin(:) terms in Equations (12) and (13) enforce the right hand rule for the border

direction. That is, the support provided by the sin(:) term is positive if the interior labeled dot is on the

right hand side of the border direction. Sangle in Equation (14) enforces two conditions: (i) When the

border tokens are along the contour of a single region, they must be aligned and pointing in the same

direction (�k��ij = �l��ij = �k��l = 0). (ii) When the border tokens are along the contours of two

separate regions, they should be pointing in opposite directions (e.g., �ij = 0, �k = �=2, �l = ��=2).

This is done in order to keep the interior of each region on the right side of each border label. The

space between two such border tokens is the crack between two texture regions.

This relaxation labeling algorithm is run on the tokens to obtain the �nal labeling of the interior regions

and the borders of the texture. In running the relaxation labeling algorithm, we update our compatibility

coe�cients after a certain number of iterations (5 iterations in this case). This updating reects the e�ect of
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changing probabilities of the labels on the compatibilities of neighboring tokens. The relaxation algorithm

is run for 100 iterations in total. In most instances the label probabilities converge to their �nal values in

fewer iterations. However, for certain ambiguous cases, it takes longer for the values to settle.

3.3 Gray Level Texture Images

In order to apply our texture segmentation algorithm to gray level images, we need to �rst extract tokens

from images. Some researchers have developed complex methods for extracting such texture elements from

gray level images [3,25]. In this paper, we have used a simple algorithm to extract tokens from texture

images to demonstrate that our texture segmentation algorithm can be applied not only to synthetic dot

patterns but to gray level images as well.

We extract tokens from a gray level image as follows:

1. Apply Laplacian of a Gaussian (LoG or r2G) �lter to the image. For computational e�ciency, we

approximated the r2G �lter with a di�erence of Gaussians (DoG) �lter. The size of the DoG �lter

is determined by the sizes of the two Gaussian �lters. We used �1 = 1 for the �rst Gaussian and

�2 = 1:6�1 for the second one. According to Marr, this is the ratio at which a DoG �lter best

approximates the corresponding r2G �lter [18, page 63].

2. Select those pixels that lie on a local peak of the �ltered image. A pixel in the �ltered image is said

to be on a local peak if its magnitude is larger than six or more of its eight nearest neighbors. This

de�nition allows us to identify those pixels that lie along a ridge. This results in a binary image (e.g.

Figure 4(c)).

3. Perform a connected component analysis on the binary image using eight nearest neighbors. Each

connected component de�nes a texture primitive (token). We have selected a fairly simple method of

token extraction. Several other methods of token extraction have recently been proposed [3,25].

After the texture tokens are identi�ed using this method, we apply the algorithm described in Sections 3.1

and 3.2 to segment the texture image.

4 EXPERIMENTAL RESULTS

We have tested our segmentation algorithm on three classes of texture patterns. The �rst class consists of

textures which are made of dots, an example of which is seen in Figure 2(a). These textures di�er in the

regularity of the dot placement, the direction of the dot density, and the average dot density. In some of

the regular textures we have added small amounts of perturbations to the positions of the dots. The second

class of textures have primitives made up of dots. Figure 3(a) gives a popular example of such textures seen

in the literature [13]. In this example, the tokens which are used to construct the textures have identical
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second-order statistics. The third class of texture patterns were taken from the texture album of Brodatz

[4]. Several gray level images of textures were put together in pairs to test our segmentation algorithm.

Figures 4(a){5(a) are examples of such texture pairs. These are 128x256 images (each Brodatz texture is

128x128) and they have a range of 256 gray levels.

Our segmentation algorithm can successfully segment the textured regions of the �rst class (Figure 2(a)).

Figure 2(b) shows the probabilities Pij(NB) for the Delaunay edges for the textures in Figure 2(a). The

probabilities are shown as gray levels such that the lighter edges have higher probabilities of being broken.

As can be seen from Figures 2(a) and 2(b), the initial estimates of P
(0)
ij (NB) are quite useful in identifying

the interior regions (where most edges are not broken) and the borders between textured regions (where

most Delaunay edges are weak). The �nal segmentation after running the relaxation labeling is shown in

Figure 2(c). In the segmentation results the tokens are represented as dots at their centroids for graphical

representation. Note that the borders in Figure 2(c) are thick and fuzzy due to the local nonuniformity of

the shapes of the Voronoi polygons going from one region to the next.

Our algorithm also successfully segments the \corner-closure" texture pattern (Figure 3(a)). In Fig-

ure 3(b), we are able to successfully label the interiors of the two textures and identify the correct location

of the border. There are some textures with identical second-order statistics that our algorithm is unable to

segment, but these textures are not preattentively discriminable by humans, either. We have also run the

segmentation algorithm on patterns that consist of textures made up of L's and crosses, L's and T's, etc. [1].

In each of these cases, the algorithm �nds the borders and the interiors of the textures properly.

Finally, the algorithm successfully segments most of the texture pairs we used from the Brodatz texture

album [4]. Figures 4(a){5(a) give the input gray level images. Figures 4(b){5(b) give the result of convolving

these images with the DoG �lter (�1 = 1, �2 = 1:6�1). Figures 4(c){5(c) give the peaks that are detected from

the convolved images. These are the tokens used to segment the textures. The results of the segmentation

is shown in Figures 4(d){5(d). In these segmentation results also the tokens are represented as dots at their

centroids for graphical representation.

The segmentation results of Figures 4 and 5 detect the borders and the interior regions of the texture

pairs. There are some tokens in the interior regions of some of the textures (Figure 5) that are labeled as

borders. There are two reasons for this: (a) Our comparison of statistical similarity of features is local and

thus it is detecting the di�erences in these local regions, (b) The tokens actually have di�erent local properties

(e.g. in Figure 5(c), the wood grain texture has long vertical tokens intermixed with short and horizontal

tokens). In some texture pairs (e.g., D9 grass lawn and D17 herringbone weave), complete segmentation is

not achieved but a large portion of the border between the two textures is detected. We feel that better

token extraction, increasing the size of the neighborhoods around each token, and some postprocessing will

improve the performance of our segmentation algorithm.
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5 CONCLUSION

In this paper we have developed a texture segmentation algorithm based on the Voronoi tessellation. The

algorithm �rst builds the Voronoi tessellation of the tokens that make up the textured image, computes a

set of features from the Voronoi diagrams, and �nally, it performs a probabilistic relaxation labeling on the

tokens, to identify the interior and the border regions of the textures present in the image.

The results of the segmentation algorithm show that the shapes of the Voronoi polygons provide a

powerful set of features that reect certain textural properties in images. Particularly, the results on the

\corner-closure" type texture patterns of Figure 3 show that the important aspects of the textural properties

have been captured by this representation.

An important advantage of our segmentation algorithm over other texture segmentation algorithms is

that we do not have to specify the number of texture regions (segments) a priori. The number of regions

is automatically found by identifying contiguous interior regions. The moment-based features are able

to capture orientation sensitive texture properties, as well as more complicated textural properties such

as textons proposed by Julesz [13] (see, for example, Figure 3(a)). Our segmentation algorithm tries to

incorporate Gestalt perceptual criteria such as border smoothness. In many of the texture patterns, these

Gestalt criteria improve the segmentation results as seen in Figure 2.

Future research directions range from improvements in the current algorithm to its integration with other

intermediate level visual processing modules. We need to improve the method used in comparing the textural

properties of the two neighborhoods of the Delaunay edge (Section 3.1). The current algorithm is sensitive

to small perturbations in the locations of the tokens if the token placement is very regular. The fact that in

the regular regions the variance of the features is almost zero makes the statistical comparison very sensitive

to small perturbations in such areas. This results in border labels being assigned to interior tokens because

slight perturbations in the location of the tokens cause the feature distributions to be seen as di�erent.

The localization of the actual boundary has not been addressed in this paper. Some post processing is

also necessary to thin the boundary and smooth the texture regions. This step may also improve the results

for regular regions with very small perturbations discussed above.

In the case of the gray level texture images, we used a very simple method of token extraction. This

process can be improved further which will result in better segmentation. The use of multiscale �ltering in

the token extraction process is one possibility.

A major extension of this work would be in the integration of the segmentation process with other

visual processing modules. One immediate area is the shape from texture processing where the boundaries

obtained from the texture segmentation may be used in localizing the process of surface geometry extraction.

A feedback from the shape from texture algorithms may in turn provide useful information about possible

borders between textured regions.
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(c)
Figure 2: (a) A texture with three regions. Two regions consist of regularly placed dots with di�erent

densities. In the third region the dots are randomly placed. One of the regularly placed regions has a

directionally sensitive density. (b) P
(0)
ij (NB) assigned to each Delaunay edge for the tokens in (a). The

probabilities are shown as gray levels such that the lighter edges have higher probabilities of being broken.

(c) Segmentation showing the interior regions (shown as dots) and the borders (shown as arrows in four

directions) for the texture in (a).
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(b)

Figure 3: (a) An example texture pair with identical second-order statistics that can be preattentively

discriminated. (b) The resulting segmentation produced by the algorithm. The dots are the place holders

for the token and represent interior regions.
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(a) (b)

(c) (d)

Figure 4: (a) Texture pair D3 (reptile skin) and D17 (herringbone weave) from Brodatz texture book. (b)

Image in (a) convolved with a DoG �lter with �1 = 1 and �2 = 1:6. (c) Detected peaks in the �ltered image.

The connected components form the tokens. (d) Resulting segmentation. Each token is displayed as a dot

at its centroid.

16



.
..
.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.
..
..
..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.
.
.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.
..
.
.

.
.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

..
.
..
.
.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

..

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

.

..

.

.

..

..

..

.

..

.

.

..

..

.

.

.

.

..

.

.

.

..

..

..

.

.

..

.

..

.

.

.

..

.

..

..

..

.

.

.

.

.

..

.

..

.

.

..

.

..

..

.

.

.

.

.

..

.

.

..

..

.

.

..

..

.

..

.

.

.
..
..
..
.

.

.

.

..

.

.

..
..

.

.

..
.

..

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

..

..

.

...

.

.

.
.
.
.
..

.

.

.

(a) (b)

(c) (d)

Figure 5: (a) Texture pair D55 (straw matting) and D68 (wood grain) from the Brodatz texture book. (b)

Image in (a) convolved with a DoG �lter with �1 = 1 and �2 = 1:6. (c) Detected peaks in the �ltered image.

(d) Resulting segmentation. Each token is displayed as a dot at its centroid.
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