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Abstract. This paper presents a spatial noise reduction technique designed to 
work on CFA (Color Filter Array) data acquired by CCD/CMOS image sensors. 
The overall processing preserves image details by using heuristics related to 
HVS (Human Visual System) and texture detection. The estimated amount  
of texture and HVS sensitivity are combined to regulate the filter strength.  
Experimental results confirm the effectiveness of the proposed technique. 
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1   Introduction  

The image formation process through consumer imaging devices is intrinsically noisy. 
This is especially true using low-cost devices such as mobile-phones, PDA, etc., 
mainly in low-light conditions and absence of flash-gun. 

In terms of denoising, linear filters can be used to remove Gaussian noise (AWGN), 
but they also significantly blur edge structures of an image. Many sophisticated tech-
niques have been proposed to allow edge preserving noise removal such as: [12] and 
[13] that perform multiresolution analysis and processing in the wavelet domain, [3] 
that uses anisotropic non-linear diffusion equations but work iteratively, [1] and [10] 
that are spatial denoising approaches.  

In this paper we propose a novel spatial noise reduction method that directly proc-
esses the raw CFA data, combining together HVS (Human Visual System) heuristics, 
texture/edges preservation techniques and sensor noise statistics, in order to obtain an 
effective adaptive denoising.  

The proposed algorithm introduces the concept of the usage of HVS properties di-
rectly on the CFA raw data from the sensor to characterize or isolate unpleasant arti-
facts. The complexity of the proposed technique is kept low by using only spatial 
information and a small fixed-size filter processing window, allowing real-time  
performance on low cost imaging devices (e.g., mobile phones, PDAs, …). 

The paper is structured as follows. In the next section some details about the CFA 
and HVS characteristics are briefly discussed; in Section 3 the overall details of the 
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proposed method are presented. An experimental section reports the results and some 
comparisons with other related techniques. The final section tracks directions for 
future works. 

2   CFA Data and HVS Properties  

In typical imaging devices a color filter is placed on top of the imager making each 
pixel sensitive to one color component only. A color reconstruction algorithm interpo-
lates the missing information at each location and reconstructs the full RGB image. 
The color filter selects the red, green or blue component for each pixel; the most 
common arrangement is known as Bayer pattern [4]. 

In the Bayer pattern the number of green elements is twice the number of red and 
blue pixels due to the higher sensitivity of the human eye to the green light, which, in 
fact, has a higher weight when computing the luminance. 

The HVS properties are a complex phenomenon (highly nonlinear) not yet completely 
understood involving a lot of complex parameters. It is well known that the HVS has a 
different sensitivity at different spatial frequencies [15]. In areas containing mean fre-
quencies the eye has a higher sensitivity. Furthermore, chrominance sensitivity is weaker 
than the luminance one.  

The HVS response does not entirely depend on the luminance value itself, rather, it 
depends on the luminance local variations with respect to the background; this effect 
is described by the Weber-Fechner’s law [7].  

These properties of the HVS have been used as a starting point to devise a CFA fil-
tering algorithm, that providing the best performance if executed as the first algorithm 
of the IGP (Image Generation Pipeline) [2]. Luminance from CFA data can be ex-
tracted as explained in [11], but for our purposes it can be roughly approximated by 
the green channel values before gamma correction.  

3   Algorithm 

3.1   Overall Filter Block Diagram 

A block diagram describing the overall filtering process is illustrated in Fig. 1. Each 
block will be separately described in detail in the following sections. 

The fundamental blocks of the algorithm are: 

• Signal Analyzer Block: computes a filter parameter incorporating the effects of 
human visual system response and signal intensity in the filter mask. (Section 
3.2 for further details) 

• Texture Degree Analyzer: determines the amount of texture in the filter mask 
using information from the Signal Analyzer Block. (Section 3.4) 

• Noise Level Estimator: estimates the noise level in the filter mask taking into 
account the texture degree. (Section 3.5) 

• Similarity Thresholds Block: computes the thresholds that are used to determine 
the weighting coefficients for the neighborhood of the central pixel. 
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Fig. 1. Overall Filter Block Diagram 

• Weights Computation Block: uses the thresholds computed by the Similarity 
Thresholds Block and assigns a weight to each neighborhood pixel, representing 
the degree of similarity between pixel pairs. (Section 3.6) 

• Filter Block: actually computes the final weighted average generating the final 
filtered value. (Section 3.7) 

3.2   Signal Analyzer Block 

As noted in [5] and [8] it is possible to approximate the minimum intensity gap that is 
necessary for the eye to perceive a change in pixel values. This phenomenon is known 
as luminance masking or light adaptation. Higher gap in intensity is needed to per-
ceive a visual difference in very dark areas, whereas for mid and high pixel intensities 
a small difference in value between adjacent pixels is more easily perceived by the 
eye [8]. 

It is also crucial to observe that in data from real image sensors, the constant 
AWGN model does not fit well the noise distribution for all pixel values. In particular, 
as discussed in [6], the noise level in raw data is predominantly signal-dependent and 
increases as the signal intensity raises; hence, the noise level is higher in very bright 
areas.  

We decided to incorporate the above considerations of luminance masking and 
sensor noise statistics into a single curve as shown in Fig. 2. The shape of this curve 
allows compensating for lower eye sensitivity and increased noise power in the proper 
areas of the image, allowing adaptive filter strength in relation to the pixel values.  

A high HVS value (HVSmax) is set for both low and high pixel values: in dark areas 
the human eye is less sensitive to variations of pixel intensities, whereas in bright 
areas noise standard deviation is higher. HVS value is set low (HVSmin) at mid pixel 
intensities.  
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Fig. 2. HVS curve used in the proposed approach 

The HVS coefficient computed by this block will be used by the Texture Degree 
Analyzer that outputs a degree of texture taking also into account the above consid-
erations (Section 3.4). As stated in Section 2, in order to make some simplifying as-
sumptions, we use the same HVS curve for all CFA colour channels taking as input 
the pixel intensities directly from the sensor.  

3.3   Filter Masks 

The proposed filter uses different filter masks for green and red/blue pixels to match 
the particular arrangement of pixels in the CFA array. The size of the filter mask 
depends on the resolution of the imager: at higher resolution a small processing win-
dow might be unable to capture significant details. For our processing purposes a 5x5 
window size provided a good trade-off between hardware cost and image quality. 
Typical Bayer processing windows are illustrated in Fig. 3.  

 

Fig. 3. Filter Masks for Bayer Pattern Data 

3.4   Texture Degree Analyzer  

The texture analyzer block computes a reference value Td that is representative of the 
local texture degree. This reference value approaches 1 as the local area becomes 
increasingly flat and decreases as the texture degree increases (Fig. 4). The computed 
coefficient is used to regulate the filter strength so that high values of Td correspond to 
flat image areas in which the filter strength can be increased. 

Depending on the color of the pixel under processing, either green or red/blue, two 
different texture analyzers are used. The red/blue filter power is increased by slightly 
modifying the texture analyzer making it less sensitive to small pixel differences (Fig. 5). 
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Fig. 4. Green Texture Analyzer Fig. 5. Red/Blue texture analyzer 

The texture analyzer block output depends on a combination of the maximum dif-
ference between the central pixel and the neighborhood Dmax and TextureThreshold, a 
value that is obtained by combining information from the HVS response and noise 
level, as described below (2). The green and red/blue texture analyzers are defined as 
follows: 
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(1) 

hence: 

− if Td = 1 the area is assumed to be completely flat; 
− if 10 << dT  the area contains a variable amount of texture; 

− if Td = 0, the area is considered to be highly textured. 

The texture threshold for the current pixel, belonging to Bayer channel c (c=R,G,B), 
is computed by adding the noise level estimation to the HVS response (2): 

TextureThresholdc(k)= HVSweight(k)+ NLc(k-1)  (2) 

where NLc denotes the noise level estimation on the previous pixel of the same Bayer 
color channel c(see Section 3.4) and HVSweight (Fig. 2) can be interpreted as a jnd (just 
noticeable difference); hence an area is no longer flat if the Dmax value exceeds the jnd 
plus the local noise level NL.  

The green texture analyzer (Fig. 4) uses a stronger rule for detecting flat areas, 
whereas the red/blue texture analyzer (Fig. 5) detects more flat areas being less sensi-
tive to small pixel differences below the ThR/B threshold.  
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3.5   Noise Level Estimator 

In order to adapt the filter strength to the local characteristics of the image, a noise 
level estimation is required. The proposed noise estimation solution is pixel based and 
is implemented taking into account the previous estimation to calculate the current 
one. The noise estimation equation is designed so that: 

i) if the local area is completely flat (Td = 1) , then the noise level is set to Dmax; 
ii) if the local area is highly textured (Td = 0), the noise estimation is kept equal 

to the previous region (i.e., pixel); 
iii) otherwise a new value is estimated.  

Each color channel has its own noise characteristics hence noise levels are tracked 
separately for each color channel. The noise level for each channel c (c=R,G,B) is 
estimated according to the following formulas: 

 )1(*)](1[)(*)()( max −−+= kNLkTkDkTkNL cddc  (3) 

where Td(k) represents the texture degree at the current pixel and NLc(k-1) is the pre-
vious noise level estimation, evaluated considering pixel of the same colour,  
already processed. These equations satisfy requirements i), ii) and iii).  

3.6   Weighting Coefficients 

The final step of the filtering process consists in determining the weighting coefficients 
Wi to be assigned to the neighboring pixels of the filter mask. The absolute differences 
Di between the central pixel and its neighborhood must be analyzed in combination 
with the local information (noise level, texture degree and pixel intensities) for estimat-
ing the degree of similarity between pixel pairs (Fig. 6).  

P1 P2 P3

P4 Pc P5

P6 P7 P8

W1

 

Fig. 6. Wi coefficients weight the similarity degree between the Pc and its neighborhood 

As stated in Section 2, if the central pixel Pc belongs to a textured area, then only 
small pixel differences must be filtered. The lower degree of filtering in textured areas 
allows maintaining the local sharpness, removing only pixel differences that are not 
perceived by the HVS.  

Let: 

− Pc be the central pixel of the working window;  
− Pi, i = 0,…,7, be the neighborhood pixels; 
− Di = abs(Pc -Pi), i=0,…,7 the set of absolute differences between the central 

pixel and its neighborhood; 
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In order to obtain the Wi coefficients, each absolute difference Di must be compared 
against two thresholds Thlow and Thhigh that determine if, in relation to the local infor-
mation, the i-th difference Di is: 

− small enough to be heavily filtered,  
− big enough to remain untouched, 
− an intermediate value to be properly filtered. 

To determine which of the above cases is valid for the current local area, the local 
texture degree is the key parameter to analyze. It is important to remember at this 
point that, by construction, the texture degree coefficient (Td) incorporates the con-
cepts of dark/bright and noise level; hence, its value is crucial to determine the simi-
larity thresholds to be used for determining the Wi coefficients. In particular, the  
similarity thresholds are computed according to the following rules: 

1. if the local area is flat both thresholds (Thlow , Thhigh) are set to Dmax, which 
means that all neighborhood pixels whose difference from the central pixel is 
less than Dmax have maximum weight. 

2. if the local area is fully textured then Thlow is set to Dmin and Thhigh is set to 
the average point between Dmin and Dmax, meaning that only pixels whose  
difference from the central pixel is very small have the maximum weight. 

3. if the local area has a medium degree of texture Td (0 < Td  < 1), the situation 
is as depicted in Fig. 7, where the similarity weight progressively decreases 
as the i-th difference increases. 

Once the similarity thresholds have been fixed, it is possible to finally determine the 
filter weights by comparing the Di differences against them (Fig. 7). 
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Fig. 7. Weights assignment. The i-th weight denotes the degree of similarity between the  
central pixel in the filter mask and the i-th pixel in the neighborhood. 

3.7   Final Weighted Average 

Let W0,…,WN (N: number of neighborhood pixels) be the set of weights computed for 
the each neighboring element of the central pixel Pc. The final filtered value Pf is 
obtained by a weighted average as follows: 
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4   Experimental Results 

In order to assess the visual quality of the proposed method, we have compared it 
with the SUSAN (Smallest Univalue Segment Assimilating Nucleus) [14] and multi-
stage median filters [9] classical noise reduction algorithm. This choice is motivated 
by considering the comparable complexity of these solutions. Though more complex 
recent methods for denoising image data achieve very good results, they are not yet 
suitable for real-time implementation.  

The test noisy image in Fig. 8 was obtained adding noise with mean standard de-
viation σ=10. Fig. 9 (b),(c),(d) show filtered results respectively with SUSAN, Multi-
stage median-1, Multistage median-3 and proposed technique of the cropped and 
zoomed detail of Fig. 8, showed in Fig. 9(a). To perform the test, all the input images 
were bayerized before processing. 

Fig. 10 shows how the proposed method performs well in terms of PSNR  
compared to the other algorithms used in the test over the 24 Standard Kodak Images  

 

 

Fig. 8. Noisy image (PSNR 32.8 dB) 

 
(a) Cropped and 
zoomed noisy 
image (PSNR 

32.8.1 dB) 

 
(b) SUSAN 

(PSNR 32.5 dB) 

 
(c) Multistage 

median -1 filter. 
(PSNR 32.9 dB) 

 
(d) Multistage 

median -3 filter. 
(PSNR 29.8 dB) 

 
(e) Proposed 

method. (PSNR 
33.8 dB) 

Fig. 9. (a) Cropped and zoomed noisy image in Fig.8. (b) SUSAN. (c) Multistage median-1 
filter. (c) Multistage median-3 filter. (e) Proposed method. 

 



138 A. Bosco et al. 

PSNR results (Noise Level σ=10)
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Fig. 10. PSNR of the Standard Kodak Images test set with standard deviation 

5   Conclusions and Future Works 

A spatial adaptive denoising algorithm has been presented; the method exploits char-
acteristics of the human visual system and sensor noise statistics in order to achieve 
pleasant results in terms of perceived image quality. The noise level and texture de-
gree are computed to adapt the filter behaviour to the local characteristics of the im-
age. The algorithm is suitable for real time processing of images acquired in CFA 
format since it requires simple operations and divisions that can also be implemented 
via lookup tables. 

Future works include the extension of the processing masks along with the study 
and integration of other HVS characteristics. 
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