
Texture Synthesis over Arbitrary Manifold Surfaces

Li-Yi Wei Marc Levoy

Stanford University ∗

Abstract

Algorithms exist for synthesizing a wide variety of textures over
rectangular domains. However, it remains difficult to synthesize
general textures over arbitrary manifold surfaces. In this paper, we
present a solution to this problem for surfaces defined by dense
polygon meshes. Our solution extends Wei and Levoy’s texture
synthesis method [25] by generalizing their definition of search
neighborhoods. For each mesh vertex, we establish a local param-
eterization surrounding the vertex, use this parameterization to cre-
ate a small rectangular neighborhood with the vertex at its center,
and search a sample texture for similar neighborhoods. Our algo-
rithm requires as input only a sample texture and a target model.
Notably, it does not require specification of a global tangent vector
field; it computes one as it goes - either randomly or via a relaxation
process. Despite this, the synthesized texture contains no disconti-
nuities, exhibits low distortion, and is perceived to be similar to the
sample texture. We demonstrate that our solution is robust and is
applicable to a wide range of textures.

Keywords: Texture Synthesis, Texture Mapping, Curves & Surfaces

1 Introduction

Computer graphics applications often use textures to decorate vir-
tual objects without modeling geometric details. These textures
can be generated from sample images using texture synthesis al-
gorithms. However, most existing texture synthesis algorithms are
designed for rectangular domains and can not be easily extended
to general surfaces. One solution is to paste textures onto such
surfaces using texture mapping. However, because general sur-
faces lack a continuous parameterization, this type of texture map-
ping usually causes distortions or discontinuities. An alternative
approach that minimizes distortion is to generate textures directly
over the surface. However, since we can not apply traditional im-
age processing operations to surfaces, most existing methods for
surface texture synthesis work only for limited classes of textures.

This paper presents a method for synthesizing textures directly
over 3D meshes. Given a texture sample and a mesh model, our
algorithm first uniformly distributes the mesh vertices using Turk’s
method [23]. It then assigns texture colors to individual mesh ver-
tices so that the appearance of the surface appears to be the same as
the input texture (Figure 1). It does this using a non-trivial exten-
sion of Wei and Levoy’s approach [25]. Specifically, given a sam-
ple texture image, their algorithm synthesizes a new texture pixel

∗ Email: {liyiwei | levoy}@graphics.stanford.edu

(a) Texture (b) Model (c) Synthesis result

Figure 1: Surface texture synthesis. Given a texture sample (a) and a model

(b), we synthesize a similar texture directly over the model surface (c).

by pixel in a scanline order. To determine the value of a partic-
ular output pixel, its spatial neighborhood is compared against all
possible neighborhoods from the input image. The input pixel with
the most similar neighborhood is then assigned to the output pixel.
This neighborhood search process constitutes the core of [25] and is
inspired by the pioneering work of Efros and Leung [6] and Popat
and Picard [19]. The primary differences between [25] and [6, 19]
are that [25] uses neighborhoods with fixed shapes and conducts
the search deterministically; therefore it can be accelerated by tree-
structured vector quantization.

Although [25] can synthesize a wide variety of textures, there are
several difficulties in extending it to general meshes:

Connectivity Vertices on meshed surfaces are irregularly dis-
tributed, with varying inter-vertex distances and angles. As
a result, the scanline order used in [25] cannot be applied.

Geometry Most surfaces are curved and cannot be flattened with-
out cutting or distortion. This presents difficulties for defining
the spatial neighborhoods that characterize textures.

Topology Because the surface of a general object cannot be
mapped to a rectangle, it can not be parameterized using a
rectangular grid. Most texture synthesis methods require the
specification of a local texture orientation.

In this paper, we present two modifications of [25] to address
those challenges. First, we relax that algorithm’s scanline order,
instead visiting vertices in random order, to allow texture synthe-
sis over surfaces with arbitrary topology. Second, we replace the
rectangular parameterization of the output domain that is implicit
in [25] with tangent directions at each mesh vertex, coupled with
a scale factor derived from the mesh vertex density. Based on this
new parameterization we generalize the definition of search neigh-
borhoods in [25] to meshes, and we show that this generalization
works over a wide variety of textures. Specifically, for textures that
are moderately isotropic, we use random tangent directions, and for
anisotropic textures, we use tangent directions that are either user-
specified or automatically assigned by our relaxation procedure.

The rest of the paper is organized as follows. In Section 2, we
review previous work. In Section 3, we present the algorithm. In
Section 4, we demonstrate synthesis results. In Section 5, we con-
clude the paper and discuss future work.



2 Previous Work

Texture Synthesis: Recent statistical texture synthesis algorithms
[11, 22, 4, 25, 6] have achieved success in modeling image textures.
Since these algorithms rely on planar grids, it is not clear how they
can be extended to arbitrary surfaces. A different class of methods
generate textures through specialized procedures [5]. These tech-
niques produce textures directly over 3D surfaces, so the texture
distortion problem is largely eliminated. However, procedural syn-
thesis is capable of modeling only a limited class of textures.

There have been several attempts to extend statistical texture
synthesis to surfaces [7] or 3D volumes [8, 11]. Based on second-
order statistics, [7] relates pairs of mesh vertices via their geodesic
curves. However, second-order statistics are unable to capture
significant structures that occur in may textures [22]. Volumetric
synthesis [8, 11] avoids this texture distortion. However, these
algorithms begin from multiple 2D textures and require consistent
statistics over these multiple views; therefore they can model only
textures without large-scale structures.

Texture Mapping: Another body of related work is texture map-
ping algorithms. However, globally consistent texture mapping
[14] is difficult. Often, either distortions or discontinuities, or
both, will be introduced. [17] addressed this problem by patching
the object with continuously textured triangles. However, this
approach works only for isotropic textures, and it requires careful
preparation of input texture triangles obeying specific boundary
conditions. In addition, since it employs relatively large triangles,
the approach is less effective for texturing narrow features. Our
algorithm performs moderately well on semi-anisotropic textures,
and it does not require extensive preparation. Another method that
has been suggested is to cover a model with irregular overlapping
patches [20]. This approach works well for some but not all
kinds of textures. Also, the discontinuity between adjacent
texture instances are evident if the textured model is seen close
up. The local parameterization method used in [20] inspired the
parameterization of the algorithm presented here.

Mesh Signal Processing: In principle, we could directly general-
ize [25] for meshes if there existed a toolkit of general mesh signal
processing operations. Unfortunately, despite promising recent ef-
forts [10, 21], mesh signal processing still remains largely an open
problem; [21] works only for spheres and [10] is designed for fil-
tering geometries and functions over meshes, not for general mesh
signal processing operations such as convolution.

3 Algorithm

Symbol Meaning

Ia Input texture image
Is Output texture image
Ms Output textured mesh
Ga Gaussian pyramid built from Ia

Gs Gaussian pyramid built from Is or Ms

pi An input pixel in Ia or Ga

p An output pixel/vertex in Is/Gs

Ps(p) Flattened patches around p
N(p) Neighborhood around the pixel p
G(L) Lth level of pyramid G

G(L, p) Pixel p at level G(L)
	s, 	t, 	n Local texture coordinate system:

texture right, texture up, and surface normal
{RxC,k} neighborhood containing k levels,

with sample density RxC pixels at the top level

Table 1: Table of symbols

(a) 24576 vertices (b) 73728 vertices

Figure 2: The retiling vertex density determines the scale for texture syn-

thesis. Textured torus with (a) 24576 vertices and (b) 73728 vertices.

Our algorithm uses the same framework as [25]. To make the
exposition clear, we first summarize that algorithm in Table 2. We
then describe our extensions. The core of [25] uses spatial neigh-
borhoods defined on rectangular grids to characterize image tex-
tures. In this paper, we generalize the definition of spatial neigh-
borhood so that it can be used for producing textures over gen-
eral surfaces. We parameterize mesh surfaces using local coordi-
nate orientations defined for each mesh vertex and a scale factor
derived from vertex density. We also change the codes for build-
ing/reconstructing mesh pyramids, as well as the order for travers-
ing output pixels. For clarity, we mark a ∗ at the the beginning of
each line in Table 2 that needs to be extended or replaced.

In the rest of this section, we present our extensions following
the order in the pseudo-code in Table 2. For easy comparison we
also summarize our new algorithm in Table 3.

function Is ← ImageTextureSynthesis(Ia, Is)

1∗ InitializeColors(Is);
2 Ga ← BuildImagePyramid(Ia);
3∗ Gs ← BuildImagePyramid(Is);
4 foreach level L from lower to higher resolutions of Gs

5∗ loop through all pixels p of Gs(L) in scanline order
6 C ← FindBestMatch(Ga, Gs, L, p);
7 Gs(L, p) ← C;
8∗ Is ← ReconPyramid(Gs);
9 return Is;

function C ← FindBestMatch(Ga, Gs, L, p)

10∗ Ns ← BuildImageNeighborhood(Gs , L, p);

11 Nbest
a ← null; C ← null;

12 loop through all pixels pi of Ga(L)
13 Na ← BuildImageNeighborhood(Ga , L, pi);

14 if Match(Na, Ns) > Match(Nbest
a , Ns)

15 Nbest
a ← Na; C ← Ga(L, pi);

16 return C;

Table 2: Pseudocode of [25]. Lines marked with a ∗ need to be replaced

or extended for synthesizing surface textures.

3.1 Preprocessing

The preprocessing stage consists of building multiresolution pyra-
mids and initializing output texture colors (Table 2, line 1 to 3, and
Table 3, line 1 to 5). For texturing a surface we add two more steps
to this stage: retiling meshes and assigning a local texture orienta-
tion. Let us consider each step in this stage.

In Table 2, an image pyramid is built for both the input and out-
put texture image. In the present algorithm, we build the image
pyramid Ga via standard image processing routines, as in [25].
However, for output mesh Ms, we construct the corresponding
pyramid Gs using mesh simplification algorithms [23]. Note that
at this stage Gs only contains a sequence of simplifications of the
geometry of Ms; the vertex colors are not yet assigned.

After building the mesh pyramid Gs, we retile the surfaces on
each level using Turk’s algorithm [23]. This retiling serves two pur-



function Ms ← SurfaceTextureSynthesis(Ia, Ms)

1 Ga ← BuildImagePyramid(Ia);
2∗ Gs ← BuildMeshPyramid(Ms);
3∗ RetileMeshes(Gs);
4∗ AssignTextureOrientation(Gs);
5∗ InitializeColor(Gs);
6 foreach level L from lower to higher resolutions of Gs

7∗ loop through all pixels p of Gs(L) in random order
8 C ← FindBestMatch(Ga, Gs, L, p);
9 Gs(L, p) ← C;
10∗ Ms ← ReconMeshPyramid(Gs);
11 return Ms;

function C ← FindBestMatch(Ga, Gs, L, p)

12∗ Ns ← BuildMeshNeighborhood(Gs , L, p);

13 Nbest
a ← null; C ← null;

14 loop through all pixels pi of Ga(L)
15 Na ← BuildImageNeighborhood(Ga , L, pi);

16 if Match(Na, Ns) > Match(Nbest
a , Ns)

17 Nbest
a ← Na; C ← Ga(L, pi);

18 return C;

function Ns ← BuildMeshNeighborhood(Gs , L, p)

19∗ Ps(p) ← FlattenLocalPatch(Gs, L, p, 	s, 	t, 	n);
20∗ Ns ← ResampleNeighborhood(Ps(p));
21 return Ns;

Table 3: Pseudocode of our algorithm. Lines marked with a ∗ indicate

our extensions from the algorithm in Table 2. Note that in our current im-

plementation we only use Gaussian pyramids for meshes; therefore line 10

simply extracts the highest resolution from Gs.

(a) (b) (c)

Figure 3: Orienting textures via relaxation. The red arrows illustrate the �s

directions over the mesh vertices: (a) random (b) 2-way symmetry (c) 4-way

symmetry.

poses: 1) it uniformly distributes the mesh vertices, and 2) the retil-
ing vertex density, a user-selectable parameter, determines the scale
of the synthesized texture relative to the mesh geometry (Figure 2,
see Section 3.3 for details). The retiling progresses from higher to
lower resolutions, and we retile each lower resolution mesh with
one quarter of the number of vertices of the immediate higher reso-
lution so that the relative sample densities of adjacent pyramid lev-
els relative to one another are compatible between image pyramid
Ga and mesh pyramid Gs.

After retiling, we initialize colors of each level of Gs by assign-
ing random colors from the corresponding level in Ga. This initial-
ization method naturally equalizes the color histograms between
Ga and Gs, thereby improving the resulting texture.

The next step is to assign a local coordinate frame for each ver-
tex in the mesh pyramid. This coordinate frame, which determines
the texture orientation, consists of three orthogonal axes 	s (texture

right), 	t (texture up), and 	n (surface normal). These three axes are
tacitly assumed to be 	x, 	y, 	z for planar image grids. For general
surfaces it is usually impossible to assign a globally consistent lo-
cal orientation (e.g. a sphere). In other words, singularities are
unavoidable.

Our solution to this problem is to assign the 	s vectors randomly,
at least for isotropic textures. One of the contributions of this pa-
per is the recognition that, in the context of a texture synthesis
algorithm that searches a texture sample for matching neighbor-

hoods, rotating the 	s and 	t between the searches conducted at ad-
jacent mesh vertices does not significantly degrade the quality of
the match found as long as the input texture is reasonably isotropic.
(Although isotropic textures are by definition rotationally invariant,
this does not immediately imply that we can generate isotropic tex-
tures by matching neighborhoods in a rotationally invariant way.)

For anisotropic textures this solution does not work. Therefore,
we either let the user specify the texture direction as in [20], or we

automatically assign 	s and	t using a relaxation procedure. The goal
of this relaxation procedure is to determine the local texture orien-
tation from the directionality of the input texture. That is, given
an n-way symmetric texture, we orient 	s vectors so that to the ex-
tent possible, adjacent 	s vectors form angles of integer multiples of
360

n
degrees. The relaxation algorithm begins by assigning random

orientations for the lowest resolution level of Gs. It then proceeds
from lower to higher resolutions of Gs, and at each resolution it
first initializes 	s vectors by interpolating from the immediate lower
resolution. Each 	s is then aligned, iteratively, with respect to its
spatial neighbors (at the current and lower resolutions) so that the
sum of individual mis-registration is minimized. The amount of
mis-registration for each 	s at vertex p is calculated by the following
error function:

E =
∑

q near p

∣

∣

∣

∣

φsqp
− round(

φsqp

360

n

) × 360

n

∣

∣

∣

∣

2

,

where n is the degree of symmetry of the input texture, and φsqp

is the angle between 	sp (	s of vertex p) and the projection of 	sq on
the local coordinate system of vertex p. The idea of using energy
minimization for assigning local directions is not new. A similar
function is used in [18], with the following differences to our ap-

proach: (1) we set 	s and 	t to be always orthogonal to each other,
and (2) we use modular arithmetic in the function so that it favors
adjacent 	s vectors forming angles that are multiples of 360

n
degrees.

Our approach is also similar to [12], but we use a slightly differ-
ent functional, and we do not require the direction fields to align
with the principle surface curvatures. Examples of orienting 2-way
and 4-way symmetric textures (e.g. stripes and grid) are shown in
Figure 3 (b) and (c).

3.2 Synthesis Order

The scanline synthesis order in Table 2 (line 5) cannot be directly
applied to mesh pyramid Gs since its vertices do not have rect-
angular connectivity. One solution might be to use the two-pass
algorithm for constrained synthesis [25], growing textures spirally
outward from a seed point. However, there is no natural seed point
for meshes of arbitrary topology. Surprisingly, we have found that
our algorithm works even if we visit pixels of Gs(L) in random or-
der. Thus, we use a modified two-pass algorithm, as follows. Dur-
ing the first pass, we search the input texture using a neighborhood
that contains only pixels from the lower resolution pyramid levels
(except the lowest resolution where we randomly copy pixels from
the input image). This pass uses the lower resolution information
to “extrapolate” the higher resolution levels. In the second pass,
we use a neighborhood containing pixels from both the current and
lower resolution. In both passes, on each level, the neighborhoods
used are symmetric (noncausal). We alternate these two passes for
each level of the output pyramid, and within each pass we simply
visit the vertices in a random order. In our experience this random
order works as well as the spiral order used in [25], and it produces
slightly worse textures than scanline order only for patterns with
scanline dependencies. An example comparing different synthesis
orders is shown in Figure 4.



(a)
Input

(b) Scanline order (c) Random order

Figure 4: Texture synthesis order. (a) Input textures (b) Results with

scanline-order synthesis (c) Results with random-order synthesis. For tex-

tures without scanline dependencies, we have found that random-order

works well.

(b) (c)

d

p

(a)

Figure 5: Mesh neighborhood construction. (a) neighborhood template

(b) flattened patch of the mesh (c) neighborhood template embedded in the

flattened patch.

3.3 Neighborhood Construction

Table 2 characterizes textures using spatial neighborhoods (line 10
and 13). These neighborhoods are planar and coincident with the
pyramid grids. For meshes, however, we have to generalize neigh-
borhoods so that they are defined over general surfaces having ir-
regular vertex positions.

We build mesh neighborhoods by flattening and resampling the
mesh locally (Figure 5). To build the neighborhood around an out-
put vertex p, we first select and flatten a set of nearby vertices,
henceforth called a patch, so that they fully cover the given neigh-
borhood template (Figure 5 (a,b)). We then resample the flattened
patch (Figure 5 (c)) by interpolating the color of each neighborhood
pixel (red circles) from the vertex colors of the patch triangle (blue
squares) that contains that pixel. Before flattening, the neighbor-
hood template is scaled with a constant d =

√
2 × A, where A =

average triangle area of Gs(L), so that the sampling density of the

neighborhood and mesh vertices are roughly the same1. Leaving
d much larger than

√
2 × A would either introduce aliasing during

resampling or would waste mesh vertices by necessary filtering; if
d were too small, the neighborhood would be poorly represented
since most of its samples would come from the same triangle.

The method we use for flattening patches is taken from [20].
First, we orthographically project the triangles adjacent to p onto
p’s local texture coordinate system. Starting from these seed tri-
angles, we grow the flattened patch by adding triangles one at a

1We choose this formula so that if the mesh is a regular planar grid, the

neighborhood will be scaled to align exactly with the grid vertices.

(a) 2186 vertices,
4368 faces

⇒

(b) 8715 vertices,
17426 faces

⇒

(c) 34938 vertices,
69868 faces

Figure 6: Multi-resolution surface texture synthesis. The synthesis pro-

gresses from lower to higher resolutions, and information at lower resolu-

tion meshes is used to constrain the growth of textures at higher resolutions.

time until the neighborhood template is fully covered. Triangles
are added in order of increasing distance from the seed triangles,
and we determine the position of each newly added vertex using
the heuristic in [15, Section 3.1.4]. Note that the flattening process
can introduce flipped triangles. If this happens, we stop growing
patches along the direction of flipping. This might in turn pro-
duce patches that only partially cover the neighborhood template.
In this case, we assign a default color (the average of Ia) to the
uncovered neighborhood pixels. Another solution might be to use
smaller neighborhoods for highly curved areas. However, since a
new neighborhood size would require a new VQ codebook [25],
this implies building multiple codebooks for tree-structured VQ ac-
celeration. Fortunately, since we only use small neighborhoods,
flipping rarely happens.

We construct multiresolution neighborhoods in a similar fashion.
For each vertex p of pyramid Gs, we first find the corresponding
parent faces at lower resolution pyramid levels by intersecting the
normal 	n of p with the coarse meshes. We project each parent face

orthographically with respect to p’s 	s,	t, 	n, and we grow a flattened
patch from the parent face as in the single-resolution case. The
collection of flattened patches Ps(p) is then resampled to obtain

the multiresolution neighborhood N(p)2.

4 Results

Our first example, illustrating the multiresolution synthesis
pipeline, is shown in Figure 6. The synthesis progresses from
lower to higher resolutions, and information at lower resolution
meshes is used to constrain the growth of texture patterns at higher
resolutions. All synthesis results shown in this paper are generated
with 4-level Gaussian pyramids, with neighborhood sizes {1x1,1},
{3x3,2}, {5x5,2}, {7x7,2} (Table 1), respectively, from lower to
higher resolutions.

Texture Orientation: Figure 7 demonstrates the performance of
our algorithm on textures with varying amounts of anisotropy. The
model we use, a sphere, is the simplest non-developable object
that has no consistent texture parameterization. Despite this, many
textures are sufficiently isotropic that they can be synthesized using
random texture orientations (columns (a) and (b)). For highly
anisotropic textures (column (c)), a random parameterization may
fail, depending on the nature of the textures (column (d)). We can
retain the anisotropy by assigning consistent surface orientations
either by hand (column (e) and (f)) or using our iterative relaxation
procedure (column (g)).

Model Geometry & Topology: Several textured meshes with
different topologies and geometries are shown in Figure 9. As
shown, the algorithm generates textures without discontinuity

2If �n of p does not intersect a particular coarse mesh (e.g. it lies on a

crease), we simply skip flattening at that level. Instead we assign a default

color to the neighborhood pixels that are not covered, as in the flipping case.



(a) (b) (c) (d) (e) (f) (g)

Figure 7: Texture synthesis over a sphere uniformly tesselated with 24576 vertices and 49148 faces. (a) Isotropic textures of size 64x64. (b) Synthesis with

random orientations. (c) Anisotropic textures of size 64x64. (d) Synthesis with random orientations. (e) Synthesis with �s and�t vectors at each vertex parallel

to longitude and altitude of the sphere. (f) The polar views of (e), showing the singularity. (g) Synthesis with orientation computed by our relaxation procedure

(Section 3.1). The top two textures are generated using 2-way symmetry (Figure 3 (b)), while the bottom one is generated using 4-way symmetry (Figure 3 (c)).

(a) (b)

Figure 8: Different views around the ears of the textured bunny in Figure 1.

(a) back view. (b) top view.

across a variety of surface geometries and topologies, even across
fine features such as the bunny ear (Figure 8). The algorithm can
also be used to synthesize surface attributes other than colors such
as displacement maps (the mannequin model in Figure 9).

Computation Time: By using an efficient data structure for
meshes (we use the quad-edge data structure [9], although other
approaches are possible), we achieve linear time complexity with
respect to the neighborhood sizes for both the flattening and re-
sampling operations. In our C++ implementation running on a 450
MHz Pentium II machine, the timing for texturing the sphere in
Figure 7 is as follows: relaxation (30 iterations) - 85 seconds, syn-
thesis with exhaustive search - 695 seconds, and synthesis with tree-
structured VQ acceleration - 82 seconds.

5 Conclusions and Future Work

We have presented extensions of [25] that permit us to synthesize
textures over surfaces of arbitrary topology, beginning with a rect-
angular texture sample. The most significant of these extensions
are that we traverse output vertices in a random order, thus allowing

texture synthesis for general meshes, and we parameterize meshes
with a user-selectable scale factor and local tangent directions at
each mesh vertex. We define mesh neighborhoods based on this pa-
rameterization, and we show that this approach works over a variety
of textures. Specifically, we synthesize isotropic textures with ran-
dom local orientations, while generating anisotropic textures with
local directions that are either hand-specified or automatically de-
termined by our relaxation procedure.

Our approach has several limitations. Since it is an extention of
[25], it only works for texture images; therefore it is not as general
as [20] which can paste any image onto a mesh model. However
for the class of textures that can be modeled by [25], our approach
usually produces continuous surface textures with less blocky rep-
etitions. In addition, for textures that are not well modeled by [25],
we could generate better results by combining our surface-synthesis
framework with other improved texture synthesis algorithms such
as [1]. Finally, our representation of the output as a retiled polygo-
nal mesh with vertex colors may not be desirable in cases where we
would like to preserve the original mesh geometry. In such cases
the output can be mapped back onto the original model in a post-
process by resampling, such as in [3].

In concurrent work, Turk has developed a similar approach for
synthesizing textures over surfaces [24]. The primary differences
between [24] and our work are as follows: (1) we have used random
as well as symmetric vector fields for certain textures, whereas [24]
always creates a smooth vector field, (2) instead of a sweeping or-
der, we visit mesh vertices in random order, (3) the two approaches
use different methods for constructing mesh neighborhoods; [24]
uses surface marching while we use flattening and resampling, and
(4) we do not enforce a explicit parent-child relationship between
mesh vertices at adjacent resolutions.

We envision several possible directions for future work. Al-
though our relaxation procedure can assign reasonable local orien-
tations for many anisotropic but symmetric textures, it remains an
open problem for which symmetry classes local orientations can be
assigned in this way. Another future direction is to use a variant of
our algorithm to transfer textures (either colors or displacements)
from one scanned model [13] to another mesh model. This could
be done by replacing the input image Ia Table 3 with an input mesh



Figure 9: Surface texture synthesis over different models. The small rectangular patches (size 64x64) are the input textures, and to their right are synthesis

results. In all examples the textures are used to modulate the colors, except the last one where the texture is used for displacement mapping. Texture orientation

and mesh sizes: teapot (no symmetry, 256155 vertices, 512279 faces), mechanical part (2-way symmetry, 49180 vertices, 98368 faces), knot (random, 49154

vertices, 98308 faces), horse (4-way symmetry, 48917 vertices, 97827 faces), cat (2-way symmetry, 50015 vertices, 100026 faces), and mannequin (no symmetry,

256003 vertices, 512002 faces).

model, and changing line 1 and 15 in Table 3 to BuildMeshPyra-
mid and BuildMeshNeighborhood, respectively. Finally, our def-
inition of mesh neighborhoods might be applicable to other signal
processing operations over meshes such as convolution, filtering,
and pattern matching.

Acknowledgments

We would like to thank Greg Turk for his mesh retiling code and the
anonymous reviewers for their comments. The texture thumbnails
shown in the paper were acquired from the Brodatz texture album
[2], MIT Vision Texture [16], Jeremy De Bonet’s webpage, and
other anonymous websites. Polygonal models were acquired from
Hugues Hoppe’s webpage, the Large Geometric Models Archive at
Georgia Tech, and the OpenInventor model database. This research
was supported by Intel, Interval, and Sony under the Stanford Im-
mersive Television Project.

References

[1] M. Ashikhmin. Synthesizing natural textures. 2001 ACM Symposium on Inter-

active 3D Graphics, pages 217–226, March 2001. ISBN 1-58113-292-1.

[2] P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover,

New York, 1966.

[3] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini. Preserving

attribute values on simplified meshes by resampling detail textures. The Visual

Computer, 15(10):519–539, 1999. ISSN 0178-2789.

[4] J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of

texture images. In T. Whitted, editor, SIGGRAPH 97 Conference Proceedings,

Annual Conference Series, pages 361–368. ACM SIGGRAPH, Addison Wesley,

Aug. 1997.

[5] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and

Modeling: A Procedural Approach. Morgan Kaufmann Publishers, 1998.

[6] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Inter-

national Conference on Computer Vision, volume 2, pages 1033–8, Sep 1999.

[7] A. Gagalowicz and Song-Di-Ma. Model driven synthesis of natural textures for

3-D scenes. Computers and Graphics, 10(2):161–170, 1986.

[8] D. Ghazanfarpour and J. Dischler. Generation of 3D texture using multiple 2D

models analysis. Computer Graphics Forum, 15(3):311–324, Aug. 1996. Pro-

ceedings of Eurographics ’96. ISSN 1067-7055.

[9] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions

and computation of voronoi diagrams. ACM Transactions on Graphics, 4(2):74–

123, April 1985.

[10] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for

meshes. Proceedings of SIGGRAPH 99, pages 325–334, August 1999.

[11] D. J. Heeger and J. R. Bergen. Pyramid-Based texture analysis/synthesis. In

R. Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference

Series, pages 229–238. ACM SIGGRAPH, Addison Wesley, Aug. 1995.

[12] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. Proceedings of SIG-

GRAPH 2000, pages 517–526, July 2000. ISBN 1-58113-208-5.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-

ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital

michelangelo project: 3d scanning of large statues. Proceedings of SIGGRAPH

2000, pages 131–144, 2000.

[14] B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated

meshes. Proceedings of SIGGRAPH 98, pages 343–352, July 1998.

[15] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In J. T.

Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27,

pages 27–34, Aug. 1993.

[16] MIT Media Lab. Vision texture. http://www-white.media.mit.edu/vismod/-

imagery/VisionTexture/vistex.html.

[17] F. Neyret and M.-P. Cani. Pattern-based texturing revisited. Proceedings of

SIGGRAPH 99, pages 235–242, August 1999.

[18] H. K. Pedersen. Decorating implicit surfaces. Proceedings of SIGGRAPH 95,

pages 291–300, August 1995.

[19] K. Popat and R. Picard. Novel cluster-based probability model for texture syn-

thesis, classification, and compression. In Visual Communications and Image

Processing, pages 756–68, 1993.

[20] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. Proceedings of SIG-

GRAPH 2000, pages 465–470, July 2000.

[21] P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing func-

tions on the sphere. Proceedings of SIGGRAPH 95, pages 161–172, August

1995.

[22] E. Simoncelli and J. Portilla. Texture characterization via joint statistics of

wavelet coefficient magnitudes. In Fifth International Conference on Image Pro-

cessing, volume 1, pages 62–66, Oct. 1998.

[23] G. Turk. Re-tiling polygonal surfaces. Computer Graphics (Proceedings of

SIGGRAPH 92), 26(2):55–64, July 1992.

[24] G. Turk. Texture synthesis on surfaces. Proceedings of SIGGRAPH 2001, August

2001.

[25] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quan-

tization. Proceedings of SIGGRAPH 2000, pages 479–488, July 2000.


