652 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5,

MAY 2005

TFP: An Efficient Algorithm for Mining
Top-K Frequent Closed ltemsets

Jianyong Wang, Jiawei Han, Senior Member, IEEE, Ying Lu, and Petre Tzvetkov

Abstract—Frequent itemset mining has been studied extensively in literature. Most previous studies require the specification of a
min_support threshold and aim at mining a complete set of frequent itemsets satisfying min_support. However, in practice, it is difficult
for users to provide an appropriate min_support threshold. In addition, a complete set of frequent itemsets is much less compact than
a set of frequent closed itemsets. In this paper, we propose an alternative mining task: mining top-k frequent closed itemsets of
length no less than min_I, where k is the desired number of frequent closed itemsets to be mined, and min_/is the minimal length of
each itemset. An efficient algorithm, called TFP, is developed for mining such itemsets without mins_support. Starting at min_support =
0 and by making use of the length constraint and the properties of top-k frequent closed itemsets, min_support can be raised effectively
and FP-Tree can be pruned dynamically both during and after the construction of the tree using our two proposed methods: the closed
node count and descendant_sum. Moreover, mining is further speeded up by employing a top-down and bottom-up combined FP-Tree
traversing strategy, a set of search space pruning methods, a fast 2-level hash-indexed result tree, and a novel closed itemset
verification scheme. Our extensive performance study shows that TFP has high performance and linear scalability in terms of the

database size.

Index Terms—Data mining, frequent itemset, association rules, mining methods and algorithms.

1 INTRODUCTION

FREQUENT itemset mining algorithms can be categorized
into three classes: 1) Apriori-based, horizontal format-
ting method, with Apriori [1] as its representative,
2) projection-based, horizontal formatting, pattern growth
method, which may explore some compressed data
structure such as FP-tree, as in FP-growth [14], and 3) vertical
formatting method, such as CHARM [27]. The common
framework among these methods is to use a min_support
threshold to ensure the generation of the correct and
complete set of frequent itemsets, based on the popular
Apriori property [1]: Every subpattern of a frequent pattern
must be frequent (also called the downward closure property).
This framework, though simple, leads to the following two
problems that may hinder its popular use.

First, to come up with an appropriate min_support
threshold, one needs to have detailed knowledge about
the mining query and the task-specific data, and be able to
estimate, without mining, how many itemsets will be
generated with a particular threshold. Setting min_support
is quite subtle: A too small threshold may lead to the generation
of thousands of itemsets, whereas a too big one may often generate
no answers. Our own experience at mining shopping
transaction databases tells us that this is by no means an
easy task. Finding a good threshold by trial and error is so

o |. Wang is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China.

E-mail: jianyong@mail.tsinghua.edu.cn.

e |. Han, Y. Liu, and P. Tzetkov are with the Department of Computer
Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin
Awve., 2132 Siebel Center for Science, Urbana, IL 61801-2302.

E-mail: {hanj, yinglu, tzvetkov)@uiuc.edu.

Manuscript received 23 June 2003; revised 23 Apr. 2004; accepted 20 Oct.
2004; published online 17 Mar. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0103-0603.

1041-4347/05/$20.00 © 2005 IEEE

tedious that a miner may naturally ask: “I am only interested
in finding top-100 frequent itemsets. Is there an easy way to do it
without knowing min_support?”

Second, frequent itemset mining often leads to the
generation of a large number of itemsets (and an even larger
number of mined rules). Unfortunately, mining a long
itemset may unavoidably generate an exponential number
of subitemsets due to the downward closure property.
Obviously, such a combinatorial explosion problem must
be fixed before frequent itemset mining becomes attractive.

The second problem has been noted and examined by
researchers recently, proposing to mine (frequent) closed
itemsets [22], [23], [7], [3], [27], [25], [8] instead. Since a closed
itemset is the itemset that covers all of its subitemsets with
the same support, one just needs to mine the set of closed
itemsets (often much smaller than the whole set of frequent
itemsets), without losing information. For example, a
frequent itemset “ay, as, . .., a0” contains 2% — 1 frequent
subitemsets. By mining closed itemsets, one just needs to
generate one itemset “a;, as, . . ., aj00” if all of its subitemsets
have the same support. Thus, mining closed itemsets should
be the default task for mining frequent itemsets.

To solve the first problem, we propose changing the task
of mining frequent itemsets satisfying the min_support thresh-
old to mining top-k frequent closed itemsets of minimum
length min_I, where k is a user-desired number of frequent
closed itemsets to be mined (which is easy to specify), top-k
refers to the k£ most frequent closed itemsets, and min_I
(where min; > 0) is the minimal length of closed itemsets.
At the first glance, this sounds like changing user’s burden
from specifying min_support to specifying min_I. However,
there are some fundamental differences. First, min_l is
usually a small number (such as 2 to 20), which is easy to be
specified by users with their applications in mind, whereas
min_support is often data-dependent and may need to be
adjusted over a wide range. Second, the min_| constraint

Published by the IEEE Computer Society

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS 653

gives us freedom to mine only long itemsets without first
finding numerous shorter ones, or mine only the itemsets of
a specific length. Third, even if one does not want to specify
the min_| constraint, our top-k mining still provides a viable
tool for efficient mining without specifying the minimum
support constraint by setting min_I to 0. And finally, top-k
frequent itemsets, though not necessarily being the top-k
quality itemsets (which are usually application-dependent),
may be used for further mining of high quality ones.

In this paper, we develop such an efficient algorithm,
called TFP, that takes advantage of a few interesting
properties of top-k closed itemsets with minimum length
min_I, including:

1. Any transactions shorter than min_| will not be
included in the itemset mining.

2. min_support can be raised dynamically in the FP-Tree
construction, which will help pruning the tree before
mining.

3. The most promising tree branches can be mined first
to raise min_support further, and the raised min_sup-
port is then used to effectively prune the remaining
branches.

4. A set of search space pruning methods and an
efficient itemset closure checking scheme are pro-
posed to speed up the closed itemset mining.

Our performance study shows that TFP has surprisingly
high performance, in most cases, even better than two
efficient frequent closed itemset mining algorithms,
CHARM and CLOSET+, with the best tuned min_support.

The remainder of the paper is organized as follows: In
Section 2, the concept of top-k closed itemset mining is
introduced, with the problem analyzed and related proper-
ties identified. Section 3 presents the algorithm for mining
top-k closed itemsets. A performance study of the algorithm
is reported in Section 4. The related work is discussed in
Section 5, and the study is concluded in Section 6.

2 PROBLEM DEFINITION

Let I = {iy,49,...,i,} be a set of items. An itemset X is a
nonempty subset of I. The length of itemset X is the
number of items contained in X, and X is called an
l-itemset if its length is [. A tuple (tid, X) is called a
transaction, where tid is a transaction identifier and X is
an itemset. A transaction database T DB is a set of
transactions. An itemset X is contained in transaction
(tid,Y) if X CY. Given a transaction database T'DB, the
support' of an itemset X, denoted as sup(X), is the
number of transactions in TDB which contain X.

Definition 1. An itemset X is a closed itemset if there exists no
itemset X' such that 1) X C X' and 2) V transaction T,
XeT— X' eT. A closed itemset X is a top-k frequent
closed itemset of minimal length min_l if there exist* no
more than (k—1) closed itemsets of length at least min_l
whose support is higher than that of X.

1. For convenience of discussion, support is defined here as absolute
occurrence frequency. Notice it is defined in some literature as the relative
one, i.e., the occurrence frequency versus the total number of transactions in
the transaction database.

2. Since there could be more than one itemset having the same support in
a transaction database, to ensure the set mined is independent of the
ordering of the items and transactions, our method will mine every closed
itemset whose support is no less than the kth frequent closed itemset.

TABLE 1
A Transaction Database T DB

TID Ttems Ordered Items
100 d,a,e,g a,d,e, g
200 b,a a,b

300 | h,a,cb,e a,b,c,e, h
400 a,b,c,d a,b,c,d
500 | a,c,b, f,d,i a,b,e,d, f,i
600 b,a,c a,b,c

700 | f,a,b,i,c,d | a,b,cd,f,i
800 a,e,c,b a,b,c,e
900 j j

Our task is to mine top-k closed itemsets of minimal
length min_I efficiently in a large transaction database.

Example 1. The first two columns in Table 1 show the
transaction database T'DB in our running example.
Suppose our task is to find top-4 frequent closed itemsets
with min_| = 2. We can find and sort the list of items in
support descending order. The sorted item list is called
the sorted_item_list. In this example, the sorted_item_list is
(a:8,b:7,¢:6,d:4,e:3,f:2,i:2,g:1,h:1,5:1). The
items in each transaction are sorted according to the
sorted_item_list order and shown in the third column of
Table 1. The set of the top-4 frequent closed itemsets with
a minimum length 2 in T DB are

{ab:T,abc: 6,ad : 4,abcd : 3,ae : 3}.

Previous studies [14], [25] show that the prefix-tree based
algorithms like FP-growth are efficient in mining frequent
itemsets. “How can we extend FP-growth for efficient mining of
top-k frequent closed itemsets?” We have the following ideas:
1) O-min_support forces us to construct the “full FP-tree,”
however, with top-k in mind, one can capture sufficient
number of higher support closed itemsets during tree
construction and dynamically raise min_support to prune
the tree. 2) One can first mine the most promising subtrees
so that high support itemsets can be derived early, which
can be used to prune low-support subtrees. 3) We should
also design some effective search space pruning methods
and efficient itemset closure checking scheme to speed up
the mining of closed itemsets. In the following section, we
develop the method step by step.

3 DEeVELOPMENT OF EFFICIENT MINING METHOD

In this section, we perform step-by-step analysis to develop
an efficient method for mining top-k frequent closed
itemsets.

3.1 Short Transactions and /-counts

It is easy to see that a transaction containing less than min_l
distinct items cannot contribute to the support of an itemset of
minimum length min_l. Thus, the first pruning method is to
consider only the transactions that satisfy the minimum
length requirement.

Example 2. The FP-tree for top-k itemsets with min_I length
is constructed as follows: Scan the T'DB once and collect
the support (occurrence frequency) for each distinct item,

654 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

(@)

’ Ttem | support ‘ £-count I

a

b 7 7
c 6 6
d 4 4
e 3 3
f 2 2
7 2 2
g 1 1
h 1 1

(b)

Fig. 1. FP-Tree and its header table. (a) The FP-Tree constructed from TDB. (b) Support and /-count of items.

excluding its counts in short transactions. We get the
following sorted_item_list:

(a:8,b:7,c:6,d:4,e:3,f:2,i:2,g:1,h:1).

An FP-tree can be constructed using this list as follows
[14]: 1) Items in each transaction are arranged according
to the order of sorted_item_list and inserted into the FP-
tree as a branch. 2) If the branch contains a prefix path
shared with some existing branch in the tree, the support
of each corresponding node in the branch is increased by
1. 3) The remaining (suffix) path is inserted into the tree
with the support of each node initiated to 1. The
complete FP-tree so constructed is in Fig. 1a.

Let the occurrence frequency of each item be stored as
support in the (global) header table. As shown in Fig. 1b, we
introduce in the header table another counter, /(ow)-count,
which records the total occurrences of an item at the level
no higher than min_I in the FP-tree.

Remark 3.1 (I-count). If the ¢-count of an item p is lower
than min_support, p cannot be used as a starting point
(i.e., the prefix item) to generate frequent itemset of
length no less than min_l under the FP-growth mining
paradigm.

Rationale. Based on the rules for generation of
frequent itemset in FP-growth [14], only a node residing
at the level min_| or lower (i.e., deeper in the tree) may
generate a prefix path no shorter than min_I. Since short
prefix paths will not contribute to the generation of
itemset with length greater than or equal to min_I, only
the items with ¢-count no less than min_support may be
used as a starting point to generate frequent itemsets of
length no less than min_I. However, this does not mean
that an item with /f-count lower than min_support
contributes nothing to the set of frequent itemsets. For
example, in Fig. 1a, item a cannot be used as a prefix item
to generate any frequent itemsets no shorter than min_I,
however, it can be included in some frequent itemsets
like ba : 7 (It can be mined with prefix item b).

People may wonder that since we start with min_support
=0, how we could still use the notion of min_support. Notice
that if we can find a good number (i.e., no less than k) of
closed itemsets with nontrivial support during the FP-tree
construction or before tree mining, the min_support can be
raised, which can be used to prune infrequent items from
the FP-tree.

3.2 Raising min_support for Pruning FP-tree

Since our goal is to mine top-k frequent closed itemsets, in
order to raise min_support effectively, one must ensure that
the itemsets which are used to raise minimum support must
be closed.

Definition 2. At any time during the construction of an FP-tree,
a node ny is a closed node if its support is more than the sum
of the supports of its children.

Let us see our running example. In Fig. 2a, the nodes in
the dotted ellipses all fall into the case in Definition 2, as a
result, they are all closed nodes.

Property 3.1 (Invariance of a closed node). Once an FP-tree
node n; becomes a closed node, it will stay a closed node when
transactions are added to the FP-tree.

Proof. According to the rules for construction of FP-tree [14],
any transaction that increments the support of a child of
a closed node also increments the support of the closed
node itself equally and, hence, its support stays more
than the sum of the supports of its children. O

Property 3.2 (Relationship to a closed itemset). A closed
node n, represents a distinct closed itemset whose support is no
less than the support of this closed node.

Proof. Let the closed node be n, with a support 7. It is
obvious that the prefix path of n; — ny--- — n; in the
FP-tree is unique to node n;. In the following, we will
prove that itemset S,,, = {n1,...,n;} is a closed itemset.

Assume S, is not closed, that is, there exists another
item i which does not belong to the set of items
{n1,...,m} but can be used to extend S, and
sup(Sy,) = sup(S,, U{i'}). This means item ¢ should
always occur together with S,,. Because 5, contains all
the items in node n,’s prefix path, item ¢’ can only be
located in the descendant nodes of n; and the sum of the
supports of these descendant nodes labelled with ¢
should be T as well, but this contradicts with the definition
of a closed node. Thus, itemset S,, must be closed.

Also, because itemset S, can be contained in some
other FP-tree branches, the final support of itemset S,,
should be no less than 7. 0

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS

Fig. 3. Calculate descendant_sum for an anchor node of an FP-tree.

To dynamically raise min_support during the FP-Tree
construction, a simple data structure, called closed_node_
count array, can be used to register the current number of the
closed nodes under the L-watermark (i.e., at the level no
higher than min_| in the FP-tree) with respect to (abbreviated
w.r.t.) a certain count. The array is constructed as follows:
Initially, each number of the closed nodes w.r.t. a certain
count is initialized to 0. Upon getting a new closed node, the
number of closed nodes w.r.t. the count of this newly found
closed node will be increased by one. According to Property
3.1, the insertion of a new transaction into the FP-tree may
increase the count of a closed node from 7 to 7+ 1. If this
happens, we will decrease the number of closed nodes w.r.t.
count 7 by 1 and, in the meantime, increase the number of
closed nodes w.r.t. count 7 + 1 by 1. Fig. 2b shows the final
status of the closed_node_count array in our running
example.

Based on the Properties 3.1 and 3.2 of a closed node and
how the closed_node_count array is constructed, one can
easily derive the following lemma.

Lemma 3.1 (Support raising with closed_node_count). At
any time during the construction of an FP-tree, the minimum
support for mining top-k frequent closed itemsets will be no
less than the corresponding count S if the sum of the number of
the closed nodes in closed_node_count array from the top to
count S is no less than k.

In our running example, we can raise the minimum
support for mining top-4 frequent closed itemsets to 2
according to Fig. 2b.

655

| count ‘ # closed nodes

7 1

HIN| Wk |OOD
NN (RO |O|—

item descendant_sum
b 7
c 6
d 4
e 3
f 2
i 2
g 1
h 1

Besides using the closed_node_count array to raise the
minimum support, there is another support raising method
with FP-tree, called anchor-node descendant-sum, or simply
descendant-sum, as described below. An anchor-node is a
node at level min_l — 1 of an FP-Tree. It is called an anchor-
node since it serves as an anchor to the (descendant) nodes
at level min_l and below. The method is described in the
following example.

Example 3. As shown in Fig. 3, node a : 8 is an anchor node
since it resides at level min_l — 1 = 1. At this node, we
collect the sum of the supports for each distinct itemset
of node a : 8’s descendants. For example, since anchor
node a : 8 has two descendant d-nodes, d:3 and d: 1,
a : 8's descendant_sum for d is d : 4 (which means that the
support of itemset ad contributed from a :8’s descen-
dants is four). From the FP-tree presented in Fig. 3, it is
easy to figure out that a : 8's descendant_sum should be
{(b:7),(c:6),(d:4),(e:3),(f:2),(:2),(g:1),(h:1)}.
Such summary information may raise min_support
effectively. For example, min_support for the top-4
frequent closed itemsets should be at least 3 based on
a : 8’s descendant_sum.

Notice that if descendant_sum contains two or more
identical support value, only one of them will contribute
to the support of closed itemsets because it is possible
that the nodes with identical support can be merged to
form one longer closed itemset. For example, since af : 2
and ai : 2 are actually subitemsets of abcdfi : 2, they can
only be counted as one closed itemset with support= 2.
Thus, by examining only the descendant_sum of one

656 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5,

anchor node a : 8, we can derive that min_support of the
top-5 frequent closed itemsets should be at least 2, while
min_support of the top-6 frequent closed itemsets should
be at least 1.

Lemma 3.2 (descendant_sum). Each distinct support in
descendant_sum of an anchor node represents the minimum
support of one distinct closed itemset.

Proof. Let the path from the root of the FP-tree to an anchor
node b be § and the set of items in /3 be S . Let count; be
a distinct count in descendant_sum of the anchor node b
and the list of descendant nodes whose descendant_sum
count equals count; be S; = (i1,4s,...,1) (k> 1), which
are sorted according to the sorted_item_list. Assume the
subset of items in S; which co-occur with i; count; times
under the anchor node b is S;,, then Sz U S;, forms a new
itemset and has a support count; w.r.t. anchor node b.
Similar to the proof of Property 3.2, we can easily prove
that Sz U S;, is a closed itemset with a support no less
than count; (Due to limited space, the proof is left to the
interested readers). Because no two such itemsets (i.e.,
S3 U S;,) are identical, each itemset, Sz U S;,, represents a
distinct closed itemset. O

We have the following observations regarding the two
support raising methods. First, the closed_node_count meth-
od is cheap (only one array) and is easy to implement, and it
can be performed at any time during the tree insertion
process. Second, comparing with closed_node_count, descen-
dant_sum is more effective at raising min_support, but is
more costly since there could be many (min_l—1) level
nodes in an FP-tree, and each such node will need a
descendant_sum structure. Moreover, before fully scanning
the database, one does not know which node may
eventually have a very high support. Thus, it is tricky to
select the appropriate anchor nodes for support raising: Too
many anchor nodes may waste storage space, whereas too
few nodes may not be able to register enough support
information to raise min_support effectively. Computing
descendant_sum structure for low support nodes could be a
waste since it usually derives small descendant_sum and may
not raise min_support effectively.

Based on the above analysis, our implementation
explores both techniques but at different times: During
the FP-tree construction, it keeps a closed_node_count array
which raises min_support, dynamically prunes some infre-
quent items and their corresponding FP-tree nodes, and
reduces the size of the FP-tree to be constructed. Note some
closed nodes may disappear, but this does not affect the
correctness of the support raising method because the
support of a removed closed node must be lower than the
current minimum support and contributes nothing to the
current minimum support. After scanning the database (i.e.,
the FP-tree is constructed), we traverse the subtree of the
level (min_l — 1) node with the highest support to calculate
descendant_sum. This will effectively raise min_support. If the
so-raised min_support is still less than the highest support of
the remaining level (min_l — 1) nodes, the remaining node
with the highest support will be traversed, and this process
continues until there is no remaining level (min_l — 1) node
that has a support higher than the current min_support.

MAY 2005

Based on our experiments, only a small number of nodes
need to be so traversed if k for top-k is not very large. Note
the worst case of this heuristic is to traverse all the level
(min; — 1) nodes whose supports are no smaller than 2,
thus the overhead is no greater than scanning the whole FP-
tree once. Compared to the whole mining process, it is
marginal and can be neglected in many cases.

3.3 Efficient Mining of FP-Tree for top-k Itemsets

The raise of min_support effectively prunes the FP-tree and
speeds up the mining. However, efficient mining strategy,
search space pruning methods, and itemset closure check-
ing scheme are also critical to the overall performance.

3.3.1 Mining Strategy

The FP-growth algorithm adopts a totally bottom-up FP-tree
searching order to mine the whole set of frequent itemsets
given a user-specified support threshold. However, this
mining strategy may not be good for mining the top-k most
frequent closed itemsets. There are two subtle points for the
TFP algorithm.

1. “Top-down” ordering of the items in the global
header table for the generation of conditional
FP-trees, where a conditional FP-tree of an item p
is the FP-tree constructed with the set of p’s prefix
paths in the FP-tree [14]. The first subtlety is in
what order the conditional FP-Trees should be
generated for top-k mining. For top-k mining, our
goal is to find only the itemsets with high support and
raise the min_support as fast as possible to avoid
unnecessary work. Thus, mining should start from
the item that has the first /-count that is no smaller
than the current minimum support in the header
table and walk down the header table entries to
mine subsequent items (i.e., in the sorted_item_list
order). This ordering is based on that items with
higher /-count usually produce itemsets with
higher support. With this ordering, min_support
can be raised faster and the top-k itemsets can be
discovered earlier. In addition, an item with
l-count less than min_support does not have to
generate conditional FP-tree for further mining (as
stated in Remark 3.1). Thus, the faster the
min_support can be raised, the earlier pruning can
be done.

2. “Bottom-up” ordering of the items in a local header
table for mining conditional FP-trees. The second
subtlety is how to mine conditional FP-trees. We
have shown that the generation of conditional FP-
trees should follow the order of the sorted_item_list,
which can be viewed as top-down walking through
the header table. However, it is often more beneficial
to mine a conditional FP-tree in the “bottom-up”
manner in the sense that we first mine the items that
are located at the low end of a tree branch since it
tends to produce the longest itemsets first then
followed by shorter ones. It is more efficient to first
generate long closed itemsets since the itemsets
containing only the subset items can be absorbed by
them easily. More importantly, as we will see in

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS 657

Section 3.3.3, an efficient itemset closure checking
scheme can be easily designed based on the
combination of the “top-down” ordering of the
items in the global header table and the “bottom-
up” ordering of the items in the local header tables.

3.3.2 Search Space Pruning Methods

To accelerate the top-k frequent closed itemset mining,
several search space pruning techniques which have never
been used in several previous studies have been adopted,
including the item merging [23], [10], [27] and the prefix-
itemset skipping [5], [23], [10].

For any prefix itemset X, after its conditional database
(i.e., projected FP-tree) has been built, we can find its local
frequent items by scanning it once, where a conditional
database of an itemset X is the database consisting of the set
of X’s prefix paths in the FP-tree and its local frequent items
are the set of frequent items of the conditional database (see
[14] for details). If some local frequent items have the same
support as their prefix itemset X, we can use Remark 3.2 to
prune search space.

Remark 3.2 (Item merging). For any prefix itemset X and
its local frequent item set S, assume S is the set of items
in S with the same support as X. The items in Sx should
be merged with X to obtain a new prefix X’ with local
frequent item set S’ = (S — Sy), that is, items in Sx can
be safely removed from the local frequent item list of X".

Proof. Since every item in Sx has the same support as X,
any subset of Sy will appear in every transaction X
appears. Thus, every itemset, X", obtained by growing X
with a proper subset of Sx will have the same support as
itemset X’ = (X U Sx). Because X’ is a proper superset of
X", X" must be nonclosed, and any frequent closed
itemset with a prefix itemset X” can be obtained directly
by growing X', which means we can safely prune the
items in Sx from the local frequent item set of X'.]

Before extending a prefix itemset X to generate frequent
closed itemsets, we should first check if there is another
already found frequent closed itemset Y, which is a proper
superset of X with the same support. If that is the case, we
should avoid growing X based on Remark 3.3.

Remark 3.3 (Prefix-itemset skipping). At any time for a
certain prefix itemset X, if there is an already found
frequent closed itemset Y, and (X CY)A (sup(X) =
sup(Y)) holds, there is no hope to generate frequent
closed itemsets with prefix X.

Proof. Because (X CY) A (sup(X) = sup(Y)) holds, X is
not a frequent closed itemset, and X and Y appear in the
same set of transactions. For any frequent closed itemset
Z grown from X, if we use itemset (Z — X) to grow Y,
(YU (Z=X))22) A(sup(Y U(Z = X)) = sup(2))
must hold and based on the mining strategy described in
Section 3.3.1, we know any closed itemset with prefix Y’
must have been mined before we mine the closed
itemsets with prefix X. That is, any new itemset grown
from X with (Z — X) is not closed. O

3.3.3 Itemset Closure Checking Scheme

Because we are only interested in mining the top-k frequent
closed itemsets, it is important to efficiently maintain the set
of already mined frequent closed itemset candidates and
assure that every final top-k frequent closed itemset is really
closed.

During the mining process, a pattern-tree is used to keep
the set of current frequent closed itemset candidates. The
structure of pattern-tree is similar to that of FP-tree. Recall
that the items in a branch of the FP-tree are ordered in the
support-decreasing order. This ordering is crucial for closed
itemset verification (to be discussed below), thus we retain
this item ordering in the itemsets mined. The major
difference between FP-tree and pattern-tree is that the
former stores transactions in compressed form, whereas the
latter stores potential frequent closed itemsets.

The bottom-up mining of the conditional FP-trees
generates itemsets in such an order: For itemsets that share
prefixes, longer itemsets are generated first. In addition,
there is a total ordering over the itemsets generated. This
leads to our development of the frequent closed itemset
verification scheme, as follows.

Let (é1,...,%,...,1;,...,1,) be the sorted_item_list, where
1; is the first nonzero [-count item and ¢; be the item whose
conditional FP-tree is currently being mined. Then, the set of
already mined closed itemsets, S, can be split into two
subsets: 1) Syq, obtained by mining the conditional trees
corresponding to items from ¢; to i;_; (i.e.,, none of the
itemsets contains item ;) and 2) S;;, obtained so far by
mining i;’s conditional tree (i.e., every itemset contains
item i;). Upon finding a new itemset p during the mining of
i;’s conditional tree, we need to perform new itemset
checking (checking against 5;,) and old itemset checking
(checking against Sy).

The new itemset checking is performed as follows:
Since the mining of the conditional tree is in a bottom-up
manner and the item merging pruning technique has been
applied, just like CLOSET [23], we need to check whether
1) p is a subitemset of another itemset p; in S; and
2) supp(p) = supp(p;,). If the answer is no, i.e., p passes
new itemset checking, p becomes a new closed itemset
with respect to S. Note that because itemsets in S,y do
not contain item ¢;, there is no need to check if p is a
subitemset of the itemsets in Syq.

The old itemset checking is performed as follows: Since
the global FP-tree is mined in a top-down manner, itemset p
may be a superitemset of another itemset, pyq, in Seq with
supp(p) = supp(poa). In this case, p,qa cannot be a closed
itemset since it is absorbed by p. Therefore, if p has passed
both new and old itemset checking, it can be used to raise
the support threshold. Otherwise, if p passes only the new
itemset checking, then it is inserted into the itemset-tree, but
it cannot be used to raise the support threshold.

Let prefiz(p) be the prefix itemset of an itemset p (i.e.,
obtained by removing the last item ¢; from p). The
correctness of the above checking is shown in the following
lemmas.

Lemma 3.3 (Old itemset checking). For old itemset checking,
we only need to check if there exists an itemset prefixz(p) in
Soua with supp(prefiz(p)) = supp(p).

658

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5,

MAY 2005

item-id

support

item-id

item-id

o---J. ;] d

[MESEAEIRTE
Z
[
I
-

item-id

Fig. 4. Two-level indexing for verification of closed itemsets.

Proof. Since an itemset in S, does not contain item i, it
cannot be a superitemset of p. Thus, we only need to
check if it is a subitemset of p. In fact, we only need to
check if there is an itemset pre fiz(p) in S,q with the same
support as p. We can prove this by contradiction. Let us
assume there is another subitemset of pre fiz(p) that can
be absorbed by p. If this is the case, according to our
mining order, we know this subitemset must have been
absorbed by prefiz(p) either via new itemset checking or
old itemset checking. 0

Lemma 3.4 (Support raise). If a newly mined itemset p can pass
both new itemset checking and old itemset checking, then it is
safe to use p to raise min_support.

Proof. From Lemma 3.3, there will be two possibilities for p.
First, it is a real closed itemset, i.e., it will not be absorbed
by any itemsets later. Second, it will be absorbed by a
later found itemset, and this itemset can only absorb
itemset p. In this case, we will not use the later found
itemset to raise support because it has already been used
to raise support when we found itemset p (or p’s
precedents). Thus, it is safe to use p to raise min_support.O

To accelerate both new and old itemset checking, we
introduce a two-level index header table into the pattern-
tree structure. Notice that if an itemset can absorb (or be
absorbed by) another itemset, the two itemsets must have
same support. Thus, our first index is based on the support
of an itemset. In addition, for new itemset checking, we only
need to check if itemset p can be absorbed by another
itemset that also contains ¢;; however, for old itemset
checking, we need to check if p can absorb prefiz(p) that
ends with the second-last item of p. To speed up the
checking, our second level indexing uses the last item_ID in
a closed itemset as the index key. At each itemset-tree node,
we also record the length of the itemset, in order to judge if
the corresponding itemset needs to be checked.

The two-level index header table and the checking
process are shown in the following example.

Example 4 (Closed itemset verification). Fig. 4 shows the
two-level indexed result-tree structure for verification of
closed itemsets in our running example. The closed
itemsets in the result tree are generated in the following
order: ab: 7, abc : 6, abed : 3, ad : 4, and ae : 3.

Based on the above lemmas, we only need to index
into the first structure based on the itemset support, and
based on its matching of the last two items in the index
structure to find whether the corresponding closed
itemset candidate is in the tree. Assume abcd : 3 is the
newly mined itemset, by following indices of support 3
and item-id ¢ into the result tree, we find it cannot absorb
its prefix abc, this because abc has a different support
(i.e., 6), although it is a closed itemset. Also, following
indices of support 3 and item-id d into the result tree, we
cannot find any other closed itemsets which contain item
d and can absorb abcd : 3. Thus, it is safe to use the
support of abcd : 3 to raise the minimum support.

3.4 Algorithm

ALGORITHM 1 shows the TFP algorithm that mines the set
of top-k frequent closed itemsets. It first builds the FP-tree
from the input database DB: If the number of frequent items
in an input transaction 7" is no less than the minimal length,
T is inserted into FP-tree, in the mean time, it uses the closed
node count method to raise minimum support, min_sup, and
uses the raised min_sup to prune infrequent items from the
FP-tree (line 5). After the FP-tree has been constructed, the
descendant_sum method is adopted to further raise min_sup
and prune FP-tree (lines 6-8). Then, we begin the mining
process: Top-down traverse each item in the global header
table. If the corresponding item'’s I_count is no less than the
current min_sup (line 10), treat this item as a frequent prefix
itemset, build conditional FP-tree (together with its header
table) for it (line 11), and call subroutine Mine_cond_FP
tree() to mine the frequent closed itemsets (line 12). Finally,
output the top-k frequent closed itemsets from the result
pattern tree by traversing it in a bottom-up manner and in
the support descending order (line 13).

ALGORITHM 1: TFP(DB, K, min_l, FCI*)
INPUT: an input database DB, an integer K, and the
minimal length threshold min_L.
OUTPUT: the complete set of top-K frequent closed item-
sets, FCT*.
01. FCI* = ¢; min_sup = 0; FPtree = NULL;
ResultTree = NULL;
02. for each transaction t in DB
03. ¢ =t - set of infrequent items w.r.t. the current

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS 659

min_sup;
04. if(length(t’ > min.l))
05. insert_tree(t, F'Ptree); closed_node_count(min_sup);

pruneTree(F Ptree, min_sup);
06. find_and_sort_anchor_nodes(F Ptree);
//in count descending order
07. for each anchor-node N whose support is greater than
min_sup do
08. Descendant_sum(N,min_sup);
prunel'ree(F Ptree, min_sup);
09. for (each item i in global header table) do
/ftop-down traversing
10. if(I_count(i) > min_sup)
11. cond_F Ptree! = build_conditional _F Ptree(i, F Ptree);
12. call Mine_cond_F Ptree(cond_F Ptrec!,
i,min_l, K, ResultTree);
13. FCI k:top—K frequent closed itemsets in ResultTree;

Mine_cond_FPtree() (see SUBROUTINE 1) recursively
calls itself and works as follows: For prefix I, it uses the
item_merging technique to absorb its locally frequent items
with the same support (line 14), which leads to a new prefix
I. If I, cannot pass the new_itemset_checking, we can stop
mining closed itemsets with prefix I according to the
prefix_itemset_skipping technique (line 16). If I, can pass the
old_itemset_checking, then the support of I, can be used to
raise the min_sup (line 17). Finally, by bottom-up traversing,
the locally frequent items in the local header table w.r.t.
prefix I, Mine_cond_FPtree() will recursively call itself
(lines 19-22).

SUBROUTINE 1: Mine_cond_FPtree (cond_FPtree®, I,
min_l, K, ResultTree)
INPUT: projected FPtree cond_F Ptree’, prefix itemset I,
minimal length min_l, integer K, and pattern tree
ResultTree.
OUTPUT: the current set of top-K frequent closed itemsets,
FCI*.
14. LFI" = local_frequent_item(I,, cond_F Ptree'r);
I, = item_merging(I,, LFTY);
LFI = LFT» — (I, - L,);
15. if (length(I},) > minl)
16. if ({(new-_pattern_checking(I,, ResultTree))) return;
/ /monclosed, apply prefix_itemset_skipping method
17. i f(old_pattern_checking(l,, ResultTree))
support_raise(min_sup, K);
18. insert_ResultTree(I), ResultTree);
19. for each item j in LEI'//
bottom-up traversing cond_F Ptree’
20. if (I_count(j) > min_sup)

21. I =1,U{j}; cond_F Ptreels =
build_conditional \F Ptree(I), min_l, cond_F Ptreer);
22. call Mine_cond_F Ptree(cond_F Ptrees, I,

min_l, K, ResultTree);

4 EXPERIMENTAL EVALUATION

In this section, we report our performance study of TFP
over a variety of data sets. In particular, we compared the
efficiency of TFP with two well-known algorithms for

mining frequent closed itemsets: CHARM [27] and CLO-
SET+ [25]. However, one should note that different from
these min_support-based methods, TFP represents a new
class of algorithms which do not require user’s knowledge
of min_support. To give the best possible credit to CHARM
and CLOSET+, our comparison was always based on
assigning the best tuned min_support to the two algorithms
so that they can generate the same top-k closed itemsets for
a user-specified k value (under a condition of min_I). In
practice, we should bare in mind that, although this is
natural for TFP, it is a difficult task for min_support-based
algorithms to speculate a proper min_support. In the
experiments, we turned off the output for all the three
algorithms. In addition, we also studied the scalability of
TFP and evaluated the effects of two support raising
methods and two search space pruning techniques em-
ployed in TFP.

To obtain the best possible min_support for CHARM and
CLOSET+, our experiments were conducted as follows: For
each experimental condition of min_I and k, TFP was first
run to get the optimal support for the generation of required
itemsets, and this support was then used to run the other two
algorithms. By doing so, we can compare the running time of
TFP with no min_support against that of CHARM and
CLOSET+ running with the optimal min_support.

The experiments show that

1. The running time of TFP is shorter than CLOSET+
and CHARM in most cases when min_I is not too
short, and is comparable in other cases.

2. TFP has nearly linear scalability.

3. The search space pruning techniques are very
effective in enhancing the performance.

4. The support raising methods are effective in raising
the minimum support.

4.1 Data Sets

Both real and synthetic data sets are used in experiments
and they can be grouped into the following two categories.

4.1.1 Dense Data Sets that Contain Many Long
Frequent Closed ltemsets

1. pumsb census data, which consists of 49,046 transac-
tions, each with an average length of 74 items,

2. connect-4 game state information data, which con-
sists of 67,557 transactions, each with an average
length of 43 items, and

3. mushroom characteristic data, which consists of
8,124 transactions, having an average length of
23 items.

All these data sets are obtained from the UC-Irvine Machine
Learning Database Repository.

4.1.2 Sparse Data Sets

1. gazelle click stream data, which consists of
59,601 transactions with an average length of
2.5 items, and contains many short (length below
10) and some very long closed itemsets (obtained
from BlueMartini Software Inc.) and

660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

30 T T T

T
TFP —0—,:'
CHARM ---X---f
=r CLOSET+ ---%--4
g /
g 20 I
E 151 / i
g ‘
& p
E10r /x 1
R~)(’
st i i
X i
0 TR TOT 2T IOT e R Sttt
3 10 15 20 25
Minimal Length

(@)

Fig. 5. Performance on Connect-4. (a) k = 500. (b) min_l = 0.

8 T T T T
TFP —+—
7k CHARM ---%--- |
CLOSET+ ---%---
~ 6 1
z
&
£ 4t J
o /
£t ;X 4
g X'
oot R
=X s
X
1r Lo X B
e R 3
s -
0 .3 T L 1
5 10 15 20 25
Minimal Length

(a)

Fig. 6. Performance on (a) mushroom and (b) pumsb (k = 500).

2. TI10[4D100K synthetic data from the IBM data set
generator, which consists of 100,000 transactions
with an average length of 10 items, and with many
closed frequent itemsets having average length of 4.

4.2 Performance Results

All the experiments were conducted on a 1.7GHz Pentium-4
PC with 512MB of memory, running Windows 2000. The
CHARM code was provided to us by its author. We
compared the performance of TFP with CHARM and
CLOSET+ on the five data sets by varying min_| and k.

4.2.1 Dense Data Sets

For the dense data sets with many long closed itemsets, TFP
performs consistently better than CHARM and CLOSET+
for longer min_I. Note because the transactions in each of
such data sets have the same length (43, 74, and 23 for
connect, pumsb, and mushroom, respectively), we cannot do
any preprocessing for TFP.

Fig. 5a shows the running time of the three algorithms on
the connect-4 data set for k fixed at 500 and min_| ranging
from 0 to 25. We observe that the running time of TFP
remains stable over the range of min_I. When min_| reaches
20, TFP starts to outperform all the other three algorithms.
Fig. 5b shows the running time of the three algorithms on
the connect-4 data set with min_I set to 0 (which means TFP
generates the same number of itemsets as the other two
algorithms) and £ ranging from 1,000 to 1,000,000. We can
see that, even without the min_I constraint, TFP runs almost
as fast as the other two algorithms for the very large
k values. Because TFP starts with a minimum support 0, this
shows that TFP finds the correct minimum support very
fast for this dense data set.

128 T T
TFP —+—
64 | CHARM ---%--- |
CLOSET+ ---%:---

Runtime (in seconds)

1e+006

14 | ,:" ITF]Z' —]
M CHARM ---%---
7 CLOSET+ ---%--- |

Runtime (in seconds)

- x'
- H M e i
2 0 K- e e A KN
xR
1

2K
1 1 1 1

5 10 15 20 25
Minimal Length

(b)

Fig. 6 shows the running time of the three algorithms on
the mushroom and pumsb data sets with k set to 500 and
min_| ranges from 0 to 25. For the mushroom data set, when
min_l is less than 6 all three algorithms have similar low
running time. TFP keeps its low running time for the whole
range of min_| and starts to outperform the other two
algorithms when min_I is larger than 10. Pumsb has very
similar results as connect-4 and mushroom data sets.

4.2.2 Sparse Data Set

For large min_I, our experiments show similar results with
sparse data sets as those with dense ones: TFP outperforms
both CHARM and CLOSET+. Due to the limited space, we
do not report them here. Instead, we show the performance
results with the min_I fixed at 0, in order for TFP to generate
the same set of frequent itemsets as CHARM and CLOSET+.
Experiments show that, even without the min_I constraint,
TFP can gain comparable performance with CHARM and
CLOSET+.

Fig. 7a shows the running times of the three algorithms on
T10I4D100K data set with min_I fixed at 0. We first ran
CHARM and CLOSET+ with min_support ranging from
0.09 percent to 0.05 percent to get the number of frequent
itemsets and use this number as the k value to run TFP (k is
greater than 15,000 for each of these support thresholds,
which is very large for a sparse data set like T1014D100k). The
result in Fig. 7a shows that TFP is only about 2-3 times slower
than CHARM and CLOSET+, although TFP starts with
min_support 0 and the k value is set to very large. For
example, at min_support 0.05 percent, CHARM used about
6.6 seconds to finish and generated 49,122 frequent itemsets,

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS 661

64 T T T T T T T

TFP —+—
CHARM ---%---
2r CLOSET+ ---%--- -
)
£ 16 1
b
g 8 |
s
P -
ERRY S U SURRRRRRSS T
5 4 — WT T e B *-- E
r -
1 1 1 N L . .

1
009 0.085 0.08 0075 007 0065 006 0055 005
Minimum support (in %)

(a)

Fig. 7. Performance on (a) T1014D100K and (b) Gazelle (min_I = 0).

100 T T

T T T T
‘Without item merging —+—
Without prefix-itemset skipping ---X---
TFI

.......

Runtime (in seconds)
S

1 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 80000
K parameter

(@)

4 T T

TFP —+—
CHARM ---x---
2k CLOSET+ ---%-- |

Runtime (in seconds)

i ! " Withmln item mlerging I—!—
1000 [Without prefix-itemset skipping ---%---
TFP ---%---
o)
g
§ 100 £
g]
Y 3
o AT 1
£ e]
E T Hoonnonne 3
£ 0g . B scendi® *o E
,,,, poill et
B e
T
1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

K parameter

(o)

Fig. 8. Search space pruning method evaluation (min_l = 10). (a) Connect-4 data set. (b) Gazelle data set.

while the runtime of TFP is about 19.7 seconds with k set
at 49,122.

The experiments on the gazelle data set are shown in
Fig. 7b. Here, we fixed min_[at 0, and varied k from 10 to
10,000. We can see that all the three algorithms work well
for this data set. For example, at k= 10,000, which
corresponds to a very low min_support, 0.000789, the
runtime of TFP, CHARM, and CLOSET+ are 1.532 seconds,
0.892 seconds, and 1.071 seconds, respectively.

From the above performance study, we conclude that TFP
has good overall performance for both dense and sparse data
sets. Because TFP can push the min_I constraint deeply into
the mining process, it outperforms two efficient closed
itemset mining algorithms a lot. Some new techniques and
mining strategies proposed here, like the closed-node-count
and descendant-sum support raising methods, the combina-
tion of the top-down and bottom-up mining strategy, and
the efficient itemset closure checking scheme, make TFP
achieve comparable efficiency with CHARM and CLOSET+
for min_l = 0. In this case, TFP mines the same set of itemsets
as the traditional closed itemset mining algorithms which
can be used to generate association rules. We also noticed
that in some cases, the derived top-k frequent closed itemsets
contains much overlap, i.e., the itemsets may be clustered
into groups of similar itemsets (a group of similar itemsets
usually come from one region of the FP-tree and this usually
happens when £ is not large). However, this is intrinsic to
many frequent itemset mining problem formulations. For
example, all subitemsets of a long frequent itemset are also
frequent, which implies that the itemsets mined by CHARM
or CLOSET+ also contains a lot of overlap. On the other
hand, the phenomenon of the itemset “clustering” may

reflect the nature the data sets and may be useful in some
applications. For example, if the data set contains a set of
documents with a similar topic, then each group of the
similar top-k itemsets may form a Micro Concept, ie., a
potential core of one of the natural clusters in these
documents. The further compression of such closely related
frequent patterns into an even smaller set of core concepts
will be an interesting research topic beyond this paper.

Effectiveness of Search Space Pruning Methods. We
also tested the effectiveness of the item merging and prefix-
itemset skipping techniques using both dense and sparse data
sets. From Fig. 8a, we can see that without the item merging
technique, TFP can be several times slower while the prefix-
itemset skipping technique can only marginally improve the
performance for dense data set connect-4. Fig. 8b shows that
both the item merging and prefix-itemset skipping techniques
are very effective at improving the TFP performance for
sparse data set Gazelle: The TFP algorithm can be several
times (or more than an order of magnitude) slower without
the prefix-itemset skipping (or item merging).

Effectiveness of the Support Raising Methods. We also
tested the effectiveness of the two support raising methods:
closed-node-count and descendant-sum. Fig. 9a shows the
results for data set T1014D100K by varying the k parameter
from 2 to 1,024 and min_| fixed at 5. The y-axis depicts the
support that can be raised by both methods, the final
absolute support for different k parameters, and the number
of the traversed anchor nodes. Both closed-node-count and
descendant-sum methods are very effective at raising the
support threshold, especially when the k parameter is not
very large. For example, for k=2, the closed-node-count
method can raise the minimum support to 59 and the

662

10000 T T T T —T T T
Final support —+—
Descendant-sum ---X---
Closed-nodes ---%:---
1000 £ # traversed anchor nodes 8- |

Raised support

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Runtime (in seconds)

100 200 300 400 500 600 700 800 900
Number of transactions (K)

(b)

1000

Fig. 9. (a) Support raising method evaluation and (b) scalability test (T1014D100K data set series).

descendant-sum method can raise the minimum support to
79 by traversing only one anchor node while the final
support threshold for the top-2 frequent closed itemsets is
only 173. We also see that the descendant-sum method is a
little more effective at raising the support threshold than the
closed-node-count method because the closed-node-count
method can be used to raise minimum support and prune
the FP-tree during the construction of FP-tree and is cheaper
(in implementation) than the descendant-sum method. Both
methods are used in the TFP algorithm. In addition, when &
becomes larger, the descendant-sum method needs to
traverse more nodes in order to raise the support. However,
because the worst case is to scan the global FP-tree once, this
will not cause too much overhead compared with the whole
mining process.

Scalability Test. In order to test the scalability of TFP,
we generated synthetic data sets with the same character-
istics as T1014D100K, but with the size ranging from 100K
to 1000K transactions. Fig. 9b shows the running time of
TFP for four different combinations of small and big & and
min_| values. The figure shows that the running time of
TFP increases linearly with increased data set size in all
four cases.

5 DISCUSSION

Frequent itemset mining has been studied extensively in
data mining. Recent studies [22], [27], [23], [25] have shown
that it is more desirable to mine closed itemsets than the
complete set of frequent itemsets. Efficient methods for
mining closed itemsets, such as CLOSET [23], CHARM [27],
and CLOSET+ [25], have been developed. However, these
methods all require a user-specified support threshold.
Hidber presented Carma, an algorithm for online associa-
tion rule mining [15], in which, a user can change the
support threshold any time during the first scan of the data
set (in other words, Carma still needs the user to specify the
final support threshold), but its performance is worse than
Apriori in general. In comparison with Carma, our
algorithm does not need users to provide any minimum
support and, in most cases, runs faster than two efficient
algorithms, CHARM and CLOSET+ (running at the best
tuned min_support thresholds), which, in turn, outperform
Apriori substantially [27], [25]. Recently, there are proposals
on association rule mining without support requirement
[11], [26], which are aimed at discovering confident rules
instead of significant rules. As a result, they only use the

confidence threshold to prune rules of small confidence.
Our motivation is different because our algorithm still
targets at mining significant rules, but we do not need a
user to specify any min_support threshold.

The problem of mining top-k frequent itemsets has
attracted the attention of some researchers recently. Fu et al.
[12] studied mining N most interesting itemsets for every
length I, which is different from our work in several aspects:

1. they mine all the itemsets instead of only the closed
ones, and mining closed itemsets is not only more
desirable but also more challenging;

2. they do not have minimum length constraints—since
it mines itemsets at all the lengths, some heuristics
developed here cannot be applied, and

3. their philosophy and methodology of FP-tree mod-
ification are also different from ours.

To the best of our knowledge, this is the first study on
mining top-k frequent closed itemsets with length con-
straint, therefore, we only compare our method with two
well-known efficient closed itemset mining algorithms.

From the user-interaction point of view, since our
performance study shows that there is no real need to
specify min_I if one wants to mine frequent closed itemsets
of any length, and also there is no crucial need to specify k
for top-k mining as long as k is a default number that fits
user’s expectation or application requirements, this method
gives the user the minimal burden to specify mining
parameters, representing a step toward parameter-free
frequent-pattern mining.

There are extensive studies on mining frequent itemsets
from many different angles, such as constraint-based
mining [20], [6], [4], [19], mining generalized and quanti-
tative rules [2], [13], and mining correlation rules [9], [18],
[24], [16]. Our study on mining top-k frequent itemsets is
orthogonal to these studies. Since their mining and
optimization frameworks are based on a predefined
min_support threshold, the techniques developed in this
study can be extended to the scope of these studies to
improve their corresponding algorithms for mining top-k
frequent itemsets. We also expect that the basic principles
developed here can be applied to recently developed new
frequent itemset mining algorithms, such as [21], [17], when
the requirement is changed to mining top-k frequent
itemsets. Finally, it is expected that the philosophy
developed here will influence the mining of top-k frequent

WANG ET AL.: TFP: AN EFFICIENT ALGORITHM FOR MINING TOP-K FREQUENT CLOSED ITEMSETS

structured patterns, where a structured pattern may contain
sequences, trees, lattices, and graphs.

6 CONCLUSIONS

We have studied the problem of mining top-k frequent closed
itemsets of length no less than min_I. This is an interesting
problem because the task arises naturally from the difficulty
of specification of appropriate minimum support thresholds
at mining various kinds of frequent itemsets.

In this study, we have proposed an efficient algorithm,
TFP, which includes several techniques, such as:

1. using closed node count array and descendant_sum to
raise minimum support before tree mining,

2. exploring the top-down FP-tree mining technique to
first mine the most promising parts of the tree in
order to raise minimum support and prune the
unpromising part of the tree during the FP-tree
mining process,

3. adopting several search space pruning methods to
speed up the closed itemset mining, and

4. using an efficient itemset closure verification scheme
to check if a frequent itemset is promising to be
closed.

Our performance studies on both real and synthetical data
sets show that TFP has high performance. In most cases, it
outperforms two efficient frequent closed itemset mining
algorithms, CHARM and CLOSET+, even when they are
running with the best tuned minimum support. Furthermore,
the method can be extended to generate association rules
and to incorporate user-specified constraints.

Based on this study, we claim that for frequent itemset
mining, mining top-k frequent closed itemsets without
minimum support should be more preferable than the
traditional minimum support-based mining. There are
many interesting research issues along this direction,
including further improvement of the performance and
flexibility for mining top-k frequent closed itemsets, as well
as mining top-k frequent closed itemsets in data stream
environments and mining top-k frequent closed sequential
or structured patterns.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Mohammed Zaki for
providing them with the source code of CHARM and the
vertical data conversion package, as well as promptly
answering many questions related to CHARM. This work
was supported in part by US National Science Foundation
NSF 1IS-02-09199 and IIS-03-08215, the University of Illinois,
and Microsoft Research. This paper is a major-value added
version of a conference paper that appeared in the 2002
IEEE International Conference on Data Mining (ICDM ’02).

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 1994 Int’l Conf. Very Large Data Bases
(VLDB '94), pp. 487-499, Sept. 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
1995 Int'l Conf. Data Eng. (ICDE '95), pp. 3-14, Mar. 1995.

B3]

4

[5]

o]

[

(8]

]

[10]

(1]

[12]

(13]

(14]

[15]

[1o]

(17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

663

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal,
“Mining Frequent Patterns with Counting Inference,” SIGKDD
Explorations, pp. 66-75, vol. 2, 2000.

S.D. Bay and M.]. Pazzani, “Detecting Change in Categorical Data:
Mining Contrast Sets,” Proc. 1999 Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’99), pp. 302-306, Aug. 1999.

R.]. Bayardo, “Efficiently Mining Long Patterns from Databases,”
Proc. 1998 ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD
’98), pp. 85-93, June 1998.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “Exante:
Anticipated Data Reduction in Constrained Pattern Mining,” Proc.
Seventh European Conf. Principles and Practice of Knowledge Discovery
in Databases (PKDD ’03), Sept. 2003.

J.-F. Boulicaut and A. Bykowski, “Frequent Closures As a Concise
Representation for Binary Data Mining,” Proc. 2000 Pacific-Asia
Conf. Knowledge Discovery and Data Mining (PAKDD ’"00), pp. 62-73,
Apr. 2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti, “Free-Sets: A
Condensed Representation of Boolean Data for the Approxima-
tion of Frequency Queries,” Data Mining and Knowledge Discovery,
vol. 7, pp. 5-22, 2003.

S. Brin, R. Motwani, and C. Silverstein, “Beyond Market Basket:
Generalizing Association Rules to Correlations,” Proc. 1997 ACM-
SIGMOD Int’l Conf. Management of Data (SIGMOD 97), pp. 265-
276, May 1997.

D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A Maximal
Frequent Itemset Algorithm for Transactional Databases,” Proc.
2001 Int’l Conf. Data Eng. (ICDE '01), pp. 443-452, Apr. 2001.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J.D. Ullman, and C. Yang, “Finding Interesting Associations
without Support Pruning”Proc. 2000 Int’l Conf. Data Eng. (ICDE
"00), pp. 489-499, Feb. 2000.

AW.-C. Fu, RW.-W. Kwong, and J. Tang, “Mining n-Most
Interesting Itemsets,” Proc. 2000 Int’l Symp. Methodologies for
Intelligent Systems (ISMIS "00), pp. 59-67, Oct. 2000.

J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules
from Large Databases,” Proc. 1995 Int’l Conf. Very Large Data Bases
(VLDB "95), pp. 420-431, Sept. 1995.

J. Han,]J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. 2000 ACM-SIGMOD Int’l Conf.
Management of Data (SIGMOD ’00), pp. 1-12, May 2000.

C. Hidber, “Online Association Rule Mining,” Proc. 1999 ACM-
SIGMOD Int’l Conf. Management of Data (SIGMOD ’99), pp. 145-
156, June 1999.

Y.-K. Lee, W.-Y. Kim, Y.D. Cai, and]J. Han, “CoMine: Efficient
Mining of Correlated Patterns,” Proc. 2003 Int’l Conf. Data Mining
(ICDM ’03), Nov. 2003.

G. Liu, H. Lu, W. Lou, and J.X. Yu, “On Computing, Storing, and
Querying Frequent Patterns,” Proc. 2003 ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’03), Aug. 2003.

S. Morishita and A. Nakaya, “Parallel Branch-and-Bound Graph
Search for Correlated Association Rules,” Large-Scale Parallel Data
Mining, pp. 127-144, 1999.

S. Morishita and J. Sese, “Traversing Itemset Lattice with
Statistical Metric Pruning,” Proc. 2000 ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS '00), pp. 226-
236, May 2001.

R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang, “Exploratory
Mining and Pruning Optimizations of Constrained Associations
Rules,” Proc. 1998 ACM-SIGMOD Int’l Conf. Management of Data
(SIGMOD ’98), pp. 13-24, June 1998.

F. Pan, G. Cong, AK.H. Tung, J. Yang, and M. Zaki, “CARPEN-
TER: Finding Closed Patterns in Long Biological Datasets,” Proc.
2003 ACM SIGKDD Int'l Conf. Knowledge Discovery and Data
Mining (KDD '03), Aug. 2003.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Seventh Int’l
Conf. Database Theory (ICDT ’99), pp. 398-416, Jan. 1999.

J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets,” Proc. 2000 ACM-SIGMOD Int’l
Workshop Data Mining and Knowledge Discovery (DMKD "00), pp. 11-
20, May 2000.

F. Rioult, J.-F. Boulicaut, B. Cremileux, and]J. Besson, “Using
Transposition for Pattern Discovery from Microarray Data,” Proc.
Eighth ACM SIGMOD Workshop Research Issues in Data Mining and
Knowledge Discovery, June 2003.

664

[25] J. Wang, J. Han, and]. Pei, “CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. 2003 ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
'03), pp. 236-245, Aug. 2003.

K. Wang, Y. He, D. Cheung, and F. Chin, “Mining Confident Rules
without Support Requirement,” Proc. 2001 ACM CIKM Int’l Conf.
Information and Knowledge Management (CIKM "01), pp. 81-88, Nov.
2001.

M.J. Zaki and C.J. Hsiao, “CHARM: An Efficient Algorithm for
Closed Itemset Mining,” Proc. 2002 SIAM Int’l Conf. Data Mining
(SDM "02), pp. 457-473, Apr. 2002.

[20]
(27]

Jianyong Wang received the PhD degree in
computer science in 1999 from the Institute of
Computing Technology, the Chinese Academy
of Sciences. Since then, he has worked as an
g assistant professor in the Department of Com-
—a puter Science and Technology, Peking (Beijing)
e University in the areas of distributed systems
R and Web search engines, and has visited the
t School of Computing Science at Simon Fraser
University and the Department of Computer
Science at the University of lllinois at Urbana-Champaign as a postdoc
research fellow, mainly working in the area of data mining. He was a
research associate of the Digital Technology Center at the University of
Minnesota from July 2003 to November 2004. Since January 2005, he
has been an associate professor in the Department of Computer
Science and Technology, Tsinghua University, China.

i
)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Jiawei Han received the PhD degree in com-
puter science from the University of Wisconsin in
1985. He is a professor in the Department of
Computer Science at the University of lllinois at
Urbana-Champaign. Previously, he was an
Endowed University Professor at Simon Fraser
University, Canada. He has been working on
research into data mining, data warehousing,
stream data mining, spatial and multimedia data
mining, deductive and object-oriented data-
bases, and bio-medical databases, with more than 250 journal and
conference publications. He has chaired or served in many program
committees of international conferences and workshops, including ACM
SIGKDD Conferences (2001 best paper award chair, 2002 student
award chair, 1996 PC cochair), SIAM-Data Mining Conferences (2001
and 2002 PC cochair), ACM SIGMOD Conferences (2000 exhibit
program chair), ICDE Conferences (2004, 2002, and 1995 PC vice-
chair), and ICDM Conferences (2005 PC cochair). He also served or is
serving on the editorial boards of several journals and transactions. He
is currently serving on the Board of Directors for the Executive
Committee of ACM Special Interest Group on Knowledge Discovery
and Data Mining (SIGKDD). Dr. Han has received three IBM Faculty
Awards, the Outstanding Contribution Award at ICDM (2002), ACM
Service Award (1999), ACM Fellow (2004), and ACM SIGKDD
Innovations Award (2004). He is the first author of the textbook Data
Mining: Concepts and Techniques (Morgan Kaufmann, 2001). He is a
senior member of the IEEE and the IEEE Computer Society.

Ying Lu is currently a PhD student at the
University of lllinois at Urbana-Champaign. Her
research interests are in data mining, bioinfor-
matics, and stream processing.

Petre Tzvetkov received the MS degere in
computer science from the University of lllinois
under the supervision of Professor Jiawei Han.
He is currently an IT manager and software
architect at MOST Computers Ltd. His main
professional and research interests are in data
mining, databases, and software engineering.
He has coauthored several research papers in
the area of data mining.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

