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Abstract

A new time series bootstrap scheme, the Time Frequency Toggle (TFT)-Bootstrap,
is proposed. Its basic idea is to bootstrap the Fourier coefficients of the observed
time series, and then back-transforming them to obtain a bootstrap sample in the
time domain. Related previous proposals, such as the ‘surrogate data’ approach, re-
sampled only the phase of the Fourier coefficients, and thus had only limited validity.
By contrast, we show that the appropriate resampling of phase and magnitude in
addition to some smoothing of Fourier coefficients yields a bootstrap scheme that
mimics the correct second-order moment structure for a large class of time series pro-
cesses. As a main result we obtain a functional limit theorem for the TFT-Bootstrap
under a variety of popular ways of frequency domain bootstrapping. Possible appli-
cations of the TFT-Bootstrap naturally arise in change-point analysis and unit-root
testing where statistics are frequently based on functionals of partial sums. Finally,
a small simulation study explores the potential of the TFT-Bootstrap for small sam-
ples showing that for the discussed tests in change-point analysis as well as unit-root
testing it yields better results than the corresponding asymptotic tests if measured
by size and power.
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1 Introduction

1 Introduction

Following Efron’s seminal paper [17] on the i.i.d. bootstrap, researchers have been able
to apply resampling ideas in a variety of non-i.i.d. situations including the interesting
case of dependent data. Bühlmann [6], Lahiri [36] and Politis [50] give reviews of the
state-of-the-art in resampling time series and dependent data.

In the last two decades, in particular, resampling methods in the frequency domain
have become increasingly popular; see Paparoditis [41] for a recent survey. One of
the first papers to that effect was Franke and Härdle [18] who proposed a bootstrap
method based on resampling the periodogram in order to devise confidence intervals for
the spectral density. The idea behind that approach is that a random vector of the
periodogram ordinates at finitely many frequencies is approximately independent and
exponentially distributed (cf. e.g. Brockwell and Davis [5], Theorem 10.3.1). Later this
approach was also pursued for different set-ups, e.g. for ratio statistics such as autocor-
relations by Dahlhaus and Janas [15] or in regression models by Hidalgo [23]. Dahlhaus
and Janas [27] suggested a modification of the periodogram bootstrap which leads to
a correct approximation for a wider class of statistics such as the sample autocovari-
ance which—in contrast to the sample autocorrelation—is not a ratio statistic. Kreiss
and Paparoditis [34] propose the autoregressive-aided periodogram bootstrap where a
parametric time domain bootstrap is combined with a nonparametric frequency domain
bootstrap in order to widen the class of statistics for which the bootstrap is valid.

We will refer to the above methods as periodogram bootstrapping as all of the statistics
of interest there were functionals of the periodogram. Since these bootstrap methods
resample the periodogram, they generally do not produce bootstrap pseudo-series in the
time domain. A recent exception is a ‘hybrid’ bootstrap of Jentsch and Kreiss [28] that
is an extension of the aforementioned method of Kreiss and Paparoditis [34].

We now wish to focus on two well-known proposals on frequency-domain bootstrap
methods that also yield replicates in the time domain, notably:

• The early preprint by Hurvich and Zeger [25] who proposed a parametric bootstrap
very similar to our TFT wild bootstrap of Section 2, as well as a nonparametric
frequency-domain bootstrap based on prewhitening via an estimate of the MA(∞)
transfer function. Although never published, this paper has had substantial influ-
ence on time series literature as it helped inspire many of the above periodogram
bootstrap methods. Note Hurvich and Zeger [25] provide some simulations but
give no theoretical justification for their proposed procedures; indeed, the first
theoretical justification for these ideas is given in the paper at hand as special
cases of the TFT-bootstrap.

• The ‘surrogate data’ approach of Theiler et al. [57] that has received significant
attention in the physics literature. The idea of the surrogate data method is to
bootstrap the phase of the Fourier coefficients but keep their magnitude unchanged.
While most of the literature focuses on heuristics and applications, some mathe-
matical proofs have been recently provided; see Braun and Kulperger [3], Chan [10],
Mammen and Nandi [39], and the recent survey by Maiwald et al. [37]. The sur-
rogate data method was developed for the specific purpose of testing the null
hypothesis of time series linearity, and is not applicable in more general settings.
To see why, note that every surrogate sample has exactly the same periodogram
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(and mean) as the original sequence. Hence, the method fails to approximate the
distribution of any statistic that is a function of first- and second-order moments,
thus excluding all cases where periodogram resampling has proven to be useful;
see our Proposition 2.1 in Section 2.1.

In the paper at hand, we propose to resample the Fourier coefficients —which can effec-
tively be computed using a Fast Fourier Transform (FFT)— in a variety of ways similar
to modern periodogram bootstrap methods, and then obtain time series resamples using
an inverse FFT. Since we start out with an observation sequence in the time domain,
then jump to the frequency domain for resampling just to get back to the time domain
again, we call this type of resampling a Time Frequency Toggle (TFT) bootstrap. The
TFT-bootstrap is an extension of existing periodogram bootstrap methods as it yields
almost identical procedures when applied to statistics based on periodograms, but it
is also applicable in situations where the statistics of interest are not expressible by
periodograms; for more details we refer to Section 6.

The TFT-Bootstrap is related to the surrogate data approach but is more general since
it also resamples the magnitudes of Fourier coefficients and not just their phases. As a
result, the TFT is able to correctly capture the distribution of statistics that are based
on the periodogram. The TFT, however, shares with the surrogate data approach the
inability to approximate the distribution of the sample mean; luckily, there are plenty
of methods in the bootstrap literature to accomplish that, e.g. the block bootstrap and
its variations, the AR–sieve bootstrap, etc.—for details, see Lahiri [36], Bühlmann [6],
Politis [50].

In this paper we provide some general theory for the TFT-Bootstrap which not only gives
a long-due theoretical justification for one of the proposals by Hurvich and Zeger [25] but
also allows for several modern extensions of these early ideas. In particular, we prove
that the TFT sample has asymptotically the correct second order moment structure
(Lemma 3.1) and provide a functional central limit theorem (FCLT, Theorem 3.1 and
Corollary 3.1) for the TFT-sample. This is a much stronger result than the asymptotic
normality with correct covariance structure of a finite subset as proved, for example, by
Braun and Kulperger [3] for the surrogate data method.

As in the surrogate data method, the TFT sample paths are shown to be (asymptot-
ically) Gaussian; so in a sense the TFT approximates possibly non-linear time series
with a Gaussian process having the correct second-order moment structure. This seems
to be inevitable in all methods using discrete Fourier transforms due to the fact that
Fourier coefficients are asymptotically normal under very general assumptions. However,
in contrast to the surrogate data method, the TFT is able to capture the distribution
of many useful statistics (cf. Section 6). For example, our FCLT implies the validity
of inference for statistics such as CUSUM-type statistics in change-point analysis (cf.
Section 6.2) or least-squares statistics in unit-root testing (cf. Section 6.3). The TFT
bootstrap is also valid for periodogram-based (ratio) statistics such as sample autocorre-
lations or Yule-Walker estimators; this validity is inherited by the corresponding results
of the periodogram bootstrapping employed for the TFT (cf. Section 6.1).

Furthermore, in many practical situations one does not directly observe a stationary
sequence but needs to estimate it first. In Corollary 4.1 we prove the validity of the
TFT-Bootstrap when applied to such estimated sequences. For example, in change-point
analysis (Section 6.2) as well as unit-root testing (Section 6.3) one can use estimators to
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obtain an approximation of the underlying stationary sequence under the null hypothesis
as well as under the alternative. As in both examples the null hypothesis is that of a
stationary sequence, this feature enables us to construct bootstrap tests that capture the
null distribution of the statistic in question even when presented with data that obey the
alternative hypothesis. As a consequence, these bootstrap tests asymptotically capture
the correct critical value even under the alternative hypothesis which not only leads to
the correct size of the tests but also to a good power behavior.

The remaining of the paper is organized as follows. In the next section we give a de-
tailed description on how the TFT-Bootstrap works. In particular we describe several
specific possibilities of how to get pseudo-Fourier coefficients. In Section 3 we state the
main theorem, a functional limit theorem for the TFT-Bootstrap. The FCLT holds true
under certain high-level assumptions on the bootstrapped Fourier coefficients; these are
further explored in Sections 4 and 5. In particular it is shown that the TFT-Bootstrap
replicates the correct second order moment structure for a large class of observed pro-
cesses including non-linear processes (cf. Section 5). Finally, we conclude the validity
of the TFT-Bootstrap for certain applications such as unit-root testing or change-point
tests in Section 6, and explore the small sample performance in the simulation study
of Section 7. Our conclusions are summarized in Section 8. Proofs can be found in
Sections 9 –12.

2 Description of the TFT Bootstrap

Assume we have observed V (1), . . . , V (T ), where

Assumption P. 1. {V (i) : i > 1} is a stationary process with absolutely summable
auto-covariance function γ(·). In this case the spectral density of the process exists, is
continuous and bounded. It is defined by

f(λ) =
1

2π

∞∑

n=−∞
e−inλγ(n), (2.1)

see e.g. Brockwell and Davis [5], Corollary 4.3.2.

Since we will prove a functional central limit theorem for the bootstrap sequence, the
procedure only makes sense if the original process fulfills the same limit theorem.

Assumption P. 2. {V (i) : i > 1} fulfills the following functional central limit theorem





1√
2πf(0)T

⌊Tu⌋∑

t=1

(V (t) − EV (1)) : 0 6 u 6 1





L−→ {W (u) : 0 6 u 6 1},

where f(·) is the spectral density of {V (·)} and {W (·)} is a standard Wiener process.

We may need the following assumption on the spectral density:

Assumption P. 3. Let the spectral density be bounded from below f(λ) > c > 0 for
all 0 6 λ 6 2π.
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2 Description of the TFT Bootstrap

We denote by Z(j) = V (j) − V̄T the centered counterpart of the observations where
V̄T = T−1

∑
t V (t). Consider the FFT coefficients of the observed stretch, i.e.,

x(j) =
1√
T

T∑

t=1

V (t) cos(−λjt),

y(j) =
1√
T

T∑

t=1

V (t) sin(−λjt),

thus x(j) + iy(j) =
1√
T

T∑

t=1

V (t) exp(−iλjt),

where λj = 2πj/T for j = 1, . . . , T . Note that the Fourier coefficients x(j), y(j) depend
on T , but to keep the notation simple we suppress this dependence.

The principal idea behind all bootstrap methods in the frequency domain is to make
use of the fact that the Fourier coefficients x(1), y(1), . . . , x(N), y(N) are asymptotically
independent and normally distributed where N = ⌊(T−1)/2⌋ denotes the largest integer
smaller or equal to (T − 1)/2, and

Ex(j) → 0,E y(j) → 0 and varx(j) = πf(λj)+o(1), var y(j) = πf(λj)+o(1) (2.2)

for j = 1, . . . , N as T → ∞ where f(·) is the spectral density; see e.g. Ch. 4 of
Brillinger [4] for a precise formulation of this vague statement. Lahiri [35] gives necessary
as well as sufficient conditions for the asymptotic independence and normality of tapered
as well as non-tapered Fourier coefficients for a much larger class of time series not
limited to linear processes in the strict sense. Shao and Wu [55] prove this statement
uniformly over all finite subsets for a large class of linear as well as nonlinear processes
with non-vanishing spectral density. The uniformity of their result is very helpful since
it implies convergence of the corresponding empirical distribution function (see the proof
of Lemma 5.3 below).

The better known result on the periodogram ordinates states that x(j)2 + y(j)2 are
asymptotic independent exponentially distributed with expectation 2πf(λj); see e.g.
Ch. 10 of Brockwell and Davis [5]. The latter is what most bootstrap versions are based
on. By contrast, our TFT bootstrap will focus on the former property (2.2), i.e. the
fact that x(j), y(j) are asymptotically i.i.d. N(0, πf(λj)).

Let us now recall some structural properties of the Fourier coefficients, which are impor-
tant in order to understand the procedure below. First note that

x(T − j) = x(j) and y(T − j) = −y(j). (2.3)

This symmetry implies that the Fourier coefficients for j = 1, . . . , N carry all the neces-
sary information required in order to recapture (by inverse FFT) the original series up
to an additive constant.

The symmetry relation (2.3) shows in particular that all the information carried in the
coefficients λj for j > T/2 is already contained in the coefficients λj , j 6 N . The
information that is missing is the information about the mean of the time series which
is carried by the remaining coefficients λT and λT/2 (the latter only when T is even).
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2 Description of the TFT Bootstrap

To elaborate,

x(T ) =
√
T V̄T

carries the information about the mean of the observations V (1), . . . , V (T ); moreover

y(T ) = 0.

For T even, we further have some additional information about the ’alternating’ mean

y(T/2) = 0 and x(T/2) =
1√
T

T∑

t=1

(−1)tV (t)

Note that the value of the FFT coefficients for j = 1, . . . , N is the same for a sequence
V (t) − c for all c ∈ R. Hence those Fourier coefficients are invariant under additive
constants and thus contain no information about the mean. Similarly all the information
about the bootstrap mean is carried only in the bootstrap version of x(T ) (as well as
x(T/2)). The problem of bootstrapping the mean is therefore separated from getting a
time series with the appropriate covariance structure and will not be considered here.
In fact, we show that any asymptotically correct bootstrap of the mean if added to our
bootstrap time series (cf. (2.5)) yields the same asymptotic behavior in terms of its
partial sums as the original uncentered time series.

Our procedure works as follows:

Step 1: Calculate the Fourier coefficients using the Fast Fourier Transform (FFT) algo-
rithm.

Step 2: Let y∗(T ) = x∗(T ) = 0; if T is even, additionally let x∗(T/2) = y∗(T/2) = 0.

Step 3: Obtain a bootstrap sequence x∗(1), y∗(1), . . . , x∗(N), y∗(N) using e.g. one of
bootstrap procedures described below.

Step 4: Set the remaining bootstrap Fourier coefficients according to (2.3), i.e. x∗(T −
j) = x∗(j) and y∗(T − j) = −y∗(j).

Step 5: Use the inverse FFT algorithm to transform the bootstrap Fourier coefficients
x∗(j) + iy∗(j), j = 1, . . . , T, back into the time domain.

We thus obtain a bootstrap sequence {Z∗(t) : 1 6 t 6 T} which is real-valued and
centered, and can be used for inference on a large class of statistics that are based on
partial sums of the centered process {Z(·)}; see Section 6.2 for examples.

Remark 2.1. Note that the exact form of Z∗(t) is the following:

Z∗(t) =
1√
T

T∑

j=1

(x∗(j) + iy∗(j)) exp(2πitj/T )

=
2√
T

N∑

j=1

(x∗(j) cos(2πtj/T ) − y∗(j) sin(2πtj/T )) . (2.4)

Remark 2.2. In order to obtain a bootstrap sequence of the non-centered observation
process {V (·)} we can add a bootstrap mean µ∗T to the {Z∗(·)} process; here, µ∗T is
obtained by a separate bootstrap process independently from {Z∗(·)}, which is asymp-
totically normal with the correct variance, i.e. it fulfills (3.1).
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2 Description of the TFT Bootstrap

Precisely, the bootstrap sequence

V ∗(t) = Z∗(t) + µ∗T (2.5)

gives a bootstrap approximation of {V (·)}. Here, {Z∗(·)} contains the information about
the covariance structure of the time series and µ∗ contains the information of the sample
mean as a random variable of the time series. How to obtain the latter will not be
considered in this paper.

In Corollary 4.1 we give some conditions under which the above procedure remains
asymptotically valid if instead of the process V (·) we use an estimated process V̂ (·); this
is important in some applications.

Now we are ready to state some popular bootstrap algorithms in the frequency domain.
We have adapted them in order to bootstrap the Fourier coefficients rather than the
periodograms. Our procedure can easily be extended to different approaches.

Residual-Based Bootstrap (RB)

Step 1: First estimate the spectral density f(·) by f̂(·) satisfying

sup
λ∈[0,π]

∣∣∣f̂(λ) − f(λ)
∣∣∣ P−→ 0. (2.6)

This will be denoted Assumption A.1 in Section 5. Robinson [53] proves such a result for
certain kernel estimates of the spectral density based on periodograms for a large class
of processes including but not limited to linear processes. For linear processes he also
proves the consistency of the spectral density estimate as given above when an automatic
bandwidth selection procedure is used. Shao and Wu [55] also prove this result for certain
kernel estimates of the spectral density for processes satisfying some geometric-moment
contraction condition, which includes a large class of nonlinear processes. Both results
are summarized in Lemma 5.1.
Step 2: Next estimate the residuals of the real, as well as imaginary, part of the Fourier
coefficients and put them together into a vector {s̃j : 1 6 j 6 2N}; precisely let

s̃j =
x(j)√
πf̂(λj)

, s̃N+j =
y(j)√
πf̂(λj)

,

j = 1, . . . , N,. Then standardize them, i.e. let

sj =
s̃j − 1

2N

∑2N
l=1 s̃l√

1
2N

∑2N
t=1

(
s̃t − 1

2N

∑2N
l=1 s̃l

)2
.

Heuristically these residuals are approximately i.i.d., so that i.i.d. resampling methods
are reasonable.
Step 3: Let s∗j , j = 1, . . . , 2N, denote an i.i.d. sample drawn randomly and with replace-
ment from s1, . . . , s2N . As usual, the resampling step is performed conditionally on the
data V (1), . . . , V (T ).
Step 4: Define the bootstrapped Fourier coefficients by

x∗(j) =

√
πf̂(λj)s

∗
j , y∗(j) =

√
πf̂(λj)s

∗
N+j . (2.7)
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2 Description of the TFT Bootstrap

An analogous approach – albeit focusing on the periodogram ordinates instead of the
FFT coefficients – was proposed by Franke and Härdle [18] in order to yield a bootstrap
distribution of kernel spectral density estimators.

Wild Bootstrap (WB)

The wild bootstrap also makes use of an estimated spectral density further exploiting
the knowledge about the asymptotic normal distribution of the Fourier coefficients. Pre-
cisely, the WB replaces s∗j above by independent standard normal distributed random
variables {Gj : 1 6 j 6 2N} in order to obtain the bootstrap Fourier coefficients as in
(2.7). This bootstrap was already suggested by Hurvich and Zeger [25], who considered
it in a simulation study, but did not obtain any theoretical results.
An analogous approach–albeit focusing on the periodogram–was discussed by Franke and
Härdle [18] who proposed multiplying the periodogram with i.i.d. exponential random
variables.

Local Bootstrap (LB)

The advantage of the local bootstrap is that it does not need an initial estimation of the
spectral density. The idea is that in a neighborhood of each frequency the distribution of
the different coefficients is almost identical (if the spectral density is smooth). It might
therefore be better able to preserve some information beyond the spectral density that is
contained in the Fourier coefficients. An analogous procedure for periodogram ordinates
was first proposed by Paparoditis and Politis [42]. For the sake of simplicity we will only
consider bootstrap schemes that are related to kernels.
Recall that x(−j) = x(j), x(⌈T/2⌉+ j) = x(N − j) and y(−j) = −y(j), y(⌈T/2⌉+ j) =
y(N−j) for j = 1, . . . , N+1, and – for T even – x(N+1) = y(N+1) = 1√

T

∑T
t=1(−1)tV (t)

(⌈x⌉ denotes the smallest integer larger or equal than x). Furthermore let x(0) = y(0) =
0 be the Fourier coefficients of the centered sequence. For j < −T/2 and j > T/2 the
coefficients are periodically extended with period T .
Step 1: Select a symmetric, non-negative kernel K(·) with

∫
K(t) dt = 1.

In Section 5 we assume some additional regularity conditions on the kernel in order to
get the desired results. Moreover select a bandwidth hT fulfilling hT → 0 but ThT → ∞.
Step 2: Define i.i.d. random variables J1,T , . . . , J2N,T on Z with

ps,T = P (Jj,T = s) =
K
(

2πs
ThT

)

∑∞
j=−∞K

(
2πj
ThT

) . (2.8)

Independent of them define i.i.d. Bernoulli r.v. B1, . . . , B2N with parameter 1/2.
Step 3: Consider now the following bootstrap sample

x̃∗(j) =

{
x(j + Jj,T ), if Bj = 0,

y(j + Jj,T ), if Bj = 1,
and ỹ∗(j) =

{
y(j + JN+j,T ), if BN+j = 0,

x(j + JN+j,T ), if BN+j = 1.
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2 Description of the TFT Bootstrap

Finally the bootstrap Fourier coefficients are defined as the centered versions of x̃∗ re-
spectively ỹ∗, namely by

x∗(j) = x̃∗(j) − 1

2

∑

s∈Z

ps,T (x(j + s) + y(j + s)) ,

y∗(j) = ỹ∗(j) − 1

2

∑

s∈Z

ps,T (x(j + s) + y(j + s)) .

This is slightly different from Paparoditis and Politis [42], since they require that x∗(j)
and y∗(j) share the same Jj,T which is reasonable if one is interested in bootstrapping
the periodogram but not necessary for bootstrapping the Fourier coefficients.

Comparison of the three methods

The aforementioned three bootstrap methods, Residual Bootstrap (RB), Wild Bootstrap
(WB), and Local Bootstrap (LB), are all first-order consistent under standard conditions.
A rigorous theoretical comparison would entail higher-order considerations which are not
available in the literature, and beyond the scope of this work. Intuitively, one would
expect the RB and LB procedures to perform similarly in applications since these two
bootstap methods share a common underlying idea, i.e., that nearby periodogram/FFT
ordinates are i.i.d. By contrast, the WB involves the generation of extraneous Gaussian
random variables thus forcing the time-domain bootstrap sample paths to be Gaussian.
For this reason alone, it is expected that, if a higher-order property holds true in our
setting, it will likely be shared by RB and LB but not WB. Our finite-sample simulation
in Section 7 may hopefully shed some additional light on the comparison between RB
and LB.

2.1 Comparison with other frequency domain methods

First, note that the TFT wild bootstrap is identical to the parametric frequency-domain
bootstrap proposal of Hurvich and Zeger [25]. By contrast, the nonparametric bootstrap
proposal of Hurvich and Zeger [25] was based on prewhitening via an estimate of the
MA(∞) transfer function. Estimating the transfer function presents an undesirable
complication since prewhitening can be done in an easier fashion using any consistent
estimator of the spectral density; the residual-based TFT exploits this idea based on the
work of Franke and Härdle [18]. The local bootstrap TFT is a more modern extension
of the same underlying principle, i.e., exploiting the approximate independence (but not
i.i.d.–ness) of periodogram ordinates.

We now attempt to shed some light on the relation between the TFT and the surrogate
data method of Theiler et al. [57]. Recall that the surrogate data approach amounts to
using

√
I(j) cos(2πUj) + i

√
I(j) sin(2πUj), (2.9)

as bootstrap Fourier coefficients at point j where I(j) = x2(j) + y2(j) is the periodogram
at point j, and {Uj : j} are i.i.d. uniform on [0, 1]. So the periodogram (and mean)
computed from surrogate is identical to the original ones. As a result we have the
following proposition.
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2 Description of the TFT Bootstrap

Proposition 2.1. The surrogate data method fails to approximate the distribution of
any statistic that can be written as a function of the periodogram (and/or sample mean)
as long as this statistic has nonzero large-sample variance.

The proof of this proposition is obvious since by replicating the periodogram (and sample
mean) exactly, the surrogate approach will by necessity approximate the distribution of
the statistics in question by a point mass, i.e., zero variance. Hence, the surrogate data
method will not be able to correctly capture distributional properties for a large class of
statistics that are based entirely on periodograms and the mean (cf. also Chan [10]). In
hypothesis testing, this failure would result in having power equal to the size when the
surrogate approach is applied to obtain critical values for test statistics based entirely
on periodogram and/or mean; at the very least, some loss of power in other situations
can be expected.

The aforementioned TFT methods obviously do not have this disadvantage; in fact, they
can be successfully applied to this precise class of statistics (cf. Section 6.1).

For comparison purposes, we now describe a non-smoothed wild bootstrap that is the
closest relative of the surrogate data method that fits in our framework. Note that all
TFT bootstrap schemes involve smoothing in the frequency domain before resampling
(cf. also Assumption B.2); however, one could consider bootstrapping without this
smoothing step. As the wild bootstrap works by multiplying normal random variables
with an estimator of the spectral density, i.e. a smoothed version of the periodogram,
the non-smoothed wild bootstrap multiplies normal random variables with the original
Fourier coefficients x(j), y(j). By the Box-Muller transform, the non-smoothed wild
bootstrap gives the following as the bootstrap (complex-valued) Fourier coefficient at
point j:

x(j)

√
−2 log(Ũj) cos(2πUj) + iy(j)

√
−2 log(Ũj) sin(2πUj), (2.10)

where {Uj : j}, {Ũj : j} are i.i.d. uniform on [0, 1] independent from each other.

Comparing eq. (2.10) to eq. (2.9) we see that the surrogate data approach is closely re-
lated to the non-smoothed wild bootstrap; the main difference is that the wild bootstrap
does not only bootstrap the phase but also the magnitude of the Fourier coefficients.
Nevertheless, the non-smoothed wild bootstrap does not suffer from the severe deficiency
outlined in Proposition 2.1 since it does manage to capture the variability of the peri-
odogram to some extent. To elaborate, note that it is possible to prove a functional
limit theorem (like our Theorem 3.1 (a) in the next section) for the non-smoothed wild
bootstrap but only under the provision that a smaller resample size is employed, i.e.
only a fraction of the bootstrap sample is used to construct the partial sum process
(m/T → 0); this undersampling condition is necessary here since without it the asymp-
totic covariance structure would not be correct. Hence, even the non-smoothed wild
bootstrap —although crude— seems (a) preferable to the surrogate data method, and
(b) inferior with respect to the TFT-Bootstrap; this relative performance comparison is
clearly born out in simulations that are not reported here due to lack of space.
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3 Functional Limit Theorem for the Bootstrap Sample

3 Functional Limit Theorem for the Bootstrap Sample

In this section we state the main result, namely a functional limit theorem for the partial
sum processes of the bootstrap sample.

The theorem is formulated in a general way under some meta-assumptions on the re-
sampling scheme in the frequency domain that ensure the functional limit theorem back
in the time domain. In Section 4 we verify those conditions for the bootstrap schemes
given in the previous section. We would like to point out that the meta-assumptions
we give are the analogues of what is usually proved for the corresponding resampling
schemes of the periodograms, which are known to hold for a large class of processes.

The usage of meta-assumptions allows the reader to extend results to different bootstrap
schemes in the frequency domain.

By E∗, var∗, cov∗, and P ∗ we denote as usual the bootstrap expectation, variance,
covariance, and probability. We essentially investigate three sets of assumptions.

The first one is already implied by the above mentioned bootstrap schemes.

Assumption B. 1. For the bootstrap scheme in the frequency domain, the coefficients
{x∗(k) : 1 6 k 6 N} and {y∗(k) : 1 6 k 6 N} are independent sequences as well as
mutually independent (conditionally on the data) with

E∗(x∗(k)) = E∗(y∗(k)) = 0.

Remark 3.1. Instead of assuming that the bootstrap samples are already centered it
is sufficient that the bootstrap means in the frequency domain converge uniformly to 0
with a certain rate, i.e.,

sup
16k6N

(|E∗(x∗(k))| + |E∗(y∗(k))|) = oP

(√
m

T log2 T

)
,

where m is the parameter figuring in Lemma 3.1 (respectively Theorem 3.1 below).

Assumption B. 2. Uniform convergence of the second moments of the bootstrap se-
quence in the frequency domain, i.e.,

sup
16k6N

|var∗(x∗(k)) − πf(λk)| = oP (1), sup
16k6N

|var∗(y∗(k)) − πf(λk)| = oP (1).

Assumption B. 3. Uniform boundedness of the fourth moments of the bootstrap se-
quence in the frequency domain

sup
16k6N

E∗(x∗(k))4 6 C + oP (1), sup
16k6N

E∗(y∗(k))4 6 C + oP (1).

Let us now recall the definition of the Mallows distance on the space of all real Borel
probability measures with finite variance. It is defined as

d2(P1, P2) = inf
(
E |X1 −X2|2

)1/2
,

11



3 Functional Limit Theorem for the Bootstrap Sample

where the infimum is taken over all real-valued variables (X1, X2) with marginal distri-
butions P1 and P2 respectively. Mallows [38] has proved the equivalence of convergence
in this metric with distributional convergence in addition to convergence of the sec-
ond moments. The results remain true if we have convergence in a uniform way as in
Assumption B.4 below. This shows that Assumption B.4 implies Assumption B.2.

Assumption B. 4. Let the bootstrap scheme in the frequency domain converge uni-
formly in the Mallows distance to the same limit as the Fourier coefficients do:

sup
16j6N

d2(L∗(x∗(j)), N(0, πf(λj))) = oP (1), sup
16j6N

d2(L∗(y∗(j)), N(0, πf(λj))) = oP (1).

We will start with some results concerning the asymptotic covariance structure of the
partial sum process; all asymptotic results are taken as T → ∞.

Lemma 3.1. a) Let Assumption B.1 be fulfilled. Then, for any 0 6 u 6 1 and 1 6 m 6

T ,

E∗


 1√

m

⌊mu⌋∑

l=1

Z∗(l)


 = 0.

b) Let Assumptions P.1, B.1 - B.2 be fulfilled. Then, for 0 6 u, v 6 1,

cov∗


 1√

m

⌊mu⌋∑

l1=1

Z∗(l1),
1√
m

⌊mv⌋∑

l2=1

Z∗(l2)


 P−→

{
2πf(0) min(u, v), m

T → 0.

2πf(0)[min(u, v) − uv], m = T.

c) Moreover, under P.1, B.1 - B.2

cov∗(Z∗(l1), Z
∗(l2)) = cov(V (l1), V (l2)) + oP (1) = cov(Z(l1), Z(l2)) + oP (1)

for any fixed l1, l2.

As already pointed out using frequency domain methods separates the problem of an
appropriate bootstrap mean from the problem of obtaining a bootstrap sample with the
appropriate covariance structure. As a result the bootstrap sample {Z∗(·)} is centered
and thus the bootstrap version of the centered time series {Z(·)} = {V (·) − V̄T }.

The above lemma shows that the bootstrap process {Z∗(·)} as well as its partial sum
process has the correct autocovariance structure. The following theorem gives a func-
tional central limit theorem in the bootstrap world, showing that the bootstrap partial
sum process also has the correct second-order moment structure. In fact, the partial sum
process of a centered time series converges to a Brownian bridge, while the subsampled
partial sum processes converges to a Wiener process. As the following theorem shows
this behavior is exactly mimicked by our TFT-Bootstrap sample.

Theorem 3.1. Let Assumptions P.1, B.1 - B.3 be fulfilled.
(a) If m/T → 0, then it holds (in probability)





1√
2πf(0)m

⌊mu⌋∑

l=1

Z∗(l) : 0 6 u 6 1
∣∣V (·)





D[0,1]−→ {W (u) : 0 6 u 6 1},

12



3 Functional Limit Theorem for the Bootstrap Sample

where {W (u) : 0 6 u 6 1} is a Wiener process.
(b) If additionally Assumption B.4 is fulfilled, we obtain (in probability)





1√
2πf(0)T

⌊Tu⌋∑

l=1

Z∗(l) : 0 6 u 6 1
∣∣V (·)





D[0,1]−→ {B(u) : 0 6 u 6 1},

where {B(u) : 0 6 u 6 1} is a Brownian bridge.

Remark 3.2. The stronger Assumption B.4 is needed only to get asymptotic normality
of the partial sum process, i.e., part (b) above. In the proof of Theorem 3.1 for m/T → 0
we use the Lindeberg condition to obtain asymptotic normality. However, for m = T
the latter is not fulfilled because the variance of single summands (e.g. l = T ) is not
negligible anymore. But for the same reason the Feller condition is also not fulfilled
which means that we cannot conclude that the sequence is not asymptotically normal.
In fact, failure of asymptotic normality is hard to imagine in view of Corollary 3.2.
Therefore we recommend to always use m = T in applications even in situations where
Assumption B.4 is hard to verify.

Remark 3.3. The bootstrap variance is usually related to the periodogram which is
not consistent without smoothing. Therefore Assumption B.2 ensures that the boot-
strap scheme includes some smoothing. For the bootstrap, however, this is not entirely
necessary and we can also bootstrap without smoothing first. The simplest example is
the non-smoothed wild bootstrap as described in Section 2.1. One can then still prove
the result of Theorem 3.1, but only for m/T → 0. In this situation this condition is
necessary, since without it the asymptotic covariance structure is not correct (i.e. the
assertion of Lemma 3.1 is only true for m/T → 0), m ≈

√
T would be a good rule of

thumb. While this is a very simple approach (without any additional parameters) it does
not give as good results as the procedure we propose. Heuristically, this still works be-
cause the back-transformation does the smoothing, but to obtain a consistent bootstrap
procedure we either need some smoothing in the frequency domain as in Assumption
B.2 or do some under-sampling back in the time domain, i.e. m/T → 0. In fact, one of
the main differences between our wild TFT-bootstrap and the surrogate data approach
is the fact that the latter does not involve any smoothing in the frequency domain. The
other difference being that the surrogate data approach only resamples the phase but
not the magnitude of the Fourier coefficients. For more details we refer to Section 2.1.

Some applications are based on partial sums rather than centered partial sums. This can
be obtained as described in Remark 2.2. The following corollary then is an immediate
consequence of Theorem 3.1 (b).

Corollary 3.1. Let the Assumptions of Theorem 3.1 (b) be fulfilled. Let µ∗T be a boot-
strap version of the mean µ = EV (1) (taken independently from {Z∗(·)}) such that for
all z ∈ R.

P ∗
(√

T (µ∗T − µ) 6 z
)

P−→ Φ

(
z√

2πf(0)

)
, (3.1)

where Φ(·) denotes the standard normal distribution function, so that the asymptotic
distribution is normal with mean 0 and variance 2πf(0). Then it holds (in probability)





1√
2πf(0)T

⌊Tu⌋∑

t=1

(V ∗(t) − µ) : 0 6 u 6 1
∣∣V (·)





D[0,1]−→ {W (u) : 0 6 u 6 1},

13



4 Validity of the Meta-Assumptions on the Bootstrap Fourier Coefficients

where V ∗(t) = Z∗(t) + µ∗T .

Along the same lines of the proof we also obtain the analogue of the finite-sample result
of Braun and Kulperger [3] for the surrogate data method. This shows that any finite
sample has the same covariance structure as the corresponding finite sample of the
original sequence. But it also shows that not only the partial sums of the bootstrap
sample become more and more Gaussian but also each individual bootstrap observation.

Corollary 3.2. If Assumptions P.1, B.1 - B.3 are fulfilled, then for any subset l1, . . . , lp
of fixed positive integers it holds (in probability)

(
Z∗(l1), . . . , Z

∗(lp)
∣∣V (·)

) L−→ N(0,Σ),

where Σ = (σi,j)i,j=1,...,p with σi,j = cov(V (li), V (lj)).

4 Validity of the Meta-Assumptions on the Bootstrap Fourier

Coefficients

In this section we prove the validity of the bootstrap schemes if the Fourier coefficients
satisfy certain properties. These or related properties have been investigated by many
researchers in the last decades and hold true for a large variety of processes. Some of
these results are given in Section 5.

Recall Assumption A.1, which is important for the residual-based bootstrap (RB) as
well as the wild bootstrap (WB).

Assumption A. 1. Let f̂(·) estimate the spectral density f(·) in a uniform way, i.e.

fulfilling (2.6), supλ∈[0,π]

∣∣∣f̂(λ) − f(λ)
∣∣∣ P−→ 0.

The next two assumptions are necessary to obtain the validity of the residual-based
bootstrap.

Assumption A. 2. The following assertions on sums of the periodogram and/or Fourier
coefficients hold

(i)
1

2N

N∑

j=1

x(j) + y(j)√
f(λj)

P−→ 0, (ii)
1

2πN

N∑

j=1

I(j)

f(λj)

P−→ 1,

(iii)
1

N

N∑

j=1

I2(j)

f2(λj)
6 C + oP (1),

for some constant C > 0, where I(j) = x2(j) + y2(j) is the periodogram.

In particular, (ii) is fulfilled if 1
N

∑N
j=1

I2(j)
f2(λj)

P−→ C > 0.

Assumption A. 3. The empirical distribution function based on the Fourier coefficients
converges uniformly to the standard normal distribution function Φ(·), i.e.

sup
z∈R

∣∣∣∣∣∣
1

2N

N∑

j=1

(
1n

x(j)6z
√

πf(λj)
o + 1n

y(j)6z
√

πf(λj)
o
)
− Φ(z)

∣∣∣∣∣∣
P−→ 0.

14



4 Validity of the Meta-Assumptions on the Bootstrap Fourier Coefficients

The following two assumptions are necessary to obtain the validity of the local bootstrap
(LB).

Assumption A. 4. The following assertions on sums of the periodogram and/or Fourier
coefficients hold true:

(i) sup
16k6N

∣∣∣∣∣∣

∞∑

j=−∞
pj,T (x(k + j) + y(k + j))

∣∣∣∣∣∣
= oP (1),

(ii) sup
16k6N

∣∣∣∣∣∣

∞∑

j=−∞
pj,T I(k + j) − 2πf(λk)

∣∣∣∣∣∣
= oP (1),

(iii) sup
16k6N

∞∑

j=−∞
pj,T I

2(k + j) 6 C + oP (1),

where I(j) = x2(j) + y2(j) if j is not a multiple of T and I(cT ) = 0 for c ∈ Z and pj,T

are as in (2.8).

Assumption A. 5. The empirical distribution function based on the Fourier coefficients
converges uniformly to the standard normal distribution function Φ(·), i.e.

sup
s
P


sup

z∈R

∣∣∣∣∣∣
1

2

N∑

j=1

pj−s,T

(
1n

x(j)6z
√

πf(λj)
o + 1n

y(j)6z
√

πf(λj)
o
)
− Φ(z)

∣∣∣∣∣∣
> ǫ


→ 0,

where pj,T are as in (2.8).

The next theorem shows that the bootstrap methods RB, WB and LB fulfill the assump-
tions B.1 – B.4 which are needed to obtain the functional limit theorem for the partial
sums (cf. Theorem 3.1) under the above assumptions on the periodograms.

Theorem 4.1. Let Assumption P.1 be fulfilled.

a) All three bootstrap methods RB, WB and LB fulfill B.1 by definition.

b) Residual-Based Bootstrap RB: Let Assumption P.3 hold.

(i) Under Assumption A.1 RB fulfills B.2.

(ii) If additionally A.2 holds, RB fulfills B.3.

(iii) If additionally Assumption A.3 holds, then B.4 holds.

c) Wild Bootstrap WB: Under A.1 WB fulfills B.2 – B.4.

d) Local Bootstrap LB:

(i) Under Assumptions A.4 (i) and (ii) LB fulfills B.2.

(ii) If additionally Assumption A.4 (iii) holds, then LB fulfills B.3.

(iii) If additionally Assumption A.5, then LB fulfills B.4.

In many applications we apply bootstrap methods not directly to a stationary sequence
{V (t) : t > 1} but rather to an estimate {V̂ (t) : t > 1} thereof. The next corollary gives
conditions under which the bootstrap schemes remain valid in this situation.
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4 Validity of the Meta-Assumptions on the Bootstrap Fourier Coefficients

In order to give some general conditions under which the procedure remains valid we
need to specify the type of spectral density estimator we want to use for the residual-
based as well as wild bootstrap. We want to use the following kernel density estimator
(see also Lemma 5.1).

f̂T (λ) =

∑
j∈Z

K
(

λ−λj

hT

)
I(j)

2π
∑

j∈Z
K
(

λj

hT

) , (4.1)

where I(j) = x2(j) + y2(j) is the periodogram at frequency λj = 2πj/T if j is not a
multiple of T and I(cT ) = 0, c ∈ Z.

In addition we need the following assumptions on the kernel.

Assumption K. 1. Let K(·) be a positive even function with
∫
K(λ) dλ = 1 and

2π

ThT

∑

j∈Z

K

(
2πj

ThT

)
=

∫
K(x) dx+ o(1) = 1 + o(1).

Assumption K. 2. Let

sup
λ∈[0,2π]

|Kh(λ)| = O
(
h−1

T

)
,

where

Kh(λ) =
1

hT

∑

j∈Z

K

(
λ+ 2πj

hT

)
. (4.2)

Remark 4.1. The above assumption is not as restrictive as it may seem. For example
it is fulfilled for bounded kernels with compact support. More generally it holds, cf. e.g.
Priestley [52] (eq. (6.2.93) – (6.2.95)),

Kh(λ) =
1

2π

∑

j∈Z

k (jhT ) exp(−ijλ),

where k(x) is the inverse Fourier transform of the kernel K(·), i.e.

k(x) =
1

2π

∫
K(λ) exp(ixλ) dλ, resp. K(λ) =

1

2π

∫
k(x) exp(−ixλ) dx.

From the above representation it is clear that as soon as the sum in Kh(λ) can be
approximated by an integral for hT small enough, it holds for T large

Kh(λ) ≈ 1

hT
K

(
λ

hT

)
,

which yields the above assumption again for bounded K(·). Assumption K.2 is correct
under Assumptions K.3 or K.4 given in the next section.

We are now ready to state the corollary.
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Corollary 4.1. Assume that the respective (for each bootstrap) conditions of Theo-
rem 4.1 are fulfilled for {V (·)}. Moreover assume that we have observed a sequence
{Y (·)} from which we can estimate {V (·)} by {V̂ (·)} such that

1

T

T∑

t=1

(V (t) − V̂ (t))2 = oP (α−1
T ) (4.3)

for αT → ∞ defined below. Furthermore we assume that for the Residual-Based and Wild
Bootstrap we use the spectral density estimator (4.1) with a kernel fulfilling Assumptions
K.1 and K.2. For the Local Bootstrap we also use a kernel fulfilling K.1 and K.2.

a) If αT = T 1/2+h−1
T (hT is the bandwidth in (4.1)), then the assertions of Theorem 4.1

for the Residual-Based Bootstrap RB remain true, but now given {Y (·)}.
b) If αT = h−1

T (hT is the bandwidth in (4.1)), then the assertions of Theorem 4.1 for
the Wild Bootstrap WB remain true given {Y (·)}.

c) If αT = (T/hT )1/2 (hT is the bandwidth as in the description of the Local Bootstrap
LB), then the assertions of Theorem 4.1 for the Local Bootstrap LB remain true given
{Y (·)}.

Remark 4.2. There is no assumption on {Y (·)} except for (4.3). In Section 6 different
examples are given showing the diversity of possible {Y (·)} including non-stationary
processes.
Assumption (4.3) is not the weakest possible as the proof shows. However, it is a con-
dition that is fulfilled in many situations and one that is easy to verify (cf. Section 6).
Weaker conditions would typically include many sine and cosine terms and would there-
fore be much more complicated to verify.

5 Some Properties of Fourier Coefficients and Periodograms

In this section we give some examples of processes as well as kernels which fulfill the
assumptions of the previous section. This shows that the bootstrap has the correct
second order moment structure for a large class of processes including non-linear ones.

For the sake of completeness we summarize some recent results of kernel spectral density
estimation leading to Assumption A.1 in Lemma 5.1. In Lemma 5.4 b) A.1 is also proved
under a different set of assumptions. We give now a set of assumptions on the kernel as
well as on the underlying process given by Robinson [53] respectively Shao and Wu [55]
to obtain consistent kernel spectral density estimates.

Assumption K. 3. Let the kernel K(·) be a real, even function with
∫

R

|K(λ)| dλ <∞,

∫

R

K(λ) dλ = 1.

Furthermore the inverse Fourier transform of K

k(x) =

∫

R

K(λ) exp(ixλ) dλ.

satisfies |k(x)| 6 k̃(x), where k̃(x) is monotonically decreasing on [0,∞) and chosen to
be an even function with∫ ∞

0
(1 + x)k̃(x) dx <∞.
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Assumption K. 4. Let the kernel K(·) be a real, even function with
∫

R
K(λ) dλ = 1.

Furthermore the inverse Fourier transform of K

k(x) =

∫

R

K(λ) exp(ixλ) dλ.

is Lipschitz continuous with support [−1, 1].

Assumption P. 4. Assume ΓV (r) = N−1
∑N−r

j=1 (V (j) − EV (0))(V (j + r) − EV (0))
satisfies uniformly in r as T → ∞

ΓV (r) − E ΓV (r) = OP

(
N−ν

)

for some 0 < ν 6 1/2.
A detailed discussion of this assumption can be found in Robinson [53]; for linear pro-
cesses with existing fourth moments P.4 is always fulfilled with ν = 1/2.

Assumption P. 5. Assume that V (j)−EV (0) = G(. . . , ǫ(j − 1), ǫ(j)), where G(·) is a
measurable function and {ǫ(·)} is an i.i.d. sequence. Assume further that

∞∑

j=0

‖E(V (j) − EV (0) | ǫ(0), ǫ(−1), . . .) − E(V (j) − EV (0) | ǫ(−1), ǫ(−2), . . .)‖ <∞,

where ‖X‖ =
√

E |X|2. In case of linear processes this condition is equivalent to the
absolute summability of the coefficients.

The next assumption is stronger:

Assumption P. 6. Assume that V (j) = G(. . . , ǫ(j − 1), ǫ(j)), where G(·) is a measur-
able function and {ǫ(·)} is an i.i.d. sequence. Further assume the following geometric-
moment contraction condition holds. Let {ǫ̃(·)} be an i.i.d. copy of {ǫ(·)}, let Ṽ (j) =
G(. . . , ǫ̃(−1), ǫ̃(0), ǫ(1), . . . , ǫ(j)) be a coupled version of V (j). Assume there exist α >
0, C > 0 and 0 < ρ = ρ(α) < 1, such that for all j ∈ N

E
(∣∣∣Ṽ (j) − V (j)

∣∣∣
α)

6 Cρj .

This condition is fulfilled for linear processes with finite variance that are short-range
dependent. Furthermore it is fulfilled for a large class of nonlinear processes. For a
detailed discussion of this condition we refer to Shao and Wu [55], Section 5.

Assumption P. 7. Assume that V (j) = G(. . . , ǫ(j − 1), ǫ(j)) is a stationary causal
process, where G(·) is a measurable function and {ǫ(·)} is an i.i.d. sequence. Let

Ṽ (j) = G(. . . , ǫ(−1), ǫ̃(0), ǫ(1), . . . , ǫ(j)) be a coupled version of V (j) where ǫ̃(0)
L
= ǫ(0)

independent of {ǫ(j)}. Furthermore assume

∑

i>0

(
E(Vi − Ṽi)

2
)1/2

<∞.

The following lemma gives some conditions under which Assumption A.1 holds, which is
necessary for the residual-based and wild bootstrap (RB and WB) to be valid. Moreover
it yields the validity of Assumption A.4 (ii), which is needed for the local bootstrap LB.
Lemma 5.4 also gives some assumptions under which the kernel spectral density estimate
uniformly approximates the spectral density.
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Lemma 5.1. Assume that Assumptions P.1 and K.1 are fulfilled and let f̂T (λ) be as in
(4.1).

a) Let Assumption K.3 and P.4 be fulfilled; additionally the bandwidth needs to fulfill

hT + h−1
T T−ν P−→ 0. Then

max
λ∈[0,2π]

∣∣∣f̂T (λ) − f(λ)
∣∣∣ P−→ 0.

b) Let Assumption K.4, P.2, P.3 and P.6 be fulfilled. Furthermore let E |V (0)|µ < ∞
for some 4 < µ 6 8 and hT → 0,(hTT

η)−1 = O(1) for some 0 < η < (µ− 4)/µ, then

max
λ∈[0,2π]

∣∣∣f̂T (λ) − f(λ)
∣∣∣ P−→ 0.

Remark 5.1. For linear processes Robinson [53] gives an automatic bandwidth selection
procedure for the above estimator; see also Politis [49].

The following lemma establishes the validity of Assumptions A.2.

Lemma 5.2. Let Assumption P.1 be fulfilled.

a) Then Assumption A.2 (i) holds.

b) If additionally

max
16j,k6N

∣∣cov(I(j), I(k)) − (2πf(λj))
2δj,k

∣∣ = o(1), (5.1)

where δj,k = 1 if j = k and else 0, then Assumption A.2 (ii) holds.

c) If additionally

max
16j,k6N

∣∣cov(I2(j), I2(k)) − 4(2πf(λj))
4δj,k

∣∣ = o(1), (5.2)

then Assumption A.2 (iii) holds, more precisely

1

N

N∑

j=1

I2(j)

f2(λj)
= 2(2π)2 + oP (1).

Remark 5.2. The conditions of Lemma 5.2 are fulfilled for a large class of processes.

(i) Theorem 10.3.2 in Brockwell and Davis [5] shows (5.1) for linear processes V (t) −
EV (t) =

∑∞
j=−∞wjǫ(t − j), where {ǫ(·)} is i.i.d. with E ǫ(0) = 0, E ǫ(0)4 < ∞

and
∑ |wj |

√
j < ∞. Furthermore the rate of convergence for j 6= k is uniformly

O(1/T ). An analogous proof also yields (5.2) under the existence of 8th moments,
i.e. if E ǫ(0)8 <∞.

(ii) Lemma A.4 in Shao and Wu [55] shows that (5.1) (resp. (5.2)) is fulfilled if the
4th order cumulants (resp. 8th order cumulants) are summable, 4th (resp. 8th)
moments exist and

∑
j>0 |jγ(j)| < ∞ (cf. also Theorem 4.3.1 in Brillinger [4]).

More precisely they show that the convergence rate is O(1/T ) in (5.1). By Remark
4.2 in Shao and Wu [55] this cumulant condition is fulfilled for processes fulfilling
Assumption P.6 for α = 4 (resp. α = 8).
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(iii) Furthermore, Assumption A.2 is fulfilled if Assumptions P.3 and P.7 are fulfilled
(cf. Wu [58]).

(iv) Chiu [12] uses cumulant conditions to prove strong laws of large numbers and the
corresponding central limit theorems for 1

N

∑N
j=1 ψ(λj)I

k(λj) for k > 1.

The next lemma shows that weighted and unweighted empirical distribution functions
of Fourier coefficients converge to a normal distribution, hence showing that Assump-
tions A.3 and A.5 are valid. The proof is based on Theorem 2.1 in Shao and Wu [55],
which is somewhat stronger than the usual statement on asymptotic normality of finitely
many Fourier coefficients as it gives the assertion uniformly over all finite sets of fixed
cardinal number; this is crucial for the proof of Lemma 5.3.

Lemma 5.3. Let Assumptions P.1, P.3 and P.5 be fulfilled. Furthermore consider
weights {wj,N : 1 6 j 6 n} such that

∑N
j=1wj,N = 1 and

∑N
j=1w

2
j,N → 0 as N → ∞,

then

sup
z∈R

∣∣∣∣∣∣
1

2

N∑

j=1

wj,N

(
1n

x(j)6z
√

πf(λj)
o + 1n

y(j)6z
√

πf(λj)
o
)
− Φ(z)

∣∣∣∣∣∣
P−→ 0.

where Φ(·) denotes the distribution function of the standard normal distribution. If we
have weights wj,N,s with

∑N
j=1wj,N,s = 1 and sups

∑N
j=1w

2
j,N,s → 0, then the assertion

remains true in the sense that for any ǫ > 0 it holds

sup
s
P


sup

z∈R

∣∣∣∣∣∣
1

2

N∑

j=1

wj,N,s

(
1n

x(j)6z
√

πf(λj)
o + 1n

y(j)6z
√

πf(λj)
o
)
− Φ(z)

∣∣∣∣∣∣
> ǫ


→ 0.

The next lemma shows the validity of Assumptions A.4 and again A.1 under a different
set of assumptions. For this we need to introduce yet another assumption on the kernel.

Assumption K. 5. Let Kh(λ) as in (4.2) fulfill the following uniform Lipschitz condition
(λj = 2πj/T )

h2
T |Kh(λs) −Kh(λt)| 6 LK

∣∣∣∣
s− t

T

∣∣∣∣ .

Remark 5.3. In case of a uniform Lipschitz continuous kernel with compact support
the assertion is fulfilled for hT small enough. For infinite support kernels we still get K.5
as in Remark 4.1 under certain stronger regularity conditions.

Lemma 5.4. Let the process {V (·)} fulfill Assumptions P.1, P.3. Furthermore the
bandwidth fulfills (h3T )−1 = o(1) and the kernel K(·) fulfills K.1 and K.5 in addition to
1/(ThT )

∑
j K

2(2πj/(ThT )) = O(1).

a) Assumption A.4 (i) holds, if

1

2N

N∑

j=1

(|x(j)| + |y(j)|) = OP (1), (5.3)

sup
16l,k6N

|cov(x(l), x(k)) − πf(λk)δl,k| = O

(
1

hT

)
,

sup
16l,k6N

|cov(y(l), y(k)) − πf(λk)δl,k| = O

(
1

hT

)
, (5.4)
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b) Assumption A.2 (ii) together with (5.1), where the convergence for j 6= k is uniformly
of rate (hT )−1, implies Assumption A.4 (ii) as well as A.1 for the spectral density
estimator given in (4.1).

c) Assumption A.2 (iii) together with (5.2), where the convergence for j 6= k is uniformly
of rate (hT )−1, implies Assumption A.4 (iii).

Remark 5.4. By the boundedness of the spectral density (cf. Assumption P.1) (5.4)
follows for example from Assumption A.2 (ii). If

∑
j>1 j

ν |γ(j)| <∞ for some ν > 0 the
rate of convergence in (5.4) is

T−ν for 0 < ν < 1,
log T

T
for ν = 1, T−1 for ν > 1.

For a proof we refer to the supplementary material [32], Proof of Lemma 5.2. Some
conditions leading to (5.1) resp. (5.2) with the required convergence rates can be found
in Remark 5.2.

6 Some Applications

In this section we show that while our procedure still works for the same class of
periodogram-based statistics as the classical frequency bootstrap methods, we are also
able to apply it to statistics that are completely based on the time domain representation
of the observations, such as the CUSUM statistic for the detection of a change point in
the location model or the least-squares test statistic in unit-root testing.

6.1 Statistics Based on Periodograms

The classical applications of bootstrap methods in the frequency domain are kernel
spectral density estimators (cf. Franke and Härdle [18], Paparoditis and Politis [42]) as
well as ratio statistics and Whittle estimators (cf. Dahlhaus and Janas [15], Paparoditis
and Politis [42]). This includes for example Yule-Walker estimators for autoregressive
processes.

A simple calculation yields

I∗(j) =
1

T
(x∗(j) + y∗(j))2 ,

where I∗(j) is the periodogram of the TFT-Bootstrap time series Z∗(·) at λj , and x∗(·),
y∗(·) are defined as in Section 2. Comparing that with the original bootstrap procedures
for the periodograms, we realize that for the wild bootstrap we obtain exactly the same
bootstrap periodogram, whereas for the residual-based as well as local bootstrap we
obtain a closely related bootstrap periodogram but not exactly the same one. The reason
is that we did not simultaneously draw the real and imaginary part of the bootstrap
Fourier coefficient but further exploited the information that real and imaginary part
are asymptotically independent. Yet, the proofs showing the validity of the bootstrap
procedure for the above mentioned applications go through noting that the bootstrap real
and imaginary part are (conditionally on the data) independent. The above discussion
shows that the procedures discussed in this paper inherit the advantages as well as
disadvantages of the classical frequency bootstrap procedures.
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6 Some Applications

6.2 Change-Point tests

In change-point analysis one is interested in detecting structural changes in time-series
such as e.g. a mean change in the following AMOC (at-most-one-change) location model

Y (i) =

{
µ1 + V (i), 1 6 i 6 k̃,

µ2 + V (i), k̃ < i 6 T,

where V (·) is a stationary process with EV (0) = 0; µ1, µ2 and k̃ are unknown. The
question is whether a mean change occurred at some unknown time k̃ – the so called
change-point. This shows that we are interested in testing

H0 : k̃ < T, µ1 6= µ2, H1 : k̃ = T.

Typically, test statistics in this context are based on centered partial sums such as the
well-known CUSUM statistic

CT := max
16k6T

∣∣∣∣∣∣
1√
T

k∑

j=1

(Y (j) − ȲT )

∣∣∣∣∣∣
.

Remark 6.1. For simplicity we only discuss the classical CUSUM statistic above. How-
ever, extensions to other test statistics in change-point analysis, such as

C
(1)
T (α) := max

16k6T

T 2α−1/2

(k(T − k))α

∣∣∣∣∣∣

k∑

j=1

(Y (j) − ȲT )

∣∣∣∣∣∣
, 0 6 α <

1

2
,

C
(2)
T (β) :=

1

T

T−1∑

k=1

T 2β

(k(T − k))β




k∑

j=1

(Y (j) − ȲT )




2

, 0 6 β < 2,

are straightforward using standard-techniques of change-point analysis (cf. e.g. Kirch [31],
Proof of Corollary 6.1). This is not true for extreme-value type test statistics for which
stronger results are needed. For a detailed discussion of typical test statistics we refer
to Csörgő and Horváth [13, 14].

If {V (·)} fulfills Assumption P.2 we obtain the following limit under H0 (cf. also
Horváth [24] and Antoch et al. [1])

CT

τ

L−→ sup
06t61

|B(t)| , (6.1)

where {B(·)} is a Brownian bridge and τ2 = 2πf(0), where f(·) is the spectral density
of {V (·)}.

Kirch [31] has already used permutation methods in the frequency domain to obtain
approximations of critical values for change-point tests. Her idea was to use random
permutations of the Fourier coefficients taking some symmetry properties into account
before back-transforming them to the time domain using the FFT. However, the covari-
ance structure of a time series is encoded in the variances of the Fourier coefficients;
hence, this structure is destroyed by a simple permutation.
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We will now apply our TFT-Bootstrap to obtain critical values for the above change-
point tests. We do not directly observe the process V (·) since we do not know whether
the null hypothesis or the alternative holds true; thus, we estimate Z(·) = V (·)− V̄T by

Ẑ(t) = Y (t) − µ̂11{t6b̃
k}

− µ̂21{t>b̃
k}
,

where (e.g.)
̂̃
k = arg max

{ ∣∣∣
∑k

j=1(Y (j) − ȲT )
∣∣∣ : 1 6 k 6 T

}
, µ̂1 = 1

b̃
k

∑b̃
k
j=1 Y (j) and

µ̂2 = 1

T−b̃
k

∑T

j=
b̃
k+1

Y (j).

The bootstrap statistic is then given by

C∗
T =

∣∣∣∣∣∣
1√
T

k∑

j=1

Z∗(j)

∣∣∣∣∣∣
,

where {Z∗(·)} is the TFT-Bootstrap sequence defined in Section 2.

The following Theorem shows that the (conditional) limit of the bootstrap statistic is the
same as that of the original statistic under H0 even if the alternative holds true. Hence,
the distribution of the bootstrap statistic is a good approximation of the null distribution
of the statistic, and the bootstrap critical values are asymptotically equivalent to the
asymptotic critical values under both the null hypothesis as well as alternatives. This
shows that the asymptotic test and the bootstrap test are asymptotically equivalent. In
the next section a simulation study shows that frequently we get better results in small
samples when using the TFT-Bootstrap.

Theorem 6.1. Suppose that the process V (t) fulfills the Hájek-Renyi inequality (cf. e.g.

Lemma B.1 in Kirch [29] for linear processes) and let under H1 (
̂̃
k − k̃)/T = OP (βT ),

βT → 0. Furthermore let the assumptions in Theorem 4.1 hold and αT max (βT , log T/T ) →
0 for αT as in Corollary 4.1. Then it holds under H0 as well as H1 for all x ∈ R

P ∗
(

max
16k6T

C∗
T

τ
6 x

∣∣∣Y (1), . . . , Y (T )

)
P−→ P

(
sup

06t61
|B(t)| 6 x

)
,

where τ is as in (6.1). This shows that the corresponding bootstrap test (where one
calculates the critical value from the bootstrap distribution) is asymptotically equivalent
to the asymptotic test above.

Remark 6.2. The condition (
̂̃
k− k̃)/T = OP (βT ) is fulfilled for a large class of processes

with varying convergence rates βT – for certain linear processes we get the best possible
rate βT = 1

T (cf. e.g. Antoch et al. [1]), but often in the dependent situation the rates
are not as good (cf. e.g. Kokoszka and Leipus [33]).
It is still possible to get the above result under somewhat stronger assumptions on αT ,
i.e. on the bandwidth hT , if only weaker versions of the Hájek-Renyi inequality are
fulfilled as e.g. given in Appendix B.1 in Kirch [29] for fairly general processes.

Remark 6.3. For practical purposes it is advisable to use some type of studentizing
here. We propose to use the adapted flat-top estimator with automatic bandwidth choice
described in Politis [51] for the asymptotic test as well as for the statistic of the original
sample. Let R̂(k) = 1

T

∑T−k
t=1 Ẑ(t)Ẑ(t+ k),

w(t) =





1, |t| 6 1/2,

2(1 − |t|), 1/2 < |t| < 1,

0, |t| > 1,
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and the bandwidth ΛT = 2λ̂, where λ̂ is the smallest positive integer such that∣∣∣R̂(λ̂+ k)/R̂(0)
∣∣∣ < 1.4

√
log10 T/T , for k = 1, . . . , 3.

Then, the estimator is given by

τ̂2 = max


R̂(0) + 2

ΛT∑

k=1

w(k/ΛT )R̂(k),
1

T (T − 1)

T∑

j=1

Ẑ(t)2


 . (6.2)

The rightmost part in the parenthesis is chosen to ensure positivity and scale invariance
of the estimator.

For a discussion of a related estimator in change-point analysis we refer to Hušková and
Kirch [26].

In the bootstrap domain we propose to use an estimator that is closely related to the
bootstrap procedure, namely an estimator based on the bootstrap periodograms using
the same kernel and bandwidth as for the bootstrap procedure (cf. also (10.4.7) in
Brockwell and Davis [5])

τ̃2∗ = p0,T I
∗(1) +

∑

j>1

(pj,T + p−j,T )I∗(j), (6.3)

where I∗(j) = x∗(j) + y∗(j) is the bootstrap periodogram and

ps,T =
K
(

2πs
ThT

)

∑
j K

(
2πj
ThT

) .

It can easily be seen using Assumptions B.1 – B.3 that

E∗
(
τ̃2∗ − τ2

)2 P−→ 0, (6.4)

if
∑

j p
2
j,T → 0 which holds under very weak regularity conditions on the kernel. This

shows that the studentized bootstrap procedure is asymptotically consistent.

This estimator is naturally related to the bootstrap procedure and has proved to work
best in simulations. This is similar (although maybe for different reasons) to the block
bootstrap for which Götze and Künsch [21] showed that – in order to obtain second order
correctness of the procedure – one needs to studentize the bootstrap statistic with the
true conditional variance of the bootstrap statistic (which is closely related to the Bartlett
estimator), while for the original statistic one needs to use a different estimator such as
the above mentioned flat-top estimator. However, a detailed theoretical investigation of
which type of studentizing is best suitable for the TFT-Bootstrap is beyond the scope
of this paper.

6.3 Unit Root Testing

Unit root testing is as difficult a problem as is well-studied. Key early references in-
clude Phillips [47] and Dickey and Fuller [16]; see also the books by Fuller [20] and
by Hamilton [22]. Nevertheless, the subject is still very much under investigation; see
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e.g. Cavaliere and Taylor [7, 8, 9], Chang and Park [11], Park [45], Paparoditis and
Politis [44] and the references therein.

The objective here is testing whether a given set of observations Y (0), . . . , Y (T ) belongs
to a stationary or a I(1)-time series (integrated of order one), which means that the
time series is not stationary but its first order difference Y (t) − Y (t − 1) is stationary.
For simplicity we assume that Y (0) = 0 and we do not consider a deterministic trend
component in this paper. The hypothesis test of interest can then be stated as

H0 : {Y (·)} is I(1), H1 : {Y (·)} is stationary.

Now we note that for

ρ = lim
t→∞

EY (t)Y (t− 1)

EY (t− 1)2

the null hypothesis is equivalent to ρ = 1 (for a detailed discussion we refer to Paparoditis
and Politis [43], Example 2.1). Denote V (t) = Y (t) − ρY (t − 1), which is a stationary
sequence under H0 as well as H1. While the bootstrap test below is valid for the
general situation (H0, H1) above, it is intuitively easier to understand if one considers
the following restricted situation, where Y (t) = ρY (t − 1) + V (t) for some stationary
{V (·)} with mean 0 and tests H0 : ρ = 1 versus H1 : |ρ| < 1; this is the setup we use in
the simulations below.

An intuitive test statistic (cf. Phillips [47]) is given by UT := T (ρ̂T − 1) rejecting the
null hypothesis if UT < cα for some appropriate critical value cα, where

ρ̂T =

∑T
t=1 Y (t)Y (t− 1)
∑T

t=1 Y (t− 1)2

is a consistent estimator for ρ under both the null hypothesis as well as the alternative.
Other choices for ρ and ρ̂T are also possible; for a detailed discussion, see Section 2 of
Paparoditis and Politis [43].

If {V (·)} fulfills Assumption P.2 with mean 0 and additionally 1
T

∑T
j=1 V

2(j) → σ2,
then it holds under H0

UT := T (ρ̂T − 1)
L−→ W (1)2 − σ2/τ2

2
∫ 1
0 W (t)2 dt

,

where τ2 = 2πf(0) and f(·) is the spectral density of the stationary sequence Y (t) −
Y (t−1), σ2 = var(V (t)), and {W (·)} is a Wiener process (see also Phillips [47], Theorem
3.1).

This shows, that the limit distribution of UT depends on the unknown parameters σ2 as
well as τ2 if the errors are dependent. The famous Dickey-Fuller test is closely related to
the above test statistic just using a slightly different normalization, but it suffers from
the same problem.

Phillips [47] and Phillips and Perron [48] suggest some modifications of the two tests
mentioned above which do have a pivotal limit for time series errors as well. Later on,
Perron and Ng [46], Stock [56] and Ng and Perron [40] propose to use the trinity of
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so-called M unit root statistics, which are also closely related to the above two test but
have pivotal limits for time series errors as well. Those M unit root tests are given by

MUT =
1
T Y (T )2 − τ̂2

2
T 2

∑T
t=1 Y (t− 1)2

,

MSBT =

(
1

τ̂2

1

T 2

T∑

t=1

Y (t− 1)2

)1/2

,

as well as the product of the above two M statistics. As before τ̂2 denotes an estimator
of τ2. In the simulations we use the estimator as given in (6.2).

All of the above mentioned statistics are continuous functions of the partial sum process

{∑⌊Tt⌋
i=1 V (t) : 0 6 t 6 1} under the null hypothesis (as Y (t) =

∑t
j=1 V (j)), so that

the null asymptotics are immediate consequences of the functional central limit theorem
as given in Assumption P.2. For the test statistic UT and the Dickey-Fuller test it is
additionally needed that 1

T

∑T
j=1 V

2(j) → σ2. For example, the statistic MUT has the
same asymptotic limit as the statistic UT with independent errors:

MUT
L−→ W (1)2 − 1

2
∫ 1
0 W (t)2 dt

. (6.5)

In the following we concentrate on the statistic MUT but the results for the other
mentioned statistics follow analogously.

We would like to apply the TFT-Bootstrap to obtain critical values; that means we need
a bootstrap sequence which is (conditionally) I(1). In order to obtain this we estimate
V (t) = Y (t) − ρY (t− 1), which is stationary under both H0 as well as H1, by

V̂ (t) = Y (t) − ρ̂TY (t− 1).

Then, we can use the TFT-Bootstrap based on V̂ (·), i.e., create a TFT-bootstrap sample
V ∗(1), V ∗(2), . . ., and obtain a bootstrap I(1) sequence (i.e. a sequence fulfilling H0) by
letting

Y ∗(0) = Y (0), Y ∗(t) = Y ∗(t− 1) + V ∗(t), t > 1.

The bootstrap analogue of the statistic MUT is then given by

MU∗
T =

1
T Y

∗(T ) − τ̃2∗

2
T 2

∑
t = 1T (Y ∗(t− 1))2

,

where we use again the estimator τ̃2∗ as in (6.3) for the bootstrap sequence.

The following theorem shows that the conditional limit of the bootstrap statistic is the
same as that appearing in the RHS of (6.5) no matter whether the original sequence
follows the null or alternative hypothesis. This shows that the bootstrap critical values
and thus also the bootstrap test is equivalent to the asymptotic critical values (and thus
the asymptotic test), under both the null hypothesis as well as alternatives.
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Theorem 6.2. Suppose that the process {V (·)} has mean 0 and fulfills the assumptions
in Theorem 4.1 and let (3.1) be fulfilled. Furthermore assume that under H0 as well as
H1 it holds

(ρ− ρ̂T )2
1

T

T−1∑

t=0

Y 2(t) = oP (α−1
T ) (6.6)

for αT as in Corollary 4.1. Then it holds under H0 as well as H1 for all x ∈ R

P ∗ (MU∗
T 6 x)

P−→ P

(
W (1)2 − 1

2
∫ 1
0 W (t)2 dt

6 x

)
.

This shows that the corresponding bootstrap test (where one calculates the critical value
from the bootstrap distribution) is asymptotically equivalent to the test based on (6.5).

Remark 6.4. Condition (6.6) is fulfilled for a large class of processes and if αT /T → 0,
Theorem 3.1 in Phillips [47] for example shows under rather general assumptions that
under H0

ρ̂T − ρ = OP (T−1),
1

T 2

T−1∑

j=0

Y 2(t) = OP (1).

Under H1 (6.6) also holds under fairly general assumptions (cf. e.g. Romano and
Thombs [54], Theorem 3.1) if αT /T → 0; more precisely

ρ̂T − ρ = OP (T−1/2),
1

T

T−1∑

j=0

Y 2(t) = OP (1).

7 Simulations

In the previous sections, the asymptotic applicability of the TFT-Bootstrap was in-
vestigated. In this section we conduct a small simulation study in order to show its
applicability in finite samples.

To get a first impression of what a TFT-Bootstrap sample looks like, we refer to Fig-
ure 7.1, which shows the original time series as well as one bootstrap sample. At first
glance the covariance structure is well preserved.

We use the statistical applications given in Section 6 to show that the TFT-Bootstrap is
indeed applicable. The usefulness of the procedure for statistics based on periodograms
have already been shown by several authors (cf. Franke and Härdle [18], Dahlhaus and
Janas [15] and Paparoditis and Politis [42]) and will not be considered again.

However, the applicability for statistics that are completely based on time domain prop-
erties, such as the CUSUM statistic in change-point analysis or the above unit-root test
statistics, is of special interest. More precisely we will compare the size and power of
the tests with different parameters as well as give a comparison between the TFT, an
asymptotic test, and alternative block resampling techniques. For change-point tests,
the comparison is with the block permutation test of Kirch [30]; in the unit-root situation
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7 Simulations

(a) Sample: a = 0.5, normal errors (b) TFT-Bootstrap sample

(c) Sample: a = −0.5, normal errors (d) TFT-Bootstrap sample

(e) Sample: a = 0.5, centered exp. err. (f) TFT-Bootstrap sample

(g) Sample: a = −0.5, centered exp. err. (h) TFT-Bootstrap sample

Figure 7.1: AR(1) with parameter a and corresponding TFT-Bootstrap sample:
Residual-based Bootstrap, Bartlett-Priestley kernel, h = 0.01.
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we compare the TFT-bootstrap to the block bootstrap of Paparoditis and Politis [43].
For the TFT we use the local bootstrap (LB) as well as residual-based bootstrap (RB)
with a uniform kernel (UK) as well as Bartlett-Priestley-kernel (BPK) with different
bandwidths.

We visualize these qualities by the following plot:

Achieved Size-Power Curves (ASP)

The line corresponding to the null hypothesis shows the actual achieved level on the
y-axis for a nominal one as given by the x-axis. This can easily be done by plotting the
empirical distribution function (EDF) of the p-values of the statistic under H0. The line
corresponding to the alternative shows the size-corrected power, i.e. the power of the
test belonging to a true level α test where α is given by the x-axis. This can easily be
done by plotting the EDF of the p-values under the null hypothesis against the EDF of
the p-values under the alternative.

In the simulations we calculate all bootstrap critical values based on 1000 bootstrap
samples and the ASP’s are calculated on the basis of 1000 repetitions.

Concerning the parameters for the TFT-Bootstrap we have used a uniform (K(t) =
1
21{|t|61}) as well as Bartlett-Priestley kernel (K(t) = 3

4(1 − t2)1{|t|61}) with various
bandwidths. All errors are centered exponential hence non-Gaussian. Furthermore
AR(1) time series are used with coefficient γ = −0.5, 0.5. Furthermore we consider
GARCH(1,1) processes as an example of non-linear error sequences.

7.1 Change-Point tests

We compare the power using an alternative that is detectable but has not power one
already in order to pick up power differences. For the AR(1) process with parameter
a = −0.5, we choose d = 0.3, for a = 0.5 we choose d = 0.7 as changes are more difficult
to detect for these time series. A comparison involving the uniform kernel (UK), the
Bartlett-Priestley kernel (BPK) as well as bandwidth h = 0.01 and h = 0.03 can be
found in Figure 7.2 (a)-(d). It becomes clear that small bandwidths are best in terms of
keeping the correct size, where the BPK works even better than the UK. However, this
goes along with a loss in power which is especially severe for the BPK. Furthermore, the
power loss for the BPK kernel is worse if combined with the local bootstrap. Generally
speaking, the TFT works better for negatively correlated errors which is probably due
to the fact that the correlation between Fourier coefficients is smaller in that case.

In a second step, we compare the residual-based bootstrap (RB) with both kernels and
bandwidth h = 0.01 with the block permutation method of Kirch [30] as well as the
asymptotic test. The results are given in Figure 7.2 (e) - (f). The TFT works best in
terms of obtaining correct size, where the BPK beats the UK as already pointed out
above. The power loss of the BPK is also present in comparison with the asymptotic as
well as the block permutation methods, the power of the uniform kernel is also smaller
than for the other method but not as severe as for the BPK. The reason probably is
the sensitivity of the TFT with respect to the estimation of the underlying stationary
sequence as in Corollary 3.1. In this example a mis-estimation of the change-point or
the mean difference can result in an estimated sequence that largely deviates from a
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(a) LB: a = 0.5 (b) LB: a = −0.5

(c) RB: a = 0.5 (d) RB: a = −0.5

(e) a = 0.5, TFT: h = 0.01 (f) a = −0.5, TFT: h = 0.01

(g) RB: GARCH(1,1) (h) GARCH(1,1), TFT: h = 0.01

Figure 7.2: Change-Point Tests: ASP-Plots for AR(1) process with parameter a with
centered exponential errors resp. GARCH(1,1), d = µ2 − µ1, T = 200, k̃ = 100, BPK:
Bartlett-Priestley kernel, UK: Uniform kernel, LB: Local Bootstrap, RB: Residual-based
Bootstrap.
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8 Conclusions

stationary sequence, while in the unit-root example below, this is not as important and
in fact the power loss does not occur there.

The simulation results for a GARCH(1,1) time series with parameters ω = 0.3, α =

0.7, β = 0.2 (i.e. V (t) = σtǫt, σ
2
t = ω + αǫ2t−1 + βσ2

t−1, ǫt
i.i.d.∼ N(0, 1)) are given

in Figure 7.2 (g) and (h) and it becomes clear that the conclusions are similar. The
alternative in these plots is given by d = 0.7.

7.2 Unit Root Testing

In the unit root situation we need a bootstrap sample of V (·) as in Corollary 3.1, where we
additionally use the fact that {V (·)} has mean 0. In this case we additionally need a boot-

strap version of the mean. For simplicity we use a wild bootstrap µ∗ = W (2πτ̂2/T )1/2,

where W is standard normal distributed and τ̂2 is as in (6.2), where we replace Ẑ(·) by

V̂ (·) − ¯̂
V T . The alternative in all plots is given by ρ = 0.95.

In Figure 7.3 (a)-(d) a comparison of different kernels and bandwidths for an AR(1) error
sequence is given. It can be seen that again a small bandwidth yields best results and
in particular the BPK works better than the UK. Unlike in the change-point example
we do not have the effect of a power loss. Furthermore unlike in change-point analysis
the bootstrap works better for positively correlated errors.

A comparison with the asymptotic test as well as the block bootstrap by Paparoditis
and Politis [43] can be found in Figure 7.3 (e) - (f). In case of a positive correlation all
methods perform approximately equivalent at least if we use the better working Bartlett-
Priestley kernel, however for a negative correlation the TFT holds the level better than
the other methods.

Some results for a GARCH(1,1) error sequence with parameters ω = 0.3, α = 0.7, β = 0.2
are shown in Figure 7.3 (g) - (h). In this situation a somewhat larger bandwidth of
h = 0.03 works slightly better and the TFT test leads to an improvement of the power
of the tests.

It is noteworthy that the appropriate bandwidth in all cases is smaller than what one
might have expected to be a good choice. A possible explanation for this is that some
undersmoothing is appropriate since the back-transformation will account for some ad-
ditional smoothing.

8 Conclusions

The subject of the paper is the TFT-Bootstrap which is a general frequency domain
bootstrap method that also generates bootstrap data in the time domain. Connections of
the TFT-Bootstrap with other methods including the surrogate data method of Theiler
et al. [57], and the original proposals of Hurvich and Zeger [25] were thoroughly explored.

It was shown that the TFT bootstrap samples have asymptotically the same second-order
moment structure as the original time series. However, the bootstrap pseudo-series are
(asymptotically) Gaussian showing that the TFT bootstrap approximates the original
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8 Conclusions

(a) LB: a = 0.5 (b) LB: a = −0.5

(c) RB: a = 0.5 (d) RB: a = −0.5

(e) a = 0.5, TFT: h = 0.01 (f) a = −0.5, TFT: h = 0.01

(g) RB: GARCH(1,1) (h) GARCH(1,1), TFT: h = 0.01

Figure 7.3: Unit-Root Tests: ASP-Plots for AR(1) process with parameter a with cen-
tered exponential errors resp. GARCH(1,1), d = µ2 − µ1, T = 200, k̃ = 100, BPK:
Bartlett-Priestley kernel, UK: Uniform kernel, LB: Local Bootstrap, RB: Residual-based
Bootstrap.
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time series by a Gaussian process with the same covariance structure even when the
original data sequence is non-linear—see Section 3.

Nevertheless, our simulations suggest that for small samples the TFT bootstrap gives
a better approximation to the critical values (as compared with the asymptotic ones)
especially when studentizing is possible. Whether appropriate studentization results
in higher-order correctness is a subject for future theoretical investigation. Choosing
somewhat different types of bootstrapping in the frequency domain could also lead to
higher-order correctness without bootstrapping as in, e.g., Dahlhaus and Janas [27] for
the periodogram bootstrap.

In fact the simulations suggest that a surprisingly small bandwidth (in comparison to
spectral density estimation procedures) works best. When applied in a careful manner
no smoothing at all still results – in theory – in a correct second-moment behavior in
the time domain (cf. Section 2.1) – suggesting that due to the smoothing obtained by
the back-transformation a coarser approximation in the frequency domain is necessary
to avoid oversmoothing in the time domain.

9 Proofs of Section 3

We start with a short lemma needed to prove Lemma 3.1.

Lemma 9.1. Under Assumption P.1, the following representation holds

4π

T

N∑

k=1

f (λk) cos(λkh) =
∑

l∈Z

γ(h+ lT ) − 2π

T
f(0) − 2π

T
f(π) exp(iπh)1{T even},

N = ⌊(T − 1)/2⌋, λk = 2πk/T .

Proof. First it holds (cf. e.g. Brockwell and Davis [5], Corollary 4.3.2)

f(λ) =
1

2π

∞∑

j=−∞
γ(j) exp(−ijλ).

Since cos(λkh) = 1
2 (exp(ihλk) + exp(ihλT−k)), we obtain

4π

T

N∑

k=1

f (λk) cos(λkh)

=
2π

T

T−1∑

k=0

f (λk) exp(ihλk) −
2π

T
f(0) − 2π

T
f(π) exp(iπh)1{T even}.

Moreover

2π

T

T−1∑

k=0

f (λk) exp(ihλk) =
1

T

T−1∑

k=0

∞∑

j=−∞
γ(j) exp(−ijλk) exp(ihλk)

=
1

T

∞∑

j=−∞
γ(j)

T−1∑

k=0

exp(i(h− j)λk) =
∑

l∈Z

γ(h+ lT ),
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9 Proofs of Section 3

where we can switch the two sums because of Fubini’s theorem.

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Assertion a) follows immediately from the fact that the boot-
strapped Fourier coefficients are conditionally centered. By Lemma A.4 in Kirch [31] it
holds (uniformly in u)

⌊mu⌋∑

l=1

cos(λkl) = O

(
min

(
T

k
,m

))

and the same expression for sine instead of cosine. Thus it holds uniformly in u and v

N∑

k=1

∣∣∣∣∣∣

⌊mu⌋∑

l1=1

cos(λkl1)

∣∣∣∣∣∣

∣∣∣∣∣∣

⌊mv⌋∑

l2=1

cos(λkl2)

∣∣∣∣∣∣
= O(1)

N∑

k=1

min

(
T

k
,m

)2

= O(mT ). (9.1)

The same equation holds true if we replace cosine by sine.

By Assumptions B.1 and B.2 and by (2.4) it holds

cov∗


 1√

m

⌊mu⌋∑

l1=1

Z∗(l1),
1√
m

⌊mv⌋∑

l2=1

Z∗(l2)




=
4

Tm

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=1

N∑

k=1

[var∗(x∗(k)) cos(l1λk) cos(l2λk) + var∗(y∗(k)) sin(l1λk) sin(l2λk)]

=
4π

Tm

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=1

N∑

k=1

f(λk) cos(λk(l1 − l2)) + oP (1),

where the last line follows for m/T → 0 as well as m = T by (9.1). We will now use
Lemma 9.1. W.l.o.g. let u 6 v. Summing the first term of Lemma 9.1 we have, e.g.
by the proof of Corollary 4.3.2 in Brockwell and Davis [5], which gives the relationship
between the autocovariance function and the spectral density,

1

m

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=1

γ(l1 − l2)

=
1

m

⌊mu⌋∑

l1=1

⌊mu⌋∑

l2=1

γ(l1 − l2) +
1

m

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=⌊mu⌋+1

γ(l1 − l2)

= 2πf(0)u+ o(1),

since by the absolute summability of γ(·)

1

m

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=⌊mu⌋+1

γ(l2 − l1) 6
1

m

⌊mv⌋−1∑

h=1

h|γ(h)| = o(1).

Furthermore

1

m

⌊mu⌋∑

l1=1

⌊mv⌋∑

l2=1

∑

j 6=0

|γ(l1 − l2 + jT )| 6
∑

|h|6m

m− |h|
m

∑

j 6=0

|γ(h+ jT )|

6
2√
m

∑

j∈Z

|γ(j)| +
∑

|h|6m−√
m

∑

j 6=0

|γ(h+ jT )| = o(1) + 2
∑

k>
√

m

|γ(k)| = o(1).
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Summing the last two terms of Lemma 9.1 we obtain

1

Tm

∑

l1

∑

l2

exp(iπ(l1 − l2)) =
1

Tm

∑

l1

exp(πil1)
∑

l2

exp(−πil2) = O

(
1

Tm

)

and

2πf(0)
1

Tm
(⌊mv⌋)(⌊mu⌋) =

{
o(1), m

T → 0,

2πf(0)uv + o(1), m = T.

Putting everything together we obtain b). The proof of c) is analogous. A simple calcula-
tion shows that cov(Z(l1), Z(l2)) = cov(V (l1), V (l2))+o(1) by the absolute summability
of the auto-covariance function.

The next lemma gives the crucial step towards tightness of the partial sum process.

Lemma 9.2. Under Assumptions P.1, B.1 – B.3 it holds for u < v

E∗


 1√

m

⌊mv⌋∑

l=⌊mu⌋+1

Z∗(l)




4

6 (D + oP (1))(v − u)2

for some constant D > 0.

Proof. Note that for a sum of independent random variables with mean zero it holds

E

(
∑

k

Xk

)4

=
∑

k

EX4
k + 6

(
∑

k

EX2
k

)2

− 6
∑

k

(
EX2

k

)2
. (9.2)

Furthermore

1√
m

∑

l

Z∗(l)

=
2√
Tm

N∑

k=1

(
x∗(k)

∑

l

cos(λkl) − y∗(k)
∑

l

sin(λkl)

)
=:

1√
Tm

2N∑

k=1

Y ∗
k ,

where Y ∗
k = x∗(k)

∑
l cos(λkl) and Y ∗

N+k = −y∗(k)
∑

l sin(λkl) for k 6 N . Thus, we will
verify the assumption of the lemma for all three summands of eq. (9.2).

First it holds similarly to (9.1) by Assumption B.2 and B.3

1

m2T 2

2N∑

k=1

E∗(Y ∗
k )4

6 (C + oP (1))
1

m2T 2

∑

k

min

(
T

k
,m(v − u)

)4

6 (D1 + oP (1))(v − u)2.
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Secondly we have by Assumption B.2 and Lemma 9.1 similarly to (9.1)

1

mT

∑

k

E∗(Y ∗
k )2

=
4π

mT

⌊mv⌋∑

l1=⌊mu⌋+1

⌊mv⌋∑

l2=⌊mu⌋+1

∑

k

f(λk) cos(λk(l1 − l2)) + oP (1)(v − u)

=
1

m

⌊mv⌋∑

l1=⌊mu⌋+1

⌊mv⌋∑

l2=⌊mu⌋+1

∑

j∈Z

γ(l2 − l1 + jT ) +O(1)(v − u)2 + oP (1)(v − u)

6 (D2 + oP (1))(v − u),

since

1

m

⌊mv⌋∑

l1=⌊mu⌋+1

⌊mv⌋∑

l2=⌊mu⌋+1

∑

j∈Z

|γ(l2 − l1 + jT )|

=
∑

|h|<⌊mv⌋−⌊mu⌋

⌊mv⌋ − ⌊mu⌋ − |h|
m

∑

j∈Z

|γ(h+ jT )| 6 2(v − u)
∑

k∈Z

|γ(k)|.

Finally it holds

1

m2T 2

∑

k

(
E∗(Y ∗

k )2
)2

=
1

m2T 2

N∑

k=1


(πf(λk) + oP (1))

∑

l1,l2

(cos(λkl2) cos(λkl1) + sin(λkl2) sin(λkl1))




2

6 (D3 + oP (1))
1

m2T 2

∑

k

max

(
T

k
,m(v − u)

)4

6 (D4 + oP (1))(v − u)2.

The next lemma gives the convergence of the finite-dimensional distribution.

Lemma 9.3. Let S∗
m(u) = 1√

m

∑⌊mu⌋
j=1 Z∗(j).

a) If Assumptions P.1, B.1 – B.3 are fulfilled and m/T → 0 we obtain for all 0 <
u1, . . . , up 6 1 in probability

(S∗
m(u1), . . . , S

∗
m(up))

L−→ N(0,Σ),

where Σ = (ci,j)i,j=1,...,p with ci,j = 2πf(0) min(ui, uj).

b) If Assumptions P.1, B.1 and B.4 are fulfilled we obtain for all 0 < u1, . . . , up 6 1 in
probability

(S∗
T (u1), . . . , S

∗
T (up))

L−→ N(0,Σ),

where Σ = (ci,j)i,j=1,...,p with ci,j = 2πf(0)(min(ui, uj) − uiuj).

36



9 Proofs of Section 3

Proof. For the assertion in a) we use the Cramer Wold device and prove a Lyapunov
type condition. Let αi ∈ R and consider

p∑

i=1

αiS
∗
m(ui)

=
1√
mT

N∑

k=1

2


x∗(k)

p∑

i=1

αi

⌊mui⌋∑

l=1

cos(λkl) + y∗(k)
p∑

i=1

αi

⌊mui⌋∑

l=1

sin(λkl)




=:
1√
mT

2N∑

k=1

Ỹ ∗
k,N ,

where {Ỹ ∗
k,N : 1 6 k 6 2N} is conditionally row-wise independent. The Lyapunov

condition is then (in probability) fulfilled since by Assumption B.2 and B.3 similarly to
(9.1)

1

m2T 2

2N∑

k=1

E∗(Ỹ ∗
k,N − E∗ Ỹ ∗

k,N )4 6 (C + oP (1))
1

m2T 2

N∑

k=1

max

(
T

k
,m

)4

6 (C + oP (1))
m

T
= oP (1).

Together with Lemma 3.1 this gives assertion a). Note that it is essential that m/T → 0,
in fact it is easy to see that for m = T the Feller condition is not fulfilled, thus the
Lindeberg condition can also not be fulfilled.

Therefore we need a different argument to obtain asymptotic normality for m = T . We
will use here somewhat stronger assumptions but it is not clear, whether they are really
necessary (cf. also Remark 3.2). We use now the Cramer Wold device and Lemma 3 in
Mallows [38], which gives an upper bound for the Mallows distance of weighted sums of
independent random variables with standard normal random variables. The assertion
then follows, since by the proof of Lemma 3.1

p∑

i=1

p∑

j=1

αiαj
1

T 2

N∑

k=1

f(λk)

⌊Tui⌋∑

l1=1

⌊Tuj⌋∑

l2=1

cos(λk(l2 − l1))

=

p∑

i=1

p∑

j=1

αiαj(min(ui, uj) − uiuj) + oP (1).

Proof of Corollary 3.2. Is analogous to the proof of Lemma 9.3 a) above.

We are now ready to prove the main theorem.

Proof of Theorem 3.1. Billingsley [2], Theorem 13.5, gives a characterization of weak
convergence via convergence of the finite-dimensional distributions as well as tightness,
which can be obtained by moment conditions. Lemmas 9.2 and 9.3 show that these
conditions are fulfilled and thus imply





1√
m

⌊mu⌋∑

l=1

(Z∗(l) − E∗ Z∗(l)) : 0 6 u 6 1





D[0,1]−→
{
{W (u) : 0 6 u 6 1}, m

T → 0,

{B(u) : 0 6 u 6 1}, m = T.
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10 Proofs of Section 4

We introduce the notation an � bn :⇔ an = O(bn).

Proof of Theorem 4.1. The assertion of a) follows directly from the definition of the
bootstrap schemes. In the following we only prove the assertions for x∗(·), the assertions

for y∗(·) follow because x∗(j)
L
= y∗(j) (conditionally given V (·)).

b) Residual-Based Bootstrap RB

By Assumption A.1 we have

sup
k

|var∗(x∗(k)) − πf(λk)| = sup
k

∣∣∣πf̂(λk) − πf(λk)
∣∣∣ P−→ 0,

thus (i). Moreover concerning (ii) it holds

sup
k

E∗(x∗(k))4

= sup
k

(π2f̂2(λk))
1

2N

2N∑

j=1

(
s̃j −

1

2N

2N∑

l=1

s̃l

)4

 1

2N

2N∑

j=1

(
s̃j −

1

2N

2N∑

k=1

s̃k

)2



−2

6 C + oP (1),

since by Assumption A.2

1

2N

2N∑

j=1

(
s̃j −

1

2N

2N∑

k=1

s̃k

)2

=
1

2N

N∑

j=1

I(j)

πf̂(λj)
−


 1

2N

N∑

j=1

x(j) + y(j)√
πf̂(λj)




2

=
1

2N

N∑

j=1

I(j)

πf(λj)
−


 1

2N

N∑

j=1

x(j) + y(j)√
πf(λj)




2

+O(1) sup
k

∣∣∣∣∣
f(λk) − f̂(λk)

πf̂(λk)

∣∣∣∣∣
1

N

N∑

j=1

I(j)

f(λj)

P−→ 1, (10.1)

1

2N

2N∑

j=1

s̃4j 6
1

2N

N∑

j=1

I(j)2

(πf(λj))2


1 + sup

k

(
f(λk) − f̂(λk)

πf̂(λk)

)2

 6 C + oP (1).

Finally we prove (iii). Let {UN (j) : 1 6 j 6 2N} be i.i.d. taking the values 1, . . . , 2N

with equal probability. Denote s̃∗j = s̃UN (j) (i.i.d.), ˜̃s∗j =
√
f̂(λUN (j))/f(λUN (j))s̃UN (j)

(i.i.d) and s∗j = sUN (j) (i.i.d.), furthermore x∗(j)
L∗

=

√
πf̂(λj)s

∗
j , y

∗(j)
L∗

=

√
πf̂(λj)s

∗
N+j ,
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j = 1 . . . , N . Similarly to (10.1) we get

E∗(s∗1)
2 = 1,

E∗(s∗1 − s̃∗1)
2 �

∣∣∣∣ 1
2N

∑2N
j=1

(
s̃j − 1

2N

∑2N
k=1 s̃k

)2
− 1

∣∣∣∣
1

2N

∑2N
j=1

(
s̃j − 1

2N

∑2N
k=1 s̃k

)2

1

2N

2N∑

j=1

s̃2j

+

(
1

2N

∑2N
j=1 s̃j

)2

1
2N

∑2N
j=1

(
s̃j − 1

2N

∑2N
k=1 s̃k

)2 = oP (1),

E∗(s̃∗1 − ˜̃s
∗
1)

2 � sup
16l6N

|f(λl) − f̂(λl)|
f(λl)

1

2N

2N∑

j=1

s̃2j = oP (1).

From this and Assumption A.1 it follows

sup
16j6N

d2
2(L∗(x∗(j)), N(0, πf(λj)))

� sup
16j6N

d2
2

(
L∗(x∗(j)),L∗

(√
πf(λj)s

∗
j

))
+ sup

16j6N
d2

2

(
L∗
(√

πf(λj)s
∗
j

)
, N(0, πf(λj))

)

6 π sup
j

|f(λj) − f̂(λj)|E∗(s∗1)
2 + π sup

j
|f(λj)|d2

2(L∗(s∗1), N(0, 1))

� oP (1) + d2
2(L∗(s∗1),L∗(s̃∗1)) + d2

2

(
L∗(s̃∗1),L∗

(
˜̃s∗1
))

+ d2
2

(
L∗
(
˜̃s∗1
)
, N(0, 1)

)

� oP (1) + E∗(s∗1 − s̃∗1)
2 + E∗(s̃∗1 − ˜̃s

∗
1)

2 + d2
2

(
L∗
(
˜̃s∗1
)
, N(0, 1)

)
� oP (1),

where the last line follows since L∗
(
˜̃s∗1
)

(conditionally on V (·)) is given by the (em-

pirical) distribution in Assumption A.3 and by Assumption A.2 we have the correct
convergence of the first and second moment, which together gives convergence in the
Mallows distance.

c) Wild Bootstrap WB

Concerning B.2 it holds by Assumption A.1

sup
k

|var∗(x∗(k)) − πf(λk)| = sup
k

∣∣∣πf̂(λk) − πf(λk)
∣∣∣ P−→ 0.

Similarly we obtain B.3 since

sup
k

E∗(x∗(k))4 = 3π2 sup
k
f̂(λk)

2
6 3π2 sup

k
f(λk)

2 + oP (1) 6 C + oP (1).

Concerning B.4 let X
L
= N(0, 1), then

√
πf̂(λk)X

L∗

= x∗(k). Then

sup
k
d2

2(L∗(x∗(k)), N(0, πf(λk))) 6 π sup
k

(√
f(λk) −

√
f̂(λk)

)2

EX2

6 π sup
k

∣∣∣f̂(λk) − f(λk)
∣∣∣ = oP (1).

d) Local Bootstrap LB
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By Assumption A.4 (ii) it holds

sup
k

|var∗(x∗(k)) − πf(λk)|

� sup
k

∣∣∣∣∣
∑

s∈Z

ps,T I(s+ k) − 2πf(λk)

∣∣∣∣∣+ sup
k

(
∑

s∈Z

ps,T (x(k + s) + y(k + s))

)2

= oP (1)

where I(j) = x2(j) + y2(j), if j is not a multiple of T and I(cT ) = 0 for c ∈ Z.
Furthermore by Assumption A.4 and K.1 we have

sup
k

E∗(x∗(k)4)

� sup
k

∣∣∣∣∣
1

2

∑

s∈Z

ps,T (x(s+ k)4 + y(s+ k)4)

∣∣∣∣∣+ sup
k

(
1

2

∑

s∈Z

ps,T (x(s+ k) + y(s+ k))

)4

6 sup
k

∑

s∈Z

ps,T I
2(s+ k) + oP (1) 6 C + oP (1).

Concerning B.4 note first that f is uniformly continuous (since it is continuous by P.1
and periodic on [0, 2π]), hence

sup
16k6N

sup
−ThT 6j6ThT

|f(λk+j) − f(λk)| = o(1). (10.2)

Denote now ˜̃x∗(j) = x̃∗(j)/
√
πf(λj+Jj,T

), where Jj,T is the same random variable as in

the definition of the Local Bootstrap. Then by (10.2) and Assumption A.4 we get

sup
16j6N

d2
2(L∗(x∗(j)), N(0, πf(λj)))

� sup
j
d2

2(L∗(x∗(j)),L∗(x̃∗(j))) + π sup
l

|f(λl)| sup
j
d2

2

[
L∗
(
x̃∗(j)/

√
πf(λj)

)
, N(0, 1)

]

� sup
j

(
∑

s∈Z

ps,T (x(j + s) + y(j + s))

)2

+ sup
j
d2

2

[
L∗
(
x̃∗(j)/

√
πf(λj)

)
,L∗(˜̃x∗(j))

]

+ sup
j
d2

2(L∗(˜̃x∗(j)), N(0, 1))

� oP (1) + sup
16l6N

sup
−ThT 6k6ThT

|f(λl+k) − f(λl)|
f(λl+k)f(λl)

sup
j

∑

s∈Z

ps,T I(j + s)

+ sup
s
d2

2(L∗(˜̃x∗(s)), N(0, 1)) � oP (1).

The last line follows by Assumption A.5. Note that convergence in the Mallows distance
is equivalent to having convergence in distribution in addition to convergence of the first
two moments. In this case the convergence is in all three cases uniformly in s (confer
Assumption A.4 and A.5). A similar argument (merging the triangular array into one
single sequence in a smart way) as in the proof of Lemma 5.3 then also gives the uniform
convergence in the Mallows distance.

Proof of Corollary 4.1. We will verify that Assumptions A.1, A.2 as well as A.4
remain true, which imply Assumptions B.2 as well as B.3. Concerning B.4 we show that
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10 Proofs of Section 4

the Mallows distance between the bootstrap r.v. based on V̂ (·) and the bootstrap r.v.
based on V (·) converges to 0.
We put an index V resp. V̂ on our previous notation indicating whether we use V or V̂ in
the calculation of it, e.g. xbV (j), xV (j) resp. ybV (j), yV (j) denote the Fourier coefficients

based on V̂ (·) resp. V (·).

First note that by Theorem 4.4.1 in Kirch [29], it holds

∣∣∣∣∣∣

N∑

j=1

(cos(t1λj) cos(t2λj) + sin(t1λj) sin(t2λj))

∣∣∣∣∣∣
6

{
N, t1 = t2,

1, t1 6= t2.
(10.3)

Furthermore denote by

FT (j) :=

{∑T
t=1(V (t) − V̂ (t)) cos(tλj), 1 6 j 6 N,∑T
t=1(V (t) − V̂ (t)) sin(tλj−N ), N < j 6 2N.

By (10.3), (4.1) and an application of the Cauchy-Schwarz inequality we obtain

|FT (j)| 6

T∑

t=1

|V (t) − V̂ (t)| = oP

(
Tα

−1/2
T

)
,

2N∑

j=1

F 2
T (j)

=

T∑

t1=1

T∑

t2=1

(V (t1) − V̂ (t1))(V (t2) − V̂ (t2))

N∑

j=1

(cos(t1λj) cos(t2λj) + sin(t1λj) sin(t2λj))

� N

T∑

t=1

(V (t) − V̂ (t))2 +
∑

t1 6=t2

|(V (t1) − V̂ (t1))(V (t2) − V̂ (t2))|

= oP

(
T 2α−1

T

)
. (10.4)

With this definition we get

xV (j) − xbV (j) =
1√
T

T∑

t=1

(V (t) − V̂ (t)) cos(−tλj) = T−1/2 FT (j),

yV (j) − ybV (j) = T−1/2 FT (N + j). (10.5)

Since a2 − b2 = −(a− b)2 + 2a(a− b) this implies

IV (j) − IbV (j)

= − 1

T
(F 2

T (j) + F 2
T (N + j)) + 2

1√
T
xV (j)FT (j) + 2

1√
T
yV (j)FT (N + j). (10.6)

We are now prepared to prove the assertions for the different bootstrap procedures. We
start with the Wild Bootstrap because for it we only have to verify that Assumption A.1
remains true. We start with the proof af b), since this is also a crucial step for the proof
of a).

b) Wild Bootstrap WB
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10 Proofs of Section 4

Recall that by assumption K(x) > 0, sup |K(x)| <∞ and

2π

ThT

∑

j∈Z

K

(
2πj

ThT

)
= 1 + o(1),

sup
λ∈[0,2π]

|Kh(λ)| = O
(
h−1

T

)
.

Let

pl,T =
K
(

2πl
ThT

)

∑
j∈Z

K
(

2πj
ThT

)

By an application of the Cauchy-Schwarz inequality and of the assertion in Lemma 5.1

sup
k

|f̂V (λk) − f̂bV (λk)| = sup
k

∑

j∈Z

pk−j,T |IV (j) − IbV (j)|

� 1

hTT 2

2N∑

j=1

F 2
T (j) + sup

k

1

T 1/2

∑

j∈Z

pk−j,T (xV (j)FT (j) + yV (j)FT (N + j))

� oP

(
1

hTαT

)
+ sup

k

1

T 1/2

√√√√∑

j∈Z

pk−j,T IV (j)
1

hTT

2N∑

j=1

FT (j)2

= oP

(
(hTαT )−1

)
+ oP

(
(hTαT )−1/2

)
= oP (1)

for αT = h−1
T . This shows that Assumption A.1 remains true for {V̂ (·)}.

a) Residual-Based Bootstrap RB

From the argument above we already know that Assumption A.1 remains true for {V̂ (·)}.
We will now verify that Assumption A.2 remain true in order to have B.2 and B.3. Recall
Assumption P.3, thus similarly to above by (10.6) and (10.4) we get

1

N

N∑

j=1

IV (j) − IbV (j)

f(λj)

= oP (α−1
T ) +

1

T 3/2

√√√√
N∑

j=1

IV (j)

f(λj)

2N∑

l=1

F 2
T (l)

f(λl)

= oP

(
α−1

T + α
−1/2
T

)
= oP (1)

by another application of the Cauchy-Schwarz inequality and by Assumption A.2. Sim-
ilarly

1

N

N∑

j=1

(
IV (j) − IbV (j)

)2

f2(λj)

� 1

TαT

2N∑

j=1

F 2
T (j) +

1

T 2

√√√√
N∑

j=1

I2
V (j)

f2(λj)

2N∑

l=1

F 4
T (l) + F 4

T (N + l)

f2(λl)

� oP

(
T

α2
T

)
+ oP

(
T 1/2

αT

)
= oP (1)
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10 Proofs of Section 4

for αT = O(T 1/2).

From this we get by a2 − b2 = −(a− b)2 + 2a(a− b) and Assumption A.2

1

N

N∑

j=1

I2
V (j) − I2

bV (j)

f2(λj)

� 1

N

N∑

j=1

(IV (j) − IbV (j))2

f2(λj)
+

√√√√ 1

N

N∑

j=1

I2
V (j)

f2(λj)

1

N

N∑

l=1

(IV (l) − IbV (l))2

f2(λl)

= oP (1).

Finally

1

N

N∑

j=1

xV (j) − xbV (j) + yV (j) − ybV (j)√
f(λj)

� 1

T

3/2

√√√√
N∑

j=1

1

f(λj)

2N∑

l=1

F 2
T (l)

� oP (α
−1/2
T ) = oP (1).

Finally we prove that B.4 remains true. Looking carefully at the proof of this assertion

for {V (·)} it is clear that it remains to prove that d2(L∗(˜̃s∗V,1),L∗(˜̃s∗bV ,1)) → 0, where ˜̃s∗V,1

is as ˜̃s∗1 in the proof of Theorem 4.1 and the one with V̂ corresponds to {V̂ (·)} instead
of {V (·)}. With the same underlying random variable UN (1) we easily get

d2
2(L∗(˜̃s∗V,1),L∗(˜̃s∗bV ,1)) 6 E∗

(
˜̃s∗V,1 − ˜̃s

∗
bV ,1

)2

� 1

T 2

N∑

j=1

F 2
T (j) + F 2

T (N + j)

f(λj)
= oP

(
α−1

T

)
= oP (1).

c) Local Bootstrap LB

By the exact same argument as for the Wild Bootstrap (in view of K.1) we get

sup
16k6N

∣∣∣∣∣∣

∑

j∈Z

pj,T (IV (k + j) − IbV (k + j))

∣∣∣∣∣∣
= oP ((αThT )−1 + (αThT )−1/2) = oP (1)

for αT = (T/hT )1/2. Similarly to the proof for the Residual-Based Bootstrap we get

sup
16k6N

∑

j∈Z

pj,T (IV (k + j) − IbV (k + j))2 = oP

(
T

hTα2
T

+
T 1/2

h
1/2
T αT

)
= oP (1),

which yields as above

sup
16k6N

∑

j∈Z

pj,T (I2
V (k + j) − I2

bV (k + j)) = oP (1).

Finally

sup
16k6N

∣∣∣∣∣∣

∑

j∈Z

pj,T (xV (k + j) − xbV (k + j) + yV (k + j) − ybV (k + j))

∣∣∣∣∣∣

= oP

(
(αTh

2
T )−1/2

)
= oP (1).
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11 Proofs of Section 5

Concerning B.4 it holds similarly to above

sup
j
d2

2(L∗(˜̃x∗V (j)),L∗(˜̃x∗bV (j))) = oP

(
(αThT )−1

)
= oP (1)

which completes the proof.

11 Proofs of Section 5

Proof of Lemma 5.1. For a) see Theorem 2.1 in Robinson [53], which shows the
result due to K.1; b) is an easy consequence of Theorem 3.2 in Shao and Wu [55]. They
even give a rate for the convergence of f̂T (λ) − E f̂T (λ). The only thing that still needs
to be shown is

max
λ∈[0,2π]

|E f̂T (λ) − f(λ)| = o(1).

In fact it holds since by assumption k(·) is bounded (continuous and with compact
support) and k(0) = 1 as T → ∞

|E f̂T (λ) − f(λ)| =

∣∣∣∣∣∣
1

2π

T∑

j=−T

T − |j|
T

γ(j)k(jh)e−ijλ − 1

2π

∑

j∈Z

γ(j)e−ijλ

∣∣∣∣∣∣

�
∑

|j|>
√

1/h

|γ(j)| + 1

T
√
h

∑

|j|<
√

1/h

|γ(j)| + sup
|x|6

√
h

|k(x) − k(0)|
∑

|j|<
√

1/h

|γ(j)|

= o(1).

Furthermore they use I(cT ) = T (V̄T − EV (0))2 but by P.2 it holds T (V̄T − EV (0))2 =
OP (1) showing that this term is asymptotically negligible (confer also Remark 4.1).

Remark 11.1. Shao and Wu [55] actually prove their results for the different-looking
estimator

f̃T (λ) =
1

2π

∑

j∈Z

R̂(j)k(jh) exp(−ikλ) =
1

2πT

T−1∑

t=0

I(t)Kh(λ− λt),

where R̂(j) = T−1
∑T−|j|

l=1 (V (j) − EV (1))(V (j + |l|) − EV (1)) and Kh(·) is as in (4.2).
Hence by the T -periodicity of I(j)

f̃T (λ) =
1

2πhT

T−1∑

t=0

I(t)
∑

j∈Z

K((λ− λt + 2πj)/h)

=
1

2πhT

∑

j∈Z

T−1∑

t=0

I(t+ jT )K((λ− λt+jT )/h)

=
1

2πhT

∑

l∈Z

I(l)K((λ− λl)/h) = f̂T (λ) + o(1)

by Assumption K.1, so that the Shao and Wu [55] estimator is identical to the one
considered here.
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Proof of Lemma 5.2. For the proof of a) we show that

sup
16l,k6N

|cov(x(l), x(k)) − πf(λk)δl,k| → 0,

sup
16l,k6N

|cov(y(l), y(k)) − πf(λk)δl,k| → 0. (11.1)

Note that

cov(x(l), x(k)) + cov(y(l), y(k)) = Re


 1

T

∑

16j,s6T

e−i(jλl−sλk) cov(V (j), V (s))


 ,

cov(x(l), x(k)) − cov(y(l), y(k)) = Re


 1

T

∑

16j,s6T

e−i(jλl+sλk) cov(V (j), V (s))


 .

(11.2)

Furthermore since 1 6 l + k 6 T − 1 for all 1 6 l, k 6 N it holds
∑T

j=1 e
−ij(λl+λk) = 0,

hence

1

T

∑

16j,s6T

e−i(jλl+sλk) cov(V (j), V (s))

=
1

T

T∑

j=1

e−ij(λl+λk)
∑

|h|6T−j

e−ihλkγ(h)

=
1

T

T∑

j=1

e−ij(λl+λk)


 ∑

|h|6T−j

e−ihλkγ(h) − 2πf(λk)




6
1

T

T∑

j=1

∑

|h|>T−j

|γ(h)| 6 T−1/2 +
∑

|h|>T 1/2

|γ(h)| = o(1) (11.3)

uniformly in l, k by the absolute summability of the autocovariance function (Assump-
tion P.1). Completely analogous we get for l 6= k, i.e. λl − λk 6= 0

1

T

∑

16j,s6T

e−i(jλl−sλk) cov(V (j), V (s)) = o(1) (11.4)

uniformly in l 6= k. Finally,

1

T

∑

16j,s6T

e−i(j−s)λk cov(V (j), V (s)) − 2πf(λk)

=
∑

|h|<T

(
1 − |h|

T

)
e−ihλkγ(h) − 2πf(λk) = o(1) (11.5)

uniformly in k. Putting together (11.2) – (11.5) yields (11.1). Note that a refined version
of (11.3)–(11.5) under the stronger assumption

∑
h |h|ν |γ(h)| < ∞ for some ν > 0 even

gives the following uniform convergence rate





O (T−ν) , 0 < ν < 1,

O (log T/T ) , ν = 1,

O
(
T−1

)
, ν > 1.

(11.6)
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Note that Ex(k) = E y(k) = 0, since 1
T

∑T
j=1 e

−ijλk = 0. Thus a simple application of
the Markov-inequality yields by (11.1)

1

2N

N∑

j=1

x(j)√
f(λj)

= oP (1),
1

2N

N∑

j=1

y(j)√
f(λj)

= oP (1),

hence assertion a).

Since by Proposition 10.3.1 in Brockwell and Davis [5]

sup
j

|E I(j) − 2πf(λj)| = o(1), (11.7)

assertion b) follows from an application of the Markov inequality and (5.1).

Since E I2(j) = var I(j) + (E I(j))2 it holds by (5.1) and (11.7)

sup
j

|E I2(j) − 2(2πf(λj))
2| = o(1),

hence by (5.2) and an application of the Markov inequality assertion c) follows.

Proof of Lemma 5.3. The proof is close to the proof of Corollary 2.2 in Shao and
Wu [55] who prove an analogous result for the empirical distribution function of the
periodograms. Denote by

s̃T (j) =





x(j)√
πf(λj)

, 1 6 j 6 N,

y(j−N)√
πf(λj−N )

, N + 1 6 j 6 2N.

Theorem 2.1 in Shao and Wu [55] yields the uniform convergence of any linear combi-
nation of s̃(·), i.e. for each fixed p

sup
16j1<j2<...<jp6N ;c∈Rp;|c|=1

∣∣P
(
(s̃T (j1), . . . , s̃T (jp))

T c 6 z
)
− Φ(z)

∣∣ = o(1). (11.8)

First we will use an argument similar to one used by Freedman and Lane [19] to obtain
the uniform convergence of vectors of s̃T (·). We will give the argument only for vectors
of length 2 but the same holds true for length p. Precisely we will prove that

sup
16j1 6=j26N

|P (s̃T (j1) 6 z1, s̃T (j2) 6 z2) − Φ(z1)Φ(z2)| = o(1). (11.9)

Now order the distributions of S̃T,j1,j2 = (s̃T (j1), s̃T (j2)), 1 6 j1 < j2 6 N , N > 1, to
form a single sequence St = (St(1), St(2))T , t > 1, in such a way that if St1 corresponds
to S̃T1,j1,1,j2,1 and St2 corresponds to S̃T2,j1,2,j2,2 , then T1 < T2 implies that t1 < t2.
By Levy’s continuity theorem and (11.8) it holds for each z = (z1, z2)

T (φX denotes
the characteristic function of the random variable X and G1, G2 are two independent
standard normal random variables)

φSt (z) = φ zT St
|z|

(|z|) → φG1
(|z|) = φ(G1,G2)(z).

Thus a second application of Levy’y continuity theorem yields

|P (St(1) 6 z1, St(2) 6 z2) − Φ(z1)Φ(z2)| = o(1)
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and by definition of St we get (11.9).

Define now pj(z) = P (s̃T (j) 6 z) and pj1,j2(z) = P (s̃T (j1) 6 z, s̃T (j2) 6 z). Then it
holds by (11.8) resp. (11.9)

∣∣∣∣∣∣
E




N∑

j=1

wj,N1{esT (j)6z}


− Φ(z)

∣∣∣∣∣∣
6 sup

l
|pl(z) − Φ(z)|

N∑

j=1

wj,N = o(1),

∣∣∣∣∣∣
E




N∑

j=1

wj,N1{esT (j)6z}




2

− Φ2(z)

∣∣∣∣∣∣

6 sup
j1 6=j2

|pj1,j2(z) − Φ2(z)|
∑

16j1 6=j26N

wj1,Nwj2,N

+ (sup
l

|pl(z) − Φ(z)| + |Φ(z) − Φ2(z)|)
N∑

j=1

w2
j,N = o(1),

which remains true uniformly in s if we have weights wj,N,s depending on an additional
parameter additionally with sups

∑
j w

2
j,N,s → 0. Since

E




N∑

j=1

wj,N1{esT (j)6z} − Φ(z)




2

= E




N∑

j=1

wj,N1{esT (j)6z}




2

− Φ2(z) − 2Φ(z)


E




N∑

j=1

wj,N1{esT (j)6z}


− Φ(z)




= o(1),

we get both assertions by the Chebyshev inequality and the uniformity in z follows from
the continuity of Φ(z).

Proof of Lemma 5.4. The proof is very close to the proof of Theorem A.1 in Franke
and Härdle [18] who essentially obtain rates for the situation of A.2 (ii). Referring to
the similarity of arguments, we only sketch the proof of the lemma. Let aT = hTT

−1/3,
mT = ⌊a−1

T ⌋. Then the supremum in a) can be decomposed as follows, where sl =
⌊lT/mT ⌋

sup
16k6N

∣∣∣∣∣∣

∑

j∈Z

pj,Tx(k + j)

∣∣∣∣∣∣

6 sup
|l|6mT

∣∣∣∣∣∣

∑

j∈Z

pj,Tx(sl + j)

∣∣∣∣∣∣
+ sup

|t−s|6T/mT +1

∣∣∣∣∣∣

∑

j∈Z

pj,T (x(s+ j) − x(t+ j))

∣∣∣∣∣∣

= OP (h−1
T T−1/3).

The last line follows by the following two arguments: For the first summand it holds by
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Chebyshevs inequality the assumptions on K(·) and f(·) as well as (5.4)

P


hTT

1/3 sup
|l|6mT

∣∣∣∣∣∣

∑

j∈Z

pj,Tx(sl + j)

∣∣∣∣∣∣
> ǫ




6
∑

|l|6mT

h2
TT

2/3

ǫ2
var


∑

j∈Z

pj,Tx(sl + j)


 � mThTT

−1/3 = O(1).

For the second summand we get using K.1, K.5 and (5.3)

sup
|t−s|6T/mT +1

∣∣∣∣∣∣

∑

j∈Z

pj,T (x(s+ j) − x(t+ j))

∣∣∣∣∣∣
= sup

|t−s|6T/mT +1

∣∣∣∣∣∣

∑

j

(pj−s,T − pj−t,T )x(j)

∣∣∣∣∣∣

� 1

Th2
TmT

T∑

j=1

|x(j)| = OP

(
h−1

T T−1/3
)
.

Analogous arguments yield the assertion for y(·) as well as for b) and c).

12 Proofs of Section 6

Proof of Theorem 6.1. It is sufficient to prove the assertion of Corollary 4.1 under
H0 as well as H1, then the assertion follows from Theorem 3.1 as well as the continuous
mapping theorem. By the Hájek-Renyi inequality it follows under H0

1

T

T∑

t=1

(V (t) − V̂ (t))2 =
̂̃
k

T
(µ− µ̂1)

2 +
T − ̂̃k
T

(µ− µ̂2)
2

=
log T

T


 1√

(log T )
̂̃
k

b̃
k∑

j=1

(V (t) − E(V (t)))




2

+
log T

T




1√
(log T )(T − ̂̃k)

T∑

j=
b̃
k+1

(V (t) − E(V (t)))




2

= OP

(
log T

T

)
,

which yields the assertion of Corollary 4.1.

Under the alternative it holds analogously

1

T

T∑

t=1

(V (t) − V̂ (t))2

=
min(

̂̃
k, k̃)

T
(µ1 − µ̂1)

2 + |d+ µj − µ̂j |2
|̂̃k − k̃|
T

+
T − max(

̂̃
k, k̃)

T
(µ2 − µ̂2)

2

= OP

(
max

(
log T

T
, βT

))
,
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where d = µ1 −µ2 and j = 2 if
̂̃
k < k and d = µ2 −µ1 and j = 1 otherwise, which yields

the assertion of Corollary 4.1.

Proof of Theorem 6.2. Noting that Y ∗(k) =
∑k

j=1 V
∗(j), the assertion follows

from an application of Corollaries 4.1 and 3.1 as well as (6.4), since V (t) − V̂ (t) =
(ρ− ρ̂T )Y (t− 1).
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