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TGF-β-associated extracellular matrix genes link
cancer-associated fibroblasts to immune evasion
and immunotherapy failure
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Pinaki Bose3,4,5,6 & Daniel D. De Carvalho 1,2

The extracellular matrix (ECM) is a key determinant of cancer progression and prognosis.

Here we report findings from one of the largest pan-cancer analyses of ECM gene dysre-

gulation in cancer. We define a distinct set of ECM genes upregulated in cancer (C-ECM) and

linked to worse prognosis. We found that the C-ECM transcriptional programme dysregu-

lation is correlated with the activation of TGF-β signalling in cancer-associated fibroblasts and

is linked to immunosuppression in otherwise immunologically active tumours. Cancers that

activate this programme carry distinct genomic profiles, such as BRAF, SMAD4 and TP53

mutations and MYC amplification. Finally, we show that this signature is a predictor of the

failure of PD-1 blockade and outperforms previously-proposed biomarkers. Thus, our findings

identify a distinct transcriptional pattern of ECM genes in operation across cancers that may

be potentially targeted, pending preclinical validation, using TGF-β blockade to enhance

responses to immune-checkpoint blockade.
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T
he ability to disseminate, invade and successfully colonise
other tissues is a critical hallmark of cancer that involves
remodelling of the extracellular matrix (ECM) laid down

by fibroblasts1. Moreover, cancer-associated fibroblasts (CAFs)
produce key growth factors and cytokines as components of the
ECM that fuel tumour growth, metastasis and chemoresistance
and immune response2–4. Further, ECM changes also predict
prognosis in pancreatic5 and colorectal cancers6,7.

Here we examine the pan-cancer landscape of ECM gene
dysregulation and find that a subset of ECM genes is dysregulated
specifically in cancer and is enriched among transcriptional
changes that distinguish normal from malignant tissue. We fur-
ther show that the high expression of this subset of genes is
adversely prognostic in pan-cancer analyses. Then, using decon-
volution and analyses of transcriptional profiles from dissociated
tumour fractions, we show that these genes are modulated in
CAFs.

Subsequently, based on multiplatform analysis of The Cancer
Genome Atlas (TCGA) data, we correlated these profiles to
transforming growth factor (TGF)-β signalling in the tumour
microenvironment and show that this transcriptional programme
is enriched in immunologically active cancers, suggesting a pos-
sible role in immune evasion/adaptation. Finally, we demonstrate
that this transcriptional programme predicts responses to
immune checkpoint blockade better than mutation burden8,
cytolytic activity (CYT)9, TGF-β expression alone, a CAF sig-
nature10 or a T cell-inflamed signature11. We have thus identified
a novel signature of immune evasion that is a potential target for
pharmacological modulation and may facilitate effective patient
stratification in precision immunotherapy, pending preclinical
validation.

Results
Definition of a pan-cancer ECM dysregulation profile. Initially,
to study ECM gene dysregulation across cancers, we defined a
transcriptional signature to distinguish malignant (n= 8043) and
normal tissues (n= 704) accounting for tumour type (n= 15)
from TCGA and tested for enrichment of an ECM-associated
gene-set we curated based on gene ontology terms (Supplemen-
tary Table 1, Supplementary Figure 1A). We were motivated to
define such a pan-cancer signature given the wide variability of
ECM gene transcription per se across tissue types (Supplementary
Figure 1B).

This identified 58 out of the 249 ECM genes represented in the
RNA-seq data set to be cancer associated (from hereon referred to
as cancer-associated ECM genes (C-ECM genes)) (Supplementary
Table 2), comprising 30 out of the 522 upregulated genes, and 28
out of the 644 downregulated genes, representing significant
enrichment among both upregulated (odds ratio (OR)= 3.51, p <
3.9e−8, Fisher’s Exact Test, two-sided) and downregulated (OR
= 2.57, p= 3e−5, Fisher’s Exact Test) genes in malignant tissues
(Fig. 1a). These C-ECM genes showed generally high correlations
and clustering the Pearson correlation matrix of intergene
correlations across TCGA cancers segregated them into generally
distinct blocks of upregulated and downregulated genes (Supple-
mentary Figure 1C, two sided), suggesting co-regulation.

Notably, 48 out of the 58 of these genes were also implicated in
a previous proteomics-based approach to define a cancer
matrisome12 and we further validated our signature at the
proteomic level by examining transcript–protein correlations
using matched BRCA samples from CPTAC13, wherein mostly
positive correlations were observed for 37 out of the 49 C-ECM
genes covered by both mass spectrometry and RNA-seq
(Supplementary Figure 1D). Analysis using the CPTAC ovarian
cancer data set also yielded similar correlations, with the caveat

that only 24 C-ECM genes were represented in the mass
spectrometric data set (Supplementary Figure 1E)14.

Upon summarisation using ssGSEA (single sample Gene Set
Enrichment Analysis) scores15,16, these C-ECM genes show broad
variation across tumour types (Fig. 1b, Supplementary Figure 1B,
F). We then performed a Cox regression based on quartile-
thresholded C-ECM scores with American Joint Committee on
Cancer stage and tumour type as strata to examine the prognostic
impact of this dysregulation; upregulated C-ECM genes were
significantly associated with poor prognosis (Fig. 1c, d, hazard
ratio (HR)= 1.73, p < 6.3e−7 for top versus bottom quartile, Cox
regression, two sided) while downregulated C-ECM genes were
not (Supplementary Figure 1G), suggesting that the variation we
observed in C-ECM gene transcription is clinically relevant. We
also tested for the independent prognostic capability of C-ECM
genes by repeating this regression with non-ECM upregulated
and downregulated gene score quartiles included as covariates
and found that C-ECM-up scores were still prognostic (HR=
1.41, p= 0.003 for top versus bottom quartile, full model
coefficients in Supplementary Table 3, Cox regression, two sided).

We also performed survival analyses where the quartiles of up-
and-down scores were combined into single categories. This
showed that cancers with the highest quartile of the up-score
(Q4) and the lowest quartile of the down-score (Q1) had
markedly increased risk of death (Supplementary Figure 1H, HR
= 3.18, p < 8.5e−5, Cox regression, two-sided).

C-ECM dysregulation is associated with the presence of CAFs.
Given the previously identified role of distinct stromal cells in
determining the composition and behaviour of the ECM17, we
then attempted to infer the potential cell types associated with C-
ECM transcriptional variation. Using a range of computational
approaches, we examined whether changes in cellular composi-
tion, along with cell-type-specific transcriptional changes, could
be associated with C-ECM gene dysregulation and found multiple
indicators that C-ECM gene dysregulation originated in CAFs.

First, we sought to estimate whether there was a cancer-specific
contribution to the C-ECM signature by examining correlations
between C-ECM scores and tumour purity. This was motivated
by the reasoning that if the C-ECM signature originated in the
tumour epithelial compartment it would be positively associated
with tumour cellularity.

We found tumour purity estimated using ABSOLUTE, which
jointly estimates cancer cell fractions of variants, purity and
ploidy using copy-number data and whole-exome data18, was
inversely correlated for both C-ECM-up and -down scores
(Fig. 2a, S2A). This finding was additionally supported by inverse
correlations between C-ECM scores based on the median variant
allele frequency (VAF) (Rho=−0.17, for the up-score, and Rho
=−0.36, down-score, p < 2.2e−16, Spearman’s correlation) and
purity estimates independently computed using allele-specific
copy number profiles using ASCAT19, downloaded from
COSMIC20 (Rho=−0.28, up-score, and −0.3, down-score, p <
2.2e−16, Spearman’s correlation). The lower correlation of the
median VAF with ECM scores is expected given the confounding
influence of ploidy on the relationship between cancer cell
fraction and VAF21.

The breakdown of correlations between C-ECM scores and
purity estimates for different methods by tumour type have been
presented in Supplementary Figure 2B, and collectively, these
findings hinted at a stromal origin for C-ECM transcriptional
changes.

We then leveraged multiple transcriptomic data sets that were
separated into epithelial and stromal components by micro-
dissection or cell sorting at various resolutions from ovarian
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cancer, head and neck cancer and colorectal cancer, as well as
orthogonal pan-cancer DNA methylation-based deconvolution
approaches in order to further evaluate the hypothesis of stromal
origins and to identify specific cell types associated with the C-
ECM dysregulation. First, projecting the C-ECM signature onto
microdissected ovarian cancer stroma, matched epithelium and
their normal counterparts22 (GSE40595) resulted in clustering by
sample type with strong stromal expression (Fig. 2b). Addition-
ally, probes differentially expressed between cancer epithelium
and stroma were significantly enriched for both C-ECM-up and
-down genes while differentially expressed probes between cancer
and normal stroma were enriched in C-ECM-up genes alone
(Fig. 2c). Altogether, these results suggest that our C-ECM-up
signature comprises genes upregulated in the cancer stroma
versus the normal stroma, while our C-ECM-down signature
comprises genes upregulated in stroma (normal and cancer)
versus epithelial tissue. In contrast, non-ECM genes in the pan-
cancer cancer-versus-normal signature displayed weaker enrich-
ment or epithelial associations in some cases (Supplementary
Table 4).

Subsequently, DNA methylation-based deconvolution analysis
using MethylCIBERSORT23 implicated CAFs, CD8 T cells and
CD14 monocytes as directly correlated with C-ECM signature

scores pan-cancer (Fig. 2d) in addition to confirming inverse
associations with tumour purity (Supplementary Figure 2B).
Importantly, C-ECM-up genes (ssGSEA scores) showed a positive
correlation to the inferred CAF frequency in most TCGA cancer
types (Supplementary Figure 2C). We also validated these DNA
methylation-based inferences of cellular association using tran-
script levels of known marker genes for CYT (geometric mean of
GZMA and PRF1), CD8 T cells (CD8A expression), CAFs
(ACTA2 expression) and monocytes (CD14 expression) where-
upon we noticed strong, consistent agreement (Supplementary
Figure 2D).

Further validation of stromal and CAF association was then
performed in three colorectal cancer microarray data sets
(GSE39397 and GSE35144)6,7. In these data sets, C-ECM genes
were strongly expressed in the stromal compartment and, when
cell types were resolved further, mostly localised to fibroblast
fractions (Supplementary Figure 2E). We also found that upon
comparison of xenograft expression profiles (which retain just
human tumour epithelium) with their matched primary tumour
counterparts, the expression of C-ECM genes was completely
ablated upon the loss of human tumour stroma (Supplementary
Figure 2E).
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Fig. 1 ECM genes are significantly associated with tumorigenesis and prognosis. a Volcano plot showing fold changes for genes differentially expressed

between cancer and normal samples. ECM genes are enriched in upregulated and downregulated genes. b Boxplots of C-ECM-up enrichment scores show

variation across tumour types (n= 9716, see S1F for C-ECM-down genes). c Plot of Cox model coefficients by quartile for C-ECM-up and -down scores

pan-cancer, error bars indicate 95% confidence intervals (n= 6128). d Unadjusted Kaplan–Meier curves showing survival by C-ECM-up-quartile., asterisks

indicate statistical significance. ***p < 0.001. On the volcano plot, y axis=−log10 fold change, x axis= test statistic/fold change/Spearman’s Rho. On

volcano plots, all enrichment statistics are from Fisher’s Exact Tests
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Notably, the CAF specificity of C-ECM transcription was
further indicated by the absence of expression in the leukocyte
compartment in these data sets, suggesting that while monocyte
enrichment and CD8 infiltration co-occur with C-ECM upregu-
lation, they are not the source of C-ECM transcriptional changes
(Supplementary Figure 2E).

Finally, as an ultimate test of a CAF origin, we examined a data
set of single-cell transcriptomes from head and neck squamous
cell carcinoma (HNSCC; GSE103322), which we selected owing

to the large collection of CAFs (n= 1440) profiled in the study24.
We found markedly higher expression of C-ECM genes in CAFs,
which clustered together when the signature was projected onto
the data set (Fig. 2e). In this data set, C-ECM-up and -down
ssGSEA scores were significantly elevated in CAFs compared to
other cell types (Fig. 2f), and this was also independently verified
in an additional colorectal cancer single-cell RNA-seq data set,
which contained a small number of CAFs (GSE81861, Supple-
mentary Figure 2F)25. Finally, we also performed statistical
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suggesting stromal origin; colours represent cancer types, number shows Spearman’s Rho (n= 8128). b Heatmaps of C-ECM-up and -down signatures
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testing for CAF association for each C-ECM gene in the HNSCC
scRNA-seq data set and found that 45 genes were significantly
overexpressed (mean difference >0, false discovery rate (FDR) <
0.05, Wilcoxon’s Rank Sum Test) and 10 genes were significantly
underexpressed in CAFs compared to other cell types (Supple-
mentary Figure 2G).

Collectively, these lines of evidence suggest that C-ECM
profiles are generated mainly through the modulation of

transcriptional profiles in CAFs as a general feature of
malignancy.

C-ECM dysregulation is correlated with immunological activ-
ity. Given that C-ECM scores correlate with CD8 T cells and CYT
(Fig. 2d and Supplementary Figure 2D, and the fact that C-ECM-
up scores are adversely prognostic despite the positive prognostic
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and species from MSigDB. d Volcano plot showing enrichment for C-ECM genes in TGF-β-induced transcriptional changes in immortalised normal
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impact of CYT9, we postulated that the C-ECM-up score may be
enriched in immunologically ‘hot’ tumours and may reflect an
adaptive mechanism of immune evasion. Our subsequent ana-
lyses uncovered robust evidence for this association using mul-
tiple orthogonal approaches.

Initially, we discovered that C-ECM-up score was positively
correlated with mutational burden (Rho= 0.23, p < 2.2e−16)
while the down-signature was negatively correlated (Rho=
−0.21, p < 2.2e−16) (Fig. 3a). Similarly, C-ECM scores and Class
I neoantigen burden also showed concordant associations (Rho
= 0.21 and −0.21, p < 2.2e−16, Supplementary Figure 3A, Spear-
man’s correlation).

Then we tested for associations between C-ECM scores and
microsatellite instability, an immunotherapy response biomarker
per se26, and found significant associations (Supplementary
Figure 3B).

Additionally, we assessed macrophage polarisation using
CIBERSORT27 and found that the ECM-up signature was
associated with a greater fraction of M1 (immunoactive) relative
to M2 (immunosuppressive) macrophages (Supplementary Fig-
ure 3C). Finally, we found that multiple immune checkpoints,
including IDO1, B7-H3 and PD-L2, were overexpressed in
samples in the top quartile of the C-ECM-up score distribution
relative to bottom quartile cancers after adjusting for tumour type
(2 fold change (FC), FDR < 0.01, Supplementary Data 1),
indicating the upregulation of adaptive resistance mechanisms
to immune-cell-mediated destruction (Supplementary Figure 3D).
Moreover, these themes were broadly reinforced by ingenuity
pathway analysis (IPA) canonical pathway analysis (Supplemen-
tary Data 2), which identified enrichment for inflammatory
processes and adaptive immune responses enriched in samples in
the top quartile of the C-ECM-up score (Fig. 3b).

C-ECM dysregulation is linked to TGF-β activation. Next, since
our data suggest that the C-ECM-up signature associated with the
presence of CAFs and not with normal stroma (Fig. 2b, c), we
endeavoured to find putative drivers responsible for this dysre-
gulation. To do this, we divided samples into quartiles based on
the C-ECM-up score and then performed linear modelling using
limma-trend with cancer type as a covariate.

IPA causal network analysis, after restriction to candidate
regulators which by themselves differentially expressed between
C-ECM-up top and bottom quartiles, identified TGF-β as one of
the most activated regulators (Supplementary Figure 3E) and
upstream regulatory analysis further identified multiple SMAD
transcription factors, AP1 complex members that associate with
SMADs28 and SMARCA429 (Supplementary Figure 3F, Supple-
mentary Data 3), all critical for TGF-β transcriptional responses
as activated in c-ECM-up-high cancers.

Moreover, we also performed orthogonal analyses using TCGA
reverse phase protein array (RPPA) data (n= 4278) and
identified 13 differentially abundant peptides between upper
and lower quartiles of the ECM-up score (FC > 1.3, FDR < 0.01,
Supplementary Figure 3G). Notably, these included increased
levels of fibronectin and PAI1, both ECM components, and a vast
majority of these peptides have known prior associations in the
literature with TGF-β (see Supplementary Table 5 for each
reference), reinforcing the inference of activated TGF-β
signalling.

Importantly, in our RNA-seq analyses, TGF-β is significantly
overexpressed in upper quartile C-ECM-up cancers, along with
multiple mediators of ECM deposition such as FGF family
members (FGF1, FGF18), BMPs (BMP1 and BMP8A) and the
local sequestrators of TGF-β, FBP1 and LTBP1. Further, we
compiled a collection of TGF-β upregulated target genes across

various tissues and across species from MSigDB (C2 collection)
while excluding C-ECM genes and found a very strong
correlation between C-ECM-up scores and this set (R= 0.78, p
< 2.2e−16, Fig. 3c), suggesting TGF-β activation, and not only
presence, is correlated with the C-ECM-up score. As a direct
empirical test of the hypothesis that C-ECM-up genes are induced
by TGF-β activation in fibroblasts, we compared the expression
profiles of TGF-β-treated immortalised ovarian fibroblasts
(GSE40266)22 versus untreated controls.

This revealed marked enrichment for C-ECM-up genes among
differentially expressed genes (DEGs) (Fig. 3d, OR= 23, p < 2.2e
−16, Fisher’s Exact Test), further strengthening the notion that
C-ECM-up gene dysregulation is associated with TGF-β signal-
ling in CAFs. However, C-ECM-down genes were not signifi-
cantly enriched among downregulated genes following TGF-β
stimulation, suggesting that C-ECM-up genes represent TGF-β
activation in CAFs, while C-ECM-down genes represent more
normal fibroblasts.

TGF-β is known to exert a multitude of effects in the tumour
microenvironment; it is capable of stimulating fibrosis, inducing
epithelial–mesenchymal transition and driving metastasis30,31. In
contrast, it can also induce tumour-suppressive cytostasis32. We
therefore tested whether distinct genomic adaptations dispro-
portionately occurred in cancers with high C-ECM-up scores and
whether these had known roles in TGF-β signalling.

We initially defined a set of candidate driver genes with
evidence of positive selection in cancer and carried out linear
modelling regressing the presence of nonsilent mutations against
C-ECM-up score with cancer type as a covariate to identify
genomic events that permitted adaptation to activation of the
TGF-β pathway33. This uncovered multiple notable candidates,
including TP53, SMAD4, BRAF, ACVR1B and NF1/2 (Fig. 3e).

We also repeated the analysis using a compendium of 111
GISTIC34 copy-number peaks defined across TCGA and found
18 out of the 111 candidate peaks to be associated with C-ECM-
up score, most notably MYC amplification at 8q24.3 (Fig. 3f).
Most of these genomic events have been directly associated with
TGF-β pathway signalling (Supplementary Table 6 lists the
relevant literature).

C-ECM dysregulation predicts failure of PD-1 blockade.
Finally, we tested whether C-ECM dysregulation is an immune-
evasion mechanism in the context of PD-1/PD-L1 blockade,
where immunologically ‘hot’ tumours are associated with
responses35. We did not include CTLA4-blockade data because of
the small number of patients and qualitative differences in the
biology of PD-1 and CTLA4 blockade36. Eligible data sets were
required to contain RNA-seq data and matched mutation/class I
major histocompatibility complex (MHC) counts from whole-
exome data from pre-treatment biopsies.

In two out of three cohorts of PD-1-blockade-treated patients
(two melanoma, one bladder)37–39, the C-ECM-up score was
significantly higher in progressors (Fig. 4a, p < 0.05, Wilcoxon’s
Rank Sum Test). This was also true in pooled logistic regression
accounting for cancer type, CYT, mutational load, a T cell-
inflamed signature11, cohort, antibody and prior anti-CTLA4
treatment (Fig. 4b).

Next, comparing prediction performance using logistic regres-
sion with 0.632 bootstrapping40 showed that models with C-ECM
ssGSEA scores significantly outperformed those involving CYT, a
T cell-inflamed signature and mutation load alone (Fig. 4c, S4A).
This is notable given that the latter three factors have been
proposed as biomarkers for patient stratification for immu-
notherapy. Moreover, the aggregate score is comparable to a
random forest fit with individual C-ECM genes, suggesting that
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these genes may be largely co-regulated. Finally, restricted
hypothesis testing using limma-trend found 19 C-ECM genes
overexpressed at FDR < 0.1 (Fig. 4d) between responders and
nonresponders, defining a practical signature for clinical applica-
tion (Supplementary Figure 4B)

C-ECM profiles independently predict PD-1-blockade failure.
Our results were consistent with three models that we went on to
further resolve. In one, TGFB1/TGFB2 expression is associated
with immunotherapy failure and there is no direct link with CAFs
and the C-ECM programme. In the second, the presence of CAFs
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alone is sufficient and TGF-β-induced C-ECM gene expression
does not add predictive value. In the final model, the C-ECM
programme is activated by TGF-β in CAFs and is the causal
determinant of immunotherapy failure.

To differentiate between these models, we applied the pooled
logistic regression approach described earlier, as well as the 0.632
bootstrapping approach, to estimate model performance in an
unbiased manner.

In pooled analyses, TGFB1 and TGFB2 expression by
themselves did not predict immunotherapy failure (Supplemen-
tary Figure 4C, middle plot). A CAF signature derived from
single-cell analyses of melanomas10 was used to estimate CAF
abundance and this score was significantly associated (coefficient
=−2.61, p= 0.03) (Supplementary Figure 4C, bottom plot),
suggesting that CAF abundance plays a role.

However, this effect was stronger for the C-ECM-up score in
the C-ECM-based model (coefficient=−4.03, p= 0.01), and
when C-ECM scores, the CAF signature score and TGFB1/2
expression are all included in a joint model, the CAF score loses
significance while the C-ECM signature shows even stronger
associations (coefficient=−8.47, p= 0.007) (Supplementary
Figure 4C, top plot), consistent with the predictive value of
CAFs being mediated through an association with the C-ECM-up
signature. In accordance with these observations, in our machine
learning evaluation, TGFB1/TGFB2-based models and the CAF-
signature-based models are significantly outperformed by C-
ECM-based models (Fig. 4c). Collectively, these results suggest
that the C-ECM-up programme per se, and not simply CAF
abundance or TGF-β activation in the tumour microenvironment
in general, is associated with PD-1 blockade failure.

As a final test of the hypothesis that both TGF-β and CAFs are
required for induction of the C-ECM signature, we binned
samples from our immunotherapy data into low and high groups
(first quartile versus all other quartiles) for TGFB1 expression and
the Tirosh CAF ssGSEA score. We predicted that CAF-high
TGFB-high cancers would display the highest C-ECM-up score,
that CAF-low TGFB-low cancers would display the lowest
enrichment, while the other two combinations would display
significantly lower expression than CAF-high TGFB-high cancers
because both factors are necessary but insufficient alone.
Statistical comparisons (pairwise Mann–Whitney tests, FDR
correction) confirmed our prediction (Fig. 4e).

Discussion
In this study, we have identified a pan-cancer role for ECM
dysregulation. Using a range of approaches, we show that ECM
dysregulation is associated with the presence of CAFs and the
activity of TGF-β, among other regulators. Our model fits a
scenario where the C-ECM-down signature represents normal/
normal-like fibroblasts, whereas the TGF-β-driven C-ECM-up
signature identifies a poor prognosis CAF activation phenotype
that is upregulated pan-cancer. We further show that tumours
that are otherwise 'immunologically hot' tend to display higher
levels of the C-ECM-up programme and possess genomic
alterations that may minimise the fitness costs of the high levels
of TGF-β signalling required to sustain the C-ECM-up pro-
gramme. These statistical associations serve as suggestive early
evidence supporting the continued experimental investigation of
TGF-β in immune modulation across tissue types.

Given this, the depletion of CAFs may be a potential approach
to enhance checkpoint blockade; however, in some cases, CAF
depletion per se is paradoxically associated with worse out-
comes41. This suggests approaches that seek to normalise the
aberrant transcriptome in fibroblasts, possibly through TGF-β
blockade, are likely to offer a more promising route to boost the

efficacy of checkpoint blockade. Consistent with this, recent
preclinical studies have uncovered evidence that simultaneous
targeting of both TGF-β and PD-L1 can result in markedly better
tumour control in multiple mouse models42. Moreover, recent
studies using genetically reconstituted murine colorectal can-
cers43, and those based on transcriptional analyses of bladder
cancers treated with PD-L1 blockade7, have arrived at similar
conclusions and have demonstrated that TGF-β blockade can
markedly potentiate antitumour immunity by modulating CAF-
mediated T cell-exclusion phenotypes.

Our pan-cancer analyses establish the presence of a TGF-β-
associated C-ECM programme that is correlated with immu-
notherapy failure and indicate the existence of subsets of C-ECM-
high cancers independent of tissue type. Relevantly, prior work
has suggested that negative selection in cancer is generally weak
as a pan-cancer phenomenon, suggesting that the depletion of
immunogenic mutations through immunoediting is weak33. The
widespread occurrence of the C-ECM programme across cancer
types may help explain, at least partially, why this is the case.

Our results suggest that tumours with elevated C-ECM pro-
gramme across cancer types may likely benefit from combination
immunotherapy with PD-1 blockade and TGF-β blockade to
restore immune control of tumours. Future tissue-agnostic, C-
ECM biomarker-guided basket trials are necessary to validate this
hypothesis.

Finally, our findings linking TGF-β activity, CAFs, C-ECM
signature and immunosuppression of otherwise immune ‘hot’
tumours are associative and further experiments would be
required to prove a causal link.

Methods
General statistical procedures. All tests were two sided and were performed for
unmatched samples measured once.

Analysis of ECM signatures in cancer. RNA-seq data were obtained in the form
of RSEM estimates from SAGE Synapse. This was reduced to 15 cancer types that
had >10 normal samples available and low expressed genes were filtered (average
<1 CPM).

Limma-trend44 was then used to compute DEGs between normal and cancer
samples while controlling for cancer type at thresholds of FDR < 0.01, 2FC.
Controlling for the cancer type was explicitly used in order to minimise the effects
of class imbalance and also to derive a picture of ECM gene dysregulation
independent of cancer type.

A reference gene set of extracellular matrix genes was derived using the gene
ontology term 'extracellular matrix' (GO:0031032) biological process category (used
by UniprotKB) and downloaded from geneontology.org. Gene ontology terms and
enrichments in overlap were computed using Fisher’s Exact Test.

Significant upregulated and downregulated ECM genes were used to define gene
sets whose expression was summarised using ssGSEA15 for each sample. Clinical
data were then derived from SAGE synapse for a large subset of these tumours
(Accession: syn7343873) and ECM-up and -down scores were divided into
quartiles for categorisation. Validation at the protein level was performed using
Spearman’s Rank Correlation between RNA-seq and mass spectrometry for
matched BRCA and OVCA samples profiled by TCGA and CPTAC, with the mass
spectrometric data derived from the corresponding publications.

A stratified Cox regression model was of the form Survival ~ ECM-up-quartile
+ ECM-down-quartile+ strata(cancer type)+ strata(stage) was fit to estimate
impact on prognosis. Similarly, a combined analysis was performed by fusing
ECM-up and -down quartile categories.

Microenvironmental analyses of ECM dysfunction. ABSOLUTE18 was used to
derive purity and ploidy estimates for n= cancers. ECM scores were tested for
association with purity using Spearman’s Rank Correlations. This analysis was then
repeated using purity estimates from ASCAT19 derived from COSMIC and the
median VAF of mutations was obtained from the MC3 MAF (Synapse:
syn7214402)45.

An ovarian cancer data set was then obtained from GEO (GSE40595) and
normalised using fRMA46. C-ECM genes were then projected onto the data set to
visualise clustering by phenotype. Significant probes were then identified for cancer
epithelium versus cancer stroma and cancer stroma versus cancer epithelium using
limma. Fisher’s Exact Tests were used to test for enrichment of ECM signatures
among DEGs (defined using limma).
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Cellular deconvolution analyses were carried out using estimated cellular
fractions produced using MethylCIBERSORT using Spearman’s Rank Correlations
between the ECM-up and -down scores. These findings were validated using gene
expression of associated markers (ACTA2, CD14, CD8A and CYT) using
Spearman’s Rank Correlation. Validation of CAF association was performed in
single-cell RNA-seq data from HNSCC, selected owing to the availability of large
numbers of CAFs (n= 1440) (GSE103322) by projecting ECM signatures onto log2
(TPM+ 1) transformed matrices. Data were obtained in a TPM matrix from GEO
and the cell-type allocations were taken from the corresponding publication,
wherein known cellular markers were used to define populations. ssGSEA scores
were computed and Mann–Whitney tests were used to test for differential
expression.

Additional validation was performed using count data for colorectal cancer
single cells from GSE81861. Flow-sorted samples and colorectal cancer xenograft
data were obtained from GEO data sets (GSE39397 and GSE35144)6,7 and
heatmapping was used to visualise associations between C-ECM gene expression
and cell type.

Immunological correlates of ECM dysfunction. HLA type for MHC class I alleles
was retrieved from The Cancer Immunome Atlas47. Topiary (https://github.com/
openvax/topiary) was then used in combination with the MC3 set of TCGA
mutation calls (Synapse:syn7214402) to define variants and potential neoantigens,
using nonamers and thresholds of binding affinity <500 nM. Mutation loads were
also computed for the same set of samples.

Spearman’s correlation and negative binomial models were used to test for
associations between these genomic counts and ECM scores after adjusting for
cancer type. M1/M2 macrophage fractions were computed using CIBERSORT27.

The expression of immune checkpoints was computed as part of whole-
transcriptome analyses from differential expression between the top and bottom
quartiles of the ECM-up score, adjusting for cancer type. Mismatch repair analyses
were carried out using TCGA-allocated status based on Sanger sequencing
published previously48.

Multiplatform correlates of ECM dysfunction. For RNA-seq and RPPA data,
limma-trend was used to compute differentially regulated genes/proteins at
thresholds of 2FC, FDR < 0.01 and 1.3FC, FDR < 0.01 by comparing samples in the
top and bottom quartiles of ECM-up score, respectively.

IPA was used to perform a core pathway analysis using interactions
experimentally verified in human tissues in general. Causal network analysis results
were restricted to those themselves differentially expressed, while upstream
regulatory analyses were not.

For mutation analyses, we retrieved a previously published catalogue of driver
mutations33 (positively selected) in cancer and carried out linear regression against
ECM-up score with cancer type for a covariate. For copy-number data, we
generated GISTIC34 calls pan-cancer at intensity thresholds of 0.3 and FDR < 0.01.
Events for each GISTIC peak were dichotomised into altered/wild type and were
regressed against ECM-up scores using a linear model with cancer type as
covariate.

Analysis of immunotherapy data sets. We assembled RNA-seq, mutation and
neoantigen burden data from multiple immunotherapy data sets and standardised
the expression data to consider transcripts quantified in all data sets. Then we
computed ssGSEA scores for the C-ECM-up and -down scores for each data set
and examined association with response (partial response/complete response/stable
disease versus no response) by Response Evaluation Criteria in Solid Tumours
criteria using Mann–Whitney tests. A pooled logistic regression was conducted
using the C-ECM scores from the three data sets with cancer type and treatment as
covariates.

Finally, 100 iterations of 0.632 bootstrapping40 were carried out to evaluate the
performance of logistic regression and Cohen’s unweighted Kappa was used to
evaluate model performance. For Random Forest-based analyses, we first
subtracted study-specific effects using a linear model via the removeBatchEffects
function in the limma R package. Mann–Whitney tests were used to compare
model performance across resamples. The models fit were C-ECM+ CYT, C-ECM
alone, TGFB1 alone, Mutational load+ CYT and C-ECM, CYT and mutational
load, a CAF signature derived from Tirosh et al.10 and an interferon-induced
signature11 (and in each case, the study/cohort was included as a covariate).
Limma-trend was used to identify ECM genes differentially expressed between
nonresponders and responders using restricted hypothesis testing at FDR < 0.1.
Finally, for analysis of mechanistic hypotheses surrounding the relative
contributions of CAFs, TGF-β and the C-ECM-up score to immunotherapy failure,
we fit the following logistic regression models. (i) Response ~ TGFB1+ TGFB2+
log2(MutLoad)+ T cell-inflamed GEP score+Cohort, (ii) Response ~ Tirosh CAF
signature score+ log2(MutLoad)+ T cell-inflamed GEP score+ Cohort, (iii)
Response ~ C-ECM-up score+ Tirosh CAF signature score+ TGFB1+ TGFB2+
log2(MutLoad)+ T cell-inflamed GEP score+ Cohort. To test whether both
TGFB1 and CAFs were required for activation of the C-ECM-up signature, we
defined the lowest quartile of the Tirosh CAF signature score, and the lowest
quartile of TGFB1 expression, as low and the rest as high. Pairwise Mann–Whitney

tests were computed between the four groups produced thus with
Benjamini–Hochberg correction for FDR.

Code availability. Knit HTML R markdowns of the code used to generate the
results are available on Zenodo at https://doi.org/10.5281/zenodo.1410639.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
TCGA data used in this paper are available from SAGE Synapse (https://www.
synapse.org) at accessions syn7343873, syn4311114, syn4303551 and syn7214402.
Single-cell RNA-seq and gene expression microarray data used in this study are
available at GEO (https://www.ncbi.nlm.nih.gov/geo/) accessions GSE40595,
GSE103322, GSE39397, GSE35144 and GSE81861. RData files of intermediate
processed objects are available upon reasonable request from the authors.
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