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Mesenchymal stem cells (MSCs) can differentiate into several lineages during development
and also contribute to tissue homeostasis and regeneration, although the requirements for
both may be distinct. MSC lineage commitment and progression in differentiation are reg-
ulated by members of the transforming growth factor-b (TGF-b) family. This review focuses
on the roles of TGF-b family signaling in mesenchymal lineage commitment and differen-
tiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes.We summarize
the reported findings of cell culture studies, animal models, and interactions with other
signaling pathways and highlight how aberrations in TGF-b family signaling can drive
human disease by affecting mesenchymal differentiation.

M
esenchymal stem cells (MSCs) are multi-

potent cells that have the ability for self-

renewal and the capacity to progress into several
cell lineages, including osteoblasts, chondro-

cytes, myoblasts, adipocytes, and tenocytes

(Friedenstein et al. 1970, 1976; Grigoriadis
et al. 1988; Pittenger et al. 1999; Horwitz et al.

2005; Augello and De Bari 2010; Worthley et al.

2015). They contribute to tissue differentiation
and regeneration, including maintenance of

tissue homeostasis and function, adaptation

to altered metabolic or environmental require-
ments, and repair of damaged tissue (Frieden-

stein et al. 1970; Grigoriadis et al. 1988;

Pittenger et al. 1999; Charge and Rudnicki
2004; Augello and De Bari 2010). MSCs have

been isolated from fetal tissues, adult bonemar-

row, and most connective tissues, including

adipose tissue, dental tissues, and skin, as well
as from peripheral blood, synovial fluid, and the

perivascular compartment (Friedenstein et al.

1970, 1976; Pittenger et al. 1999; Tang et al.
2004; Bartsch et al. 2005; Wagner et al. 2005;

Crisan et al. 2008; Morito et al. 2008; Riekstina

et al. 2008; Huang et al. 2009a; Ab Kadir et al.
2012; Raynaud et al. 2012). MSCs can, in a first

step, commit to specific cell lineages and then,

in a second step, progress in differentiation
along these lineages. These steps are initiated

and regulated through interactions with other

cells, in response to mechanical signals, and by
extracellular signaling factors. Together, these
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interactions and signals promote or suppress

the expression of cell lineage-specific transcrip-
tion and survival factors that regulate expres-

sion of genes important for the specific cell

functions of this lineage (Grigoriadis et al.
1988; Pittenger et al. 1999; Langley et al. 2002;

Javed et al. 2008; Karalaki et al. 2009; Wang

and Chen 2013; Worthley et al. 2015). For
instance, MSC-derived preosteoblasts express

early markers of the osteoblast lineage, includ-

ing type I collagen (encoded by Col1A1 and
Col1A2) and alkaline phosphatase (encoded

by Alpl), whereas terminally differentiated oste-

oblasts express genes such as Bglap, encoding
osteocalcin (Ocn), and show the capacity to

form amineralized extracellular matrix (Fakhry

et al. 2013). Interestingly, and potentially of
therapeutical interest, MSCs may also transdif-

ferentiate in culture into cells of ectodermal and

endodermal lineages, and express markers of
neuronal cells, hepatocytes, or pancreatic cells

(Safford et al. 2002; Kanafi et al. 2013; Wang

et al. 2014). Furthermore, MSCs can support
hematopoietic cells in the bone marrow micro-

environment, and exert anti-inflammatory and

immunomodulatory effects through interac-
tions with the immune system (Haynesworth

et al. 1996; Aggarwal and Pittenger 2005;

Li et al. 2005; Carrade et al. 2012; Franquesa
et al. 2012; Svobodova et al. 2012).

The commitment of MSCs to certain mes-

enchymal lineages, and their progression in dif-
ferentiation along these lineages, is controlled

by specific transcription factors. For instance,

osteogenic lineage commitment is induced by
the expression of runt-related transcription fac-

tor 2 (Runx2), a master transcription factor of

osteoblastogenesis (Ducy et al. 1997; Komori
et al. 1997; Otto et al. 1997; Komori 2010a).

Runx2 promotes differentiation of MSCs into

preosteoblasts and expression of genes during
early stages of osteoblast differentiation, while

it inhibits MSC commitment to the adipocyte

lineage (Komori 2010b). Further osteoblast dif-
ferentiation and maturation is then driven by

the expression of the transcription factor osterix

(Osx, encoded by Sp7), resulting in increased
alkaline phosphatase activity and mineraliza-

tion (Nakashima et al. 2002; Komori 2006).

Runx2 is not crucial to promote differentiation

into mature osteoblasts, and its expression is
reduced later during differentiation (Maruyama

et al. 2007; Komori 2010b).

The commitment of MSCs to the adipocyte
lineage is induced by expression of the CCAAT/
enhancer binding proteins (C/EBPs) b and d

(encoded by Cebpb and Cebpd, respectively)
(Cao et al. 1991; Otto and Lane 2005). To allow

DNA binding, C/EBPb requires “activation” by

phosphorylation by extracellular signal-regulated
kinase (Erk) mitogen-activated protein kinase

(MAPK), and glycogen synthase kinase-3b

(GSK3b), and, consequently, induces expres-
sion of C/EBPa and peroxisome proliferator-

activated receptor-g (PPARg) (encoded by

Cebpa and Pparg, respectively) (Wu et al. 1996;
Rosen and MacDougald 2006; Tang and Lane

2012). PPARg and C/EBPa together regulate

genes that are important for the adipocyte phe-
notype and drive progression of adipocyte dif-

ferentiation (Tang and Lane 2012). Although

PPARg and C/EBPa are expressed throughout
the differentiation process, C/EBPb expression

is down-regulated at later stages (Chen et al.

2016). Interestingly, the key osteogenic and adi-
pogenic transcription factors Runx2 and PPARg

inhibit each other’s expression, and PPARg also

inhibits chondrogenesis (Zhang et al. 2006;
Isenmann et al. 2009; Valenti et al. 2011).

MSC differentiation to the chondrogenic

lineage requires expression of the key chondro-
genic transcription factor SRY-box 9 protein

(Sox9, encoded by Sox9), a member of the

“high-mobility group box” transcription factor
family (Lefebvre and Smits 2005;Quintana et al.

2009). In addition, the transcription factor NK3

homeobox 2 (Nkx3.2, encoded by Nkx3-2)
maintains Sox9 expression by blocking the

expression of inhibitors of Sox9 transcription,

and Sox9 and Nkx3.2 can induce each other’s
expression (Zeng et al. 2002; Kozhemyakina

et al. 2015). At later stages of differentiation,

Sox5 and Sox6, together with Sox9, promote
progression to chondrocyte differentiation,

but Sox9 expression is reduced in late-stage hy-

pertrophic chondrocytes (Akiyama et al. 2002;
Ikeda et al. 2004; Lefebvre and Smits 2005; Koz-

hemyakina et al. 2015; Liu and Lefebvre 2015).
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The key transcription factors for myogenic

differentiation are Myf5, Mrf4, MyoD, and
myogenin, members of the MyoD family of

myogenic regulatory factors (MRFs), which

act in cooperation with myocyte enhancer
factor (MEF) proteins (Weintraub et al. 1991;

Rudnicki et al. 1993; Naya and Olson 1999;

Sabourin et al. 1999; Berkes and Tapscott
2005). Myf5, Mrf4, and MyoD are essential for

myogenic lineage commitment (Rudnicki et al.

1993; Kassar-Duchossoy et al. 2004), and myo-
genin together with Mrf4, MyoD, and MEF2

family members, which induce the expression

of late muscle-specific genes, drive the progres-
sion of myogenic differentiation (Hasty et al.

1993; Naya and Olson 1999; Myer et al. 2001;

Berkes and Tapscott 2005).
The key transcription factors that control

commitment of MSCs to the tenocyte lineage,

and drive progression in differentiation are in-
completely understood. Scleraxis (Scx) is a key

transcription factor involved in tenocyte lineage

selection, and activates the expression of ten-
don-related genes, while inhibiting osteogenic,

chondrogenic, and adipogenic differentiation

(Shukunami et al. 2006; Li et al. 2015). Howev-
er, the exact roles of other transcription factors

associated with tendon development, including

Six1, Six2, Eya1, Eya2, and Mohawk, have to be
elucidated in future studies (Aslan et al. 2008;

Jelinsky et al. 2010; Onizuka et al. 2014).

Multiple members of the transforming
growth factor-b (TGF-b) signaling familymod-

ulate MSC lineage selection and progression

of mesenchymal differentiation into specified
cells, by controlling the expression and activities

of these key transcription factors (Minina et al.

2001; Langley et al. 2002; Huang et al. 2007b;
Neumann et al. 2007; Lee et al. 2011; Dorman

et al. 2012). TGF-b family signaling is initiated

by extracellular ligands that bind at the cell-
surface to specific tetrameric transmembrane

receptor complexes, consisting of two type II

and two type I receptors (Feng and Derynck
2005; Chaikuad and Bullock 2016; Heldin

and Moustakas 2016). Ligand binding to the

receptor complex induces phosphorylation of
the type I receptor I kinase domains by the

type II receptors, resulting in the activation of

intracellular signaling mediators (Shi and Mas-

sagué 2003; Feng and Derynck 2005; Hata and
Chen 2016). TGF-b family ligands include

TGF-b1, b2, and b3, bone morphogenetic pro-

teins (BMPs), activins, and growth and differ-
entiation factors (GDFs), including myostatin

(GDF-8). TGF-b1 and TGF-b3 bind primarily

to the TGF-b receptor type II (TbRII), which
then activates the ALK-5/TbRI type I receptor
(gene name Tgfbr1), whereas TGF-b2 requires

binding to betaglycan (also called TGF-b type
III receptor) or cooperative binding to TbRII

and ALK-5/TbRI to activate the TbRI (Chai-

kuad and Bullock 2016). Activins bind to
the activin type II receptors ActRII (also known

as ActRIIA) and ActRIIB, which induce phos-

phorylation of ALK-4 (ActRIB, gene name
ACVR1B), whereas BMPs bind to BMPRII,

ActRII, and ActRIIB, which activate ALK-2

(gene name Acvr1), BMPRIA (ALK-3, gene
name Bmpr1a), and BMPRIB (ALK-6, gene

name Bmpr1b) (ten Dijke et al. 1993; Massagué

1998; Lux et al. 1999). GDFs interact with
several of these type II receptors and induce

activation of ALK-2, BMPRIA, BMPRIB, or,

in the case of myostatin, ALK-4 or TbRI. The
activated type I receptor phosphorylates and

thereby activates specific Smad proteins in the

canonical signaling pathway, which translocate
into the nucleus to control target gene tran-

scription (Feng and Derynck 2005; Hata and

Chen 2016; Hill 2016). TGF-bs and activins in-
duce phosphorylation of Smad2 and Smad3 by

TbRI or ALK-4, whereas BMPs, acting through

ALK-2, BMPRIA, or BMPRIB, activate Smad1,
5, and 8 (deCaestecker 2004; Chaikuad andBul-

lock 2016; Hata and Chen 2016; Xu et al. 2016).

These phosphorylated Smads form complexes
with the common co-Smad Smad4, translocate

into the nucleus, and form either activating or

inhibitory transcriptional regulatory complexes
(Hill 2016). The inhibitory Smad6 and Smad7

inhibit these signaling cascades, and their

expression is stimulated in response to TGF-b
family signaling, thus providing a negative feed-

back loop (Hayashi et al. 1997; Imamura et al.

1997;Miyazawa andMiyazono 2017). Addition-
ally, ligand–receptor binding also activates non-

canonical intracellular signaling cascades, such
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as the Erk1 and Erk2 MAPK, c-Jun amino-ter-

minal kinases (JNKs), and p38MAPK pathways,
as well as the phosphatidylinositol 3-kinase

(PI3K)–Akt pathway (Zhang 2009).

In this review, we focus on the effects in cell
culture and the in vivo roles of TGF-b family

signaling in mesenchymal lineage commitment

and differentiation into osteoblasts, chondro-
cytes, myoblasts, adipocytes, and tenocytes.

TGF-b FAMILY SIGNALING IN OSTEOBLAST
DIFFERENTIATION

The skeleton functions in physical movement,

regulates mineral homeostasis, and secretes

endocrine factors (Oldknow et al. 2015). Bone
is constantly remodeled in a tightly regulated

sequence, coupling bone resorption with bone

formation to maintain bone mass (Sims and
Vrahnas 2014). Osteoclasts derive from a

myeloid lineage and are responsible for bone

resorption, whereas osteoblasts mature from
a mesenchymal lineage and accomplish bone

formation. Osteoblastogenesis occurs in three

stages: proliferation, matrix maturation, and
mineralization (Huang et al. 2007a). This dif-

ferentiation process depends on the transcrip-

tion factors Runx2 and Osx (Ducy et al. 1997;
Komori et al. 1997; Otto et al. 1997; Nakashima

et al. 2002). Osteoblast development is charac-

terized by the expression of a set of gene expres-
sion markers, including alkaline phosphatase

early in osteoblast differentiation, and osteocal-

cin and osteopontin at later stages of differenti-
ation (Huang et al. 2007a). Osteoblasts can

progress to become osteocytes, which are envel-

oped in mineralized bone, have mechanosen-
sory and metabolic functions, and regulate

bone remodeling (Bonewald 2011; Nakashima

et al. 2011; Komori 2013; Sims and Vrahnas
2014). TGF-b family members, including

BMPs, TGF-bs, activins, and inhibins regulate

differentiation from early bone marrow stromal
cells (BMSCs) to mature matrix-secreting oste-

oblasts and osteocytes (Fig. 1A,B).

BMPs and Osteoblast Differentiation

In cell culture, most BMPs signal through

BMPRII and ALK-2, BMPRIA, or BMPRIB to

promote osteoblast differentiation (Fig. 1B)

(ten Dijke et al. 1994; Chen et al. 1998; Ebisawa
et al. 1999; Fujii et al. 1999; Jikko et al. 1999;

Suzawa et al. 1999). BMP-2 and -6 potently

stimulate, whereas BMP-4 and -7 moderately
stimulate osteoblast differentiation, apparent

by increased expression and activity of alkaline

phosphatase in early osteoblast progenitors,
and expression of osteocalcin and osteopontin

in differentiated osteoblasts (Yamaguchi et al.

1991; Hughes et al. 1995; Kawasaki et al. 1998;
Gori et al. 1999; Cheng et al. 2003; Friedman

et al. 2006). Although BMP-2 does not regulate

extracellular matrix protein secretion by osteo-
blasts, it stimulates mineral deposition into the

matrix (Yamaguchi et al. 1991; Fromigué et al.

1998; Gori et al. 1999), leading to a higher
number of mineralized bone nodules (Chen

et al. 1997; Haÿ et al. 1999). BMP-7 also induces

highly calcified bone nodules (Chen et al. 2001;
Chaudhary et al. 2004), possibly by increasing

inositol 1,4,5-trisphosphate (IP3) receptor lev-

els, which increase calcium mobilization and
deposition (Bradford et al. 2000). Unlike other

BMP ligands, BMP-3 (also called BMP-3A) and

BMP-3b (GDF-10) repress osteoblast differen-
tiation, resulting in decreased expression of

osteoblastic markers, bone nodule formation,

and mineralization (Kokabu et al. 2012; Matsu-
moto et al. 2012). Whereas BMP-3A seems to

signal through ActRIIB, BMP-3b potentially

functions through the ActRII and ALK-4 recep-
tors (Kokabu et al. 2012; Matsumoto et al.

2012). BMP ligands regulate osteoblast differ-

entiation through multiple intracellular path-
ways, including signaling through Smad1, 5,

and/or 8, but also noncanonical signaling

pathways such as Erk1/2 MAPK, p38 MAPK,
and JNK (Fig. 1A). Smad1, 5, and/or 8 signal-

ing promotes osteoblast differentiation. For

instance, increased expression of Smad1 in
mesenchymal progenitor cells enhances BMP-

2-induced expression of alkaline phosphatase

(Ju et al. 2000), whereas bone-specific Smad1

inactivation results in reduced BMP signaling

and delayed bone development in mice (Wang

et al. 2011). In addition, blocking Smad5 acti-
vation prevents BMP-2-induced alkaline phos-

phatase and osteocalcin expression (Nishimura

I. Grafe et al.
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et al. 1998). BMP-4 induces activation of

Smad1, 5, and 8 in osteoblastic cell lines, where-
as BMP-6 and -7 induce activation of Smad1

and 5, but not Smad8, to promote alkaline

phosphatase activity, suggesting differential reg-
ulation by individual BMPs (Ebisawa et al.

1999; Aoki et al. 2001). In contrast, the inhibi-

tory BMP-3b blocks BMP-2-induced phos-
phorylation of Smad1, 5, and 8, and expression

of osteoblast genes (Matsumoto et al. 2012).

BMP-2 and -7 also regulate osteoblast differen-

tiation by activating the Erk1/2MAPK pathway
(Lou et al. 2000; Xiao et al. 2002), and BMP-2

also acts through the p38 MAPK and JNK

pathways. Blocking p38 MAPK or Erk MAPK
signaling reduces BMP-2-induced Alp and

Ocn expression, whereas inhibiting JNK activa-

tion primarily decreases osteocalcin expression
(Galléa et al. 2001; Lai and Cheng 2002; Gui-

cheux et al. 2003). In addition, BMP-2-induced

BMP-3 BMP-3
TGF-β1, 2
Activin A
Inhibin A

Mature
osteoblast

Early
differentiated

osteoblast

Osteoblast
precursor

Mesenchymal
stem cell

TGF-β1–3
BMP-2, -4, -6, -7, -9 TGF-β1, 2BMP-2, -4, -6, -7, -9

Differentiation
markers

Transcription
factors

Runx2

Osterix

BMP-3

BMPsA

B

Erk MAPK
p38 MAPK

JNK
Smad2, 3

TGF-β1, 2, 3

Smad1, 5, 8

Osteocalcin

Alkaline
phosphatase

BMP
receptors

Osteocyte

Figure 1.TGF-b family signaling in osteoblast differentiation. (A)Major intracellular and transcriptional targets
of TGF-b and bone morphogenetic protein (BMP) signaling in osteoblastic differentiation. (B) Osteoblasts
originate from mesenchymal stem cells. Signaling induced by TGF-b family ligands can inhibit or stimulate
lineage selection and progression in differentiation. BMPs, with the exception of BMP-3, mostly promote
progression of osteoblast differentiation, whereas activins and inhibins inhibit differentiation, and the TGF-b
ligands affect certain stages of osteoblast differentiation. MAPK, mitogen-activated protein kinase; JNK, c-Jun
amino-terminal kinase.
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activation of p38 MAPK and JNK enhances

Smad1 activation and canonical BMP signaling
(Nöth et al. 2003; Liu et al. 2011).

At the transcriptional level, BMP-induced

Smad signaling targets genes encoding key
osteoblastic differentiation factors such as

Runx2 and Osx (Fig. 1A) (Lee et al. 2003). In-

terestingly, osteoblast precursors cultured from
Runx22/2 mice do not fully differentiate into

osteoblasts, even in the presence of BMP-2, al-

though they still induce alkaline phosphatase
and osteocalcin expression (Liu et al. 2007).

On the other hand, in cells overexpressing

Runx2, anti-BMP-2, -4, and -7 antibodies pre-
vent Runx2 from stimulatingOcn transcription,

suggesting that BMP signaling is necessary for

Runx2 transcriptional activity (Phimphilai et al.
2006). BMP-2 likely does not directly activate

Runx2, but rather induces phosphorylation and

acetylation by MAPK signaling, modifications
necessary for Runx2 to form a complex with

phosphorylated Smad1, 5, and/or 8 to target

osteoblast gene promoters (Afzal et al. 2005;
Javed et al. 2008, 2009; Jun et al. 2010). BMP-

2 also regulates Osx expression through Smad1

activation, and indirectly through other tran-
scription factors including the homeobox pro-

tein Msx2, the homeobox protein Alx3, and the

DNA-binding protein inhibitors ID-1, -2, and
-3, and Runx2- and p38 MAPK-dependent

pathways (Ogata et al. 1993; Lee et al. 2003;

Peng et al. 2004; Matsubara et al. 2008; Ulsamer
et al. 2008; Matsumoto et al. 2013).

BMP signaling during osteoblast differenti-

ation is repressed by BMP inhibitors, and
depends on cross-talk with other signaling

pathways, including those activated by Wnt,

TGF-b, fibroblast growth factor (FGF), Notch,
and tumor necrosis factor-a (TNF-a) (Luo

2017). For example, noggin and gremlin antag-

onize BMPs by preventing their interaction
with their receptors. Furthermore, increasing

noggin expression in preosteoblastic cells inhib-

its BMP-2-induced differentiation (Wu et al.
2003), and decreasing noggin expression in-

creases the phosphorylation of Smad1, 5, and

8, the activity of alkaline phosphatase, and os-
teocalcin and Runx2 expression (Gazzerro et al.

2007; Wan et al. 2007). During BMP-stimulated

osteoblast differentiation, noggin and gremlin

expression is enhanced in a feedback loop that
inhibits BMP signaling (Gazzerro et al. 1998;

Abe et al. 2000; Pereira et al. 2000). Activated

Wnt–b-catenin signaling increases BMP-2-in-
duced osteoblast differentiation and is required

for the induction of alkaline phosphatase ex-

pression by BMP-2 (Rawadi et al. 2003), where-
as deletion of b-catenin inhibits the response to

BMP-2 (Mbalaviele et al. 2005; Salazar et al.

2008; Zhang et al. 2009). Also, Wnt–b-catenin
signaling increases the expression and secretion

of BMP-2 (Qiu et al. 2010), whereas BMP-2 can

antagonize Wnt–b-catenin signaling by in-
creasing the expression of the Wnt inhibitors

sclerostin and dickkopf-1 (Dkk1) (Kamiya

et al. 2010). TGF-b can antagonize BMP-2-in-
duced osteoblast differentiation by inhibiting

the activation of Smad1, 5, and 8, and promote

BMP-2 activity by repressing noggin expression
(Galléa et al. 2001; de Gorter et al. 2010). Fur-

thermore, studies in cell culture suggest that

FGF-2 is required for BMP-2-induced nuclear
accumulation of Runx2 and Smad1, 5, and 8

(Sabbieti et al. 2013), which is supported by

the observation that BMP-2 does not induce
differentiation of Fgf22/2 osteoblast precursor

cells (Hanada et al. 1997; Naganawa et al. 2008).

Also, Notch signaling increases BMP-2-induced
alkaline phosphatase activity and bone nodule

formation (Nobta et al. 2005), and by silencing

the expression of Hairy/enhancer-of-split relat-
ed with YRPWmotif protein 1 (Hey1), a medi-

ator of Notch signaling, reduces BMP-9-in-

duced osteoblast differentiation (Sharff et al.
2009). In addition, TNF-a acts through either

the JNK pathway to inhibit activation of Smad1,

5, and/or 8, and decrease alkaline phosphatase
and osteocalcin expression, or the NF-kB path-

way to prevent BMP-2-induced Runx2 expres-

sion by blocking Smad complexes from binding
toDNA (Eliseev et al. 2006; Singhatanadgit et al.

2006; Mukai et al. 2007; Billings et al. 2008;

Yamazaki et al. 2009; Hirata-Tsuchiya et al.
2014). Menin, a protein implicated in multiple

endocrine neoplasia type I, also interacts with

BMP signaling by binding to Smad1 and 5, and
enhances BMP-2-induced osteoblast differenti-

ation (Sowa et al. 2003a).
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Most BMPs and their receptors are indis-

pensable for development. Insight into the roles
of BMPs in osteoblast differentiation in vivo

has mainly come from mouse models in which

a gene of interest was conditionally inactivated
(conditional knockout; cKO) or overexpressed.

Mice have been generated in which either

BMP-2 or BMP-4 expression was specifically
inactivated in the limb using Cre recombinase

expressed from the paired mesoderm homeo-

box protein 1 (Prx1) promoter that is expressed
in embryonic limb bud mesenchyme (Prx1-Cre

mice). Both models with inactivation of BMP-2

or BMP-4 show normal skeletal development.
However, compound inactivation of both Bmp2

and Bmp4 in the limb almost completely

abolishes bone formation, suggesting function-
al redundancy of BMP-2 and BMP-4, and the

requirement of at least one of the two BMPs

for normal osteogenesis (Bandyopadhyay et al.
2006; Tsuji et al. 2008). Interestingly, the Bmp4

Prx1-Cre cKO mice recover normally from

fractures, whereas the corresponding Bmp2

Prx1-Cre cKO mice are unable to initiate frac-

ture healing, suggesting that BMP-2 is necessary

for normal differentiation of mesenchymal cells
in bone repair (Bandyopadhyay et al. 2006; Tsuji

et al. 2008). On the other hand, transgenic mice

overexpressing BMP-4 under the control of
the early osteoblast-specific Col1a1 promoter

develop severe osteopenia and increased osteo-

clast numbers, suggesting a role for BMP-4 in
bone resorption (Okamoto et al. 2006). BMP-4

and -7 may have overlapping functions in

the development of the ribs, sternum, and
digits, as apparent from the skeletal phenotype

of Bmp4þ/2; Bmp7þ/2 mice (Katagiri et al.

1998). Bmp32/2 mice have 50% more trabec-
ular bone than wild-type mice, whereas BMP-3

overexpression under the Col1a1 promoter

results in low bone mass and spontaneous frac-
tures in utero, confirming the repression of

osteoblast differentiation by BMP-3 seen in

cell culture (Daluiski et al. 2001; Gamer et al.
2009). Mice with conditional Bmpr1a deletion

in mature osteoblasts, by Cre recombinase-

mediated recombination from the osteocalcin
2 promoter (Og2-Cre mice) show decreased

bone formation rate, bone size, bone volume

per total volume (BV/TV), and osteoblast

marker expression at one month after birth;
however, by 10 months these mice show in-

creased BV/TV and bone mineral density

(BMD) (Mishina et al. 2004). Disruption of
Bmpr1a in immature osteoblasts using Cre

recombinase expression from the Col1a1 pro-

moter in mice results in an increased bone
mass and BMD at late gestation, weaning, and

adult stages (Kamiya et al. 2008a,b). Compared

with wild-type controls, these mice develop
increased tibial trabecular bone volume and

decreased osteoclast numbers in response to

mechanical loading (Iura et al. 2015). These
ostensibly contradictory outcomes may be ex-

plained by considering that BMP signaling may

promote the expression of sclerostin and Dkk1
in osteoblasts. These two proteins alter the

balance of functional expression of RANKL (re-

ceptor activator of NF-kB ligand) and osteopro-
tegerin (OPG) such that osteoclastogenesis and

bone resorption are reduced to a greater extent

than osteogenesis, thus resulting in increased
overall bone mass (Mishina et al. 2004; Kamiya

et al. 2008b, 2010). Disruption of Bmpr1a using

Cre recombinase expression from the Dmp1

promoter, which drives expression of dentin

matrix protein 1 in more mature osteoblasts

and osteocytes, results in a dramatic increase
of trabecular bone mass in association with re-

duction of sclerostin expression (Kamiya et al.

2016; Lim et al. 2016). The similar phenotype
of mice with immature osteoblast-specific dis-

ruption of Acvr1 (encoding ALK-2) using Cre

recombinase driven by the Col1a1 promoter
further supports the notion that BMP signaling

in osteoblasts plays a dual role in promoting

osteoblast differentiation to produce bone ma-
trix and supporting osteoclastogenesis to resorb

bones (Kamiya et al. 2011). Interestingly, inac-

tivation of Bmpr1a using either Dmp1- or Sp7-
induced Cre recombinase expression in mature

osteoblasts and osteocytes, or immature osteo-

blasts, respectively, results in similar increases in
bone mass with increased osteoblast numbers

despite reduced osteoblast activity (Lim et al.

2016). However, contrary to the mice with
osteoblast-specific Bmpr1a inactivation from

the Col1a1 promoter, these mice do not show
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changes in osteoclast numbers or bone resorp-

tion (Lim et al. 2016). Additionally, mice with
Bmpr2 inactivation under the control of the

Prx1 promoter also develop increased bone

mass and BMD by 9 weeks of age, but in this
case this is the result of increased osteoblast

activity with no change in osteoblast numbers

(Lowery et al. 2015). This phenotype may be
due to the use of the ActRII and/or ActRIIB
receptors by the BMPs in the absence of

BMPRII as type II receptor. In contrast, global
inactivation of Bmpr1b expression does not

result in overt bone phenotypes, suggesting

common and unique functions of the three
type I receptors BMPRIA, BMPRIB, and ALK-

2 in osteoblasts (Baur et al. 2000; Yi et al. 2000).

Mice that express a cytoplasmically truncated,
dominant-negative form of BMPRIB from the

Col1a1 promoter have reduced bone mass,

suggesting that signaling by BMPRIB plays an
important role in physiological osteogenesis

(Zhao et al. 2002). Osteoblast-specific Smad1

inactivation using Cre recombinase from the
Col1a1 promoter in mice results in osteopenia,

providing in vivo evidence for the importance

of Smad signaling in osteoblast differentiation
(Wang et al. 2011). In addition to regulation of

bone mass, BMP signaling also controls bone

quality in conjunction with mechanosensing
mechanisms (Iura et al. 2015). There are many

unanswered questions about the functions

of BMP signaling in vivo, and future studies
will help us to further understand the context-

dependent functions of BMP signaling in

osteoblasts.
In humans, BMPs have been implicated

in disorders affecting limb development. Muta-

tions in the BMP2 or BMPR1B gene result in
autosomal dominant brachydactyly type A2,

characterized by hypoplastic middle phalanges

of the second and fifth fingers (Dathe et al.
2009). A mutation in the noggin gene (NOG)

that prevents normal binding of noggin to

BMPs leads to brachydactyly type B, manifested
by extreme shortening or complete loss of the

distal portions of fingers and toes (Lehmann

et al. 2007). A study of a large cohort of Dutch
men and women found no increased risk for

osteoporosis in subjects with common BMP2

polymorphisms that result in Ser37Ala and

Arg190Ser substitutions (Fiori et al. 2006).

TGF-b and Osteoblast Differentiation

The effects of TGF-b1, b2, and b3 on osteoblas-

tic cells are context-, time-, and dose-dependent,

and differentially affect certain stages of osteo-
blast differentiation (Morikawa et al. 2016).

Despite some conflicting findings, most exper-

iments suggest that TGF-b promotes prolif-
eration, early differentiation of osteoblast

progenitor cells, and matrix production, while

inhibiting later differentiation and matrix min-
eralization (Fig. 1B) (Chen and Bates 1993;

Breen et al. 1994; Harris et al. 1994; Janssens

et al. 2005). TGF-b ligands act through canon-
ical Smad2 and Smad3 signaling, as well as

noncanonical pathways, to regulate osteoblast

differentiation (Fig. 1A). Smad2 overexpression
in osteoblasts suppresses expression of Runx2

but does not seem to affect Runx2 transcrip-

tional activity. In contrast, increased Smad3
expression reduces Runx2 expression and

Runx2 transcriptional activity at early stages of

differentiation, but increases Runx2 expression
at later stages (Li et al. 1998; Alliston et al. 2001;

Kaji et al. 2006). Activated Smad3 inhibits

osteoblastic lineage commitment, yet promotes
the progression of osteoblast differentiation at

earlier stages and increases the expression of

alkaline phosphatase, type I collagen, and pro-
teins involved in matrix mineralization (Allis-

ton et al. 2001; Kaji et al. 2006). Noncanonical

TGF-b signaling through the Erk MAPK path-
way inhibits alkaline phosphatase expression,

but promotes collagen synthesis (Sowa et al.

2002; Arita et al. 2011), while signaling through
both Erk1 and/or Erk2 and p38 MAPK leads to

suppression of osteocalcin expression (Karsdal

et al. 2002). As a feedback mechanism, TGF-b
can also inhibit transcription of Smad3 through

the Erk and JNK MAPK pathways (Sowa et al.

2002). In addition, TGF-b may control the
progression of osteoblasts to osteocytes by pre-

venting apoptosis of terminally differentiated

cells through the Erk MAPK pathway (Karsdal
et al. 2002). Consistent with the inhibitory role

of TGF-b in early osteoblast differentiation,
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inhibition of the TbRI kinase activity increases

alkaline phosphatase expression in BMSCs and
C2C12 myoblast cells cultured in osteogenic

media (Maeda et al. 2004). In addition, TGF-b

can also activate a negative feedback loop to
inhibit its own signaling via Runx2 to suppress

expression of TbRI and thereby reduce the

TGF-b responsiveness (Kim et al. 2006).
As in other tissues, TGF-b activation in the

skeleton is highly regulated, requiring active

TGF-b release from latent complexes and asso-
ciated proteins that sequester TGF-b in the

extracellular matrix. Bone is unique in that

more TGF-b is secreted without being attached
to latent TGF-b binding proteins (LTBPs) than

in other tissues (Dallas et al. 1994). The small

leucine-rich proteoglycans biglycan and de-
corin bind and likely sequester active TGF-b

in the extracellular matrix, which is supported

by the finding that BMSCs from mice with in-
activated biglycan and decorin expression show

a higher ratio of active to latent TGF-b than

wild-type controls, with impaired osteoblast
differentiation (Afzal et al. 2005). Intracellular

regulation of TGF-b maturation by E-selectin

ligand-1 (ESL-1), a Golgi protein that inhibits
TGF-b bioavailability, is required for normal

bone development, asmice lacking ESL-1 expres-

sion develop severe osteopenia with increased
bone resorption and reduced mineralization be-

cause of higher TGF-b activity (Yang et al. 2013).

TGF-b signaling interacts with other signal-
ing pathways to affect osteoblast differentiation.

In particular, signaling cross-talk between the

BMP- and TGF-b pathways seems to play a
crucial role (Fig. 1A) (Maeda et al. 2004). For

example, BMP-2 can repress TGF-b signaling by

repressing the expression and promoting the
intracellular relocation of TbRII (Centrella

et al. 1995; Chang et al. 2002). In addition, all

three TGF-bs can activate the Sost gene, which
encodes sclerostin, resulting in inhibition of

Wnt signaling in bone (Loots et al. 2012).

TGF-b can also stabilize b-catenin through
activation of Smad3 and the PI3K pathway

(Loots et al. 2012). Furthermore, the observa-

tion that TGF-b no longer inhibits BMSC
differentiation when b-catenin expression is si-

lenced suggests that TGF-b and Wnt signaling

synergize to inhibit osteoblast differentiation

(Zhou 2011). In addition, Wnt signaling can
increase Tgfbr1, but not Tgfbr2 expression in

ab-catenin-independent pathway, thus increas-

ing responsiveness to TGF-b (McCarthy and
Centrella 2010). Parathyroid hormone (PTH)

signaling interacts with TGF-b signaling by

increasing the levels of Smad3, which in turn
stabilizes b-catenin and thus enhances TGF-b-

induced expression of type I collagen in osteo-

blasts (Sowa et al. 2003b; Inoue et al. 2009).
Furthermore, TbRII phosphorylates the PTH

receptor 1 (PTH1R), leading to endocytosis

of both receptors, and consequently reduced
TGF-b and PTH signaling (Qiu et al. 2010).

Inactivating TbRII expression in osteoblasts

leads to increased PTH1R levels, resulting in a
high trabecular/low cortical bone mass pheno-

type (Qiu et al. 2010). TGF-b also regulates

the expression of many other growth factors.
For instance, in BMSCs TGF-b increases tran-

scription of the genes encoding fibroblast

growth factor 2 (FGF-2), insulin-like growth
factor I (IGF-I), and the extracellular matrix-

associated protein connective tissue growth

factor (CTGF), which all contribute to collagen
matrix production (Kveiborg et al. 2001; Sobue

et al. 2002; Arnott et al. 2008). Moreover, TNF-

a acts through NF-kB to prevent TGF-b from
activating Smad2 and Smad3, similar to its

role in inhibiting activation of Smad1, 5, and

8, suggesting an inhibitory function of TNF-a
in bone (Mukai et al. 2007).

Modulating the expression of TGF-b signal-

ing components in mouse models has further
shown its complex roles in osteoblast differen-

tiation and osteogenesis in vivo. Tgfb12/2

mice, for example, show a remarkable absence
of mature osteoblasts and reduced ALP activity,

but normal osteoclast numbers and activity

(Geiser et al. 1998). These mice have normal
bones early in development, but show by 3

months of age a reduced growth and significant

bone loss, consistent with impaired osteoblast
differentiation (Geiser et al. 1998; Atti et al.

2002). Further studies show that TGF-b,

released from bone matrix during osteoclastic
bone resorption, induces migration of BMSCs

to sites of bone resorption, thereby “coupling”
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bone resorption with bone formation (Pfeil-

schifter et al. 1990; Hughes et al. 1992; Tang
et al. 2009).

Tgfb22/2 mice have reduced bone size and

ossification, as well as limb and rib defects by
E18.5, and die perinatally from multiple devel-

opmental defects, indicating the importance of

TGF-b2 in bone patterning and development
(Sanford et al. 1997). In contrast, Tgfb32/2

mice have normal skeletons (Dünker and

Krieglstein 2002). Increased expression of
biologically active TGF-b2 in differentiated os-

teoblasts under control of the Bglap promoter

results in a dramatic reduction of bone volume
with frequent fractures by 1 month of age

(Erlebacher and Derynck 1996), and by 7

months severely reduced trabecular bone and
thin unmineralized cortical bone. Bone of these

mice shows increased osteoclastic resorption,

osteoblast activity, osteoprogenitor cell number,
and osteocyte density, suggesting that TGF-b2

regulates both osteoclast activity as well as oste-

oblast differentiation (Erlebacher and Derynck
1996). However, mice overexpressing a domi-

nant-negative form of TbRII have increased

bone mass, potentially also because of osteo-
blast-mediated reduction of osteoclast activity

despite normal osteoclast numbers (Filvaroff

et al. 1999). Smad32/2 mice show a phenotype
similar to that of Tgfb12/2 mice, with reduced

bone volume, normal osteoblast, and osteoclast

numbers, but impaired osteoblast function,
resulting in a decreased bone formation rate

(Borton et al. 2001). These Smad32/2 mice

also show an increased osteocyte density, simi-
lar to mice that overexpress TGF-b2 in mature

osteoblasts under control of the Bglap promoter

(Borton et al. 2001). Pathologically, increased
TGF-b signaling also contributes to the pheno-

type in osteogenesis imperfecta (OI), a genetic

bone dysplasia characterized by brittle bones
and increased susceptibility to fractures (Grafe

et al. 2014). Mouse models of dominant OI

(due to heterozygous mutation in Col1a2)
and recessive OI (due to lack of cartilage-asso-

ciated protein CRTAP that is involved in post-

translational modifications of type I collagen;
Crtap2/2 mice) both show phenotypes similar

to models with increased TGF-b signaling, and

treating these mice with a pan-anti-TGF-b

antibody improves the bone phenotype (Grafe
et al. 2014).

In humans, some TGF-b1 polymorphisms

associate with osteoporotic phenotypes. One
study found an association between osteoporo-

sis with increased bone turnover and a single-

base deletion in intron 8 of TGFB1 that likely
affects splicing (Langdahl et al. 1997). Another

study found a polymorphism, a T-C polymor-

phism in the fifth intron, 20 bases upstream of
exon 6 that is less common in osteoporotic

patients and associates with higher bone mass

(Langdahl et al. 2003). Many different muta-
tions in the proregion of TGF-b1, also known

as latency-associated peptide (LAP), can cause

Camurati-Engelmann disease, an autosomal
dominant bone dysplasia that causes osteoscle-

rosis and increased fracture risk (Kinoshita et al.

2000; Campos-Xavier et al. 2001; Wu et al.
2007). Mice generated with these mutations

recapitulate the bone dysplasia and show

increased levels of active TGF-b1 in the bone
marrow, raising the possibility that the muta-

tions affect the ability of TGF-b1 to be seques-

tered in the extracellular matrix (Tang et al.
2009), and inhibition of TbRI in these mice

rescues the bone phenotype and prevents frac-

tures. These findings suggest that modulating
TGF-b signaling, and thus altering osteoblast

differentiation, could represent a compelling

treatment approach for certain bone diseases.

Activins, Inhibins, Follistatin, and Osteoblast
Differentiation

The roles of activins and inhibins in osteoblast

differentiation have been less well characterized
but these TGF-b-related ligands modulate the

effects of BMPand TGF-b ligands. For instance,

activin A, a homodimer of inhibin bA chains,
acts in a similar way as TGF-b in osteoblastic

cell culture, and increases proliferation but in-

hibits differentiation of early osteoprogenitor
cells (Fig. 1B) (Centrella et al. 1991; Hashimoto

et al. 1992; Ikenoue et al. 1999). Activin A also

inhibits mineralization, at least in part by inhib-
iting the expression of the transcription factor

homeobox protein Msx2, even in late osteoblast
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differentiation (Eijken et al. 2007; Alves et al.

2013). However, when overexpressed noggin
inhibits BMP signaling, activin A rescues the

progression of osteoblast differentiation, sug-

gesting that it acts through multiple pathways
in osteoblastogenesis (Gaddy-Kurten et al.

2002). Mice with inactivated Inhba, which

encodes inhibin bA, have severe craniofacial
defects, whereas inactivation of Acvr2, which

encodes the activin type II receptor ActRII,

does not affect skeletal development in most
but not all mice. These results suggest that acti-

vins may act through a different type II receptor

to enact their effects on bone (Matzuk et al.
1995a). Inhibin A, a heterodimer of inhibin a

and inhibin bA, also inhibits osteoblast differ-

entiation, reduces alkaline phosphatase activity
in early osteoblasts, and suppresses mineraliza-

tion by mature osteoblasts (Fig. 1B) (Gaddy-

Kurten et al. 2002). The finding that inhibin
represses osteoblastogenesis even when activin

is added suggests that inhibin does not act

by competing with activin for the same recep-
tor, but instead might signal through a distinct

inhibin-specific receptor (Gaddy-Kurten et al.

2002). Furthermore, inhibin-mediated repres-
sion of osteoblastogenesis cannot be rescued

with BMP-2, indicating that the inhibitory

effect of inhibin is dominant over BMP-2 activ-
ity (Gaddy-Kurten et al. 2002). The glycopro-

tein follistatin, encoded by Fst, binds activins

and inhibins and prevents their interaction
with their receptors (Nakamura et al. 1990;

Harrison et al. 2005; Gordon and Blobe 2008).

It is expressed only at very low levels at all stages
of osteoblast differentiation, and exogenous

follistatin can block activin A functions (Funaba

et al. 1996; Gaddy-Kurten et al. 2002). In vivo
studies are required to determine if follistatin

plays a role in osteogenesis.

TGF-b FAMILY SIGNALING IN
CHONDROCYTE DIFFERENTIATION

BMPs and Chondrogenesis

BMP signaling is critical during each stage of
chondrogenesis. BMP ligands are expressed in

a defined spatiotemporal pattern in the precar-

tilagious mesenchyme, the perichondria, and

the growth plates. In particular, Bmp2 and
Bmp4 are highly expressed by prehypertrophic

and hypertrophic chondrocytes in the growth

plates (Feng et al. 2003; Nilsson et al. 2007).
Inactivating both Bmp2 and Bmp4 in limb

bud mesenchyme results in defective skeletal

development (Bandyopadhyay et al. 2006).
Inactivating Bmp2 only in chondrocytes, using

Cre-mediated recombination from the Col2a1

promoter results in similarly severe skeletal
defects, which suggests that BMP-2 is a key

ligand for growth plate function (Shu et al.

2011). Disrupting the expression of either
BMP type I receptor, through inactivation of

Bmpr1a, Bmpr1b, orAcvr1, in the chondrogenic

lineage has minor consequences for morphoge-
netic phenotypes (Baur et al. 2000; Yi et al.

2000; Ovchinnikov et al. 2006; Rigueur et al.

2015). In contrast, compound inactivation of
Bmrp1a and Bmrp1b substantially diminishes

the size of cartilage primordia by increasing

apoptosis (Yoon et al. 2005). These striking
results underscore redundancies in some func-

tions of BMP signaling through BMPRIA and

BMPRIB during chondrogenesis. Compound
inactivation of either Bmpr1a and Acvr1 or

Bmpr1b and Acvr1 causes subtle cervical verte-

brae abnormalities, suggesting that BMP signal
transduction through ACVR1/ALK-2 has a

minor role during chondrogenesis (Rigueur

et al. 2015). Neural crest-specific deletion of
Bmpr1a causes early lethality owing to cardiac

malfunction (Stottmann et al. 2004; Nomura-

Kitabayashi et al. 2009). However, neural crest-
specific deletion of Acvr1 results in craniofacial

defects, including mandibular hypoplasia with

hypoplastic Meckel’s cartilage (Dudas et al.
2004). In contrast, Meckel’s cartilage persists

in Nog2/2 mice that lack expression of the

BMP inhibitor noggin (Wang et al. 2013b).
Inactivation of Bmpr1a expression in the chon-

drogenic lineage after birth halts long bone

growth and reduces Sox9 expression (Jing et al.
2013). Interestingly, the growth plates in these

mutants are replaced by bone-like tissue sug-

gesting that BMP signaling through BMPRIA
prompts chondrogenic differentiation by regu-

lating Sox9 expression.
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Chondrocyte-specific inactivation of Smad1,

Smad5, or Smad8 individually results in viable
mice. However, compound inactivation of

Smad1 and Smad5 results in severe chondrodys-

plasia that mimics the phenotype of chondro-
cyte-specific Bmpr1a2/2;Bmpr1b2/2 com-

pound mutants (Retting et al. 2009). This

stands in contrast to the phenotype of chondro-
cyte-specific disruption of Smad4 usingCol2a1-

Cre; these mice have disorganized growth plates

and shorter bones, but live for at least several
months after birth (Zhang et al. 2005). These

observations raise the possibility that Smad4

has only a limited role in mediating the BMP–
Smad signaling pathway in chondrocytes. Tran-

scriptional intermediary factor-1g (TIF1g; also

known as TRIM33) binds Smad2 and Smad3
and allows these complexes to exert distinct

functions from Smad4 complexes with Smad2

or Smad3 (He et al. 2006; Xi et al. 2011).
Accordingly, conditional compound inactiva-

tion of Smad4 and Tif1g results in a more severe

phenotype than inactivation of the individual
genes, and results in cleft palate, as seen because

of epithelium-specific Tgfb3 inactivation (Lane

et al. 2015), suggesting that BMP–Smad signal-
ing through TIF1g/TRIM33 represents an arm

of the pathway that does not require Smad4.

After endochondral ossification, a small
population of chondrocytes at the end of long

bone remains as articular cartilage (Kronenberg

2003). How this subpopulation of chondrocytes
is destined to become articular cartilage, differ-

ently from the chondrocytes in the growth plate,

is not well understood; however, BMP and Wnt
signaling activities likely contribute to their dif-

ferentiation phenotype (Tsumaki et al. 1999;

Guo et al. 2004; Pacifici et al. 2005; Spater
et al. 2006a,b). Wnt signaling at the interzone,

the site of the future joint, is essential for artic-

ular cartilage development (Hartmann and Ta-
bin 2001; Guo et al. 2004; Spater et al. 2006a,b).

Furthermore, noggin is highly expressed just

proximal to the distal proliferating zone
(DPZ) to “insulate” BMP signaling from more

proximal regions of the growth plate (Ray et al.

2015). This expression pattern of noggin may
explain how chondrocytes in the most distal

part of cartilage primordia are exposed to a

high ratio of Wnt/BMP signaling and specify

to become articular cartilage.
TGF-b-activated kinase 1 (TAK1) initiates

p38 MAPK and JNK signaling in response to

TGF-b, yet is also involved in signaling respons-
es to other types of ligands (Cui et al. 2014).

Chondrocyte-specific inactivation of Tak1 re-

sults in chondrodysplasia, characterized by
delayed formation of secondary ossification

centers and absence of elbow and tarsal joints

(Shim et al. 2009; Greenblatt et al. 2010a). These
mutant mice also have defective cartilage pro-

liferation and maturation (Gunnell et al. 2010).

Inactivation of Tak1 in developing limb mesen-
chyme results inwidespread joint fusions (Gun-

nell et al. 2010). During both embryogenesis

and postnatal development, TAK1 signaling
promotes the expression of three Sox transcrip-

tion factors (i.e., Sox5, Sox6, and Sox9) that are

essential for the organization of growth plates
and articular cartilage development (Gunnell

et al. 2010; Gao et al. 2013). In addition to the

expected reduction of p38 MAPK and JNK
activation, these Tak12/2 mice show decreased

Erk MAP kinase activity and decreased activa-

tion of the BMP-responsive Smad1, 5, and 8
(Shim et al. 2009). Similarly, decreased

Smad1, 5, and 8 activation is observed following

osteoblast-specific or neural crest-specific inac-
tivation of Tak1 (Greenblatt et al. 2010b; Yu-

moto et al. 2013), suggesting that TAK1 controls

both BMP-activated Smad and non-Smad path-
ways in multiple cell types. However, because

BMP or TGF-b ligands are not the only ones

that initiate TAK1-mediated signaling, these
phenotypes do not necessarily result from alter-

ations in BMP- or TGF-b signaling only.

More evidence that BMP signaling plays
pivotal roles in chondrogenesis comes from

the identification of gene mutations that result

in fibrodysplasia ossificans progressiva (FOP).
FOP is a rare, autosomal dominant disease

characterized by ectopic ossification in soft

tissues following even minor trauma. ACVR1
mutations have been identified in all patients

diagnosed so far (Shore et al. 2006; Kaplan

et al. 2012). Themutation inACVR1 that results
in R206H substitution is believed to affect the

interaction of the type I receptor with FKBP12,
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and confers increased basal signaling activity

(Shore et al. 2006). Thus, the R206H substitu-
tion in ACVR1/ALK-2 enhances chondrogene-
sis inmicromass culture (Shen et al. 2009b), and

chimeric mice with the R206H substitution
develop ectopic ossification on blunt injury

(Chakkalakal et al. 2012). ACVR1 with the

R206H substitution can also respond to activin
ligands that normally antagonize BMPsignaling

through ACVR1 (Hatsell et al. 2015). Adminis-

tration of an activin A-blocking antibody to
mice that express ACVR1 with the R206H

substitution prevents formation of FOP-like le-

sions, which strongly suggests that a broadened
ligand specificity because of the mutation con-

tributes to the pathogenesis of FOP (Hatsell

et al. 2015). Another substitution, Q207D, ren-
ders ACVR1 constitutively active, and condi-

tional transgenic mice that express the Q207D

mutant receptor in skeletal muscles, activated
by intramuscular injection of Cre recombi-

nase-expressing adenovirus, develop ectopic os-

sification in combination with inflammation
(Fukuda et al. 2006; Yu et al. 2008). Ligand an-

tagonists of the nuclear retinoic acid receptor-g

(RAR-g) are known for their antichondrogenic
action (Pacifici et al. 1980), and administration

of RAR-g agonists was shown to block hetero-

topic ossification in the Q207D mouse model
(Shimono et al. 2011). Together, these observa-

tions reinforce the idea that chondrogenic dif-

ferentiation promoted by aberrantly increased
BMP signaling in progenitor cell populations is

a critical step for heterotopic ossification.

Enhanced BMP–Smad signaling through
BMPRIA in neural crest cells leads to an increase

of p53-mediated apoptosis in developing nasal

cartilage, resulting in abnormal nasal cavity
morphogenesis leading to perinatal lethality

(Hayano et al. 2015). In this model, increased

levels of p53 protein are observed without
increases of p53 gene expression, but are accom-

panied by decreased MDM2–p53 complex

formation and increased complex formation
of p53 with Smad1, 5, and 8 (Hayano et al.

2015). MDM2 acts as an E3 ligase promoting

proteasomal degradation of p53 (Momand
et al. 1992; Kussie et al. 1996; Lai et al. 2001).

Together with the observation that association

of activated Smad1 with p53 prevents MDM2-

mediated p53 degradation (Chau et al. 2012),
these results raise the possibility that increased

BMP–Smad signaling not only increases the

nuclear levels of activated Smad1, 5, and 8,
but additionally prevents the MDM2–p53 in-

teraction that leads to activation of apoptotic

pathways in chondrocytes at nasal cavity.
During early embryogenesis, the relative

timing of Sonic hedgehog (Shh) and BMP sig-

nals defines the fate selection of lateral plate
mesoderm toward either a chondrogenic or pre-

somitic mesoderm (PSM) fate. Thus, sequential

exposure of lateral plate mesoderm to Shh
followed by BMP-4 robustly induces chondro-

genesis, whereas simultaneous exposure of

both Shh and BMP blocks chondrogenesis
(Murtaugh et al. 1999, 2001). Shh signaling

activates Sox9 expression through activation of

Gli2 and Gli3 at the lateral plate mesoderm and
at the same time induces the expression of

Nkx3.2, which blocks the expression of the

GATA4, 5, and 6 transcription factors (Zeng
et al. 2002; Daoud et al. 2014). On the other

hand, BMP signaling in the PSM blocks Shh-

mediated induction of Nkx3-2 and Sox9

through induction of the expression of the

GATA4, 5, and 6 transcription factors that

suppress Nkx3-2 expression and the expression
of Gli transcription factors dependent on the

zinc finger protein FOG1 (friend of GATA pro-

tein 1, also known as ZFPM1) (Daoud et al.
2014). These results suggest that Shh signaling

installs competence in lateral plate mesoderm

for BMP-induced chondrogenesis by inducing
Nkx3.2 expression.

BMP signaling, in conjunction with other

signaling pathways, regulates the size and orga-
nization of the growth plate. A feedback loop

between Indian hedgehog (Ihh) produced in the

prehypertrophic and hypertrophic zones and
parathyroid hormone related protein (PTHrP)

produced in the resting zone plays a critical role

in maintaining the columnar height of the
growth plate (Fig. 2) (Kronenberg 2003). FGF

signaling inhibits proliferation of chondrocytes,

whereas BMP signaling stimulates chondrocyte
proliferation and differentiation, and inhibits

apoptosis of hypertrophic chondrocytes (Fig. 2)
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(Minina et al. 2001, 2002). BMP signaling

induces Ihh expression, and Ihh signaling in-
duces BMP expression, forming a positive feed-

back loop (Minina et al. 2002). Accordingly,

Cre-recombinase-mediated, cartilage-specific
conditional inactivation of Smad1 and Smad5

from the Col2a1-promoter results in reduced

Ihh expression in the hypertrophic zone (Ret-
ting et al. 2009). Activation of BMP signaling in

the perichondrium together with activation of

hedgehog signaling prompts osteogenic differ-
entiation, whereas BMP signaling alone induces

chondrogenic differentiation (Hojo et al. 2013).

Pharmacological inhibition of hedgehog signal-

ing results in reduced Smad and p38 MAPK
activation in response to BMP-2, and suppress-

es BMP-2-induced chondrogenesis in micro-

mass culture (Mundy et al. 2015), suggesting
that Hedgehog signaling may repress BMP

signaling. As with the PSM, the timing of these

two signaling stimuli is critical for lineage spec-
ification of the cells in perichondrium.

FGF signaling inhibits Ihh expression in the

growth plate (Minina et al. 2002), and increased
FGF signaling is observed in growth plates in

both Bmpr1a2/2;Bmpr1b2/2 and Smad12/2;
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Figure 2.TGF-b family signaling in chondrocyte differentiation during growth plate development. Regulation of
endochondral ossification involves a feedback loop between parathyroid hormone related protein (PTHrP) and
Indian hedgehog (Ihh) controlling chondrocyte differentiation, whereas fibroblast growth factor (FGF) signal-
ing represses chondrocyte proliferation. Bone morphogenetic protein (BMP)-2, expressed within perichondri-
um, promotes the survival and proliferation of chondrocytes through the type I receptors BMPRIA and
BMPRIB and subsequent Smad1 and Smad5 activation. FGF-18 signaling through the fibroblast growth factor
receptor 3 (FGFR3) receptor further refines chondrocyte proliferation by repressing BMP receptor activity. Ihh
expressed in the prehypertrophic zone induces the expression of both TGF-b1 in the perichondrium and PTHrP
in the resting zone, respectively. PTHrP participates in this intricate feedback loop by inhibiting differentiation
until the proliferating chondrocytes enter the prehypertrophic zone. TGF-b1 represses terminal chondrocyte
differentiation in the hypertrophic zone. It is suggested that TGF-b1 induces BMP-2 expression, which then
inhibits further TGF-b1 expression.

I. Grafe et al.

14 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a022202

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Smad52/2 compound mutant mice (Yoon

et al. 2005; Retting et al. 2009). These results
suggest that diminished BMP signaling in the

growth plate leads to imbalanced cross talk

between BMP, FGF, and Ihh signaling. Hyper-
activated FGF receptor 3 (FGFR3) promotes

degradation of BMPRIA through the E3 ubiq-

uitin ligase Smurf1 (Smad ubiquitination regu-
latory factor-1), thus inhibiting BMP-induced

chondrogenesis (Qi et al. 2014). These findings

lend credence to the notion that shortened
growth plates, found in achondroplasia due

to single gain-of-function amino acid substitu-

tions in FGFR3, such as K644E, may result
from reduced BMP signaling. Indeed, BMP-2

treatment of metatarsals of Fgfr3K644E mice

show increased hypertrophic zone length (Qi
et al. 2014).

Growth Differentiation Factors and Joint
Formation

The TGF-b family proteins named “growth and
differentiation factors” (GDFs) also play critical

roles during endochondral ossification and

joint formation. Gdf5, which encodes GDF-5/
BMP-14, is expressed in precartilaginous mes-

enchyme and the perichondrium of proximal

structures of the limb buds in E12.5 mouse em-
bryos. At later stages, Gdf5 expression localizes

to the sites of joint formation. Gdf6, which

encodes GDF-6/BMP-13, and Gdf7, which
encodes GDF-7/BMP-12, are also expressed in

a subset of developing joints (Wolfman et al.

1997; Settle et al. 2003). The spontaneous mu-
tation brachypodism in mice shows abnormal

skeletal patterns that are attributed tomutations

inGdf5 (Storm et al. 1994).Gdf52/2mice show
shorter appendicular bones although axial

bones are unaffected (Storm et al. 1994; Storm

and Kingsley 1996), and abnormal joint forma-
tion in the synovial joints of the limb leading to

abnormal fusion between particular skeletal el-

ements (Storm and Kingsley 1996). In humans,
GDF5 mutations are at the basis of hereditary

diseases, such as acromesomelic chondrodys-

plasia, Hunter–Thompson type (CHTT) and
chondrodysplasia, Grebe type (CGT) (Thomas

et al. 1996, 1997). These diseases are character-

ized by shortening of the appendicular skeleton

and abnormal joint development resembling
the skeletal abnormalities in Gdf52/2 mice.

CHTT is due to a missense mutation in GDF5

resulting in total loss of function, whereas CGT
is due to a C400Y substitution in GDF-5 that

affects dimerization of BMP/GDF ligands

(Thomas et al. 1996, 1997). Overexpression of
Gdf5 in the chick limb results in larger size

of cartilage condensation (Francis-West et al.

1999), suggesting a potential role of GDF-5 in
skeletal growth. Chondrocyte-specific expres-

sion ofGdf5 inmice also promptsmesenchymal

condensations caused by increased cell adhesion
and proliferation (Tsumaki et al. 1999, 2002).

Increased expression of Gdf5 in chondrocytes

restricts expression of joint markers, and pro-
motes overgrowth of cartilage, and thus may

cause fusion of adjacent skeletal elements and

loss of joints.
Gdf62/2 mice show skeletal phenotypes

that are similar to, but distinct from, those of

Gdf52/2 mice. Gdf62/2 mice display fusions
between specific carpal bones in the wrists and

between talus and the central tarsal bones in

ankle, coincident with high expression of Gdf6
(Settle et al. 2003). In Gdf62/2 mutants, the

process to subdivide larger skeletal precursors

into individual skeletal elements does not take
place (Settle et al. 2003). Gdf62/2 mice also

show loss of coronal sutures, which separate

frontal bones from parietal bones in the skull
(Settle et al. 2003). In control embryos, the fron-

tal and parietal bones are visible at E14.5 as

separate ossification centers; however, one con-
tinuous bone is found in the Gdf62/2 embryos

(Clendenning and Mortlock 2012). Suture

width is reduced in Gdf6þ/2 embryos, and su-
tures are absent, accompanied with increased

alkaline phosphatase activity, in Gdf62/2 em-

bryos (Clendenning and Mortlock 2012). Fgfr2
is highly expressed in proliferating osteopro-

genitors, and its expression is down-regulated

as differentiation progresses (Iseki et al. 1999).
However, the expression of Fgfr2 that is normal-

ly observed in coronal sutures is repressed in

theGdf62/2 embryos (Settle et al. 2003). These
results suggest that GDF-6 represses and pre-

vents osteogenic differentiation through expres-
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sion of Fgfr2 to maintain the suture mesen-

chyme undifferentiated.
Gdf52/2;Gdf62/2 mice have a more severe

phenotype of bone size and joint formation

than either single mutant (Settle et al. 2003).
Many limb bones are much smaller or com-

pletely missing. The vertebral column of these

double mutant mice has a reduction of alcian
blue-stained extracellular matrix, suggesting a

reduction in cartilaginous extracellular matrix,

whereas no overt phenotype is observed in the
vertebral column of either mutant (Settle et al.

2003).Gdf7 is also expressed in joint interzones,

but unlike Gdf52/2 or Gdf62/2 mice, no overt
morphological skeletal phenotypes are found

in Gdf72/2 mutant mice (Settle et al. 2001).

Although the tibial growth plates of Gdf72/2

mice have a histologically normal columnar

structure, their proliferation rate is higher

than that of control mice (Mikic et al.
2008). This distinguishes Gdf72/2 mice from

Gdf52/2 mice that show a reduced prolifera-

tion rate of hypertrophic chondrocytes in the
tibial growth plate (Mikic et al. 2004).

GDF-5, like other BMP ligands, interacts

with type I and type II receptors to induce
activation of Smad proteins (Nishitoh et al.

1996; Nohe et al. 2004). GDF-5 dimers interact

with BMPRIA or BMPRIB, albeit preferentially
with BMPRIB (Nickel et al. 2005). Bmpr1b is

expressed in early cartilage condensations, and

is later defined in the digital rays of hands or
feet that outline the future digits pattern, and

colocalizes with Gdf5 (Kawakami et al. 1996;

Zou et al. 1997; Degenkolbe et al. 2014).
When Gdf5 expression concentrates in joint

interzones, starting at E13.5 in mice, those

domains are flanked by Bmpr1b expression
(Degenkolbe et al. 2014). In contrast, Bmpr1a

is expressed in direct proximity in the interpha-

langeal regions and surrounding limb epitheli-
um. The limb phenotype of Bmpr1b2/2;

Gdf52/2 mice highly resembles that of

Gdf52/2 mutants (Baur et al. 2000; Yi et al.
2000), further reinforcing the idea that BMPRIB

is the primary receptor for GDF-5 during limb

development.
The activities of GDF-5 are counteracted by

ligand antagonists, such as the BMP antagonist

noggin, encoded by Nog (Merino et al. 1999a).

Nog is expressed during chondrogenesis and
joint specification, and its expression domains

overlap with those of Bmpr1b (Degenkolbe et al.

2014). Nog2/2 mice show skeletal abnormali-
ties that include the absence of joints. After

the initial condensations of limb mesenchyme,

Nog2/2 mice show increased recruitment of
mesenchymal precursors that subsequently

results in overgrowth of cartilage and fusion

of neighboring skeletal elements (Brunet et al.
1998). In chick embryos, ectopic expression of

BMPs suppresses Gdf5 expression, suggesting

that increased BMP signaling in Nog2/2 limb
bud may lead to decreased GDF-5 levels, which

is at the basis of the similar phenotypes of

Gdf52/2 limbs (Macias et al. 1997; Merino
et al. 1999a).

TGF-b, Chondrogenesis, and Osteoarthritis

TGF-b has potent chondrogenic inductive abil-

ity both in cell culture and in vivo. Bovine bone
extracts were shown to induce chondrocyte dif-

ferentiation of embryonic ratmusclemesenchy-

mal cells, and this chondrogenic activity was
then identified as TGF-b (Seyedin et al. 1983,

1986). TGF-b ligands and receptors are broadly

expressed in skeletal systems, and TGF-b plays a
pivotal role during mesenchymal condensation

(Kulyk et al. 1989; Tuli et al. 2003; Song et al.

2007). TGF-b further stimulates the expression
of cartilage-specific extracellular matrix pro-

teins such as type II collagen and aggrecan

(Denker et al. 1995; Blaney Davidson et al.
2007; Shen et al. 2014). TGF-b does not pro-

mote chondrogenic differentiation when bone

marrowmesenchymal cells are cultured on plas-
tic or type I collagen, but strongly promotes

chondrogenic differentiation of cells cultured

in Matrigel (Tuli et al. 2003). In the latter case,
TGF-b induces Wnt7a expression leading to

N-cadherin expression that increases cell–cell

contacts that are required for chondrogenic
differentiation.

Injection of TGF-b underneath the perios-

teum results in increased chondrocyte pro-
liferation, differentiation, and formation of car-

tilage (Joyce et al. 1990; Critchlow et al. 1995;
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Pedrozo et al. 1999). During endochondral

bone formation, the perichondrium is a critical
site of TGF-b1 signaling. TGF-b1 treatment of

metatarsal bone cultures results in partial re-

duction of chondrocyte proliferation and chon-
drogenic differentiation, measured by collagen

X expression (Alvarez et al. 2001). These inhib-

itory effects of TGF-b1 are diminished when
the perichondrium is removed before culture

(Alvarez et al. 2001). Perichondrium produces

and secretes several other growth factors that
control chondrocyte differentiation, such as

Ihh and Shh, and PTHrP (Kronenberg 2003).

Ihh and Shh induce perichondrial TGF-b2
expression, and TGF-b2 induces PTHrPexpres-

sion in the perichondrium, which then inhibits

differentiation into hypertrophic chondrocytes
(Lanske et al. 1996; Vortkamp et al. 1996;

Serra et al. 1999). However, the inhibitory effect

of TGF-b1 on longitudinal bone growth is
PTHrP-independent (Serra et al. 1999).

The severe bone defects inmice deficient for

Tgfb2 or Tgfb3 underscore the important roles
of these TGF-b isoforms during skeletogenesis

(Dünker and Krieglstein 2000). Expressing a

dominant-negative form of TbRII (dnTgfbr2)
in skeletal tissues promotes terminal differenti-

ation of chondrocytes in the growth plate (Serra

et al. 1997) and hypertrophy of the articular
chondrocytes in the superficial zone, concomi-

tant with loss of proteoglycan, leading to pro-

gressive cartilage degradation as seen in osteo-
arthritis (Serra et al. 1997). Global disruption of

Smad3 leads to chondrocyte hypertrophy of

articular chondrocytes in the superficial zone
and spontaneous joint degeneration (Yang

et al. 2001). Treatment of bones from Smad3-

deficient mice with TGF-b1 in culture results
in partially impaired differentiation and inhibi-

tion of cell proliferation (Alvarez and Serra

2004). These findings suggest that Smad3 is
the major signaling mediator of TGF-b-in-

duced inhibition of chondrocyte proliferation

in growth plate and articular cartilage. Several
lines of evidence from mice with tissue-specific

inactivation of Tgfbr2 further support the

essential roles of TGF-b signaling in normal
cartilage development and maintenance of

the both growth plate and articular cartilages.

Targeted inactivation of Tgfbr2 in undifferenti-

ated limb bud mesenchyme reduces chondro-
cyte proliferation and accelerates hypertrophic

differentiation, but delays terminal differen-

tiation into hypertrophic chondrocytes (Seo
and Serra 2007; Spagnoli et al. 2007). In con-

trast, inactivation of Tgfbr2 specifically using

Col2a1-Cre in chondrogenic cells results in
defects in the axial skeleton without altering

chondrocyte differentiation (Baffi et al. 2004).

Cre-mediated inactivation of Tgfbr2 specifically
from the Col10a1 promoter in hypertrophic

chondrocytes leads to delayed conversion of

proliferating chondrocytes into hypertrophic
chondrocytes and subsequent terminal differ-

entiation (Sueyoshi et al. 2012). These results

suggest that the function of TGF-b signaling
depends on the differentiation state of the chon-

drocytes, and that TGF-b promotes terminal

chondrocyte differentiation (Fig. 2).
Postnatal inactivation of Tgfbr2 using the

tamoxifen-inducible Col2a1-CreERT2 cassette

in chondrogenic cells results in increased
Runx2, Mmp13 (encoding matrix metallopro-

teinase 13), Adamts5 (encoding a disintegrin

and metalloproteinase with thrombospondin
motif, ADAMTS 5), and Col10 expression in

articular cartilage (Chen et al. 2007; Zhu et al.

2008; Shen et al. 2013). These mice show artic-
ular cartilage degradation at three months, and

loss of the entire articular cartilage with exten-

sive osteophyte formation, resembling osteoar-
thritis, by sixmonths (Shen et al. 2013). In these

mice, the osteoarthritis phenotype is alleviated

by compound inactivation of Mmp13, whereas
treatment with the MMP13 inhibitor CL82198

also decelerates the progression of the osteoar-

thritis phenotype (Shen et al. 2013). These ob-
servations are consistent with the attenuation of

articular cartilage degeneration upon Mmp13

inactivation in a mouse model for medial me-
niscus destabilization, and provide a potential

therapeutic strategy for human osteoarthritis

(Little et al. 2009; Wang et al. 2013a; Shen
et al. 2014; Ha et al. 2015).

TGF-b and BMP signaling interact func-

tionally with each other during chondrogenic
differentiation and growth plate development.

Chondrocyte-specific expression of dominant-
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negative form of TbRI from the Col2a1 pro-

moter results in an elongated growth plate,
expanded prehypertrophic zone, and increased

chondrocyte proliferation (Keller et al. 2011),

supporting the idea that TGF-b signaling is
critical for terminal differentiation of chondro-

cytes. Interestingly, BMP-2 treatment suppress-

es TGF-b-induced Smad activation, while
inducing BMP–Smad signaling, in ATDC5

chondrogenic cells (Fig. 2) (Keller et al. 2011).

TGF-b treatment of other cell types, such as
C2C12 myoblasts, mouse embryonic fibroblasts,

and HepG2 hepatoma cells, also increases

BMP signaling (Wrighton et al. 2009). As men-
tioned already, chondrocyte-specific disruption

of Smad4 with Col2a1-Cre results in impaired

growth plate organization and dwarfism, but
does not cause the lethality that is seen

after chondrocyte-specific inactivation of both

Smad1 and Smad5 (Zhang et al. 2005). It
is possible that inactivation of both Smad sig-

naling pathways in the Smad4-defective mice

somewhat compensates for the loss of each
Smad signaling branch to lessen the phenotype,

although the loss of Smad4 may merely attenu-

ate Smad signaling. Results using ATDC5 cells
suggest that TGF-b and BMP signaling interact

in chondrocytes to precisely regulate the length

of the growth plates by forming a feedback loop
similar to Ihh and PTHrP.

Activins and Chondrogenesis

Compared with TGF-b and BMPs, less infor-

mation is available on the roles of activins in
chondrogenesis. Activin A (inhibin bA homo-

dimer), added to limb bud micromass cultures,

enhances chondrogenesis by increasing the size
of precartilaginous condensations and cartilag-

inous nodules (Jiang et al. 1993). However, an-

other report describes that activin A inhibits
chondrogenic differentiation while inhibin A

(inhibin a and inhibin bA heterodimer) stimu-

lates chondrogenesis in limb bud micromass
culture (Chen et al. 1993). Implantation of

activin-soaked beads into limbmesenchyme in-

duces Bmpr1b expression that in turn increases
local BMP signaling and subsequently induces

the expression of activin A and TGF-b2, which

are both necessary for digit elongation (Merino

et al. 1999b). In contrast, implantation of folli-
statin-soaked beads into the tips of growing dig-

its blocks chondrogenesis and digit formation

(Merino et al. 1999b).
As mentioned, Inhba2/2 mice and Fst2/2

mice show craniofacial abnormalities, including

cleft palate (Matzuk et al. 1995b,c). Acvr22/2

mice also display craniofacial abnormalities, in-

cluding mandibular hypoplasia and defective

Meckel’s cartilage, underscoring the role of
activin signaling in chondrogenesis (Matzuk

et al. 1995a). Although transgenic mice with

chondrocyte-specific increase of activin signal-
ing have not been generated, administration of

activin A onto the periosteum of parietal bone

in newborn rats results in increased thickness of
both the periosteal and bone matrix layers (Oue

et al. 1994). Transgenic mice that produce

human inhibin a, encoded by INHA, display
increased bone mass and improved biomechan-

ical properties of the tibia through suppression

of activin signaling (Perrien et al. 2007).

TGF-b FAMILY SIGNALING IN MYOBLAST
DIFFERENTIATION

Muscle tissue contributes ≏40% to total body

mass in the human body (Huard et al. 2002).
Skeletal muscle has a variety of physiological

functions, including locomotion, protection

of underlying structures, metabolic functions,
such as modulating blood glucose levels, and

paracrine and endocrine functions (Huard

et al. 2002; LeBrasseur et al. 2011; Pedersen
and Febbraio 2012). The basic structural units

of mammalian skeletal muscle are multinucle-

ated myofibers (Huard et al. 2002). They con-
tain sarcomeres consisting of myosin and actin

filaments that facilitate the contractile function

(Huard et al. 2002). To repair minor lesions
caused by normal daily activity and injury after

trauma, skeletal muscle tissue is regenerated in a

coordinated process in which local myogenic
progenitors, termed satellite cells, are activated

(Mauro 1961; Kaji et al. 2006; Karalaki et al.

2009). Although normally quiescent and local-
ized between myofibers, satellite cells migrate

to the site of damage, where they proliferate
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(Charge and Rudnicki 2004; Kaji et al. 2006;

Karalaki et al. 2009). Activated satellite cells
can then differentiate into myoblasts that

can advance to terminal myogenic differentia-

tion to ultimately form new muscle fibers
(McLennan and Koishi 2002). In this process,

myoblasts fuse with each other or existing myo-

fibers to finally form multinucleated myofibers
(Pavlath andHorsley 2003; Charge and Rudnicki

2004; Kaji et al. 2006; Karalaki et al. 2009).

Multiple members of the TGF-b family are
involved in coordinating these differentiation

processes, including BMPs (Patterson et al.

2010), TGF-b (Massagué et al. 1986; Olson
et al. 1986; Filvaroff et al. 1994; Karalaki et al.

2009), and myostatin (Langley et al. 2002; Rios

et al. 2004; Amthor et al. 2006; McFarlane et al.
2008; Karalaki et al. 2009). They control the

expression of myogenic transcription factors

(Vaidya et al. 1989; Martin et al. 1992; Langley
et al. 2002), including Pax transcription factors,

involved in satellite cell determination and sur-

vival (Seale et al. 2000; Olguin and Pisconti
2012), as well as MRFs, which are essential for

myoblastic lineage determination and terminal

differentiation (Fig. 3A) (Sassoon et al. 1989;
Weintraub et al. 1991; Megeney and Rudnicki

1995; Sabourin et al. 1999; Charge and Rud-

nicki 2004; Beylkin et al. 2006). The final out-
comes of TGF-b family signaling on myoblast

differentiation is context-dependent, including

the cell type and differentiation state (Kollias
and McDermott 2008), presence of other regu-

latory factors (Blachowski et al. 1993; Ewton

et al. 1994; Engert et al. 1996; Florini et al.
1996; McLennan and Koishi 2002; Karalaki

et al. 2009), and modulation of TGF-b family

ligand bioavailability (e.g., through extracellu-
lar matrix molecules such as proteoglycans)

(Casar et al. 2004; Droguett et al. 2006; Karalaki

et al. 2009; Olguin and Pisconti 2012). This
section will focus on the effects of BMP-2,

TGF-b, and myostatin signaling in myoblast

differentiation.

BMPs and Myoblast Differentiation

BMP-2 inhibits myogenic differentiation, and

promotes chondrogenic and osteogenic lineage

selection and differentiation (Fig. 3B) (Yamagu-

chi 1995). In cell culture, BMP-2 prevents
myogenic differentiation of C2C12 myoblasts,

resulting in an almost complete inhibition of

myotube formation (Katagiri et al. 1994; Yama-
guchi 1995), and induces osteoblastic differen-

tiation, with increased expression of alkaline

phosphatase and osteocalcin (Katagiri et al.
1994; Yamaguchi 1995). Similarly, in C26 oste-

oblast precursors, which can also differentiate

into myotubes, addition of BMP-2 reduces my-
otube formation while promoting osteoblastic

differentiation (Yamaguchi et al. 1991; Yamagu-

chi 1995). Additionally, BMP-2 inhibits myo-
tube formation of primary murine muscle cells

(Katagiri et al. 1994; Yamaguchi 1995). At the

molecular level, BMP-2 inhibits the expression
of MRFs, and, consequently, myogenic lineage

selection (Fig. 3A) (Yamaguchi 1995). For in-

stance, MyoD and myogenin expression nor-
mally increase during myogenic differentiation

of C2C12 cells, but BMP-2 inhibits their expres-

sion (Katagiri et al. 1994). In vivo, administra-
tion of BMP-2 into muscles of mice results in

ectopic bone formation (Wozney et al. 1988;

Yamaguchi 1995), supporting the notion that
BMP-2 alters muscle stem cell differentiation

toward an osteoblastic lineage. Accordingly,

increased BMP signaling is associated with
FOP, a genetic disorder with progressive ectopic

bone formation in muscle, tendons, and other

connective tissues (Shafritz et al. 1996). As de-
scribed already, FOP patients have mutations in

the BMP type I receptor ACVR1/ALK-2 that

lead to increased basal downstream receptor
signaling (Shafritz et al. 1996; Fiori et al. 2006;

Shore et al. 2006; Billings et al. 2008; Kaplan

et al. 2009), increased signaling in response to
BMP (de Gorter et al. 2010), and additional

responsiveness to activins (Hatsell et al. 2015;

Hino et al. 2015).

TGF-b and Myoblast Differentiation

TGF-b1, b2, and b3 inhibit myoblast prolifer-

ation, differentiation, and myotube formation

in culture (Massagué et al. 1986; Olson et al.
1986; Yamaguchi 1995), but, in contrast to

BMP-2, do not promote osteoblastic differenti-
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ation (Fig. 3B) (Katagiri et al. 1994; Yamaguchi
1995; Karalaki et al. 2009). However, while

TGF-b can inhibit expression of muscle-specif-

ic genes, myotube formation and fusion of
myoblasts (Fig. 3A) (Massagué et al. 1986;

Olson et al. 1986; Allen and Boxhorn 1987;

McLennan and Koishi 2002), it promotes em-
bryonic myoblast differentiation (Cusella-De

Angelis et al. 1994). This difference may be

explained by intrinsic differences in the embry-
onic and fetal myoblasts with differential ex-

pression of surface molecules and transcription
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Figure 3. TGF-b family signaling in myoblast differentiation. (A) Major intracellular and transcriptional targets
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protein kinase.
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factors, and different sensitivity to TGF-b and

other ligands (Biressi et al. 2007). Pharmacolog-
ical inhibition of the TbRI kinase and silencing

of Smad2 and Smad3 using siRNA increase

the expression of myogenin in rat myoblasts,
supporting the notion that TGF-b signaling

partially inhibits early myoblast differentiation

(Droguett et al. 2010). Interestingly, silencing
of Smad2 and Smad3 also promotes expression

of the later differentiation marker myosin

and myotube fusion, whereas TbRI inhibition
reduces myosin expression and fusion, even

when Smad2 and Smad3 expression is silenced

(Droguett et al. 2010). Expression of a domi-
nant-negative TbRII also inhibits differentia-

tion and myoblast fusion of C2C12 and rat

myoblasts (Filvaroff et al. 1994; Droguett et al.
2010). Together, these findings suggest that

TGF-b signaling is required for normal late

myoblast differentiation, potentially through
Smad-independent mechanisms (Fig. 3B)

(Droguett et al. 2010).

The net effects of TGF-b ligands on myo-
blasts also depend on the presence of other

factors such as IGF-I and FGFs (Olson et al.

1986; Cook et al. 1993; Florini et al. 1996;
McLennan and Koishi 2002; Karalaki et al.

2009). For example, in primary satellite cells,

IGF-I prevents the inhibition of differentiation
by TGF-b (Allen and Boxhorn 1989). Addition-

ally, differences of TGF-b receptor expression

in myogenic cells in culture may help explain
differences in responses. L6 cells, a rodent myo-

blast cell line, do not express betaglycan and the

TGF-b receptor RIIB, an alternatively spliced
variant of TbRII that can bind TGF-b2 in the

absence of betaglycan, resulting in their inabil-

ity to respond to TGF-b2 (Lopez-Casillas et al.
1993; Rotzer et al. 2001; McLennan and Koishi

2002).

Mechanistically, TGF-bs inhibit myoblast
differentiation by repressing the expression

and activities of MRFs, including myogenin

and MyoD, through Smad3 activation (Fig.
3A) (Katagiri et al. 1994; Liu et al. 2001,

2004). Thus, inhibition of TbRI signaling using

a kinase inhibitor increases expression of MRFs
and Pax transcription factors in human embry-

onic stem cells (Mahmood et al. 2010). Addi-

tionally, TGF-b can repress myoblast differenti-

ation by impairing the responsiveness to IGF-I
(Schabort et al. 2011), reducing the activity of

2-5A synthetase and double-stranded RNA

activated protein kinase (PKR) (Salzberg et al.
1995), as well as reducing miR-24 expression

(Sun et al. 2008). Moreover, TbRI expression

in rat myotubes is repressed by electrical activity
(Ugarte and Brandan 2006), suggesting that

muscle activity could promote tissue growth

by preventing TGF-b inhibition of myoblast
differentiation and fusion.

Despite similar effects onmyoblast differen-

tiation in cell culture, TGF-b1, 2, and 3 may
have distinct effects on myoblast fusion in vivo

(McLennan and Koishi 2002). TGF-b1 levels

remain constant during myotube development
(McLennan 1993), and Tgfb12/2 mice show

normal myotube formation and muscle fiber

development (McLennan et al. 2000;McLennan
and Koishi 2002). In contrast, TGF-b2 is

expressed by myotubes in developing and

regenerating muscles, and its levels increase
during development (McLennan and Koishi

1994, 1997), suggesting a role in late myoblast

differentiation and during initiation of myo-
tube formation in vivo (McLennan et al.

2000; McLennan and Koishi 2002). Consistent

with this notion, C2C12 cells that express a
dominant-negative form of TbRII cannot fuse

when injected in vivo (Filvaroff et al. 1994).

After injury, TGF-b1 and TGF-b3 are released
from damaged muscle tissue and platelets, and

stimulate further TGF-b synthesis by myogenic

cells within the regenerating muscles (Assoian
and Sporn 1986; Husmann et al. 1996; Karalaki

et al. 2009). TGF-b is chemotactic for inflam-

matory cells, such as neutrophils and macro-
phages, which secrete pro-inflammatory factors

including FGF, TNF, and interleukin 1 (IL-1),

and thus induces angiogenesis (Husmann et al.
1996; Karalaki et al. 2009). In addition, other

signaling factors are released from the extracel-

lular matrix and vasculature, including IGF-I
and hepatocyte growth factor (HGF), and

together promote wound healing (Koutsilieris

et al. 1997; Karalaki et al. 2009). Although HGF
and IGF-I initiate proliferation and promote

satellite cell differentiation, TGF-b1 can inhibit
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satellite cell proliferation and differentiation in a

dose-dependent manner (Allen and Boxhorn
1987; Ewton et al. 1994; Bladt et al. 1995; Engert

et al. 1996; Dietrich et al. 1999; Yamane et al.

2003; Karalaki et al. 2009). Furthermore, TGF-
b1 induces the expression of proteins of the ex-

tracellular matrix that surrounds the muscular

defect during injury repair, and promotes regen-
eration of the myofiber basement membrane

(Edwards et al. 1987; Streuli et al. 1993; Hus-

mann et al. 1996). By stimulating the expression
of these proteins, including collagens and pro-

teoglycans, TGF-b promotes postinjury genera-

tion of fibrosis and scar tissue (Massagué et al.
1986; Husmann et al. 1996; Karalaki et al. 2009).

As a result, intramuscular application of decorin,

which inhibits TGF-b activity in the extracellular
matrix, improves muscle healing and prevents

muscle fibrosis (Sato et al. 2003; Casar et al.

2004; Karalaki et al. 2009; Ten Broek et al. 2010).

Myostatin and Myoblast Differentiation

Myostatin is a potent repressor of myoblast dif-

ferentiation required for muscle development,

growth and repair, and, thus, of muscle mass
(Langley et al. 2002; Rios et al. 2004; Karalaki

et al. 2009). Myostatin is expressed by satellite

cells and myoblasts during embryogenesis and
regeneration of skeletal muscle (Karalaki et al.

2009; Ten Broek et al. 2010), and inhibits myo-

blast recruitment and differentiation, thereby
decreasing the fiber size and number (Fig. 3B)

(Kaji et al. 2006; Karalaki et al. 2009; Trendelen-

burg et al. 2009; Ge et al. 2011). In cell culture,
myostatin inhibits proliferation, differentiation,

and protein synthesis of rodent myoblasts

(Langley et al. 2002; McFarlane et al. 2006;
Huang et al. 2007a), and reduces myoblast

fusion and creatine kinase activity in human

myoblasts (Trendelenburg et al. 2009). Mecha-
nistically, myostatin binds to the type II receptor

ActRIIB (and to a lesser extent ActRII) and the

type I receptors ALK-4 or TbRI/ALK-5, result-
ing in Smad2 and Smad3 as well as Erk MAPK

activation (Lee and McPherron 2001; Zhu et al.

2004; Yang et al. 2006; McFarlane et al. 2008).
Inhibition of Akt signaling through mTOR

complex 1 further enhances myostatin-induced

Smad activation and potentiates myostatin’s

inhibitory effects (Bentzinger et al. 2008; Tren-
delenburg et al. 2009). Myostatin can also in-

hibit IGF-I signaling through the PI3K–Akt

pathway in myoblasts (Huang et al. 2007a),
and stimulate the ubiquitin-mediated proteol-

ysis through a FoxO1-dependent mechanism

(McFarlane et al. 2006). At the transcriptional
level, myostatin increases Pax7 expression,

which requires Erk MAPK activation, and re-

presses the expression of Myf5, myogenin and
MyoD, thereby inhibiting satellite cells frompro-

gressing in myoblastic lineage differentiation

(Fig. 3A) (Amthor et al. 2002; Langley et al.
2002; McFarlane et al. 2008; Trendelenburg

et al. 2009; Ten Broek et al. 2010). In addition,

myostatin induces expression of the cell cycle
inhibitor p21Cip1 to maintain satellite cell quies-

cence (McCroskery et al. 2003; Kaji et al. 2006).

Micewith inactivatedmyostatin expression show
an extensive increase of skeletal muscle mass,

muscle hypertrophy and hyperplasia, and in-

creased myofiber size and number (McPherron
et al. 1997; Lee and McPherron 2001; Karalaki

et al. 2009). Cattlewith a homozygous frameshift

mutation that removes a conserved sequence of
the myostatin protein show doubling of their

muscle mass, further supporting a key role of

myostatin in repressing muscle mass (Grobet
et al. 1997; Kambadur et al. 1997; McPherron

et al. 1997). After injury, myostatin is detected

in necrotic muscle fibers, but not in regenerating
myotubes duringmaturation and fusion, consis-

tent with the concept that myostatin expression

is repressed during muscle repair to facilitate
satellite cell recruitment and proliferation (Brad-

ford et al. 2000; Karalaki et al. 2009).

Follistatin, Smads, and Myoblast
Differentiation

Follistatin binds not only to activins and inhib-

ins, but also to myostatin and some BMPs, and

can inhibit interactions between these TGF-b
ligands with their cell surface receptors (Naka-

mura et al. 1990; Harrison et al. 2005; Gordon

and Blobe 2008). Consequently, follistatin can
oppose the inhibitory effects of these ligands on

myoblast differentiation and promote differen-
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tiation as well as myoblast fusion (Fig. 3A, B)

(Lee andMcPherron 2001; Iezzi et al. 2004; Pis-
conti et al. 2006). Follistatin administration also

antagonizes the pro-apoptotic effects of BMP-7,

but remarkably enhances BMP-7-induced Pax3

expression during chick limb development

(Amthor et al. 2002). Perhaps, for BMPs that

bind to follistatin with low affinity such as
BMP-7, follistatin could store and present these

BMPs to myogenic cells, and thereby in part

promote BMP signaling (Amthor et al. 2002).
In vivo, follistatin overexpression under

control of the myosin light chain promoter

leads to increased muscle mass in mice (Lee
and McPherron 2001), and follistatin overex-

pression under control of the myosin promoter

in zebrafish increases muscle growth by induc-
ing myofiber hyperplasia (Li et al. 2011). It is

currently unclear if follistatin acts in vivo main-

ly through inhibition of myostatin or other
TGF-b family ligands (Amthor et al. 2004; Ol-

guin and Pisconti 2012). That follistatin not

merely acts through inhibition of myostatin is
supported by observations that follistatin over-

expression in muscle of myostatin-deficient

mice further increases muscle mass, whereas
heterozygous loss of follistatin results in re-

duced muscle mass (Gilson et al. 2009; Lee

et al. 2010). Modulation of activin A activity
as well as myostatin-independent Smad3 and

mTOR signaling are also involved in the in

vivo effects of muscle mass regulation by folli-
statin (Lee et al. 2010; Winbanks et al. 2012).

TGF-bs andmyostatin exert their inhibitory

effects on myoblast differentiation, at least in
part, through activation of Smad signaling.

Both Smad32/2 and Smad42/2mice show de-

fects in satellite cell number and function, myo-
genic differentiation, and myoblast fusion, and

have decreasedmusclemass (Ge et al. 2011; Han

et al. 2012). Interestingly, Smad32/2mice show
increased levels of myostatin in myoblasts, and

myostatin inactivation in Smad32/2 mice im-

proves themuscle phenotype (Ge et al. 2011). In
addition, noncanonical pathways and cross-talk

with other signaling pathways may also deter-

mine the net outcome of TGF-b signaling on
myoblast differentiation in vivo (Luo 2017;

Zhang 2017).

TGF-b FAMILY SIGNALING IN
ADIPOCYTE DIFFERENTIATION

Adipose tissue can be divided into two groups

based on function; white adipose tissues (WATs)
store energy, and brown adipose tissues (BATs)

are thermogenic. WATs and BATs are found at

anatomically distinct positions in the body.
WATs are located intra-abdominally where they

are also called visceral fat, and subcutaneously,

whereas BATs aremost commonly located in the
neck and supraclavicular regions (Hilton et al.

2015). Cold exposure or b-adrenergic stimula-

tion induces brown adipose-like tissues within
WATs, a phenomenon known as browning of

WATs. These brown fat-like cells in WATs show

comparable levels of uncoupling protein-1
(UCP-1) that are critical for thermogenesis

similar to classical brown adipocytes in BATs.

Although brown adipocytes in BATs are of the
Myf5þ lineage, these induced brown adipocytes

within WATs areMyf52 like other cells found in

WATs. These cells are now thought to constitute
a third type of adipocyte referred to as either a

“beige” adipocyte or “brite” (brown-in-white)

adipocyte (Fig. 4) (Gesta et al. 2007; Wu et al.
2012, 2013; Harms and Seale 2013).

Undifferentiated MSCs initially differenti-

ate into a preadipocyte stage and then prolifer-
ate by mitotic clonal expansion. Hormonal cues

stimulate further differentiation by initiating

production of C/EBPs b and d, encoded by
Cebpb and Cebpd, respectively (Wu et al.

1996). These transcription factors then activate

the expression of PPARg2 (encoded by Pparg2)
and C/EBPa (encoded by Cebpa) leading to

growth arrest for terminal differentiation and

expression of adipocyte marker genes such as
FABP4 (fatty acid-binding protein 4)/aP2 and

leptin. At this stage, activation of FoxO1 tran-

scription factor expression activates the cell
cycle inhibitor p21CIP1 (Morrison and Farmer

1999; Nakae et al. 2003).

BMPs and Adipogenesis

Many BMPs play dual roles in osteogenesis and
adipogenesis of multipotent cell populations

(Asahina et al. 1996; Kang et al. 2009).
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C3H10T1/2 cells are fibroblasts established

from late stage embryos of the C3H mouse
strain. These cells functionally resemble MSCs

and are competent to differentiate into adipo-

cytes, osteoblasts, myoblasts, and chondrocytes
(Reznikoff et al. 1973). Among the BMP li-

gands, BMP-4 has proadipogenic action and

directs multipotent C3H10T1/2 cells to the ad-
ipocyte lineage (Bowers and Lane 2007; Zamani

and Brown 2011). Subcutaneous injection of

BMP-4-treated C3H10T1/2 cells results in de-
velopment of adipose tissues (Fig. 4) (Tang et al.

2004). Genetic engineered expression of a con-

stitutively active form of Bmpr1a or Bmpr1b in
C3H10T1/2 cells results in accumulation of lip-

id and expression of Fabp4, which lends further

credence to the notion that BMP signaling in
multipotent cell populations favors adipogenic

differentiation (Huang et al. 2009b). Interest-

ingly, noggin treatment of A33 cells, a commit-
ted preadipocyte line derived from C3H10T1/2
cells, blocks adipocyte differentiation (Bowers

et al. 2006), suggesting that autocrine BMP
signaling enables competence for adipocyte

differentiation.

BMP-7 is also involved in adipogenesis in
many populations ofmultipotentmesenchymal

cells including BMSCs (Chen et al. 2001). BMP-

7 can induce human MSCs to an adipogenic
lineage in high-density micromass culture, a

condition that normally induces chondrogenic

differentiation (Neumann et al. 2007). Treating
brown preadipocytes with BMP-7 markedly in-

creases Ucp1 expression compared with other

BMP ligands (Tseng et al. 2008). It is notewor-
thy that BMP-7 can activate Smad1, 5, and 8 in

both brown and white preadipocytes, whereas a

robust activation of p38 MAPK is additionally
observed in brown preadipocytes (Tseng et al.

2008). These findings indicate roles of BMP-7-

induced Smad and p38 MAPK pathway signal-
ing in the regulation of thermogenesis in con-

junction with a nuclear coactivator PGC1

(PPARg coactivator-1). Furthermore, detailed
gene expression analyses show that BMP-7

treatment significantly suppresses expression

of necdin, PREF1 (preadipocyte factor 1) and
Wnt10a, which inhibit brown adipogenesis

while increasing the expression of PRDM16

(PRD1-BF1-RIZ1 homologous domain con-

taining 16), a transcription factor that directs
the brown fat lineage (Seale et al. 2007).

Bmp72/2 mice die at birth, and Bmp72/2

embryos show significant reduction in inter-
scapular BAT mass compared with that of

littermate controls (Tseng et al. 2008). Tail

vein injection of BMP-7 expressing but not
BMP-3 expressing adenovirus specifically in-

duces Prdm16 and Ucp1 expression in BAT,

but not other genes involved in energy metab-
olisms in other tissues, leading to increased

body temperature and decreased body mass of

the injected mice (Tseng et al. 2008). These re-
sults highlight the indispensable roles of BMP-7

in brown adipocyte differentiation and energy

expenditure (Fig. 4).
In contrast to the proadipogenic function of

BMP-4 to promote white adipocytes, and of

BMP-7 to promote brown adipocytes, BMP-2
treatment of BMSCs promotes osteogenic dif-

ferentiation and inhibits adipogenesis (Gimble

et al. 1995; Pereira et al. 2002). Dose-dependent
effects of BMP-2 treatment of C3H10T1/2 cells
are observed. Low doses of BMP-2 induce

adipogenic differentiation, whereas high doses
of BMP-2 promote chondrogenic and osteo-

genic differentiation (Wang et al. 1993; Asahina

et al. 1996). Similar to other BMPs, BMP-2 is
also able to induce adipogenesis, yielding white

adipocytes from committed preadipocytes such

as 3T3-L1 and 3T3-F442A (Ji et al. 2000;
Rebbapragada et al. 2003). Treatment of preadi-

pocytes with BMP-2 along with rosiglitazone, a

PPARg agonist, further enhances adipogenesis
(Sottile and Seuwen 2000). Of note, forced ex-

pression of a constitutively active form of either

BMPRIA or BMPRIB in 3T3-F442A cells inhib-
its adipogenesis and stimulates osteogenesis

(Skillington et al. 2002). Differences in culture

methods or clonal variation of the cells used in
each study may explain such discrepancies;

however, an alternative interpretation is that

cell fate specification of mesenchymal cells
through BMP signaling is highly dose-depen-

dent. The differentiation factor NEL-like mole-

cule-1 (NELL1), a secreted protein that can
induce bone formation (Ting et al. 1999), can

antagonize adipogenesis of the mouse BMSC
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cell line M2-10B4 and human primary BMSCs,

when adipogenesis is induced by BMP-2 (Shen
et al. 2016). These findings suggest that, in

addition to the dose of BMP-2, additional fac-

torsmay contribute to cell fate determination of
BMSCs. BMP-2 induces both Smad and p38

MAPK signaling in C3H10T1/2 cells. Studies

using specific inhibitors reveal that the Smad
pathway is important for Pparg expression,

whereas p38 MAPK signaling is critical for

PPARg to control gene transcription (Hata
et al. 2003). Upon BMP-2 treatment,

Schnurri-2 (Shn2) enters the nucleus and di-

rectly interacts with Smad1 and Smad4, and
with C/EBPa at the Pparg2 promoter to induce

Pparg2 expression (Jin et al. 2006). Shn22/2

mice show reduced white fat mass with normal
brown fat mass, which suggests that BMP li-

gands (or at least BMP-2) use the BMP–Smad

pathway along with Shn2 to regulate white adi-
pogenesis in vivo (Jin et al. 2006). These find-

ings suggest that the effects of BMP-2 exposure

are largely determined by the dose administered
as well as the adipocyte differentiation state at

the time of administration.

Pioneering work using 2T3 mesenchymal
cells have led to the hypothesis that BMP signal-

ing through BMPRIA favors adipogenic differ-

entiation, whereas signaling through BMPRIB
favors osteoblastic differentiation (Chen et al.

1998). The experimental strategy was to over-

express dominant-negative forms of receptors,
because RNA interference technology to silence

gene expression in mammalian cells had not

been established; thus, the specificity of the
signaling pathways blocked by each dominant-

negative receptor form has been a concern.

Although body weight is slightly reduced in
Bmrp1b2/2 mice, no overt phenotypes are

found in adipose tissues (Schulz et al. 2013).

Studies in humans reveal that increased expres-
sion of BMPRIA is associated with visceral and

subcutaneous white fat deposits in obese indi-

viduals (Bottcher et al. 2009). In mice, the
specific disruption of Bmpr1a inMyf5þ lineage

cells results in a significant reduction of BAT

(Schulz et al. 2013). Subcutaneous WAT and
epididymal WAT that chiefly originate from a

Myf52 lineage have the expected mass, whereas

interscapular WAT and retroperitoneal WAT

with subpopulations of cells from the Myf5þ

lineage have reductions in size, showing the im-

portance of BMPRIA-induced BMP signaling

in adipogenesis (Schulz et al. 2013). Specific
disruption of Acvr1/Alk2 in Myf5þ lineage re-

sults in a similar yet milder phenotype, whereas

compound conditional inactivation of Bmpr1a

and Acvr1 inMyf5þ lineage cells results in com-

plete loss of brown adipogenesis. In the mice

with inactivated Bmpr1a expression in Myf5þ

lineage cells, the severe BAT paucity increases

sympathetic input to WAT, and thus enhances

beige adipogenesis to promote browning of the
WAT (Fig. 4) (Schulz et al. 2013). Although

BMP-2 and BMP-4 bind BMPRIA with much

higher affinity than BMP-7 (Sebald et al. 2004),
the results suggest that BMP-7 binding to

BMPRIA is of key importance for brown adipo-

genesis. These results also reveal a potentially
new mechanism to compensate for loss of

brown adipocytes, by promoting beige adipo-

genesis to restore total thermogenic capacity.

TGF-b as a Negative Regulator of
Adipogenesis

Unlike the BMPs, TGF-b has inhibitory roles
during adipogenesis. TGF-b treatment increas-

es proliferation of 3T3-F442A preadipocytes

(Jeoung et al. 1995; Choy et al. 2000), and po-
tently inhibits the adipogenic conversion of

3T3-L1 preadipocytes (Ignotz and Massagué

1985). TGF-b also down-regulates adipose
gene expression in fully differentiated TA1 adi-

pocytes (Torti et al. 1989). Transgenic mice

expressing TGF-b1 from the rat Pck1 promoter
(of the gene encoding phosphoenolpyruvate

carboxykinase 1) in several tissues, including

WAT and BAT, show severely reduced WAT and
BAT (Clouthier et al. 1997), supporting the

notion that TGF-b represses adipogenesis.

During adipogenesis the expression levels of
Smad2, 3, and 4 are unchanged in 3T3-F442A

preadipocytes, whereas those of Smad6 and

Smad7 are severely decreased (Choy et al.
2000). Overexpression of Smad2 or Smad3 in-

hibits lipid accumulation of 3T3-F442A preadi-

I. Grafe et al.

26 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a022202

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


pocytes, with Smad3 exerting stronger effect. In

contrast, a dominant-negative form of Smad3
is able to suppress the inhibitory function of

TGF-b signaling on adipogenesis; however,

adipogenesis proceeds normally in the presence
of dominant-negative form of Smad2 (Choy

et al. 2000). These findings support Smad3 as

a TGF-b signaling component that inhibits
adipogenic differentiation, with Smad2 playing

no discernible role in this process (Fig. 4).

Smad3, along with Smad4, associates with C/
EBPb and C/EBPd resulting in decreased Pparg
expression (Choy and Derynck 2003). Smad6

and Smad7, known as inhibitory Smads, block
TGF-b family signaling through Smads. How-

ever, overexpressing Smad6 or Smad7 in 3T3-

F442A preadipocytes yields a strong inhibitory
effect on adipogenesis (Choy et al. 2000). In

consideration of the finding that inhibitory

Smad levels are sharply reduced during adipo-
genesis, Smad6 and Smad7 may play a distinct

role in regulating TGF-b family signaling activ-

ity in adipocytes (Fig. 4) (Choy et al. 2000).
Because Smad6 inhibits BMP signaling, and

Smad7 inhibits both BMPand TGF-b signaling

(Hayashi et al. 1997; Imamura et al. 1997), and
BMP-4 and BMP-7 stimulate white and brown

adipogenesis, respectively (Fig. 4) (Bowers and

Lane 2007; Tseng et al. 2008; Zamani and Brown
2011), the inhibitory effect on adipogenesis by

Smad6 and/or Smad7 may additionally relate

to inhibition of BMP signaling.

Growth Differentiation Factors and
Adipogenesis

GDF-3 is primarily expressed in adipose tissue

(McPherron and Lee 1993), and a high-fat diet
selectively increases Gdf3 expression in WAT

(Witthuhn and Bernlohr 2001). Increased

expression of Gdf3 in mice by adenoviral-medi-
ated gene transfer results in increased body fat

with adipocyte hypertrophy when the mice are

fed a high-fat diet, but these mice have normal
lipid distribution when on a normal fat diet

(Wang et al. 2004). In contrast, Gdf32/2 mice

show resistance to diet-induced obesity (An-
dersson et al. 2008; Shen et al. 2009a). Control

mice become obese when fed with a high-fat

diet, whereas Gdf32/2 mice accumulate less

WAT while consuming a similar amount of
food to account for their higher metabolic

rate (Shen et al. 2009a). Interestingly, the gene

expression profile of WAT in Gdf32/2 mice
resembles that of BAT, suggesting that loss of

GDF-3 leads to browning of WAT and prompts

beige adipogenesis (Fig. 4). GDF-3 binds to the
activin type I receptors ActRIB/ALK-4 and

ActRIC/ALK-7 along with ActRIIB, and induc-
es activation of Smad2 and Smad3 (Chen et al.
2006; Levine and Brivanlou 2006). Because

Gdf32/2 mice experience WAT browning only

when placed on high-fat diets, this differentia-
tion phenotype differs from the WAT browning

that results from Bmpr1a inactivation inMyf5þ

lineage cells (Schulz et al. 2013). These findings
suggest that different nutrient conditions regu-

late GDF-3-induced signaling through ActRIB/
C and Smad2 and Smad3 to control beige
adipogenesis in WAT.

Myostatin, known as a key negative regula-

tor of skeletal mass, promotes adipogenesis
and inhibits myogenesis in C3H10T1/2 multi-

potent mesenchymal cells (Artaza et al. 2005;

Feldman et al. 2006). However, the resulting
adipocytes in cell culture are smaller and

have a gene expression profile reminiscent of

immature adipocytes (Feldman et al. 2006). In
contrast, humanMSCs cultured with myostatin

undergo less adipogenic differentiation, as

apparent by decreased expression of key adipo-
genic genes such as PPARG and CEBPA (Guo

et al. 2008). CEBPB expression, which is re-

quired for clonal expansion of committed adi-
pocytes (Tang et al. 2003), is not affected by

myostatin treatment, suggesting that myosta-

tin-induced inhibition occurs after mitotic
clonal expansion during early adipogenic differ-

entiation. These observations are consistent

with the inhibition of adipogenic differentia-
tion of 3T3-L1 preadipocytes by myostatin

treatment (Kim et al. 2001). These inhibitory

effects require Smad3 as in the case of TGF-b
(Guo et al. 2008).

Gdf82/2 mice have reduced quantities of

adipose tissues, decreased cell size of the re-
maining adipocytes, and slower metabolic rate

than control mice, while maintaining normal
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body temperature and food intake (Lin et al.

2002; McPherron and Lee 2002; Hamrick et al.
2006). Overexpression of a dominant-negative

form of ActRIIB in skeletal muscle from the

Myl1 promoter (of the gene encoding myosin
light chain 1) results in muscle and adipose

phenotypes similar to Gdf82/2 mice (Lee and

McPherron 2001). In contrast, expression of the
dominant-negative form of ActRIIB only in ad-

ipose tissue from an Fabp4 (also named aP2)

promoter inmice does not lead to overt changes
in either muscle or adipose tissue (Guo et al.

2009). Moreover, myostatin signaling activates

both PPARg and MyoD expression in adipose-
derived stem cells, whereas it represses their

expression in muscle satellite cells (Zhang

et al. 2015). Taken together, these findings sug-
gest that the reduced adiposity ofGdf82/2mice

may be a result of the muscle hypertrophy that

increases muscle glucose metabolism and de-
creases the energy available for lipid storage.

Systemic increase of myostatin levels by in-

jecting myostatin producing cells into athymic
nude mice results in a reduced skeletal muscle

mass and a dramatic reduction of WATs

(Zimmers et al. 2002). Expression of Gdf8 in
adipocytes of mice from an Fabp4 promoter

decreases adipocyte size and increases resistance

to diet-induced obesity (Feldman et al. 2006).
Muscle-directed expression of Gdf8 from the

Cmk promoter (gene encoding muscle creatine

kinase) increases epididymal fat pads in mice
(Reisz-Porszasz et al. 2003). These results

show a sharp contrast with reduction in WAT

resulting from systemic increase in myostatin.
A plausible explanation is that adipose and

muscle tissues have sensitive but varied dose

responses to myostatin signaling. An alternative
explanation is that overexpressed myostatin

competes with other signaling pathways. Thus,

the interaction of myostatin with ActRIIB may
inhibit the BMP-7 signaling pathway (Rebbap-

ragada et al. 2003), leading to reduced overall

adipogenesis that primarily affects BATs (Singh
et al. 2014).

BMP-3b, also known as GDF-10, is ex-

pressed at much higher levels than either
BMP-3 or BMP-2 in both WATs and BATs

(Cunningham et al. 1995; Hino et al. 1996,

2012). BMP-3b inhibits osteoblast differentia-

tion of C2C12myoblasts by binding to ActRIB/
ALK-4 and ActRIIB and consequent Smad3

activation (Matsumoto et al. 2012). siRNA-me-

diated silencing of Bmp3b in 3T3-L1 preadipo-
cytes increases adipogenic gene expression,

apparent from expression of adiponectin and

PPARg, and increased expression of Bmp3b

reduces the expression of these genes (Hino

et al. 2012). Bmp3b2/2 mice lack an apparent

developmental phenotype, suggesting compen-
sation for the loss of BMP-3b in vivo by other

members of TGF-b family (Zhao et al. 1999).

Future research (e.g., using high-fat diet and
cold exposure) on Bmp3b2/2 mice will inform

investigators of the functions of BMP-3b during

adipogenesis.

Activin and Energy Expenditure

The effects of activin on adipogenesis in cell

culture are similar to those of TGF-b. Activin

A promotes proliferation of human adipocyte
precursor cells but inhibits early stages of

differentiation (Zaragosi et al. 2010). Activin

A-treated 3T3-L1 preadipocytes express less
PPARg and CEBPa than untreated controls

(Hirai et al. 2005). Silencing of SMAD2 in hu-

man adipose progenitor cells overrides the effect
of activin A treatment to prompt adipogenesis,

suggesting that activin A signaling is mediated

largely by Smad2 along with C/EBPb (Zaragosi
et al. 2010). In human adipocytes, the expres-

sion of INHBA, which encodes the activin A

monomer, is repressed during adipocyte differ-
entiation, whereas the expression of activin B

from the INHBB gene remains high (Sjöholm

et al. 2006; Carlsson et al. 2009; Zaragosi et al.
2010). A mutant mouse line that has Inhbb

introduced into the Inhba locus allows for acti-

vin B expression with the same spatiotemporal
pattern of activin A (Brown et al. 2000). These

mice have much less WAT, elevated metabolic

rates, and increased expression of genes neces-
sary for mitochondrial biogenesis and uncou-

pling (Li et al. 2009). These results suggest that

activin signaling controls mitochondrial energy
expenditure, in addition to its function in

adipocyte differentiation.
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TGF-b FAMILY SIGNALING IN TENOCYTE
DIFFERENTIATION

Clinically, tendon and ligament injuries are

some of the most common musculoskeletal in-
juries ranging from ankle or wrist sprains and

strains to Achilles tendon rupture (Boyer et al.

2005; Towler and Gelberman 2006). These inju-
ries include tendinosis, tendinitis, and paraten-

dinitis, and can be traumatic and inflammatory

in nature, or stem from overuse or degenerative
etiologies (Maffulli et al. 1998; Asplund and

Best 2013). Regardless of the specific condition,

severe tendon injuries are challenging to man-
age as restoration of flexibility and tensile

strength at tendon–tendon and tendon–bone

interfaces are difficult to replicate with surgical
procedures that rely on autograft, allograft, or

synthetic materials (Olson et al. 1988; Sabiston

et al. 1990; Paulos et al. 1992; Jackson and Si-
mon 2002; Towler and Gelberman 2006; Bagna-

ninchi et al. 2007). Tendon itself is a highly

specialized tissue with type I collagen arranged
in hierarchical, longitudinal fibril arrays bound

into fascicles by the endotenon, which runs

contiguously with the epitenon through which
the vasculature, innervation, and lymphatics

traverse (Kastelic et al. 1978; Fenwick et al.

2002; Clegg et al. 2007). Embryologically, ten-
dons derive from a specialized compartment

of the somite, the syndetome (Brent et al.

2003). A specific marker, the basic helix-loop-
helix (bHLH) transcription factor scleraxis (en-

coded by the Scx gene), is present in tendon

progenitor cells and persists inmature tenocytes
(Cserjesi et al. 1995; Schweitzer et al. 2001).

Although this unique marker is very useful in

tenocyte research, the signaling pathways that
lead to tenogenic mesenchymal differentiation

are still being elucidated.

TGF-b family members play a role in teno-
cyte differentiation and maintenance of the

tenocyte phenotype. Although the transcrip-

tion factors that guide tenocyte differentiation
significantly overlap with those in other muscu-

loskeletal tissues, most research to date on teno-

genic lineage differentiation and tendon healing
focuses on differences between these factors.

These studies also show that certain members

of the TGF-b family are protenogenic, whereas

others promote cartilaginous, osteogenic, or
myogenic differentiation. Specifically, BMP-2,

-4, and -7 are antitenogenic, whereas GDF-7

(BMP-12) is the best studied tenogenic BMP
(Lee et al. 2011; Yee Lui et al. 2011; Rui et al.

2012b). GDF-5, -6, and -7 (also known as

BMP-14, -13, and -12, respectively) have been
shown to induce new tendon formation in an-

imal models, and TGF-b promotes retention of

Scx expression and maintenance of the tenocyte
phenotype (Wolfman et al. 1997; Barsby et al.

2014). Furthermore, Smads are crucial in the

gene expression profile resulting from tensile
and compressive forces, which are essential for

tenocyte formation and regeneration (Maeda

et al. 2011).
Similar to myoblast differentiation into my-

ocytes, BMPs play a variety of roles in tenogen-

esis. BMP-2 promotes tenocyte precursor cell
differentiation into osteocytes, chondrocytes,

and adipocytes in cell culture with increased

production of glycosaminoglycans and expres-
sion of aggrecan (Rui et al. 2013; Liu et al. 2014).

Furthermore, BMP-2 potently induces osteo-

genic differentiation of tendon-derived stem
cells, which express higher levels of the

BMPRIA, BMPRIB, and BMPRII receptors

than bone marrow-derived stem cells (Rui
et al. 2012a). Although it does not promote

tenocyte differentiation, BMP-2 signaling may

be important at the tendon–bone junction
(Rodeo et al. 1999; Ma et al. 2007; Rui et al.

2012a). Specifically, canonical BMP signaling

stimulates ectopic bone formation after tendon
transection as there is an increase in down-

stream Smad1/5/8 phosphorylation and inhi-

bition of BMP signaling mitigates this process
(Peterson et al. 2014). Additionally, overexpres-

sion in BMP receptor ALK-2 in cells of the scler-

axis lineage (thought to mark tendon progeni-
tor cells) leads to ectopic bone at sites of

enthesis such as the Achilles tendon (Agarwal

et al. 2017). In addition to BMP-2, BMP-4 and
BMP-7 were shown to be antitenogenic. In

calcifying tendinopathy models, these BMPs

induce chondrocyte-like and fibroblast-like dif-
ferentiation changes in healing tendon (Yee Lui

et al. 2011). BMP-7 changes the gene expression

TGF-b Family Signaling in Mesenchymal Differentiation

Cite this article as Cold Spring Harb Perspect Biol 2018;10:a022202 29

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


profile of tendon tissue tomore closely resemble

cartilaginous meniscus tissue (Ozeki et al.
2013). Interestingly, these BMPs are found in

clinical samples of tendinopathy, but not in

healthy tendon (Rui et al. 2013). Furthermore,
tendon-derived stem cells from unhealthy or

injured tendon are more sensitive to BMP sig-

naling through Smads to induce nontenogenic
differentiation (Lui and Wong 2013).

Although BMP-2, -4, and -7 are antiteno-

genic, other BMPs directly control the differen-
tiation of tenogenic precursors into tenocytes.

GDF-5, GDF-6, and GDF-7 have been shown to

promote tendon repair and the formation of
new tendon tissue (Wolfman et al. 1997; Yu

et al. 2007; Lee et al. 2011), and the tenogenic

activity of GDF-7 specifically was shown both in
cell culture and in vivo (Lou et al. 2001; Wang

et al. 2005; Violini et al. 2009; Lee et al. 2011). Of

particular interest is the ability of GDF-7 to in-
duce MSCs of nontendon origin (e.g., bone

marrow–derived stem cells) to differentiate

into cells with tenocyte characteristics, with
higher expression of scleraxis and tenomodulin

(Lee et al. 2011). In addition, collagen scaffolds

seeded with bonemarrow-derived stem cells ex-
posed to GDF-7 improve tendon repair in an in

vivo model (Lee et al. 2011).

As tendon plays a unique role in the mus-
culoskeletal system, sustaining dynamic ranges

of compression and extension while retaining

flexibility, physical forces play an essential role
in tenocyte differentiation and function. These

forces act in conjunction with effects of other

members of the TGF-b family. TGF-b is known
to maintain scleraxis expression in tendons in

response to mechanical forces (Maeda et al.

2011). Specifically, TGF-b3 promotes Scx ex-
pression and scleraxis translation, as well as te-

nocyte differentiation, when combined with

tensile and compressive forces (Barsby and
Guest 2013; Barsby et al. 2014). TGF-b2 has

also been shown to induce tenogenic differen-

tiation of MSCs (Hoffmann et al. 2006; Guer-
quin et al. 2013). As mentioned, other TGF-b

family members including GDF-5, GDF-6, and

GDF-7 (thosemost related to BMPs) can induce
new tendon and ligament formation, even at

ectopic sites in animal models (Wolfman et al.

1997). Smads, specifically Smad2 and Smad3,

are also required in the regulation of tenogenic
gene expression that is induced by physical forc-

es acting on tendon tissue (Maeda et al. 2011).

Furthermore, Smad8 has been shown to play a
role in the tenogenic differentiation of MSCs

(Hoffmann et al. 2006).

Although the body of work regarding MSC
differentiation to tenocytes is not as robust as

that of adipogenic, myogenic, and osteogenic

differentiation, it is clear that BMP and TGF-b
signaling through Smads plays a leading role.

Tendon is a functionally distinct and dynamic

musculoskeletal tissue, and its mesenchymal
roots are evident in the signaling pathways

that share common mediators with other dif-

ferentiated mesenchymal tissues.

CONCLUDING REMARKS

The effects of TGF-b family signaling in mes-

enchymal lineage selection and progression in

differentiation are complex and time-, dose-, as
well as context-dependent. Also, some TGF-b

signaling factors differentially affect specific

stages during mesenchymal differentiation.
For example, TGF-bs promote proliferation

and early differentiation of MSCs into osteo-

blast, chondrocyte, and adipocyte progenitor
cells, but inhibit later conversion into mature

osteoblasts, chondrocytes, and adipocytes. In

contrast, TGF-bs inhibitmyoblast proliferation,
differentiation, and myotube formation. Simi-

lar to TGF-bs, BMP-2 promotes chondrogenic

and osteogenic lineage selection and differenti-
ation, and inhibits myogenic differentiation,

but, in contrast to TGF-bs, also promotes late

osteoblast differentiation and matrix minerali-
zation.We discussed in this review how the final

effect of TGF-b family signaling on mesenchy-

mal differentiation also depends on interactions
between different TGF-b signaling pathways,

and the presence of other signaling molecules

such as IGF-I, Wnts, FGFs, and others.
In addition to findings in cell culture, dis-

coveries in animalmodels and genetic studies in

patients during the past decades have greatly
extended our understanding of how signaling

by the TGF-b familymembers can drive disease.
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This includes diseases caused by mutations in

genes encoding ligands or receptors of the TGF-
b family as well as disorders caused by other

primary mechanisms, in which altered TGF-b

family signaling contributes to disease. The first
group includes, for example, Camurati-Engel-

mann disease, with mutations in the sequence

encoding pro-TGF-b1 (Kinoshita et al. 2000),
brachydactyly type A2 with mutations in the

BMP2 or BMPRIB genes, brachydactyly type B

resulting fromNOGmutations (Lehmann et al.
2007; Dathe et al. 2009), acromesomelic chon-

drodysplasia (Hunter-Thompson type), and

chondrodysplasia Grebe type with GDF5muta-
tions (Thomas et al. 1996, 1997), as well as FOP

resulting frommutations in the ACVR1/ALK-2
receptor (Shore et al. 2006). The second group
includes genetic as well as acquired disorders,

for instance, OI and osteoarthritis, in which in-

creased TGF-b signaling has been identified as a
contributing mechanism in mouse models

(Zhen et al. 2013; Grafe et al. 2014). Addition-

ally, genetic polymorphisms in genes encoding
TGF-b family proteins or their signaling medi-

ators may modify the susceptibility, course, and

severity of genetic, acquired or age-related dis-
eases, for instance for the risk of osteoporosis

(Langdahl et al. 1997, 2003). Importantly, pre-

clinical studies suggest that pharmacological
targeting of TGF-b family members may be

beneficial for the treatment of certain diseases.

For instance, inhibition of TGF-b ligands with
antibodies in mouse models improve the bone

and extraskeletal phenotype inOI and attenuate

the degeneration of articular cartilage in osteo-
arthritis (Zhen et al. 2013; Grafe et al. 2014). As

another example, inhibition of TGF-b signaling

prevents obesity and diabetes mellitus in mice
(Yadav et al. 2011), and inhibition of GDF-3

function may represent an additional target

for the treatment of obesity (Shen et al.
2009a). Similarly, myostatin antagonists may

be of clinical value for the future treatment of

muscle wasting conditions, and potentially in
muscular dystrophies (Wagner et al. 2002). In

the context of cell therapy, understanding the

roles of TGF-b family signaling in MSC differ-
entiation will help to realize the potential of

MSCs in therapy, ,(e.g., for the repair of carti-

lage and other connective tissues) (Mobasheri

et al. 2009). Ultimately, these encouraging new
avenues have to be studied in the human context

to ascertain effectiveness and safety.
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