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Abstract The contribution of transforming growth factor
β (TGF-β) signaling to breast cancer has been studied
for more than two decades. In an early phase TGF-β
may act as a tumour suppressor, while later, when cells
have become resistant to its anti-mitogenic effects, the
role of TGF-β switches towards malignant conversion
and progression. TGF-β stimulates cell invasion and
modifies the microenvironment to the advantage of
cancer cells. Studies have shown that TGF-β promotes
bone and lung metastasis via different mechanisms. The
therapeutic strategies to target the TGF-β pathway in
breast cancer are becoming increasingly clear. This
review will focus on the role TGF-β in breast cancer
invasion and metastasis.
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VEGF Vascular endothelial growth factor
WAP Whey acidic protein

Introduction

Breast cancer is the most common cancer in women and a
major cause of morbidity or mortality. Worldwide, approx-
imately 350,000 women die from breast cancer each year
[1]. Many factors are currently studied to understand the
causes of breast cancer. These include lifestyle [reviewed in
2], environmental [for example 3], genetic and biological
factors. One of the genetic and biological factors in breast
cancer biology that is widely studied is the secreted cell to
cell signaling molecule, transforming growth factor-β
(TGF-β).

TGF-β is part of a large family of polypeptide growth
factors that includes activins, inhibins, and bone morpho-
genetic proteins (BMPs). Three human TGF-β isoforms,
which are structurally and functionally closely related, have
been described. All three isoforms are secreted as latent
precursor molecules. Proteolytic cleavage, interaction with
integrins, or pH changes in the local environment activate
latent TGF-β [4]. Classic TGF-β signaling involves the
binding of TGF-β to TGF-β type II receptors (TβRIIs),
recruitment of type I receptors (TβRIs), transphosphoryla-
tion by TβRII kinase, and the subsequent phosphorylation
of receptor regulated (R-)Smad2 and Smad3. Bone mor-
phogenetic proteins (BMPs) signal specific BMP type I and
type II receptors, and stimulate the activation of R-Smad1,
5 and 8. Phosphorylated Smads form heteromeric com-
plexes with common mediator (co-)Smad4 that then
accumulate into the nucleus. The Smad complexes interact
with transcription factors, co-activators, and co-repressors
where they participate in the regulation of target gene
expression [reviewed in 5]. Besides the canonical TGF-β/
Smad pathway, TGF-β can directly activate non-Smad
signaling pathways [6, 7], including the mitogen activated
protein (MAP) kinases. Erk was found to be phosphorylat-
ed via a direct TβRI-induced phosphorylation of Shc [8]. In
addition, small GTPases such as Ras, Rho, Rac and
CDC42, have been implicated in non-Smad TGF-β
signaling [9–11].

TGF-β is a very potent growth inhibitor of primary
human mammary epithelial cells. Loss of TGF-β growth
inhibition and increased expression of TGF-β have been
associated with malignant conversion and progression in
breast cancer. Specific mutation of TGF-β signaling
components occurs only occasionally in breast cancers.
Rather, TGF-β growth response is abrogated by changes in
the profile of other active signaling networks or the relative
availability of transcriptional co-repressors or co-activators

that bind to and modulate the canonical Smad pathway
[12]. Estrogens also appear to negatively regulate TGF-β
signaling in breast cancer [13] and there is evidence that
many pathway components may be epigenetically regulated
during critical transitions in malignant progression [14].
Moreover, a large number of reports indicate that TGF-β
can turn into a promoter of progression at later tumour
stages [15]. In support of this notion is clinical evidence
that indicates a correlation between expression of the TGF-
β ligands and poor patient outcome [16–19].

TGF-β supports tumour progression by stimulating the
transdifferentiation of epithelial cancer cells into migratory
mesenchymal cells [20, 21], by promoting cell invasion,
and dissemination to distant sites [22], enhance angiogen-
esis [23] and mediating immune evasion of tumour cells
[24]. Thus, besides direct effects on tumour cells, TGF-β
influences the tumour microenvironment to stimulate local
movement and survival of neoplastic cells. The metastasis
of breast cancer cells to remote tissues is not a random
process. For example, decreased BMP7 in primary breast
cancer is significantly associated with the formation of bone
metastasis. It is theorised that BMP7 supports MET and
inhibits TGF-β-induced metastasis to the bone [25]. The
mechanisms that underlie the choice of residence at distant
organs, such as bone and lung, are emerging [26].

The mechanisms of TGF-β-induced growth arrest via
the induction of cyclin-dependent kinase (CDK) inhibitors
and repression of c-Myc protooncogene, and how cells
become refractory to its cytostatic effects by mutations or
epigenetic mechanisms are well understood [reviewed in
22] and will not be discussed here. The signaling cascades
involved in its pro-oncogenic roles are emerging from
recent studies and are the focus of this review. Here we will
discuss recent advances into the molecular mechanisms that
control EMT and tumour invasion of breast cancer, the
interaction of tumour cells with neighbouring stromal cells
and metastasis of breast cancer cells to bone and lung and
specifically focus on the role of TGF-β in these processes.

Epithelial Plasticity

EMT is a highly coordinated process that involves a
complex series of events [27]. EMT starts with apico-
basal polarity loss and the dissolution of tight junctions,
which permit the intermingling of apical and basolateral
membrane components [28]. In addition, other cell-cell
junctions disassemble and degrade the underlying basement
membrane. The cell surface protein that mediates epithelial
connection to neighbouring cells and the basement mem-
brane, E-cadherin, is replaced by N-cadherin. The transient
adhesive properties of N-cadherin prime the cell for the
mesenchymal phenotype. Cytoskeletal elements are then
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reorganized and stress fibers replace the peripheral actin
cytoskeleton, and vimentin replaces cytokeratin intermedi-
ate filaments. These changes cause the cell to change from
a cuboidal to a spindle shape. It is then that the cell acquires
the ability to move and invade into the extracellular matrix
(ECM) [29, 30].

TGF-β treatment has been shown to cause delocalization
and downregulation of cell-cell contact proteins (such as
ZO-1, E-cadherin, β-catenin), cytoskeleton reorganization
(stress fiber assembly, myosin light chain phosphorylation),
and robust α-smooth muscle actin synthesis [31]. Frequent-
ly, Namru Murine Mammary Gland (NMuMG) breast
cancer cells have been used for studies involving TGF-β-
induced EMT [32, 33]. More recently, TGF-β has been
shown to be involved with the early stage changes of EMT
in Human Mammary Epithelial Cells (HMEC). The
epithelial cell polarity marker ZO-1 was repressed with
the addition of TGF-β. Furthermore, a rapid increase in
expression of mesenchymal markers Vimentin and Fibro-
nectin is seen after TGF-β treatment of HMECs [34].

While initially the occurrence of EMT in cancer was
received with skepticism, the concept of epithelial cancer
cell plasticity contributing to cancer progression is now
gaining acceptance [27]. Evidence for the role of EMT in
cancer is complicated by the fact that at the distant site the

metastatic cells most likely need to undergo a reversion
or mesenchyal to epithelial transition (MET), permitting
colonization of the distant site [29]. EMT is a transient
and reversible process in the course of cancer progression.
This was recently shown by Jo et al., who could reverse
EMT by targeting the urokinase receptor (uPAR) [35]. The
first direct evidence of EMT in the local invasion of
tumour cells was obtained by cell fate mapping of
epithelial tumour cells in Whey Acidic Protein (WAP)-
Myc transgenic mice [36].

EMT rarely occurs homogenously across the whole
tumour. The exceptions include diffuse lobular carcinoma
[37] and sarcomatoid tumour of the breast, also referred to
as spindle-cell carcinoma tumours [31]. Based on the
expression of EMT markers, EMT appears to occur at the
invasive front of the tumour [38, 39]. These tumour cells
are primed to undergo EMT by genetic and epigenetic
changes. Extracellular inputs, such as the activation of
TGF-β and Wnt signaling [40] at the leading edge of the
tumour are coupled with the expression of EMT regulators
such as Snail/Slug/Twist, Cripto-1 and Six1 [34, 41–46],
causes cells to acquire a mesenchymal phenotype that allow
them to invade locally and escape from the primary tumour
(Fig. 1). This was discussed in detail in the review by
Micalizzi et al. [38] on EMT in breast cancer.

Fig. 1 The metastasis cascade. Epithelial cells at the edge of the
primary tumour, within a duct in the mammary gland, when triggered
by interactions with the underlying stroma, will breach the basal
membrane, undergo EMT as they invade into the stroma and become
mesenchymal. The newly acquired mesenchymal state allows local
invasion and intravasation within nearby vessels, resulting in
circulation of the tumour cells. The circulating tumour cells will
extravasate into the tissue of distant organs. The microenvironment of

the distant organ has a normal stroma and lacks the signals that
induced EMT. The new microenvironment triggers the tumour cells to
undergo MET and establish within the tissue. Although most of the
tumour cells that shed from the primary tumour site will die either
during transport or at the site of landing, some will create micro-
metastases. While most of these micrometastases may remain
dormant, some will proliferate forming a full blown metastasis
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TGF-β was identified as one of the main inducers of
EMT. TGF-β-induced EMT of NMuMG breast cancer cells
was found to be mediated via Smad3 and Smad4 [47].
Activated Smads mediate EMT by inducing the expression
of transcriptional repressors, such as Snail, Slug and
HMGA2. The Smads also make complexes with these
repressors to enhance their transcriptional effects [41, 48]; a
SNAIL1-SMAD3/4 complex was shown to repress
Coxsackie- and adenovirus receptor (CAR), occludin and
E-cadherin transcription. A strong correlation was found
between loss of CAR and E-cadherin and nuclear co-
expression of SNAIL1 and SMAD3/4 at the invasive front
of breast carcinomas [40].

Smad proteins downregulate the expression of the
miRNA-200 family to induce EMT [49]. Also non-Smad
mediated signaling has been implicated in TGF-β-induced
EMT. P38 and Rho kinase inhibitors attenuate TGF-β-
induced stress fiber formation and the subsequent relocal-
ization of E-cadherin [9]. TGF-β-induced phosphatidylino-
sitol 3-kinase and Akt activation was required for TGF-β-
induced ZO-1 relocalization from tight junctions and
change in cell morphology [50]. Furthermore, TGF-β
receptor-induced phosphorylation of Par6 leads to a loss
in tight junctions and contributes to EMT in the transplant-
able mouse mammary tumour cell line, EMT6 [42].

A recent paper investigated the hypothesis whether an
actin regulatory protein, Annexin A1 (AnxA1), is function-
ally involved in breast cancer progression [51]. AnxA1 was
found to be highly expressed in basal-like cancers (BLBC)
compared to luminal-like breast cancer cells. BLBC-like
cells converted from a mesenchymal to an epithelial
morphology upon AnxA1 knockdown, and that ectopic
expression of AnxA1 in the luminal-like MCF-7 human
breast cancer cell line increased cell scattering and Smad3/4
transcriptional reporter activity. These latter effects were
mediated by TGF-β-like activity as they could be blocked
by the TGF-β type I receptor kinase inhibitor SB-431542
[51]. Moreover, AnxA1 knockdown in the highly invasive
4T1 mouse breast cancer cells reduced the number of
surface metastases in the lungs, but had no effect on
primary tumour growth [51].

Araki et al. studied the Smad-dependent TGF-β signal-
ing in the context of breast cancer progression [52]. In this
study, the authors reported that TGF-β increased the
expression of the E3 ubiquitin ligase human double minute
2 (HDM2) in a Smad3/4-dependent manner. Similar
changes were seen in murine double minute 2 (MDM2)
expression during murine EMT. The identification of
HDM2 as a downstream target of TGF-β represents a
critical pro-survival mechanism in cancer progression and
provides a potential therapeutic intervention target in late-
stage cancer. A recent paper investigated the properties of
EMT induced by TGF-β in cooperation with fibroblast

growth factors (FGFs) [43]. Moreover, the cells generated
through EMT mediated by FGF-2 and TGF-β facilitated
cancer cell invasion, when the cells undergoing EMT were
mixed with cancer cells. Therefore, the results of this paper
show that TGF-β and FGF-2 cooperate with each other and
may regulate EMT in the cancer microenvironment.

It has also been shown that TGF-β stimulation of EMT
elicits a fundamental change in the coupling of EGFR to its
downstream effectors. Furthermore, Wendt et al. show that
in 3D-organotypic culture post-EMT mammary epithelial
cells manifest as dense cellular aggregates that are
characteristic of highly metastatic breast cancer cells [44].
Also, Sabbah et al. have demonstrated that CCN5, an
estrogen-inducible gene in estrogen receptor-positive cell
lines, acts as a transcriptional repressor. CCN5 was shown
to regulate tumour progression by repressing expression of
genes associated with EMT as well as expression of key
components of the TGF-β signaling pathway, prominent
among them TβRII receptor [53].

Invasion

Invasion into neighbouring tissue and ectopic survival are
required for cancer progression and are a requirement to
form metastasis [54]. It is known that the movement of
neoplastic cells is not a random process. However, the
mechanisms controlling the neoplastic cells movement,
survival in foreign tissue environments, and choice of
residence at a final destination are not clear [38]. Invasion
and metastasis are the cause of malignancy and responsible
for treatment failure [55].

Molecular profiles of isolated luminal epithelial and
myoepithelial cells have identified a complex network
involving TGF-β, Hedgehog, cell adhesion, and p63 to
be required for myoepithelial cell differentiation, the
elimination of which resulted in loss of myoepithelial
cells and progression to invasion [56]. Recent investiga-
tions using invasive mouse breast tumour cells have
shown that Fra-1, a member of the FOS family of
transcription factors, is involved in breast tumour inva-
sion. This Fra-1 initiates activation of the IL-6/JAK/Stat3
signaling pathway, which creates a malignant switch in
breast tumour cells. The subsequent increased release of
proangiogenic factors MMP-9, VEGF, and TGF-β from
tumour cells causes an intensified invasion and progres-
sion of breast cancer [57].

Tumour cells often form related structures called
invadopodia that are thought to promote invasion and
metastasis. Organization of the invadopodia requires sig-
naling through phosphatidylinositide 3-kinase and Src
kinase. Furthermore, degradation of the ECM requires
extracellular signal-regulated kinase signaling, and each of
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these pathways is activated by TGF-β in CA1D human
breast cancer cells [58].

An elegant TGF-β-dependent invasion assay system,
consisting of spheroids of MCF10A1 normal breast
epithelial cells and RAS-transformed (pre-)malignant deriv-
atives embedded in collagen gels, has recently shown that
the TGF-β/Smad pathway induces breast cancer cell
invasion through the up-regulation of matrix metalloprotei-
nase (MMP) 2 and 9 [59]. Both basal and TGF-β-induced
invasion of these cell lines was found to correlate with their
tumourigenic potential. Furthermore, basal invasion was
strongly inhibited by the TGF-β receptor kinase inhibitor
SB-431542, indicating the involvement of autocrine TGF-β
or TGF-β-like activity. TGF-β-induced invasion in prema-
lignant and highly malignant breast cells was also inhibited
upon specific knockdown of Smad3 or Smad4.

Intravital imaging has been used to demonstrate a
reversible transition to a motile state as breast cancer cells
spread. Giampieri et al. were able to demonstrate that
transient TGF-β signaling is essential for blood-borne
metastasis. TGF-β was shown to be capable of switching
cells from cohesive to single cell motility through a
transcriptional program involving Smad4, EGFR, neural
precursor cell expressed, developmentally down-regulated
9 (Nedd9), myosin phosphatase Rho interacting protein (M-
RIP), FERM, RhoGEF (ARHGEF) and pleckstrin domain
protein (FARP) and Rho C. Furthermore, they showed that
a blockade of TGF-β signaling prevented cells moving
singly in vivo, but did not inhibit cells moving collectively.

In fact, the cells restricted to collective invasion were
capable of lymphatic invasion, but not blood-borne metas-
tasis [60]. Thus, although TGF-β is known to suppress
epithelial cell proliferation and therefore primary tumouri-
genesis, it has been shown to promote breast cancer
progression via the induction of EMT and tumour cell
invasion.

Tumour Stroma Interactions and the Microenvironment

Tumour progression may be a product of an evolving
crosstalk between different cell types within the tumour and
its surrounding supporting tissue, or tumour stroma (Fig. 2).
The tumour compartment is defined by genetically abnor-
mal cells. It is the surrounding and interwoven stroma that
can provide a connective-tissue framework of the tumour
tissue. This framework includes the ECM as well as cellular
components such as fibroblasts, immune and inflammatory
cells, and blood vessel cells [61, 62]. Its constitution
resembles that of the granulation tissue formed during
wound healing [63]. In fact, stromal alterations during
wound healing, induced by TGF-β, can be an important
determinant of tumour growth [64]. Similarly to the
development and function of normal organs, it is the
interaction between cancer cells and their microenviron-
ment that can largely determine the phenotype of the
tumour [65]. For example, recent studies have shown that
the establishment of human breast tumour xenografts in

Fig. 2 The microenvironment.
A vicious cycle, where tumour
cells alter the bone microenvi-
ronment by stimulating osteo-
clast factors, such as PTHrP,
IL-11 and CTGF. These factors
act on osteoblasts to stimulate
the release of RANKL, which
promote osteoclast formation
and function (I). CAFs secrete
stroma-derived factors, such as
SDF-1, which directly interacts
with its receptor on breast can-
cer cells, CXCR4, and directs
tumour cell migration (II).
TGF-β contributes to the regu-
lation of angiogenesis through
direct and indirect mechanisms
(III). In the microenvironment
TGF-β has immunosuppressive
effects on immune cells in-
volved in the antitumour re-
sponse following its secretion by
stromal cells and various tumour
cells (IV)
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mice depends on the presence of human tumour-derived
stromal fibroblasts [66–68].

Frequently present in the stroma of human breast
carcinomas are carcinoma-associated fibroblasts (CAFs).
The precise cellular origins of CAFs and the molecular
mechanisms by which these cells evolve into tumour-
promoting myofibroblasts remain unclear [69]. Using a co-
implantation breast tumour xenograft model, Kojima et al.
show that resident human mammary fibroblasts progres-
sively convert into cancer-associated myofibroblasts during
the course of tumour progression [70].

TGF-β-mediated carcinoma suppression is not limited to
cell-autonomous signaling. Recent results that highlight the
role of stromal–epithelial crosstalk in the regulation of
cancer have shown that TGF-β signal transduction in
stromal fibroblast can be important for the suppression of
tumourigenesis in the adjacent epithelium [71–73]. Condi-
tional inactivation of the TβRII gene in mouse fibroblasts
resulted in intraepithelial neoplasia in the prostate and
invasive squamous cell carcinoma of the forestomach, and
both were associated with an increased abundance of
stromal cells [71]. These TβRII-deficient fibroblasts pro-
moted growth and invasion of co-transplanted mammary
carcinoma cells [72, 73].

In addition, CAFs can increase the tumourigenic
ability of cancer cells. Tumourigenicity of normal
mammary epithelial cells was indeed shown to be
significantly enhanced by the irradiated fibroblasts in
vivo [74]. The enhancement was due to the overexpres-
sion of TGF-β from the irradiated stroma [75]. In another
study, CAFs were isolated from patients with invasive
breast cancer. It was shown that TGF-β significantly
increased the myofibroblast percent and invasion rate in
CAF cultures. In fact, the CAFs were measurably different
from normal fibroblasts in response to TGF-β, suggesting
that TGF-β stimulates changes in CAFs that foster tumour
invasion [76].

It has also been demonstrated that the tumour microen-
vironment facilitates metastatic spread by eliciting revers-
ible changes in the phenotype of cancer cells. Bone-
marrow-derived human mesenchymal stem cells, when
mixed with otherwise weakly metastatic human breast
carcinoma cells, cause the cancer cells to increase their
metastatic potency greatly when this cell mixture is
introduced into a subcutaneous site and allowed to form a
tumour xenograft [68]. The breast cancer cells stimulate de
novo secretion of the chemokine CCL5 (also called
RANTES) from mesenchymal stem cells, which then acts
in a paracrine fashion on the cancer cells to enhance their
motility, invasion and metastasis.

It is well known that tumour associated macrophages,
monocytes and neutrophils can promote tumour progres-
sion [77, 78]. However, evidence now supports a

significant role for immature myeloid cells as promoters
of tumour progression and metastasis [79]. In mouse
models, these cell populations are often identified by their
cell surface expression of granulocyte differentiation
antigen 1 (GR-1) and CD11b proteins. Within the GR-1+
CD11b+cell population it has been shown that the GR-
1high populations enriches for the polymorphonuclear cells
whereas the GR1int/low population enriches for the mono-
nuclear cells. Importantly, the authors suggest that the
mononuclear fraction is better able to suppress CD8+ T-
cell mediated immunity than the polymorphonuclear
fraction [80]. Another study has demonstrate that Gr-1+
CD11b+myeloid cells are recruited into mammary carci-
nomas with TβRII deletion and directly promote tumour
metastasis [81].

It is becoming clear that the crosstalk between the cancer
cells and the microenvironment plays a key role in the
progression of cancer, and understanding this mutual
relationship would eventually enable better treatment of
patients, potentially by targeting CAFs.

Metastasis

Metastasis is a complex, multi-step process by which
primary tumour cells invade adjacent tissue. These cells
enter the systemic circulation (intravasate), translocate
through the vasculature, and arrest in distant capillaries
where they extravasate into the surrounding tissue paren-
chyma, and these microscopic growths (micrometastases)
proliferate into macroscopic secondary tumours [82].
Metastasis is the result of several sequential steps and
represents a highly organized, non-random and organ-
selective process [83] that involves interactions from a
variety of proteolytic enzymes, growth factors, and cell-cell
and cell-substrate adhesion molecules [84].

In numerous models of breast cancer associated invasion
and metastasis, activated TGF-β signaling induces in-
creased aggressiveness. For example, in mice overexpress-
ing the Neu oncogene, activated TGF-β signaling increases
the number of lung metastases even while decreasing the
growth of the primary tumour [35]. Likewise, ablation of
TGF-β signaling in the same model decreases lung
metastasis while also decreasing the latency of primary
tumour growth, again emphasizing the dual functions of
TGF-β signaling in tumourigenesis [37]. Additionally,
clinical evidence suggests a correlation between expression
of the TGF-β ligands and poor patient outcome [16–18,
39]. Furthermore, activated TGF-β signaling has been
observed in breast cancer bone metastases and contributes
to the establishment of these lesions [19, 84, 85]. There
have also been many specific studies to analyse the role of
TGF-β in tumour metastasis to lung [29].
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Breast to Bone Metastasis

Bone metastases are common in patients with advanced
breast cancer. Tumour cells co-opt bone cells to drive a
feed-forward cycle which disrupts normal bone remodeling
to result in abnormal bone destruction or formation and
tumour growth in bone [86, 87]. There is abundant
evidence to support the role of TGF-β as a major bone-
derived factor. TGF-β promotes a feed-forward cycle
responsible for tumour growth and (Fig. 2) in bone.
Osteolytic bone destruction is caused when tumours in
bone secrete osteolytic factors, such as parathyroid
hormone-related protein (PTHrP) and interleukin 11 (IL-
11) [88]. TGF-β is released and activated from the
mineralized bone matrix by osteoclastic resorption and
further induces tumour production of osteolytic and
prometastatic factors including PTHrP and IL-11 [89].
Human breast cancer bone metastases have increased
PTHrP expression, more so than primary breast cancers
[90]. PTHrP is a central mediator of TGF-β induced
osteolytic metastases; PTHrP neutralizing antibodies
blocked the development and progression of breast cancer
bone metastases in mouse models [91]. Another paramount
study in 1999 showed that a dominant negative TβRII
stably expressed in the breast cancer cell line MDA-MB-
231 rendered the cells unresponsive to TGF-β, inhibited
PTHrP secretion induced by TGF-β and suppressed bone
metastases in a mouse model [92]. TGF-β increases PTHrP
secretion from MDA-MB-231 cells via Smad and p38
MAP kinase pathways [93]. Furthermore, TGF-β released
during bone resorption is likely to have direct effects on
bone cells, stimulating osteoclastic bone resorption and
inhibiting osteoblast differentiation.

The complexity in the origin of bone metastases has
been exemplified by recent transcriptional profiling of
subpopulations of human breast cancer cells with an
aggressive bone metastases phenotype [94, 95]. Many of
these genes, such as IL-11, connective tissue growth factor
(CTGF), C-X-C chemokine receptor type 4 (CXCR4), and
MMP1 have effects on bone cells [96], which could
promote bone metastases. Bone resorption is stimulated
by IL-11 and MMP-1 causing an increase in osteoblast
production of receptor activator of nuclear factor kappa-B
ligand (RANKL) [97]. CXCR4, a chemokine receptor that
binds to the osteoblast product stromal-derived factor-1
(SDF-1) produced by osteoblasts to promote homing of
cancer cells to bone [98–100]. CTGF stimulates osteoblast
proliferation as well as angiogenesis [101]. These genes act
cooperatively when expressed together, to cause osteolytic
metastasis by promoting homing to bone, angiogenesis, and
invasion [102]. Among the bone metastasis genes identi-
fied, Kang et al. showed that IL-11 and CTGF were
regulated by TGF-β via the classical TGF-β/Smad pathway

in metastatic cells [84]. Other studies indicate that CXCR4
and MMP-1 are also regulated by TGF-β [98, 99].

Since these first studies into TGF-β and the bone
microenvironment, there have been many advances. Recent
evidence has suggested that Gli2, a Hedgehog signaling
molecule, is required for TGF-β to stimulate PTHrP
expression and that blocking Hedgehog-independent Gli2
activity will inhibit tumour-induced bone destruction [103].
Using a murine syngeneic model that mimics osteolytic
changes associated with human breast cancer, one labora-
tory has examined the role of tumour-bone interaction in
tumour-induced osteolysis and malignant growth in the
bone microenvironment [104]. TβRII was identified as a
commonly upregulated gene at the tumour-bone interface.
Moreover, nuclear localization of phospho-Smad2 was
higher in tumour cells and osteoclasts at the tumour-bone
interface as compared to the tumour-alone area [104]. A
mouse model sing Cre/LoxP technology, with the WAP
promoter driving transgenic expression of Cre recombinase
(Cre), ablated the TβRII expression specifically within
mouse mammary alveolar progenitors [105]. Transgenic
expression of the polyoma virus middle T antigen, under
control of the mouse mammary tumour virus (MMTV)
enhancer/promoter, was used to produce mammary tumours
in the absence or presence of Cre or TβRII. The loss of
TGF-β signaling was significantly correlated with in-
creased tumour size and enhanced carcinoma cell survival.

Human breast cancer bone metastases show active Smad
signaling in bone metastasis by accumulation of phosphor-
ylated Smad2 in the nucleus of tumour cells [84].

Knockdown of Smad4 expression in breast cancer cells
reduced growth of bone metastases in a mouse model [47,
84]. Different studies in mouse models of bone metastases,
using live imaging of tumour cells by bioluminescence,
have shown that TGF-β signaling is activated in the bone
metastases, but not in metastases to adrenal glands [12, 84,
106]. In this preclinical model, either anti-TGF-β therapy
with a small molecule inhibitor of TβRI kinase activity or a
bisphosphonate inhibitor of bone resorption was effective to
decrease TGF-β signaling activity in these bone metastases
[106]. These data indicate that TGF-β signaling is
prominent in bone metastases compared with other meta-
static sites and that inhibiting either the TGF-β pathway or
osteoclastic bone resorption can impair this activity.

Further investigation of the specific functions of Smad2
and Smad3 in TGF-β-induced responses in breast cancer
cells in vitro and in vivo for breast cancer metastasis have
recently been undertaken. Studies have shown that Smad2
and Smad3 differentially affect breast cancer bone metas-
tasis formation in vivo [107]. Knockdown of Smad3 in
breast cancer cells in vivo resulted in prolonged latency and
delayed growth of bone metastasis. However, Smad2
knockdown resulted in a more aggressive phenotype
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compared with controls. Furthermore, the data suggest that
bone-derived TGF-β, released as a consequence of osteo-
clastic bone resorption, is the major source of TGF-β to act
on tumour cells in bone. Overexpression of BMP-7 in
breast cancer cells decreased the development of bone
metastases in mice, but had no effect on orthotopic tumours
[25, 108]. BMP7 was found to antagonize TGF-β/Smad
signaling. Therefore, BMP-7 may be useful as an inhibitor
of bone metastases [109–111].

Another unique aspect of the bone microenvironment is
hypoxia. Bone is a hypoxic microenvironment and hypoxia
has also been implicated to enhance tumour growth and
metastasis [112]. TGF-β and hypoxia signaling pathways in
breast cancer cells were additive to induce vascular
endothelial growth factor (VEGF) and CXCR4, via
hypoxia-inducible factor-1α (HIF-1α) in vitro. HIF-1α
and TGF-β pathways were inhibited in breast tumour cells
using shRNA against HIF-1α and dominant negative
TβRII approaches [99, 113]. In vivo, inhibition of either
pathway decreased bone metastasis, but there was no
additional effect on the development of bone metastasis
with a double blockade. In contrast, treatment with
pharmacologic inhibitors targeting both pathways decreased
bone metastases more than either alone [99].

Preclinical studies have indicated that tumour cells
express a number of genes which encode for proteins that
act at different sites of the metastatic cascade as well as at
the bone site. For example, several studies have shown that
tumours cells produce adhesive molecules that promote
binding to marrow stromal cells and bone matrix. These
adhesive interactions increase tumour production of angio-
genic and bone resorbing factors that enhance tumour
growth in bone [114, 115].

Breast to Lung Metastasis

There is evidence that TGF-β can primes breast cancer cells
for metastasis to the lungs. This is based on the study by
Padua et al. which showed that the process is dependent on
the induction of angiopoietin-like 4 (ANGPTL4) by TGF-β
via the Smad signaling pathway [29]. TGF-β induction of
Angptl4 in cancer cells that are about to enter the
circulation enhances their subsequent retention in the lungs,
but not in the bone. Tumour cell-derived Angptl4 disrupts
vascular endothelial cell-cell junctions, increases the per-
meability of lung capillaries, and facilitates the trans-
endothelial passage of tumour cells [116]. It is suggested
that the primary breast tumour microenvironment induces
the expression of cytokines in departing tumour cells,
enabling these cells to disrupt lung capillary walls and seed
pulmonary metastases [29].

Functional studies have demonstrated that Id1 and its
closely related family member Id3 are required for tumour

initiating functions, both in the context of primary tumour
formation and during metastatic colonization of the lung
microenvironment [117]. In vivo characterization of lung
metastatic progression revealed that Id1 and Id3 facilitate
sustained proliferation during the early stages of metastatic
colonization, subsequent to extravasation into the lung
parenchyma. Sadej et al. have shown that attenuation of
TGF-β1-induced responses correlated with reduced reten-
tion in the lung vascular bed, inhibition of pneumocyte-
induced scattering of breast cancer cells in three-
dimensional Matrigel, and decrease in experimental metas-
tasis to the lungs. These results identify CD151 as a
positive regulator of TGF-β1-initiated signaling and high-
light the important role played by this tetraspanin in TGF-
β1-induced breast cancer metastasis [118].

The role of TGF-β coreceptor endoglin has also been
studied in breast lung metastasis. Ectopic expression of
endoglin in a breast cancer cell line blocked TGF-β-
enhanced cell motility and invasion and reduced lung
colonization in an in vivo metastasis model [119]. Endoglin
does not modulate Smad-mediated TGF-β signaling in
breast cells but attenuates the cytoskeletal remodeling to
impair cell migration and invasion [120].

Perspectives

In numerous models of breast cancer associated invasion
and metastasis, activated TGF-β signaling induces in-
creased aggressiveness. Activated TGF-β signaling has
been observed in breast cancer bone metastases and there
have also been many specific studies to analyse the role of
TGF-β in tumour metastasis. The role that TGF-β plays in
this complex, multi-step process is becoming clearer. New
methods of research, such as the collagen-embedded
spheroid system [59] and other three-dimensional co-
culture assays [121], offer a valuable method to study the
crucial microenvironmental cues that may be lost in two-
dimensional culture assay with a plastic substrata.

In order to dissect the TGF-β/Smad pathway, which
underlies the complex biological responses in the mammary
epithelium, a new method to generate conditionally
immortalized mammary epithelial cells was developed.
The method involves the intercrossing of the “Immorto-
mouse”, which expresses a temperature-sensitive mutant of
the simian virus-40 large T-antigen, with mice of different
Smad genotypes. Thus, conditionally immortalized mam-
mary epithelial cell cultures can be derived from the
mammary glands of offspring from these crosses [122].
Further dissection of the signaling pathways involved and
elucidation on which signaling components are shared and
distinct between tumour suppression and tumour promoting
role of TGF-β, may lead to novel pharmacological targets
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for the intervention of breast cancer progression, while
leaving the tumour suppressive effects of TGF-β intact.

Stroma cells, together with ECM components, provide
the microenvironment that is pivotal for cancer cell growth,
invasion and metastatic progression. Crucial in this process
are fibroblasts that are located in the vicinity of the
neoplastic epithelial cells. They are able to modify the
phenotype of the epithelial cells by direct cell-to-cell
contacts, through soluble factors or by modification of
extracellular matrix components. Seminal functional studies
in various cancer types, including breast, colon, prostate
and lung cancer, have confirmed the concept that fibro-
blasts can determine the fate of the epithelial cell, since they
are able to promote malignant conversion as well as to
revert tumour cells to a normal phenotype. The study by
Kojima et al. suggests that the autocrine-signaling mecha-
nism of TGF-β in the tumour-stroma interactions may
prove to be an attractive therapeutic target to bock the
evolution of tumour-promoting CAFs [70].

Clear definitions of the molecular and cellular contexts
that are permissive for the tumour suppressor versus
oncogenic activities of TGF-β are allowing new therapeutic
opportunities to emerge. The most obvious therapeutic
challenge in targeting the TGF-β signaling pathway in
breast cancer is: how to restore the lost tumour suppressor
function while either eliminating or preventing acquired
pro-oncogenic effects [123]. Unfortunately late-stage inva-
sive, metastatic breast cancer is typically characterized by
locally or systemically elevated TGF-β levels. This
elevation of TGF-β is coupled with diminished responsive-
ness of tumour cells to its suppressor functions, as
discussed throughout this review. TGF-β antagonists could
be efficacious. However, given the roles of TGF-β on
normal tissue homeostasis, the antagonist design and/or
delivery mode will have to be optimized to minimize
adverse effects.

In 2010, Ganapathy et al. investigated the possible
clinical utility of TGF-β antagonists in a human metastatic
basal-like breast cancer model [124]. Two TGF-β pathway
antagonists, 1D11 (a mouse monoclonal pan-TGF-β neu-
tralizing antibody) and LY2109761 (a chemical inhibitor of
TβRI and TβRII kinases) were tested on MDA-MB-231.
1D11 and LY2109761 were shown to effectively block
TGF-β-induced phosphorylation of receptor-associated
Smads in vitro. Moreover, both antagonists inhibited
TGF-β stimulated in vitro migration and invasiveness. In
addition, both antagonists significantly reduced the meta-
static burden to either lungs or bones in vivo. These studies
not only support the notion that TGF-β plays an important
role in both bone-and lung metastases of basal-like breast
cancer, but also that targeting of the TGF-β pathway holds
promise as a novel therapeutic approach for metastatic
basal-like breast cancer.

TGF-β-specific inhibitors based on blockade of synthe-
sis, ligand/receptor binding or receptor kinase signaling are
in clinical trials [125]. Clearly, further research can refine
the therapeutic rationale by focusing on drug scheduling
and delivery, identifying patients who will benefit most
from such therapy, and combining therapeutic modalities
such that cancer is eliminated without normal tissue toxicity
or long term health effects.

Concluding Remarks

The role of TGF-β signaling in breast cancer cell invasion
and metastasis involves multiple factors. Expression of
TGF-β promotes a more aggressive tumour phenotype.
TGF-β is known to be involved in the process of EMT,
invasion and metastasis, and can influence the microenvi-
ronment. Crosstalk between the breast tumour cells and the
microenvironment can promote a bone or lung metastasis.
TGF-β is involved in the crosstalk by recruiting and
regulating the activity of multiple cell types. Whereas much
is understood about the effects of these factors in cancer
cells at the primary tumour site, continued research is
necessary to clearly understand metastatic breast cancer.
Understanding how TGF-β allows the tumours to progres-
sive to the metastatic phenotype may help to identify
potential targets for therapeutic intervention to halt tumour
growth and bone metastasis.
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