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Abstract

Background: The TGF-β signaling pathway is a fundamental pathway in the living cell, which plays a key role in

many central cellular processes. The complex and sometimes contradicting mechanisms by which TGF-β yields

phenotypic effects are not yet completely understood. In this study we investigated and compared the transcriptional

response profile of TGF-β1 stimulation in different cell types. For this purpose, extensive experiments are performed

and time-course microarray data are generated in human and mouse parenchymal liver cells, human mesenchymal

stromal cells and mouse hematopoietic progenitor cells at different time points. We applied a panel of bioinformatics

methods on our data to uncover common patterns in the dynamic gene expression response in respective cells.

Results: Our analysis revealed a quite variable and multifaceted transcriptional response profile of TGF-β1 stimulation,

which goes far beyond the well-characterized classical TGF-β1 signaling pathway. Nonetheless, we could identify

several commonly affected processes and signaling pathways across cell types and species. In addition our analysis

suggested an important role of the transcription factor EGR1, which appeared to have a conserved influence across

cell-types and species. Validation via an independent dataset on A549 lung adenocarcinoma cells largely confirmed our

findings. Network analysis suggested explanations, how TGF-β1 stimulation could lead to the observed effects.

Conclusions: The analysis of dynamical transcriptional response to TGF-β treatment experiments in different human

and murine cell systems revealed commonly affected biological processes and pathways, which could be linked to

TGF-β1 via network analysis. This helps to gain insights about TGF-β pathway activities in these cell systems and its

conserved interactions between the species and tissue types.
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Background
The transforming growth factor-beta1 (TGF-β1) signaling

pathway is a fundamental pathway in the living cell, which

plays a role in many central cellular processes. The TGF-β

superfamily contains over 30 different proteins, such as

BMPs, Activins, Inhibins, and the TGF-β1 isoforms [1-3].

The pathway contributes to regulation of various cellular

processes, such as apoptosis, cell differentiation, cell growth

as well as tumor suppression and immune regulation

processes [4].

There are three TGF-β isoforms (TGF-β1, TGF-β2,

TGF-β3) which have different physiological and patho-

logical effects on epithelial, endothelial, lymphatic, mye-

loid and mesenchymal tissues [5]. The TGF-β pathway is

one of the most studied pathways [6-10]. However, the

complex and sometimes contradicting mechanisms by

which TGF-β yields phenotypic effects is not yet com-

pletely understood [5]. The classical TGF-β1 pathway is

already well established since several years [7]. However,

the identification of alternative signaling pathways that

contain different receptors and Smad proteins has in-

creased the overall complexity of the TGF-β1 signaling
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pathway [11]. Additional file 1: Figure S1 shows a simpli-

fied cartoon sketch comprising mainly Smads cascades

in the TGF-β1 signaling pathway.

In this study we investigated and compared down-

stream effects of TGF-β1 stimulation on the dynamical

response of gene expression in mouse and human in dif-

ferent cell and tissue types. Two types of mouse

hematopoietic progenitor cells were used: multipotent

progenitor (MPP) and dendritic cell (DC) committed

progenitors, referred to as common dendritic progenitor

(CDP) cells. CDP differentiate from MPP and give rise

to two types of DC: plasmacytoid DC (pDC) and con-

ventional DC (cDC). MPP and CDP were obtained from

bone marrow by in vitro culture with a specific cytokine

cocktail and FACS sorting [12,13]. Furthermore, we

employed human mesenchymal stromal cells (MSC),

which differentiate into osteocytes, chondrocytes or adi-

pocytes [14-16]. Finally, primary murine hepatocytes

(HPC) and immortalized human hepatocytes (human

HPC, HepG2) cells were used. We have taken these dif-

ferent cell types for three reasons: (i) All these cells are

highly responsive to TGF-β. (ii) The different cell types

reflect different degrees of differentiation. (iii) The differ-

ent cells show a variable response to TGF-β. While in

hepatocytes TGF-β induces apoptosis, multipotent pro-

genitors initiate a differentiation programme in response

to TGF-β.

Very little and vague information is known about the

detailed influence of TGF-β1 in these different cell sys-

tems. For example, TGF-β1 is known to be necessary for

MSC proliferation. It is essential for chondrogenic differ-

entiation. On the other hand, TGF-β1 participates in in-

hibition of adipogenic and osteogenic differentiation.

Furthermore, there are evidences, that TGF-β1 contrib-

utes to supporting myogenic differentiation of MSC

[17-19]. There are also evidences that the TGF-β path-

way play a role in the induction of cellular senescence

in MSC [20]. Although TGF-β1 triggers primary early

responses (e.g. Smad activation) and EMT in human

HPC (HepG2) cells, cell cycle arrest and apoptosis are

generally not promoted by TGF-β1 [21,22]. Further-

more, TGF-β1 is known to be crucial for development

of Langerhans cells, the cutaneous contingent of migra-

tory dendritic cells, both in vivo and in vitro and it evi-

dently contributes in accelerating their differentiation

and directing their subsets specification toward cDCs

[12,23-25].

We used a panel of bioinformatics methods, ranging

from statistical testing over functional and promoter se-

quence analysis to clustering for pattern discovery in our

gene expression time series data. Only one gene, the

SKI-like oncogene (Skil), was commonly found to be

differentially expressed (DE) in all cell types. Skil is a

component of the SMAD-pathway, which regulates cell

growth and differentiation. Moreover, Smad7 that blocks

TGF-β receptor activity seems to play a major common

role, because it was identified as DE in most cell types.

Despite of the differences on the level of individual

genes we observed a conserved effect of TGF-β1 stimu-

lation on a number of biological processes and pathways.

Moreover, we could identify a few overrepresented tran-

scription factor binding sites, which were commonly

found in several cell types. Specifically EGR1 seems to

have major relevance for the transcriptional stimulation

response in mouse and human.

By analysis of an independent dataset on human A549

lung adenocarcinoma cells (CRL) from GEO (access No.

GSE17708) [26] we were able to reproduce a highly sig-

nificant proportion of the commonly identified biological

processes, pathways and transcriptional factors in our

datasets. Network analysis suggests explanations, how

TGF-β1 stimulation could lead to the observed effects.

Results and discussion

Time series transcriptome measurements

All cell types were treated with TGF-β in three bio-

logical replicates. TGF-β treatment concentrations were

optimized in each cell type to show a maximal effect.

Extracted RNA samples were hybridized to microarrays

(Affymetrix Gene 1.0 ST) for genome-wide transcrip-

tome analysis. Mouse progenitor cells and HepG2 cells

were measured at 6 successive time points, mouse pri-

mary HPC cells at 5, and human MSCs at 4 different

time points. Additional file 2: Table S1 gives an over-

view of our experiments and the measured time-points,

the “Methods” section gives details about cell cultures,

stimulation, RNA-isolation and array hybridization in

our experiments.

Differential gene expression

Transcriptional response is highly tissue specific on gene level

We employed the “betr” method [27] to quantify the

probability of differential expression of genes in whole

time-courses (see Methods). Using this approach we

were able to assess differential gene expression for each

gene in each cell type in a comparable manner. We con-

sidered a gene to have differential time-course expres-

sion (DE), if it had a probability of >99% and was at least

two-fold up- or down-regulated at one time point mini-

mum (Additional file 1: Figures S2 a & b, Additional

file 2: Tables S2 & S8).

The strongest stimulatory effect of TGF-β1 was ob-

served in CDP cells (614 genes). Eight out of these

genes in CDP are already known to play a role in the

TGF-β pathway (Tgfb3, Smad7, Thbs1, Tgfbr1, Smurf1,

Smad3, Smad6, Tgfbr2). In mouse HPC a significantly

lower number of DE genes were found compared to

other cell types.
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We conducted set comparisons of DE genes across cell

types. It is worth mentioning in this context that com-

parisons between mouse and human genes were done

on the basis of homologous genes (see Methods). Not

surprisingly, the found overlap was particularly high

among mouse hematopoietic progenitor cells (MPP and

CDP). These were 173 genes, which equals a harmonic

mean of above 41% of DE genes in both cell types

(Additional file 1: Figure S2 a). Only two of these genes,

namely Smad7 and Tgfbr1 are known to play a role in

the TGF-β pathway. Three genes (Lox, Pmepa1, Skil)

are found to be DE in all mouse cells (CDP, MPP and

HPC). Pmepa1 (Prostate Transmembrane Protein) is

known to interact with Smad and suppress the TGF-β

pathway [28,29]. Only the protein-coding gene Skil

(Ski-like-oncogene) that encodes a protein in the SMAD-

pathway [30,31] was found to have a DE time-course in all

cell types. In addition, the gene Smad7 was commonly

found in all cell types except mouse HPC cells. 18 genes

including ROR1, C10orf10, SMAD7, FSTL3, GADD45B,

JUNB, ZFP36, OLFM2, SPTLC3, ID1, LMCD1, SLC38A3,

GXYLT2, SKIL, HES1, RASGEF1B, CITED2 and PDGFA

were DE in all human cells (MSC, HepG2). The heatmaps

in Additional file 1: Figure S3 visualize patterns of tem-

poral behavior for particular groups of genes. Here again

we see similarity in gene expressions between mouse

dendritic cells.

These findings on one hand stress the similarity of the

transcriptional response in MPP and CDP, which is not

very surprising given the fact that these cells were both

derived from bone marrow. On the other hand they

highlight that TGF-β1 treatment affects by far not only

genes within the canonical TGF-β1 pathway, but leads

to a large number of diverse secondary downstream ef-

fects, which are only partially overlapping across differ-

ent cell types. In other words there is a high tissue

specificity of the transcriptional TGF-β stimulation re-

sponse on the level of individual genes.

TGF-β1 pathway genes react time-dependant and tissue-specific

We had a closer look at genes, which are known to play

a role in the TGF-β1 pathway, such as Bmp(s), Smad(s)

and Id(s). In Figure 1 the log2 fold changes of 17 genes

involved in the TGF-β1 pathway, which are DE in at

least one cell type, are depicted. It can be noticed that

almost all genes show time-dependant transcriptional ef-

fects. These effects are distinct between early and later

time points, with moderate activities until 4 h and

mostly higher activities at late times. It can also be

noticed that cells of similar origin are more alike. For ex-

ample, Bmp2, Bmp4, Bmp6, Cdkn2b and Comp are dys-

regulated (i.e. significantly differ from 0 level according

to “betr”) only in human and not in mouse tissues. Fs1 is

similar to these genes, but also shows activity in mouse

HPC. Id1 in human cells is up-regulated at earlier time

points and a down-regulated after 4 h. Inhba shows ac-

tivity only in MSC cells where its expression after 1 hour

constantly increases. Smad3, Smad6 and Smad7 reveal

similar time courses in mouse MPP and CDP cells and

in human MSCs. Smad3 is increasingly down-regulated

over time and the other two genes are always up-

regulated. Smurf1 is always over-expressed and shows a

curve that is opposite to Smad3, Smad6 and Smad7.

Tgfb3 is over-expressed at later time points in MPP and

CDP cells and shows almost no activity in the other cell

types. Thbs1 is highly active in all cell types. However,

while it is underrepresented in MPP and CDP, it shows el-

evated expression in mouse and human HPC. Tgfbr1 and

Tgfbr2 behave similar, in particular in mouse progenitor

cells, where Tgfbr2 is less up-regulated than Tgfbr1.

Time point specific analysis confirms highly tissue specific

expression changes on gene expression level

In order to cross-validate our previous analysis, which con-

siders time series as a whole, we conducted also a time-point

specific analysis of differential gene expression using lin-

ear models for microarray data (Limma). For this purpose

we compared the gene expression at 4 hours after stimula-

tion to the initial expression at time point 0. The time

period of 4 hours was chosen because at least short-time

relevant effects are expected in all cell types after this period.

In the context of this time point specific analysis of

transcriptional effects we considered a gene to be differen-

tially expressed (DE) in a given cell type, if FDRBH < 0.01

and the absolute fold changes was (logFC) > 1. The

overlap analysis of DE genes at 4 h agrees with the

time-course analysis. There are no or very few genes in

common between the different cell types except in the case

of mouse dendritic cells (Additional file 1: Figure S5 A).

Moreover, the direction of regulation (up or down) differs

between cell types (Additional file 2: Table S9).

The heatmap in Additional file 1: Figure S4 depicts the

log fold changes of all genes, which are DE in at least

one cell type. The plot indicates two gene sets, which

clearly show a similar behavior in mouse MPP and CDP

cell types. The first set contains 36 genes that are over-

expressed. The other set (42 genes) is under-expressed.

Interestingly, the 36 genes being up-regulated in MPP

and CDP cells are not regulated by TGF-β1 in other cell

types. Although not DE genes in every cell type, the

genes Smad7, Pmepa1 (beside the gene Skil) seem to be

up-regulated in all the cells. The rest of the genes are

regulated in a rather cell-type specific manner.

Cluster analysis reveals functionally similar gene groups

in different cell types

We conducted a time series cluster analyses in order to find

groups of DE genes showing similar expression changes
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over time (observed as within cell-type temporal behavior

shown in Additional file 1: Figures S3, between cell-types

similarities shown in Additional file 1: Figure S4). The

cluster analyses yielded 12 clusters in MPP and mouse

HPC, 20 in CDP and 11 in human MSC (Additional file 2:

Table S3). Genes contained in individual clusters can be

found in Additional file 2: Table S14. Figure 2 depicts the

mean curves for each of these clusters in each cell type. We

investigated the functional similarity of genes across differ-

ent clusters. For this purpose the R-Package “GOSemSim”

[32] utilizing the semantic similarity measure proposed by

Wang et al. [33] was employed. Semantic similarities are a

means to compare GO annotations of gene pairs in a quan-

titative manner, for example on the basis of the information

content of GO terms. We refer the reader to [34] for an

excellent overview.

A heatmap depicting these GO semantic similarities

suggested a high functional similarity of genes in several

clusters from different cell types (Additional file 1:

Figure S6 Additional file 2: Tables S15, S16). In particu-

lar cluster B (MPP), and cluster B (CDP) are highly simi-

lar to each other (semantic similarity > 0.7). Time-course

log2 fold changes of the corresponding genes are shown

in (Figure 3 top). As can be noticed the clusters are of

different size, but have several genes in common (13

genes). Functional analysis revealed that genes in these

clusters are enriched for cell adhesion molecules (CAMs),

valine, leucine and isoleucine biosynthesis, Pantothenate

and CoA biosynthesis and regulation of cellular extrava-

sation. Enrichment analysis was conducted here via the

R-package GOstats [35], which employs a hypergeo-

metric test taking into account the dependency structure

among GO terms.

The second group of functionally similar clusters (Figure 3,

bottom) contains cluster K (human HPC) and cluster B

(MSCs). Genes in these clusters play (among others) a

role in TGF-β and Notch signaling pathways (Additional

file 2: Tables S15, S16).

Taken together our cluster analyses showed that des-

pite evident differences on the level of individual genes,

functionally similar clusters of genes can be identified

across cell types.

Enrichment analysis reveals commonly affected biological

processes, pathways and transcription factors in all cell types

Motivated by our previous findings we asked, whether there

were common functional patterns across all cell types. For

this purpose we scanned GO terms and KEGG pathways

for significant association with differential time course gene

expression in each cell type (Additional file 2: Tables S4,

S10, S11).

Our analysis brought up 6 KEGG pathways and 11 GO

terms, which were significantly associated to all cell types

(FDR < 5%, Figure 4). The 6 KEGG pathways associated

to all cell types were: Metabolic pathways, Glutathione

metabolism, Lysosome, Purine metabolism, Peroxisome

Figure 1 Log2 fold-changes of 17 genes, which are DE in at least one cell type and are known to play a role in the TGF-β pathway

(according to KEGG annotation).
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and PPAR signaling pathway. The 11 GO terms associated

to all cells were: oxidation-reduction process, innate im-

mune response, positive regulation of transcription from

RNA polymerase II promoter, negative regulation of apop-

totic process, angiogenesis, lipid metabolic process, positive

regulation of cell proliferation, positive regulation of cell

migration, proteolysis, positive regulation of transcription

DNA-dependent and response to drug. The role of TGF-β

in apoptosis, cell proliferation as well as immune response

is well known. Moreover, an effect of TGF-β perturbation

on PPAR signaling has been described in skin fibroblasts

[36]. In [37] the authors describe TGF-β mediated oxida-

tive stress and decreased glutathione concentration in fi-

brosis models. Finally, there is evidence that TGF-β has an

effect on angiogensis and cell migration [38]. Hence, our

findings largely fit to the current biological knowledge

about TGF-β.

Conserved role of EGR1/2 transcription factors

We analyzed DE genes with respect to overrepresented

sequence motifs in their promoter regions with the

XXmotif tool [39]. Significant motifs were then com-

pared to known position weight matrices (TRANSFAC)

of transcription factors (TFs) via STAMP [40].

The analysis in each cell type predicted between 11 and

21 regulating TFBS in the time-course analysis (Additional

file 2: Tables S6, S17, S18), except for mouse HPC, where

no overrepresented TFBS could be detected. This may be

attributed to the small number of 16 DE genes in this cell

type. Overlaps were particularly high within mouse MPP

and CDP and within human cells.

FOXP1, KROX, TEF, POU6F1, FOX and PITX binding

sites were commonly identified in mouse MPP and CDP.

KROX, HFH4 and PAX4 were found in all human cells.

FOX, FOXP1, KROX and TEF were found to be them-

selves representatives of DE genes. Figure 5 shows a net-

work representation of all eight TFBS together with the

set of DE genes containing respective binding sites. The

plot reveals a relative clear difference between mouse

and human cells with the exception of the KROX TFBS,

which appears in all four cell types. KROX represents

EGR1 and EGR2.

Network analysis suggests possible signal transduction

pathways in mouse and human

In order to better understand, how TGF-β may influence

the commonly identified transcription factor, biological

processes and the PPAR-pathway we conducted a network

analysis. Using protein-protein interaction information

from the BioGRID database [41] we reconstructed a

mouse and a human specific network depicting dys-

regulated paths from TGF-β to SKIL, SMAD7, EGR1 as

well as genes involved into glutathione metabolism, purine

metabolism, PPAR signaling, oxidation-reduction process,

innate immune response, negative regulation of apoptotic

process, angiogenesis, positive regulation of cell prolifera-

tion and positive regulation of cell migration (Figures 6

and 7; see further details in Methods part).

Figure 2 Cluster mean-curves of log2 fold changes for the different cell types. For mouse HPC no clusters could be identified and hence all

DE genes treated as one group.
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Figure 4 Clustered heatmaps of (a) the 6 common KEGG pathways and (b) 11 GO terms in different cell types. The color code indicates

the degree of association (−log(FDR)) of a KEGG pathway and GO term to each cell type, respectively.

Figure 3 Log2 fold changes of two groups of functionally similar clusters detected in different cell types. Genes appearing in more than

one cluster are depicted in color, gray curves are cluster-specific genes. Upper group: two similar clusters MPP and CDP. Lower group: two similar

clusters in human HPC and MSC.
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Figure 5 Network of eight overrepresented TFBS and DE genes containing these binding sites. For the sake of better visualization only

the set of genes being DE in both, HPC and MSC as well as both, MPP and CDP, are shown. Red genes are known to play role in the TGF-β

pathway. The width of the blue lines is chosen to be proportional to the average –log E-value, which resulted from the XXmotif analysis.

Figure 6 Human protein-protein interaction network connecting TGFB1, TGFBR1, SMAD7, SKIL, EGR1, PPARG with genes involved into

commonly identified biological processes and pathways. The dashed green line indicates the putative transcriptional regulation of SMAD7 by

transcription factor EGR1. The darker the red color of a node the higher the average probability for differential time course expression.
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Our network analysis suggests pathways, by which TGF-β

stimulation is possibly propagated via protein-protein inter-

actions to our commonly identified biological processes.

Due to the organism specificity of interactome information

these pathways show certain differences: Far less protein-

protein interactions are known in mouse than in human. In

human, for example, negative regulation of apoptosis might

be mediated via SMAD3 and SOX9 [42]. In contrast, the

GO and network analysis in mouse suggests a direct

role of TGFBR1.

Enrichment of biological processes, pathways and tfbss is

reproducible on independent dataset

To validate the central finding from our data, namely

the existence of commonly affected biological processes,

pathways and transcription factors in all cell types, we

downloaded an independent dataset comprising gene ex-

pression data measured at 9 time points (0, 0.5, 1, 2, 4,

8, 16, 24, 72 h) after TGF-β stimulation in human A549

lung adenocarcinoma cell-lines (CRL, GSE17708). The

dataset was analyzed in the same manner as described

for our data before. High fractions of the 11 GO terms

and 6 KEGG pathways commonly identified in all of

our cell types were also found in GSE17708 (Figure 8,

Additional file 2: Table S10). Out of the KEGG pathways

and GO terms associated to all of our human cells 70%

and 74%, respectively could be reproduced on the inde-

pendent dataset (Figure 8, Additional file 2: Table S11).

Notably, 11 (61%) out of the 18 genes which exhibiting

differential time courses in both our human MSC and

HPC cells were found also to have differential time-

courses in GSE17708 cells, these were ROR1, SMAD7,

FSTL3, GADD45B, JUNB, ZFP36, ID1, LMCD1, GXYLT2,

SKIL and HES1. This corresponding fraction is signifi-

cantly larger than expected by chance (p < 1E-9, hyper-

geometric test).

The KROX TFBS (corresponding to TFs EGR1 and

EGR2), which was enriched in all of our cell types, was

also found in GSE17708. Moreover, the other two TFBS

that we identified in our human cells (HFH4, PAX4)

Figure 7 Murine protein-protein interaction network connecting Tgbfr1, Smad7, Skil, Egr1, Pparg with genes involved into commonly

identified biological processes and pathways. The dashed green line indicates the putative transcriptional regulation of Smad7 and Tgfbr1 by

transcription factor Egr1. The darker the red color of a node the higher the average probability for differential time course expression.

Figure 8 Percentages of KEGG pathways (left) and GO terms

(right) enriched commonly in our cell types that could be

reproducibly identified in GSE17708. The numbers in tip of the

bars are the p-value for the null-hypothesis to see the corresponding

overlap just by chance (hyper-geometric test).
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were also enriched in the A549 lung cancer cell line

(Additional file 2: Tables S17).

Taken together this analysis reveals a high reproduci-

bility of our commonly identified biological processes,

pathways as well as TFs.

Conclusions
We have conducted an in-depth comparison of the dy-

namical TGF-β1 response profile on gene expression

level across several cell types. Despite of a generally high

degree of cell type specificity, there appears to be a com-

mon functional response, which is conserved across

cell types and species (i.e. mouse and human). Our ana-

lysis suggests a common effect of TGF-β1 stimulation

on apoptosis, cell proliferation, immune response, angio-

genesis, cell migration, PPAR signaling, oxidative stress

as well as purine and glutathione metabolism. Network

analysis gives hints to possible pathways, by which these

effects could be mediated.

On the level of individual genes the SKI-like oncogene

and Smad7 were differentially expressed in most (Smad7)

or all (SKI-like oncogene) cell types and thus appear to

play a major role. Smad7 is involved into the canonical

TGF-β pathway [43]. It is a general antagonist of the

TGF-β family (for review see [44]). The SKI-like onco-

gene is a direct target gene of Smad2, which regulates

its transcription [45]. It plays a role in cell growth and

differentiation.

Notably, a high fraction of the biological processes,

pathways and TFBS that we identified to be enriched in

all our cell types was found also in an independent data-

set from a lung cancer cell line. This strengthens the

confidence into our results.

In summary our findings indicate that despite a high

variability of transcriptional response across cell types

and organisms there appears to be a set of commonly af-

fected processes and pathways. In addition, the TFBS

analysis suggested a major role of the transcription fac-

tor EGR1 in the TGF-β response in human and mouse.

Indeed the induction of EGR1 via TGF-β stimulation

has been already reported earlier [46] and thus fits to

the existing knowledge about TGF-β1 − induced tran-

scriptional response in other cell systems.

Previous studies of TGF-β stimulation were mainly

limited to one specific cell type (e.g. fibroblasts). In this

paper we went beyond this point and conducted experi-

ments in different cell types under as much as possible

comparable conditions. In consequence we were able to

compare transcriptional responses across cell types and

organisms, which revealed common patterns. The iden-

tification of common and specific signal transduction

pathways that are affected by TGF-β in human and mice

will allow us to define potential therapeutic targets and

will further enable us to characterize gene expression

patterns and complex regulatory networks. In addition,

future work using our and other transcriptome data can,

for example, address the identification of TGF-β

dependent mesenchymal or epithelial gene signatures or

the definition of cell specific cancer signatures.

Methods

Ethics statement

Animal experiments required for obtaining murine

MPP, CDP and HPC were approved by local authorities

(Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen - LANUV NRW) in compliance

with the German animal protection law. Experiments

were performed at the Institute for Animal Research of

the RWTH Aachen University Hospital, under projects

10534A4 and 10718A4, entitled “Untersuchungen zur

Hämatopoese aus adulten Blutstammzellen”. Animal main-

tenance, handling, and anesthesia were performed accord-

ing to the Federation for Laboratory Animal Science

Associations FELASA recommendations.

All samples of human MSC cells were used after patient’s

written consent using guidelines approved by the Ethic

Committee of the RWTH University of Aachen (Permit

number: EK128/09).

Mouse hematopoietic progenitor cells (MPP & CDP)

Cell culture

MPP and CDP were obtained from mouse bone marrow,

using in vitro culture with a specific cytokine cocktail

and FACS sorting [12,13].

TGF-β1 stimulation

After sorting, MPP and CDP were treated with 10 ng/

mL recombinant human TGF-β1 (R&D Systems, Minne-

apolis, USA) for 2, 4, 8, 12 and 24 h as described in [12]

or left untreated. Cells were lysed in 350 μl TRI-Reagent

and stored at −80°C.

RNA isolation

RNA was isolated using the MagMAX-96 for Microar-

rays kit (Life Technologies, Darmstadt, Germany) ac-

cording to manufacturer’s protocol.

Primary mouse hepatocytes and human HepG2 cells (HPC)

Hepatocytes (HPC) represent the most prominent cell

population in the liver. Primary HPC are sensitive to

TGF-β1, and express the corresponding type I (ALK5),

type II (TβRII), and type III (betaglycan) receptors. TGF-

β1 promotes cell cycle arrest and apoptosis of primary

HPC. In addition, in vitro TGF-β1 provokes epithelial-to-

mesenchymal transition (EMT)-like processes in this hep-

atic cell subpopulation, which most likely do not occur

in vivo [47].
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HepG2 cells originate from a 15 year old child with

primary hepatoblastoma [48]. They do secrete the major

plasma proteins but do not express the hepatitis B virus

surface antigen (HBsAg) [49].

Cell culture

Primary murine HPC were isolated from male C57BL/6

mice according to the collagenase method of Seglen

[50]. Cells were plated in collagen coated 6-well dishes

at a density of 1.2 × 106 cells using HepatoZYME-SFM

(Gibco, Life Technology, Darmstadt, Germany). Four

hours after seeding the medium was renewed and cells

were grown for a further 24 hrs culture period.

HepG2 (DSMZ: DSM ACC180) were cultured in RPMI

(PAA, Pasching, Austria) containing 10% fetal calf serum

(PAA), 1 × Penicillin/Streptomycin (Lonza, Cologne,

Germany). Medium was renewed every second day. For

the experiment, cells were passaged and plated in 6-well

dishes using accutase (PAA) at a density of 4 × 105 cells.

One day before the experiment, cells were washed with

PBS (1×), medium changed to HepatoZYME-SFM (Gibco)

and cultured for further 24 hrs.

TGF-β1 stimulation

One hour before the experiment, the medium was ex-

changed and cells stimulated with 1 ng/mL recombin-

ant human TGF-β1 (R&D Systems, Minneapolis, USA)

for indicated time intervals (HepG2: 0 min, 20 min,

1 h, 2 h, 4 h, 24 h; murine HPC: 0 min, 1 h, 2 h, 4 h).

The cells were harvested using Qiazol for cell lysis

(Qiagen, Hilden, Germany), directly frozen and stored

at −80°C.

RNA isolation

RNA was isolated using the RNeasy Kit system (Qiagen),

performing a DNAse digestion according to the manu-

facturer’s protocol.

Human Mesenchymal Stromal Cells (MSC)

Mesenchymal stromal cells (MSC) are found in all sup-

portive tissue as in fat tissue, bone marrow and cord.

MSC are characterized by their plastic adherence and

their differentiation potential towards adipogenic, osteo-

genic and chondrogenic lineages. All MSC express the

surface markers CD29, CD73, CD90 and CD105 and

they lack the expression of CD14, CD31, CD34 and

CD45 [14,51].

Isolation and expansion

MSCs were isolated from mononuclear cells (MNCs) by

plastic adherence as described before [16,52,53]. In brief,

bone fragments from the caput femoris of patients

undergoing femoral head prosthesis were flushed with

phosphate- buffered saline (PBS) and washed twice with

PBS. MNC were then resuspended in culture medium

and seeded into tissue culture flasks. Cells were cultured

at 37°C in a humidified atmosphere with 5% CO2. The

first medium exchange was performed after 48 h to re-

move nonadherent cells. Thereafter, media changes were

performed twice per week and MSCs were passaged

when reaching 80-90% of confluence.

TGF-β1 stimulation

MSC from three different donors were used in an early

passage (p3-5) for stimulation with TGF-b1. 1x106 MSC

were seeded into 6-well culture plates. When the cells

were attached after 24 h 1 ng/mL recombinant TGF-β1

(R&D Systems) was added to the culture media at differ-

ent time points. The cells were harvested at the same

time point with Qiazol (Qiagen) and directly frozen and

stored at −80°C.

RNA isolation

RNA was isolated via phenol/chloroform extraction

using the miRNeasy Kit (Qiagen), performing a DNAse

digestion.

Genechip hybridization

Human samples were assayed using Affymetrix Gene-

Chip® type “Human Gene 1.0 ST Array” with 34,760

probe-sets and mouse samples were assayed in Affyme-

trix GeneChip type “Mouse Gene 1.0 ST Array” with

32,321 probe-sets. Hybridization, wash and staining were

done according to manufacturer’s recommended stand-

ard techniques.

Normalization and preprocessing

Raw probe intensities were normalized and summarized to

expression levels using the FARMS algorithm which uti-

lizes a factor analysis approach [54]. A rigorous quality as-

sessment confirmed a fairly good quality of the chips with

exception of mouse HPC chips where Initial chip quality

assessment revealed a strong batch effect and one bad chip

(replicate no. 1 at time 1 hour). The bad chip was excluded

and batch adjustment was performed to alleviate that effect

on those chips via the “ComBat” method [55].

Affymetrix probe IDs were mapped to Entrez gene IDs

using the Bioconductor annotation packages “mogen-

e10sttranscriptcluster.db” in mouse chips and “hugen-

e10sttranscriptcluster.db” in human chips [56,57].

Differential gene expression

Time point specific analysis

Differential gene expression analyses via “Limma” Linear

Models for Microarray Data [58] using empirical Bayes

method [59] was performed by comparing samples at

each time point after TGF-β stimulation to the unstimu-

lated cells at time point 0. Statistical dependencies of
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samples between time points and replicates were consid-

ered via a factorial design matrix in “Limma” using a

“time” and a “replicate” factor, and contrasts are consid-

ered for interaction effects. Corrections for multiple test-

ing was done using the Benjamini & Hochberg’s method

[60]. Significant differentially expressed genes are con-

sidered those with FDRBH < 0.01 and absolute log2 fold

change value (logFC) ≥ 1.

Analysis of whole time courses

The small number of replicates in our experiments limits

the power of statistical testing procedures for assessing

differential gene expression at individual time points. Fur-

thermore, the number of measured time points is not the

same for each cell type, which complicates any further

meta-analysis. Therefore, we employed the “betr” method

to analyze whole time series at once [27]. The algorithm

of this method uses a random-effects model together with

the empirical Bayes method to estimate probabilities for

differential expression of whole time courses. Genes were

considered to be significant at a probability cutoff of >

99% for the whole time-course analysis and absolute log2

fold change (logFC) ≥ 1. Since “betr” requires the same

number of replicates per time point and one chip in

mouse HPC had to be omitted due to low quality (see

Normalization & Preprocessing) unfortunately in this par-

ticular cell line we had to exclude time point 1 h com-

pletely from the time-course analysis.

Cluster analysis

Clustering of gene expression time series was done via the

MFDA method proposed in [61]. The method assumes

gene expression time series within each given cluster to

follow a mean curve plus some Gaussian noise. It decides

cluster allocation via a Gaussian Mixture Model utilizing

an EM algorithm for parameter estimation and decides

the optimal number of clusters via the Bayesian Informa-

tion Criterion (BIC).

It is worth mentioning that we applied MFDA not on

raw gene expression data here, but on log fold-changes

relative to time point 0. The reason was that we wanted

to group genes not on the basis of their absolute expres-

sion values, but on the basis of similar response to the

stimulus.

KEGG and go analysis

Analyses of pathways in KEGG [43] and biological pro-

cesses in Gene Ontology project (GO) [62] were per-

formed as follows: The –log(p-value) of all genes in the

individual time point analysis and –log(1 – probabilities)

of all genes in the whole time-course analysis, respect-

ively, were taken as a ranking score for each transcript.

Gene sets of KEGG pathways and GO terms were then

tested for their association with these ranking scores via

a univariate logistic regression based test [63,64]. Result-

ing p-values of KEGG pathways and GO terms were

adjusted according to Benjamini & Yekutieli’s false dis-

covery rate control under dependency [65], and signifi-

cant KEGG pathways and GO terms reported at a

FDRBY cutoff value of 5%.

Transcription factor binding sites analysis

Analysis of transcription factors binding sites (TFBSs)

was performed using the de novo sequence motif detec-

tion method XXmotifs [39]. Identified sequence motifs

were then aligned to known TRANSFAC TFBS via

STAMP [66] and the top match is considered. The

XXmotif method uses BLAST [67] all-against-all com-

parisons to mask regions of local homology in order to

avoid false positives. The method then performs an

enrichment analysis after transforming the found pat-

terns to position weight matrices (PWMs). The STAMP

method utilizes a global or un-gapped local alignment to

detect DNA motifs similarities to defined PWMs. Fur-

thermore, it considers familial binding profiles, thus im-

proving transcription factors (TF) classification accuracy.

TFBSs analysis was done using these methods in each

cell type for those genes, which according to the time-

course analysis showed a probability of > 0.99% for dif-

ferential expression. Promoter sequences of the genes

under consideration (2Kbp upstream of transcription

start site) were obtained from the Ensembl database [68]

via “biomaRt” [69,70]. Only the top matching motif for

each TRANSFAC TFBS was considered and significant

TFBSs were reported at an E-Value threshold of 1e-3.

Mapping of TFBS to individual transcription factors was

performed via manual inspection of TRANSFAC PWMs.

We obtained all proteins which had been used to con-

struct each of the PWMs. With the help of the commer-

cial software GeneGo Metacore® [71] we then mapped

protein names to Entrez gene IDs. As a consequence we

found for the TFBS FOXP1 the differentially expressed

genes Foxp2 and FoxP1 (MPP, CDP mouse cells). For the

TFBS FOX the human gene FAU was identified (human

HPC). For KROX we found Egr1/EGR1 (mouse HPC, hu-

man MSC) and EGR2 (human MSC). For TEF we identi-

fied Klf3/KLF3 (MPPs, CDPs, and human HPC), TRIM37

and USP7 (human HPC, MSC).

Identification of homologous genes

Human homologs of mouse genes were identified via the

KEGG Sequence Similarity Data Base (SSDB), which

contains local alignments of amino acid sequences for

protein coding genes from different species. We here

considered two genes to be homologs, if the alignment

E-value was below 1e-30 (bit-score > 112). In case of

more than one homologous gene, all are considered.
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Network analysis

Information about protein-protein interactions was col-

lected separately for human and mouse from the BioGRID

database version 3.2.109 [41]. Correspondingly, a network

comprising 16,011 nodes and 140,471 physical interactions

was constructed for human. For mouse the network con-

sisted of 6,233 nodes and 16,100 physical interactions.

Nodes in these networks were weighted by the average

probability (mean over all cell types from the same organ-

ism) for differential time course expression according to

the betr model (see above). A “distance” for each edge

was then calculated as 2 minus the sum of its incident

nodes’ weights. Hence: the smaller the distance the higher

the weight of its incident nodes. We used Dijkstra’s algo-

rithm to search for minimum distance (i.e. maximum node

weight) path connecting TGFB1 with each of SKIL,

SMAD7, EGR1, PPARG and all genes annotated to gluta-

thione metabolism, purine metabolism, oxidation-reduction

process, innate immune response, negative regulation of

apoptotic process, angiogenesis, positive regulation of cell

proliferation and positive regulation of cell migration. For

each of the last mentioned terms we only kept those genes

as representatives which showed the minimum distance to

TGFB1. If there were several paths of the same minimum

distance, all of them were considered.

In the network for mouse Tgfb1 was not identified and

hence we started our analysis with Tgfbr1 instead.

Availability of supporting data

The datasets supporting the results of this article are in-
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