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Activation of TGF-b1 initiates a program of temporary collagen accumulation important to
wound repair in many organs. However, the outcome of temporary extracellular matrix
strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity
andmortality worldwide. To avoid this maladaptive outcome, TGF-b1 signaling is regulated
at numerous levels and intimately connected to feedback signals that limit accumulation.
Here, we examine the current understanding of the core functions of TGF-b1 in promoting
collagen accumulation, parallel pathways that promote physiological repair, and patholog-
ical triggers that tip the balance toward progressive fibrosis. Implicit in better understanding
of these processes is the identification of therapeutic opportunities thatwill need to be further
advanced to limit or reverse organ fibrosis.

C
ommonly affecting many organs including
lung, heart, kidney, and liver, tissue fibrosis

is a leading cause of morbidity and mortality

worldwide (Friedman et al. 2013). Yet the ca-
pacity for rapid wound repair with collagen

accumulation facilitates restoration of tissue

strength as well as tissue integrity in many inju-
ry situations. For example, early cardiac fibrosis

after myocardial infarction is important for

protection against fatal cardiac rupture (Hof-
mann et al. 2012). In broader terms, the capac-

ity of cells to secrete and adhere to a collagenous

extracellular matrix (ECM) must be a strong
evolutionary force for advantage because virtu-

ally all metazoans express genes for fibrillar col-

lagens (Hynes 2012). Inmammals, the potential
role of transforming growth factor (TGF)-b1 in

physiological repair and collagen accumulation

was recognized soon after the discovery of
TGF-b1 expression in cancer cell lines (Moses

et al. 2016). TGF-b1 was found to promote

fibronectin and collagen production by both
epithelial and mesenchymal cells in culture,

and to do so by transcriptional activation of

the relevant genes (Ignotz and Massagué 1986).
Additionally, subcutaneous injection of TGF-b1

was seen to strongly promote collagen accumu-

lation and a fibrotic tissue response (Roberts
et al. 1986). These observations and several sub-

sequent lines of evidence emerged solidifying the

role of TGF-b1 as a master regulator of ECM
accumulation and consequently a potential key

driver of fibrosis (Bartram and Speer 2004).

TGF-b1 is also intricately involved in regulating
inflammation (Shull et al. 1992; Kulkarni et al.

1993). Deletion of the Tgfb1 gene in mice results
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in rapid demise after birth because of over-

whelming, systemic inflammation (Shull et al.
1992). Based on this and many other observa-

tions (Travis and Sheppard 2014), TGF-b1 is

generally considered as a suppressor of excessive
inflammation. Regulated inflammation itself

is an important determinant of tissue repair,

as resolution of provisional fibronectin-rich
ECMs and elaboration of mediators that limit

collagen accumulation after injury limit fibro-

sis. Inflammatory cells, especially macrophages,
are important initiators of inflammation and

mediators of inflammation resolution (Vannella

andWynn 2016;Minutti et al. 2017). This review
will examine our current understanding of

the core functions of TGF-b1 in promoting

collagen accumulation and parallel pathways
that help determine whether there is physiolog-

ical repair or progressive fibrosis. Although

increased levels of TGF-b2 and TGF-b3 have
been observed in fibrotic disease (Burke et al.

2016), there is little evidence implicating either

TGF-b2 or TGF-b3 with progressive tissue
fibrosis, and therefore these TGF-b isoforms

will not be discussed further here.

INTERPLAY BETWEEN INTEGRINS AND ECM
STIFFNESS IN TGF-b1 ACTIVATION AND
STROMAL EXPANSION

Newly translated TGF-b is processed by cleav-

age of an amino-terminal fragment, called the
latency-associatedpeptide(LAP), fromthepoly-

peptide that homodimerizes to form themature

cytokine (Munger et al. 1997; Moses et al. 2016;
Robertson and Rifkin 2016). The cleaved LAP

also homodimerizes and associates noncova-

lently with mature TGF-b in a complex that
prevents access of TGF-b to its receptors. In

most cells, this “small latent complex” is disul-

fide linked to either a member of a family of
latent TGF-b binding proteins (LTBPs) and

stored in the ECM or to the transmembrane

protein glycoprotein A repetitions predominant
(GARP) for presentation on the cell surface

(Stockis et al. 2009). Most organs of healthy

adult mammals contain substantially more
latent TGF-b than would be required, when

activated, to cause extensive tissue fibrosis.

Therefore, much of the regulation of TGF-b

function in fibrotic diseases depends on the
regulation of TGF-b activation rather than syn-

thesis or secretion (Robertson and Rifkin 2016).

In vitro it is relatively easy to induce confor-
mational change in latent TGF-b that leads to

release of the active cytokine (i.e., TGF-b acti-

vation). For example, purified latent TGF-b can
be activated by acidic or basic pH, heat denatu-

ration, and oxidation by reactive oxygen species

(ROS), incubation with thrombospondin 1, or
a wide variety of proteases (Munger et al. 1997;

Crawford et al. 1998). However, with the excep-

tion of thrombospondin 1, for which gene
inactivation has identified some phenotypic

features consistent with loss of TGF-b activa-

tion, and ROS in the setting of mammary gland
irradiation (Barcellos-Hoff et al. 1994), the roles

of these activation pathways in vivo have not

been established. The most intensely studied
activation mechanism with demonstrated rele-

vance in vivo has been activation by interaction

with a subset of integrins (Munger et al. 1999;
Annes et al. 2002; Mu et al. 2002; Jaramillo et al.

2003; Henderson et al. 2013; Hinck et al. 2016).

The first indication that integrins could par-
ticipate in the activation of TGF-b came from

observations of the phenotype of mice lacking

the b6 subunit of the epithelially restricted avb6

integrin (Munger et al. 1999). These mice show

exaggerated inflammatory responses to normal-

ly trivial injurious stimuli in multiple epithelial
organs (Huang et al. 1996). Despite these exag-

gerated responses, Itgb62/2 mice are dramati-

cally protected from tissue fibrosis (Munger
et al. 1999; Hahm et al. 2007). Tgfb12/2 mice

have even more exaggerated tissue inflamma-

tion, reflecting the more limited tissue expres-
sion of Itgb6 relative to Tgfb1 (Kulkarni et al.

1993). Biochemical evidence has shown direct

binding of the avb6 integrin to an arginine-
glycine-aspartic acid (RGD) tripeptide within

TGF-b1 LAP (Munger et al. 1999), and cell

culture assays have shown that epithelial cells
can use this integrin to bind and activate

TGF-b1 and -b3 (Munger et al. 1999; Annes

et al. 2002). Since these initial observations,
several studies have shown reduced TGF-b ac-

tivation in epithelial organs of Itgb62/2 mice,
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by cells lacking the avb6 integrin, and in re-

sponse to blocking antibodies targeting this
integrin (Munger et al. 1999; Weinreb et al.

2004; Jenkins et al. 2006; Aluwihare et al.

2009; Giacomini et al. 2012).
Because the inflammatory phenotype of

mice lacking even one of the three isoforms of

TGF-b (e.g., TGF-b1) ismuchmore severe than
the phenotype of mice lacking the avb6 integ-

rin, additional mechanisms must regulate acti-

vation of TGF-b1 and -b3 in vivo. It is now clear
that additional RGD-binding integrins are

important contributors to this process. Cell cul-

ture studies with epithelial cells showed that the
closely related integrin, avb8, can also potently

activate TGF-b (Mu et al. 2002). Mice that lack

integrin b8 also recapitulate some features of
mice lacking TGF-b1, such as defects in vascu-

lar development, or TGF-b3 (e.g., cleft palate)

(Zhu et al. 2002). When Itgb82/2 mice are
crossed to an outbred genetic background that

allows some mice to survive into early adult-

hood, treatment of these mice at birth with
blocking antibody to the avb6 integrin results

in a complete phenocopy of all developmental

effects of loss of TGF-b1 and TGF-b3 (Aluwi-
hare et al. 2009), suggesting that avb6 and avb8

together contribute to activation of all of

the TGF-b1 and TGF-b3 required for normal
development.

Additional RGD-binding integrins may

play important roles in activating TGF-b to
drive tissue pathology in adults. For example,

Cre recombinase-mediated, tissue-restricted

deletion of the RGD-binding integrins that
share the av subunit in cells expressing plate-

let-derived growth factor b (PDGFb) protects

mice from pathologic fibrosis in the lungs, liver
and kidney (Henderson et al. 2013). Fibroblasts

derived fromav-null mice following Pdgfb-Cre-

mediated gene deletion have an impaired ability
to bind and activate TGF-b1, and these mice

show reduced evidence of TGF-b signaling

in models of pathologic tissue fibrosis. The cells
targeted by Pdgfb-Cre do not express the avb6

integrin, but express avb1, avb3, avb5, and

avb8. However, global deletion of avb3 and/
or avb5, by specific deletion of their b chains,

has no effect on induced tissue fibrosis, and

conditional deletion of avb8 in the same cells

has no effect on liver fibrosis. These results sug-
gest that one ormoreav integrins, in addition to

avb8 and avb6, can contribute to pathologic

TGF-b activation in vivo. Accordingly, a small
molecule inhibitor of the avb1 integrin that has

minimal effects on other RGD-binding integ-

rins was shown to inhibit TGF-b activation by
primary lung and liver fibroblasts (Reed et al.

2015). Continuous subcutaneous administra-

tion of this inhibitor during the late phases
of bleomycin-induced pulmonary fibrosis or

carbon tetrachloride (CCl4)-induced hepatic

fibrosis results in protection that is similar to
that by a small molecule inhibitor of all av in-

tegrins (Henderson et al. 2013). These data

suggest that the fibroblast integrin responsible
for TGF-b activation and progression of lung

and liver fibrosis is avb1.

ROLE OF MECHANICAL FORCE IN
INTEGRIN-MEDIATED TGF-b ACTIVATION

In the original description of avb6-mediated

TGF-b activation, it was shown that sequences

within the b6 subunit cytoplasmic domain
required to link the integrin to the actin

cytoskeleton were essential for TGF-b activa-

tion (Munger et al. 1999). Activation was also
completely inhibited by cytochalasin D, an

inhibitor of actin polymerization. These obser-

vations provided the first evidence that integ-
rin-mediated TGF-b activation requires linkage

to and active re-organization of the actin

cytoskeleton. Subsequently, cell culture studies
showed that contractile fibroblasts can use in-

tegrins to activate latent TGF-b, and that this

process depends on actin–myosin interaction
and generation of mechanical force (Wipff

et al. 2007). Similar requirements were shown

for avb6-mediated TGF-b activation by epithe-
lial cells (Giacomini et al. 2012), although the

role, if any, of mechanical force in TGF-b

activation by avb8 is less clear (Mu et al.
2002). avb6-mediated TGF-b1 activation was

also shown to require covalent disulfide linkage

of LTBP-1 to TGF-b1 LAP (Annes et al. 2004).
The effect of deletion of Ltbp1 could be rescued

by expression of a short fusion protein com-
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posed of the region containing the cysteine res-

idues responsible for disulfide linkage of LTBP-1
to LAP and the region required for direct bind-

ing to fibronectin in the ECM. These observa-

tions suggest that the requirement for LTBP-1
is explained by its role in physically tethering

latent TGF-b.

The important role of mechanical force in
integrin-mediated TGF-b activation fits very

well with the crystal structures of latent TGF-

b1 and of cocrystals of the avb6 integrin with
TGF-b1 LAP (Shi et al. 2011; Dong et al. 2014,

2017; Hinck et al. 2016). The latent TGF-b1

structure showed a 180˚ axis between the
exposed loop in LAP containing the integrin

binding RGD sequence and the cysteine resi-

dues that form the disulfide linkage to LTBP-1,
identifying how the force of cellular contraction

could be transmitted through avb6 to deform

physically constrained latent TGF-b. Further-
more, a single unstructured loop, called the

latency lasso, was shown to make all of the crit-

ical contacts with active TGF-bwithin the latent
complex and to be the likely weakest link that

would be unfolded bymechanical force, thereby

releasing free TGF-b from the complex. The
avb6 structure identified critical residues, espe-

cially a hydrophobic pocket that provide a dock-

ing site for hydrophobic residues adjacent to the
RGD sequence in TGF-b1 and -b3 LAP that

help to explain the unusually high affinity of

the interaction between avb6 and LAP.
To exert physical force on tethered latent

TGF-b, cells must themselves be firmly attached

to a relatively stiff substrate. Indeed, one of the
principal methods used to show a requirement

for physical force in integrin-mediated TGF-b

activation has been plating cells on polyacryl-
amide gels of varying stiffness, and showing that

cells plated on more deformable substrates have

progressively impaired ability to activate TGF-b
as the substrate deformability increases (Wipff

et al. 2007; Giacomini et al. 2012). Integrins are

one of the main families of receptors cells used
to adhere tightly to components of the ECM, so

it seems likely that inhibitors targeting integrins

could inhibit TGF-b activation, even if the in-
hibited integrins do not directly bind tightly to

TGF-b LAP. For example, a blocking antibody

targeting the avb3 integrin can inhibit TGF-b

activation by cultured renal fibroblasts but
has no effect on adhesion of these cells to LAP.

Rather, this inhibitory effect is completely de-

pendent on the substrate on which these cells
are plated, with marked inhibition when the

cells are plated on the avb3 ligand or vitronec-

tin, but no inhibition when the cells are plated
on an irrelevant ligand, collagen 1 (Chang et al.

2017). Thus, integrin interactions with the

ECM are intricately involved in how the ECM
impacts TGF-b1 activation.

TGF-b1 SIGNALING AS A DRIVER OF
COLLAGEN ACCUMULATION

TGF-b1 signals through its specific heterotetra-
meric receptor complex comprised of a pair of

TbRI receptors that phosphorylate the receptor

activated-Smads (R-Smads), termed Smad2
and Smad3, and a pair of TbRII, which contain

the initial binding site for TGF-b1. These recep-

tors are expressed on most cells in culture and
their roles in TGF-b signaling have been

discussed elsewhere (Feng and Derynck 2005;

Heldin and Moustakas 2016). Cell-specific
gene deletion by Cre-mediated recombination

of either Tgfbr1 or Tgfbr2 revealed that TGF-b1

signaling, rather than TGF-b1 expression, in
both epithelial cells and mesenchymal cells is

required for bleomycin-induced lung fibrosis

(Huang et al. 2002).
These findings indicate that TGF-b1-medi-

ated signaling in both epithelial and fibroblastic

cells is a common and critical feature of fibro-
genesis. These findings also support the concept

that TGF-b1mediates fibrosis throughmultiple

cell types and multiple interacting signaling
pathways. The latter include not only coregula-

tors of R-Smad-dependent transcription of

TGF-b1 target genes such as AP-1 and Egr-1,
specific negative regulators of R-Smad function

such as Smad7, but also early response genes

such as Nox4 and Tgfb1 itself further promote
TGF-b1 signaling (Derynck and Zhang 2003;

Feng and Derynck 2005). An altered profile of

microRNAs (miRNAs) induced or suppressed
in response to TGF-b1 also acts to stabilize

translation of mesenchymal genes important
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to fibrosis and minimize antifibrotic pathways

(Bowen et al. 2013). Finally, numerous other
signaling pathways provide input that allows

integration of Smad and non-Smad signaling

immediately downstream from TGF-b receptor
activation with contextual cues from the micro-

environment that favor expansion of the ECM

(Fig. 1). Integrins, in addition to mediating
latent TGF-b1 activation, activate prosurvival

and adhesive signals as a function of ECM

composition and stiffness. Receptor tyrosine
kinases respond to ligands after injury and pro-

mote proliferation and survival of fibroblasts.

Hypoxia, acting through hypoxia inducible fac-
tors (HIFs), promotes epithelial–mesenchymal

transition (EMT) and/or mesenchymal expan-

sion with enhanced collagen expression (Fa-

langa et al. 2002; Zhou et al. 2009; Chapman
2010; Kottmann et al. 2012). Several morpho-

gen pathways, especially those induced by Wnt

and Notch ligands, are activated in response to
injury and have been implicated in promoting

tissue fibrosis in multiple organs. The elaborate

cellular response of stromal cells within injured
tissues, directed in part by the influx of inflam-

matory cells, appears heavily oriented toward

transient ECM accumulation accompanied by
proliferation and migration of epithelial and

stromal elements, followed by stabilization of

the collagenous components of the ECM, and
finally fibroblast apoptosis and removal of

excess collagen to restore normal architecture

Growth factors

(PDGF, FGF)

Growth

factors (E)MT

transcription factors

SMA

Smad2/3

Rhop

ECM

ECM

(Col, Fn)

Latent TGF-β1

Active TGF-β1

Integrin

RTK

MAPK

PI3K-Akt

Coactivators

(β-catenin)

Figure 1. Epithelial and mesenchymal cell fibrogenic activation by TGF-b1: costimulation by other signaling
inputs and opportunities for feed-forward activation. Latent TGF-b is activated by av integrins. Active TGF-b
binds to its receptors leading to activation of canonical Smad signaling and Smad-independent signaling
pathways, including MAPK pathways and small GTPases such as RhoA. Inputs from other signaling pathways
converge on these pathways to regulate the TGF-b response. These are activated by other growth factors, such as
PDGF, which generally signal through RTKs and through MAPK, integrin-mediated mechanotransduction
mediated by Rho family GTPases, and coactivators such as b-catenin. These signaling factors lead to expression
of profibrotic genes such as those encoding a-SMA, ECM proteins, and secreted cytokines and growth factors,
which further modify the fibrogenic effector cell response. The expression of transcription factors involved in
epithelial or mesenchymal cell transition into an activated state is also induced. PDGF, platelet-derived growth
factor; FGF, fibroblast growth factor; RTK, receptor tyrosine kinase; MAPK, mitogen-activated protein kinase;
(E)MT, (epithelial–) mesenchymal transition; Col, collagen; Fn, fibronectin; SMA, a-smooth muscle actin;
ECM, extracellular matrix.
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(Beers and Morrisey 2011). TGF-b1 is a key

cytokine participating in virtually all elements
of the early tissue response to injury.

Collagens are comprised of three polypep-

tide chains highly organized into a triple helical
conformation. Collagenmonomers are not very

soluble and, as discussed below, numerous post-

translational modifications are necessary for
proper procollagen folding and secretion. There

are 28 collagen proteins in mammals, the most

abundant being collagen I, a major component
of bone, most musculoskeletal structures,

eye, lung, and the vasculature (Hulmes 2008).

Collagen I belongs to the group of fibrillar col-
lagens, including collagens I, II, III, and VI, that

are largely triple helical structures and thus

become organized into fibrils with very defined
“packing” dependent on extensive covalent

cross-linking of carboxyl terminus to amino

terminus of adjacent collagen monomers. This
elaborate organization results in high tensile

strength for the collagen fibrils. This is in

contrast to the much less extensively organized
nonfibrillar collagens, such as collagen IV that is

the major basement membrane collagen. After

injury, collagens I and III are the dominant
collagens whose expression is induced to restore

tensile strength and tissue integrity. TGF-b1 is a

required cytokine for the induction of these
collagens after tissue injury.

The intricate nature of TGF-b1 signaling in

fibrogenesis is highlighted by the mechanisms
engaged in expression and tissue accumulation

of type I collagen. Type I procollagen is com-

prised of two polypeptide chains, pro-a1 and
pro-a2, assembled in a 2:1 ratio (2a1/a2) lead-
ing to a heterotrimeric three-dimensional he-

lical structure (Fig. 2). Following activation of
latent TGF-b1 and TGF-b receptor engage-

ment, initial transcription of COL1A2 gene

(encoding type I collagen a2) is dependent on
the nuclear translocation of Smad3 and Smad4,

the DNA-binding transcription factors Sp1 and

AP-1 (c-Jun/c-Fos), as well as CREB-binding
protein (CBP) or p300 that act as coactivators

and histone acetylases to facilitate chromatin

relaxation and access of the transcription factors
to the COL1A2 promoter (Zhang et al. 1998;

Ghosh et al. 2000). The appearance of AP-1 in

the nucleus in turn depends on activation of

Smad-independent Erk or c-Jun amino-termi-
nal kinase (JNK) mitogen-activated protein ki-

nase (MAPK) signaling pathways by TGF-b1.

Similar mechanisms operate to induce an early
response of Egr-1 that has been shown to be

critical for collagen I expression by fibroblasts

in response to TGF-b1 (Chen et al. 2006). Nu-
merous other factors coordinate with Smad2/3
signaling in the nucleus to promote COL1A1

and COL1A2 transcription. Once transcribed,
the translation of collagen I mRNAs is also

heavily regulated, in no small part by TGF-b1-

induced repression of the expression ofmiRNAs
known to target collagen mRNAs or mRNA

for proteins required for collagen expression

(Bowen et al. 2013). miR-29, for example, is
known to repress the expression of heat shock

protein 47 (HSP47) and lysyl oxidase like-2

(LOXL2), which both participate in the highly
organized process of stable collagen accumula-

tion in the ECM (discussed below). The expres-

sion of the miR-29 family is down-regulated
in response to TGF-b1 in fibroblasts, and this

repression corresponds to increased fibroblast

collagen expression. Mice treated with miR-29
mimics have attenuated lung fibrotic responses

to bleomycin (Yang et al. 2013). miR-96 and

miR-130b also attenuate collagen accumulation
and their expression is repressed in response to

TGF-b1. Similarly, miR-326 has been shown

to attenuate TGF-b1 translation (Das et al.
2014). Levels of miR-326 were found to be low

in the bleomycin mouse model and in lungs

of patients with idiopathic pulmonary fibrosis
(IPF). Additionally, mice treated intranasally

with a miR-326 mimic have attenuated fibrosis

in this model. Collectively, the changes in
miRNA expression by TGF-b1 signaling act to

stabilize collagen protein expression, secretion,

and stabilization in the ECM (Fig. 2).
Actual assembly and cellular trafficking

of collagen I polypeptides through the cell

secretory machinery is problematic because of
the large size and tenuous solubility of the col-

lagen chains. Extensive posttranslational modi-

fications are required for the proper assembly
of procollagens into very well ordered helical

structures early in the secretory process (Fig. 2)
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Figure 2. TGF-b1-induced collagen expression program. The schematic illustrates the proteins and microRNAs
that are coordinately regulated by TGF-b1 to effect tissue collagen accumulation. Proteins whose expression is
activated by TGF-b1 are highlighted in red, indicating that the expression of more than a dozen proteins is
induced along with that of collagen and is required for substantial collagen expression and tissue accumulation.
These proteins act at nearly every stage of collagen processing, from posttranslational proline and lysine hy-
droxylations by procollagen-lysine 2-oxogluterate 5-deoxygenase (PLOD2) and prolyl-4-hydroxylase (P4HA3),
and glycosylation in the endoplasmic reticulum (ER), to required chaperones (HSP47 and FKBP10) to sustain
the trimeric collagen structure and prevent premature fibril formation during passage through the secretory
machinery. Additional, constitutively expressed proteins, such as protein disulfide isomerase (PDI), and quality
control sensors, such as BiP/GRP78, are also important for collagen folding and subsequent expression. Once
secreted, procollagen is proteolytically processed to generate tropocollagen that then spontaneously begins to
self-associate into microfibrils. The final physical form and extent of stable, matrix fibrillar collagens depend
heavily on additional TGF-b1-induced proteins such as fibronectin, the lysyl oxidases, and inhibitors of collagen
turnover, plasminogen activator inhibitor 1 (PAI-1) and tissue inhibitor of metalloproteinases 1 and 3 (TIMP1,
TIMP3). Finally, proteins such as biglycan and periostin associate with mature fibrils and control packing and
organization. Collectively, this reprogramming of cells can be considered as the TGF-b1-induced collagen
expression program.
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(Hulmes et al. 2002; Bourhis et al. 2012; Ishikawa

and Bachinger 2013). The primary amino acid
sequences of fibrillar collagens underlie the pro-

pensity of these collagens to form a helical struc-

ture, with approximately 300 repeats of Gly-X-Y
motifs providing sufficient glycines for tight

chain folding. HSP47, whose expression is

strongly induced in response to TGF-b1 in nearly
all cells that express collagen I, acts as a key chap-

erone in collagen assembly, binding to collagen

and promoting stability of both the unfolded
collagen chains in the endoplasmic reticulum

(ER) and the more assembled structures traffick-

ing through the Golgi. Assembly into a properly
folded procollagen also requires many distinct

modifications. Immediately after synthesis in

the rough ER, and possibly bound to its inner
membrane, theunfolded collagen chains begin to

undergo lysine and proline hydroxylations. The

two key enzymes in this process are procollagen-
lysine 2-oxogluterate 5-deoxygenase (PLOD2 or

LH2) and prolyl-4-hydroxylase (P4HA3). The

expression of both enzymes is strongly induced
in response to TGF-b1. Avariable fraction of the

hydroxy-lysines are then glycosylated, and the

remainder is further processed to very stable col-
lagen cross-links once collagen is secreted. Like

glycines, the hydroxyprolines are required for

tight helical folding as the three collagen chains
begin to assemble. The modified collagen chains

are also substrate for a constitutively expressed

protein disulfide isomerase (PDI) that mediates
disulfide formation in the carboxy-terminal re-

gion. This is thought to place the chains in “reg-

ister” for subsequent helical folding, beginning at
the carboxyl terminus andproceeding toward the

amino terminus, and full assembly of the procol-

lagenmolecule. Once the ordered, helical procol-
lagen molecule assembles, there is a critical need

for additional proteins to chaperone the traffick-

ing of procollagen through the Golgi and secre-
tory process without denaturation or premature

fibril formation. HSP47 and a FK506 binding

protein 10 (FKBP10) serve these functions. Their
expression is strongly induced by TGF-b1 in fi-

broblasts (Ishida and Nagata 2011; Staab-Weij-

nitz et al. 2015).
Collagen is finally secreted as a procollagen

with the extended carboxy- and amino-termi-

nal nonhelical peptide chains (carboxy- and

amino-terminal telopeptide extensions) that
are then removed by proteolysis to generate

the helical structure, tropocollagen (Fig. 2). A

number of proteases appear to be capable of
amino- and carboxy-terminal processing of

procollagen and it is unclear if these are induced

by TGF-b. The earliest described carboxy-ter-
minal processing protease is bone morphoge-

netic protein-1 (BMP-1), a metalloproteinase

that is critical to collagen maturation in bone
(Li et al. 1996; Prockop et al. 1998; Asharani

et al. 2012). Recently, meprin a and b metal-

loproteinases were shown to cleave both the
amino- and carboxy-terminal peptides of pro-

collagen, leading to fibril formation (Prox et al.

2015). These meprin levels are high at sites of
collagen accumulation and fibrosis (Broder

et al. 2013). Meprin expression is induced

by pathways that lead to activation of nuclear
AP-1, and thus may be induced by TGF-b1

(Biasin et al. 2014). Tropocollagen is thought

to spontaneously form a polymeric collagen
fibril, but collagen stabilization as a fibril (con-

taining hundreds of tropocollagen molecules)

requires lysyl (or hydroxyl-lysyl) oxidation to
an aldehyde that is both necessary and sufficient

for irreversible collagen cross-linking. Lysyl

oxidases, a set of key enzymes that mediate
collagen cross-linking, are all strongly induced

by both TGF-b1 and HIF1a (Erler et al. 2006;

Blaauboer et al. 2013). In addition to supporting
fibril assembly, TGF-b1 concurrently induces

the expression of protease inhibitors such as

plasminogen activator inhibitor 1 (PAI-1) and
tissue inhibitor of metalloproteinase 3 (TIMP3)

that attenuate the breakdown of newly depos-

ited tropocollagens that are vulnerable to pro-
teases. The pattern of deposition of collagen is

strikingly similar, and follows temporally that of

fibronectin secretion, a prominent mesenchy-
mal protein that is induced byTGF-b1 signaling

(Hernnas et al. 1992; Muro et al. 2008). Extra-

cellular fibronectin assembly, itself a complicat-
ed and integrin-dependent process, provides

the suitable extracellular fibrillar substrate for

organized deposition of collagen fibrils. The
further organization of fibrils, depending per-

haps on the needed tensile strength, is promot-
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ed by yet additional TGF-b1 target genes that

encode collagen-interacting proteins such as
osteopontin, periostin, and the proteoglycan

biglycan (Oku et al. 2008; Farhat et al. 2012).

Transglutaminase and nonenzymatic interac-
tions among these proteins are thought to fur-

ther enhance tissue stiffness over time (Cox and

Erler 2011).
The evolutionary expansion of collagens

from early metazoans to mammals has been

accompanied by expansion of the family of
monoamine oxidases, lysyl oxidases, needed to

cross-link and stabilize ECM collagen (Kagan

and Trackman 1991). The parent enzyme,
LOX, is critically important to normal muscu-

loskeletal development as deletion of LOX in

mice is perinatal lethal with aortic aneurysms,
defective skeletal structures, and defective air-

way development (Trackman 2005). In addition

to LOX, there are four LOX-like enzymes
(LOXL1–4) that share highly conserved catalyt-

ic domains but also are comprised of additional

protein interaction domains. LOX and LOXL1
are closely related and expressed in a similar

pattern. LOXL2, 3, and 4 have similar structures

and, among these, LOXL2 is the most studied
and widely expressed, although primary lung

fibroblasts in culture express all of the LOX-

like enzymes at variable levels. The expression
of LOXL2 is strongly induced by TGF-b1 and

hypoxia, and is reported to not only function

extracellularly in collagen cross-linking but
also intracellularly to promote Snail1 protein

accumulation. Because of the strong positive

impact of Snail1 on the expression of fibrillar
collagens, the induction of LOXL2 expression in

response to TGF-b1 can be viewed as a positive

feedback loop to support ECM expansion after
injury. Thus, LOXL2 levels are strongly linked to

stable collagen accumulation, ECM stiffness,

and fibrosis progression (Barry-Hamilton
et al. 2010; Adamali and Maher 2012).

As might be predicted from the elaborate

requirement formultiple posttranslationalmod-
ifications to support fibrillar collagen folding

and solubility in the ER, high-level expression

of collagen renders the cell susceptible to ER
stress from misfolded protein. Accordingly,

TGF-b1 induces the expression of proteins

that are linked to protection from the unfolded

protein response (UPR) (e.g., BiP/GRP78, and
HSP47) in parallel to expression of fibrillar col-

lagens and modifiers of its primary structure

(Fig. 2). Nonetheless, it has been reported that
inositol-requiring enzyme-1a (IRE-1a), a key

mediator of the UPR, is activated after TGF-

b1-induced collagen expression in fibroblasts
and in fibroblasts from patients with fibrotic

disease (Heindryckx et al. 2016). The investiga-

tors implicated both increased X-box binding
protein 1 (XBP-1) signaling, resulting in ER

expansion and cleavage of miR-150 by the

RNAase activity of activated IRE-1 in altering
collagen expression, and fibrogenesis. Elevated

miR-150 levels have been linked to protection

from fibrosis (Honda et al. 2013). Hence, some-
what paradoxically, the activation of IRE-1,

indicative of an activated UPR, promotes rather

than suppresses collagen expression. Inhibition
of IRE-1 in cell culture and in vivo attenuates

the fibrotic response to TGF-b1 in liver and skin

fibrosis models. These findings underscore the
potential pathological operation of the UPR in

the context of ER stress with a negative impact

on tissue integrity (Fig. 3). This conclusion is
supported by the findings that mutations in

surfactant protein (SP) A2, a cause of familial

pulmonary fibrosis, leads to type II alveolar
epithelial cell ER stress accompanied by in-

creased TGF-b1 secretion (Wang et al. 2009).

Collectively, it is clear that TGF-b1 drives a
large, multifaceted reprogramming of both ep-

ithelial and mesenchymal cells to favor expres-

sion and extracellular accumulation of matrix
proteins that provide rapid restoration of tissue

integrity in the setting of injury and/or disrup-
tion of tissue barriers (Fig. 2). The phylogenetic
origin of fibrillar collagen, and its complicated

assembly process, dates to the earliest metazoans

and has been highly conserved and further am-
plified for increased structural strength through-

out the vertebrate family. The importance of

collagen and numerous other ECM proteins in
the injury response is highlighted not only by

the highly coordinated induction by TGF-b1 of

a large set of ECM structural proteins but also
the parallel induction of numerous enzymes and

chaperones that promote proper folding, secre-
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tion, and extracellular stabilization of collagen as

well as down-regulation of miRNAs that specif-
ically attenuate collagen expression and accu-

mulation. It is hardly surprising then that such

a robust and complicated cellular response sys-
tem, driven after injury largely by a singlemaster

regulator, is subject to breakdown and disor-

dered function leading to disease.

CONTRIBUTIONS OF INTEGRINS AND
TGF-b1 TO TISSUE STIFFNESS ON
PROGRESSION OF FIBROSIS

It is now abundantly clear that tissue stiffness
can exert profound effects on cell differentiation

and behavior. For example, mesenchymal stro-

mal cells differentiate into fat cells, muscle cells,

or bone cells when they are plated on substrates
with stiffnessmimicking that normally found in

fat, muscle, or bone, respectively (Engler et al.

2006). Stiffness also profoundly affects the be-
havior of tissue fibroblasts, with increased stiff-

ness favoring increased collagen production and

expression of contractile proteins such as a-
smooth muscle actin (SMA), and decreased

stiffness favoring amore quiescent and noncon-

tractile phenotype (Liu et al. 2010). As a conse-
quence, the process of tissue fibrosis, which lo-

cally increases tissue stiffness, participates in a

feed-forward loop, where the presence of local
fibrosis increases fibroblast collagen production

and force generation, further accelerating fibro-
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Figure 3. Diverse pathways of epithelial responses to stress converge on profibrotic secretory phenotypes
supporting extracellular matrix (ECM) expansion. The figure highlights three major epithelial states resulting
from different pathological triggers: epithelial–mesenchymal transition (EMT), senescence, and endoplasmic
reticulum (ER) stress with unfolded protein responses (UPRs). Each epithelial state has its characteristic
transcriptional drivers. All of these states elicit secretory responses that share the potential to promote collagen
accumulation. Distinctions among the secretory responses are still not completely defined and represent op-
portunities to better understand the connections between epithelial and mesenchymal biology in the context of
cell stress. As discussed, TGF-b1 is a major driver of fibroblast activation and collagen secretion. Like epithelial
cells, fibroblasts also respond to many of the same pathological triggers with activation of senescent or UPR
signaling pathways, potentially further promoting fibrosis.
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sis. One of the mechanisms underlying this

feed-forward loop is integrin-mediated TGF-b
activation, because, as noted above, this process

depends on cell contraction and is enhanced

when cells are tethered to a stiff substrate. How-
ever, increased TGF-b activation does not fully

explain this feed-forward loop. For example,

tissue stiffness increases the sensitivity of cells
to already activated TGF-b (Liu et al. 2010).

EPITHELIAL–MESENCHYMAL TRANSITION

An important potential contribution of EMT to

tissue fibrosis was first proposed as early as the
mid 1990s (Strutz et al. 1995). More insight has

emerged with greater usage of fibrotic human

tissue samples for biomedical research, the de-
velopment of novel techniques for genetic mod-

ifications to mice, and a greater understanding

of some of the prominent EMT signaling path-
ways (Kalluri andNeilson 2003; Teng et al. 2007;

Kalluri and Weinberg 2009; Thiery et al. 2009;

Flier et al. 2010; Lamouille et al. 2014). Howev-
er, rather than establishing a definite role for

EMT during fibrosis, these advances have led

to increased controversy regarding the role or
even the occurrence of EMT during fibrosis.

Seemingly solid evidence both supports and

refutes EMT as having a major contribution to
fibrosis. Some of the controversies regarding

EMT point to broader uncertainties and con-

troversies in the fibrosis field at large.

Definition of EMT

Epithelial cells are characterized by a relatively

sessile state with a defined shape (e.g., cuboidal,

columnar, or squamous) forming tight cell–cell
contacts, which establish an epithelial barrier

that is important for the function of many

organs. Epithelial cells have an apical–basal
polarity and often produce factors that are

secreted from the apical surface into a luminal

space. In contrast, the mesenchymal cell pheno-
type provides front–rear polarity and enables

migratory behavior. The cell–cell contacts

are often transient and the cell shape is more
dynamic and less defined. EMT can thus be

defined as a process in which epithelial cells

lose epithelial cell–cell contacts, undergo cyto-

skeletal changes and change polarity from
apical–basal to anterior–posterior, all favoring

acquisition of migration and invasion. These

changes are accompanied by changes in gene
and protein expression, including proteins

that are involved in cell contact (e.g., loss of

E-cadherin and gain of N-cadherin) and cyto-
skeletal proteins (e.g., loss of cytokeratin and

gain of vimentin and SMA). There is also loss

of proteins that are normally secreted into the
luminal space (e.g., SPs, hormones) in favor of

proteases and ECM proteins that promote

migration and invasion. EMT can therefore be
identified and defined by a set of biomarkers,

reflecting loss of epithelial and gain of mesen-

chymal proteins (Zeisberg and Neilson 2009).
EMToccurs during and is required for normal

embryonic development. Roles for EMT during

carcinogenesis and fibrosis have been suggested,
but remain subjects of discussion and further

research (Cardiff 2005; Tarin et al. 2005;

Zeisberg and Duffield 2010). EMT during these
different scenarios has overlapping features but

also important differences leading some to clas-

sify EMT into type I (development and regen-
eration), type II (fibrosis) and type III (cancer)

EMT, dependent on the physiological and

pathological context (Kalluri and Weinberg
2009; Zeisberg and Neilson 2009). The transi-

tion of endothelial or endodermal cells into a

mesenchymal phenotype has been labeled en-
dothelial–mesenchymal transition (EndMT),

but is often categorized within EMT, as these

processes are similarly regulated and have
many overlapping characteristics (Teng et al.

2007; Kokudo et al. 2008; Kovacic et al. 2012).

EMTmay simply represent a tunable, stereotyp-
ical epithelial response to the demand for dy-

namic cellular changes, as might occur during

embryonic development, response to injury,
and carcinogenesis. Frequently, the acquisition

of such dynamic changes in epithelial behavior

is reversible.

EMT Pathways

Features of EMT can be induced by many li-

gand–cell surface receptor interactions. TGF-b

TGF-b1 Signaling and Tissue Fibrosis

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022293 11

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


is the most extensively studied inducer of EMT.

TGF-b binding to its receptors, TbRI and
TbRII, activates Smad-dependent and Smad-

independent pathways that can directly activate

mesenchymal gene and suppress epithelial gene
expression (Derynck et al. 2014; Lamouille et al.

2014). TGF-b–Smad signaling can also activate

EMT through induction of the expression of
several mesenchymal transcription factors,

such as Snail1 and Twist, and these are therefore

often referred to as EMT transcription factors.
The TGF-b pathway intersects with a number of

other pathways that may augment or attenuate

the EMTresponse (Derynck et al. 2014). Hepa-
tocyte growth factor (HGF), initially described

as a “scatter factor,” and fibroblast growth factor

(FGF) were among the earliest examples of a
single factor capable of inducing EMT in cell

culture (Stoker and Perryman 1985; Valles

et al. 1990; Nusrat et al. 1994). Subsequently,
many other factors have been shown to induce

aspects of EMT through activation of cell

surface receptors that ultimately lead to tran-
scriptional changes. Among the better studied

ligand–receptor combinations are Wnt factors

that act through Frizzled receptors, which leads
to stabilization of b-catenin, Sonic Hedgehog

(Shh) ligand that acts through Patched recep-

tors, which leads to Gli activation, and the
Delta–Notch combination, which leads to

cleavage and activation of the intracellular

Notch domain. For example, b-catenin has
emerged as an important Smad coactivator, so

in addition to activating its own target genes

through interactions with T-cell factor (TCF)
or lymphoid enhancer-binding factor (LEF),

b-catenin can regulate the EMT response

through cooperation with the Smad complex.
Among the most prominent Smad-indepen-

dent EMT pathways is activation of Rho family

GTPases, including RhoA, Rac1, and Cdc42.
Rho GTPases are important regulators of cell

morphology, adhesion, and movement. TGF-

b signaling through the Rho GTPases allows
convergence of signaling inputs from the ECM

and cytoskeleton to control the EMT response

to TGF-b, and allows TGF-b to coordinate
transcriptional expression changes with cyto-

skeletal changes involved in mesenchymal tran-

sition. Activation of these GTPases leads to loss

of adherens junction complexes, breakdown of
the apical–basal polarity, and cytoskeletal rear-

rangement. Activation of small GTPases also

promotes transcriptional changes through fac-
tors such as myocardin-related transcription

factor (MRTF). Inhibition of several mediators

of the Rho GTPase signaling pathway, including
Rho kinase and MRTF, in genetically modified

mice or with chemical inhibitors has been

shown to attenuate EMTand fibrosis (Theriault
et al. 2007; Bendris et al. 2012; Harris et al.

2013; Okada et al. 2015; Sisson et al. 2015).

Other prominent pathways activated by TGF-
b are the MAP kinase pathways and the phos-

phoinositide-3 kinase (PI3K)–Akt pathway.

These pathways again allow for interaction
and input from a number of different factors,

such as FGF, epidermal growth factor (EGF),

and tumor necrosis factor (TNF)-a, and corre-
spondingly activated receptors. The extensive

cross-talk between intracellular pathways directly

activated by TGF-b and secondary pathways
that modulate impact of proximal TGF-b sig-

nals on gene expression is discussed extensively

in other reviews (Derynck et al. 2014).

EMT in Development

The role of EMT during development is dis-

cussed at length in many other reviews (Thiery

et al. 2009), but is briefly mentioned here to
provide context to studies exploring the poten-

tial role of EMT in fibrosis. Embryonic devel-

opment has been proposed to involve multiple
different EMTevents that have been extensively

studied (Acloque et al. 2009). EMT occurs

early in embryogenesis during gastrulation, as
epiblasts migrate to form the primitive streak,

move to the interior of the blastocyte, and form

the mesodermal germ layer (Nieto et al. 1994;
Viebahn 1995; Viebahn et al. 1995; Nieto 2011).

Later, a subset of neural tube cells detach and

undergo EMT to form the neural crest cells
that migrate and eventually give rise to many

structures of mesenchymal origin (Duband

et al. 1995; Sauka-Spengler and Bronner-Fraser
2008). EMT is also prominent at later stages of

embryogenesis during organogenesis. Among
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the most studied are cardiac valve formation

(Nakajima et al. 2000), palate closure (Fitchett
and Hay 1989; Griffith and Hay 1992), and

pancreatic development. During organogensis,

EMT is often followed by a reversal of EMT
or mesenchymal–epithelial transition (MET),

highlighting the plasticity of cells during devel-

opment (Davies 1996; Li et al. 2014). For exam-
ple, a subset of cells from the developing

pancreatic bud undergo EMT, dissociate, and

migrate into the interstitium where they under-
go MET to form the islets of Langerhans

(Johansson and Grapin-Botton 2002). More

durable or permanent EMT also occurs during
organogenesis in later embryonic development.

Recent studies of lung and gut development

suggest that serosal mesothelial cells, which
are squamous epithelial cells, are a major source

of vascular smooth muscle cells, which are

mesenchymal cells (Wilm et al. 2005; Dixit
et al. 2013). Notably, there is no common epi-

thelial cell progenitor during embryogenesis,

as epithelial cells are derived from all three
embryonic primordial germ layers. For exam-

ple, lung airway and alveolar epithelial cells are

derived from the endoderm, renal tubular
epithelial cells are derived from mesoderm,

and epidermal skin cells are derived from the

ectoderm. Similarly, mesenchymal cells can
derive from ectoderm (e.g., facial cartilage)

and mesoderm (e.g., skeletal muscle) (Acloque

et al. 2009; Thiery et al. 2009).

EMT in Fibrosis

The rationale for considering EMT during fi-

brosis arose from similarities in prominent

EMT and fibrotic signaling pathways. TGF-b
is the best defined profibrotic factor and, as

mentioned above, a prominent inducer of

EMT (Bartram and Speer 2004). Identification
of aberrant Wnt/b-catenin signaling in IPF

lung samples prompted interest in the possibil-

ity of EMT in lung fibrosis (Chilosi et al. 2003).
Subsequently, almost every cytokine or intracel-

lular signaling pathway that has been implicated

in fibrosis or fibroblast activation has been
shown to activate EMT in cell culture. Thus,

the cytokine milieu in fibrotic tissue suggests a

pro-EMT stimulus. Given the abundance of

epithelial cells in tissues like the lung and kid-
ney, EMT of even a small fraction of epithelial

cells could potentially account for a significant

number of activated fibroblasts. Further, the
proposed myofibroblast function may promote

further activation of other fibroblasts through

the production of profibrotic factors and induc-
tion of mechanical forces. Thus, even transient

EMT could initiate a process that leads to

more sustained and robust fibroblast responses.
As with cancer, the identification of cells that

have undergone EMT in human disease in

vivo has been challenging. Many studies have
relied on co-immunostaining for epithelial

and mesenchymal markers. Identification of

costaining cells is suggestive of EMT, but has
inherent limitations (Kakugawa et al. 2005;

Willis et al. 2005; Kim et al. 2006). The co-

immunostaining approach is at best descriptive,
potentially identifying expression of two or

more markers within a cell but lacking an

assessment of the functional contribution of
that cell. Even if an epithelial cell expresses pro-

collagen I or SMA, to what extent is it contrib-

uting to fibrogenesis? The co-immunostaining
approach likely underrepresents EMT because

most studies of EMT show simultaneous de-

crease in epithelial markers and up-regulation
of mesenchymal markers. EMT cells in early

transition may have weak expression of mesen-

chymal markers, and EMT cells in late transi-
tion may have weak expression of epithelial

markers. Co-immunostaining is also beset by

difficulties in achieving specificity of antibodies
and by the potential for artifactual staining of

overlapping cells giving the appearance of a co-

stained cell. Microscopic approaches, such as
confocal or deconvolution microscopy, have

been used to overcome this limitation (Willis

et al. 2005; Rock et al. 2011). To partially address
these issues, several groups have isolated cells by

flow cytometry to unequivocally show expres-

sion of mesenchymal proteins in epithelial cells
and expression of epithelial cell proteins in

fibroblasts (Larsson et al. 2008; Marmai et al.

2011). Tomore directly track EMTduring fibro-
genesis, the alternative approach of fate map-

ping individual cells has emerged.

TGF-b1 Signaling and Tissue Fibrosis

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022293 13

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Cell Fate Mapping

The Cre-recombinase/lox P sequence system

in mice is a powerful way to map and trace the

fate of specific cell types in vivo (Akagi et al.
1997). The system involves a reporter gene

(e.g., green fluorescent protein [GFP] or b-ga-

lactosidase) regulated by a strong constitutively
active promoter but its expression is disrupted

by a short sequence containing a stop codon.

This sequence is flanked by loxP sites, enabling
it to be permanently removed by Cre recombi-

nase. A second transgene encodes the Cre re-

combinase under the control of a cell type–
specific promoter, enabling cell type–specific

removal of the stop codon sequence, and label-

ing those cells by expression of the reporter.
Importantly, the labeling occurs at the level of

the genomic DNA and is thus permanent. Thus,

the Cre/lox system has been proposed to enable
cell type–specific and permanent labeling of

cells, making it an attractive way to map the

fate of cells in response to injury, and to identify
the origin of cells of interest, such as a myofi-

broblasts in fibrosis. A limitation of this ap-

proach is the potential for off-target expression
of a constitutive Cre recombinase allele, either

transiently during organ development or in

response to new signals appearing after tissue
injury. For example, a promoter specific to an

adult epithelial cell may have been transiently

expressed in a mesenchymal cell during organ
develop, or only after tissue injury, resulting in

spurious conclusions on the extent or even pres-

ence of EMT. To obviate this limitation, Cre
recombinase alleles have been constructed that

enable temporal as well as spatial control of Cre

activity. Most early versions of this methodolo-
gy used cell type–specific expression of a reverse

tetracycline transactivator (rtTA) to regulate

expression of Cre recombinase by a tetracy-
clin-response element (TRE), but this suffered

from the requirement of three transgenes for a

fully operational system and the problem that
the rtTA function was not completely doxycy-

cline-dependent. More recently, Cre recombi-

nase activity has been temporally regulated
through the use of a fusion protein comprised

of Cre recombinase and a modified estrogen

receptor “knocked in” to a cell-specific promot-

er. The estrogen receptor has been further mod-
ified such that it is much more sensitive to

tamoxifen than estrogen (e.g., ERT2) (Feil

et al. 2009, 2014). Virtually all expressed Cre
recombinase remains in the cytoplasm unless

tamoxifen is present to empower nuclear trans-

location and DNA recombination. Various Cre-
dependent strategies have been used extensively

to map the fate of epithelial cells in fibrosis, but

with conflicting outcomes. In lung fibrosis, at
least four different groups have identified sig-

nificant numbers of lung epithelial–derived

cells that coexpress mesenchymal markers in
models of fibrosis (Table 1) (Kim et al. 2006,

2009; Tanjore et al. 2009; DeMaio et al. 2012;

Balli et al. 2013). These groups used different
promoters to drive expression of Cre (Nkx2.1

and surfactant protein C [SPC]), different re-

porter genes (GFP/LacZ), different techniques
to quantify colabeled cells (immunohistochem-

istry, single cell suspension with cell sorting,

cytospin staining, RNA quantification, and im-
munoblotting), and several models of fibrosis

(bleomycin, overexpression of TGF-b, and ra-

diation) (Kim et al. 2006, 2009; Balli et al. 2013).
However, one report, also using the bleomycin

model of fibrosis, found no evidence of EMT in

mice using Sftpc promoter-driven CreERT2 ex-
pression to fate-map type II alveolar epithelial

cells (Rock et al. 2011). Contradictory results on

EMT cell fate mapping are not limited to lung
fibrosis. Similar cell fate mapping studies in

models of kidney and liver fibrosis found sub-

stantial evidence or lack of evidence of EMT.
Contradictory results in cell fate mapping are

not limited to EMT. Pericytes and fibrocytes,

which have been proposed as sources of activat-
ed myofibroblasts, have cell fate mapping

studies in favor of or against them serving as

significant sources of myofibroblasts. For peri-
cytes, the conflict is even more stark. For exam-

ple, in the bleomycinmodel of lung fibrosis, one

report concludes that more than two thirds of
the myofibroblasts are derived from pericytes

(Hung et al. 2013). In contrast, that same report

concluded that there is no evidence of EMT
and excludes pericytes and two epithelial cell

populations at the origin of myofibroblasts
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Table 1. Reports on fate mapping during fibrosis

Report Fate mapping system Model EMT

Lung fibrosis

Kim et al. 2006 Sftpc-rtTA/tetO-Cre/RosaLacZ AdTGF-b Yes

Kim et al. 2009 Sftpc-rtTA/tetO-Cre/ZEG Bleo Yes

Tanjore et al. 2009 Sftpc-Cre/RosaLacZ Bleo Yes

Hashimoto et al. 2010 Tek-Cre/RosaLacZ Bleo Yes

DeMaio et al. 2012 Nkx2-1-Cre/RosaLacZ Bleo Yes

Rock et al. 2011 Sftpc-CreER/dTomato Bleo No

Balli et al. 2013 Sftpc-rtTA/tetO-Cre/RosaLacZ XRT Yes

Kidney fibrosis

Iwano et al. 2002 Ggt1-Cre/RosaLacZ UUO Yes

Zeisberg et al. 2008 Tek-Cre/RosaYFP UUO Yes

Humphreys et al. 2010 Six2-Cre/RosaLacZ UUO No

LeBleu et al. 2013 Ggt1-Cre/RosaLacZ UUO Yes

Cdh5-Cre/RosaYFP UUO Yes

Gastrointestinal and liver fibrosis

Zeisberg et al. 2007b Alb-Cre/RosaLacZ CCl4 Yes

Flier et al. 2010 Vil1-Cre/RosaLacZ TNBS Yes

Taura et al. 2010 Alb-Cre/RosaLacZ CCl4 No

Chu et al. 2011 Alb-Afp-Cre/RosaYFP CCl4 No

Cardiac infarct

Zhou and Pu 2011 Wt1-CreER/tmGFP Art ligation Yes

Zeisberg et al. 2007a Tie1-Cre/Rosa26 Ao banding Yes

Pericyte!Myofib

Lung fibrosis

Rock et al. 2011 Cspg4-CreER/fGFP Bleo No

Hung et al. 2013 Foxd1-Cre/dTomato Bleo Yes

Kidney fibrosis

Humphreys et al. 2010 Foxd1-Cre/Rosa26 UUO Yes

LeBleu et al. 2013 Cspg4-Cre/RosaYFP UUO No

Pdgfrb-Cre/RosaYFP UUO No

BM!Myofib

Lung fibrosis

Hashimoto et al. 2004 GFP BMT Bleo No

Schmidt et al. 2003 ex vivo labeling OVA Yes

Madala et al. 2014 GFP BMT TGF-a No

Kidney Fibrosis

Iwano et al. 2002 S100a4-GFP BMT UUO Yes

LeBleu et al. 2013 Acta2-RFP BMT UUO Yes

Liver fibrosis

Higashiyama et al. 2009 Col1a2-GFP BMT CCl4 No

Kisseleva et al. 2006 Col1a1-GFP BMT BDL No

EMT, epithelial–mesenchymal transition; AdTGF-b, adenovirus encoding active TGF-b1; bleo, bleomycin; XRT, X-ray

treatment; OVA, ovalbumin; UUO, unilateral ureteral obstruction; TNBS, trinitrobenzene sulfonic acid; Pericyte!myofib,

pericyte to myofibroblast transition; BM!myofib, bone marrow–derived cell to myofibroblast transition; art, arterial; Ao,

aortic; BMT, bone marrow transplant; CCl4, carbon tetrachloride; BDL, bile duct ligation; GFP, green fluorescent protein.
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(Rock et al. 2011). Thus, those favoring or

opposing the possibility of EMT can point to
cell fate-mapping publications supporting their

conclusion.

Despite the promise of cell fate mapping,
this approach has failed to resolve the contro-

versy regarding the origin of activated myofi-

broblasts during fibrosis. This may result from
some of the same limitations as referred to for

the analysis of costained tissues. In addition,

the Cre recombinase system has particular
limitations. Cre-mediated recombination may

be overly sensitive because of weak and transient

activation of the cell-specific promoter in off-
target cells leading to sufficient expression

of Cre recombinase to permanently activate

reporter gene expression, thus potentially con-
fusing the cellular origin of the labeled cell

(Vaughan et al. 2015). Additionally, tamoxifen,

which is used to activate estrogen receptor
fusion proteins, can persist in tissues or cells

for much longer than previously appreciated

(Reinert et al. 2012). Typical tamoxifen dosing
and “chase” periods intended to allow loss of

tamoxifen before injury may fail to eliminate

functional tamoxifen levels during experimen-
tal injury and this may also result in spurious

conclusions on the cells of origin of expanded

populations after injury (Vaughan et al. 2015).
Ultimately, new methods such as DNA barcod-

ing will have to be applied to studies of cell fate

to resolve these uncertainties. Even extremely
accurate cell fate mapping may not reveal the

functional contributions of subpopulations of

epithelial or mesenchymal cells to fibrosis.

Definition of EMT Revisited

Much of the controversy regarding EMT in can-

cer, fibrosis, and even development stems from

differences in the definition of EMT, and some
have suggested the need to broaden beyond the

original narrow definition of EMT (Nieto et al.

2016). On one extreme, epithelial cells might be
defined, in part, as being derived from a parent

epithelial cell, and mesenchymal cells as being

derived from a parent mesenchymal cell. EMT
is then defined as a process in which a fully

differentiated epithelial cell loses all epithelial

cell characteristics and gains all mesenchymal

characteristics. This definition virtually ex-
cludes the possibility of EMT that is seen in

vivo. On the other extreme, EMTmight be de-

fined as any deviation from a classic epithelial
cell phenotype and protein expression pattern

toward any acquisition of mesenchymal cell

traits or proteins. By this loose definition, type
II alveolar epithelial cell differentiation to type I

alveolar epithelial cell, or epithelial cell migra-

tion to re-epithelialize after injury might be
regarded as EMT. Indeed, in some circum-

stances EMT transcription factors are activated

in re-epithelialization after injury (Savagner et al.
2005) in a way that is reminiscent of develop-

mental organogenesis, in which ductal epithe-

lial cells undergo EMT, migrate and invade, and
then revert back to an epithelial cell phenotype

through MET. Whether this is EMT or simply

a transient gain of migratory behavior with ac-
companying changes in a few proteins is a focus

of debate. There is increasing use of the terms

“partial” and “full” EMT. But most, if not all,
transcriptional responses and other cellular pro-

cesses are partial. Furthermore, there is increas-

ing recognition of unique functions attributed
to the hybrid epithelial–mesenchymal pheno-

type (Jolly et al. 2016). Defining EMT during

fibrosis has relied on lists of epithelial and mes-
enchymal markers (Zeisberg and Neilson 2009),

but it remains unclear at what threshold loss of

epithelial markers or gain of mesenchymal
markers would be sufficient to achieve at least

partial EMT and what threshold is required for

full EMT. An alternative approach is to focus on
the function of the cells of different origin. This

is a departure from defining epithelial and mes-

enchymal cells as different lineages, but rather a
focus on cell phenotype and function.

Similar to the controversy on defining EMT,

there is a controversy on the definition of my-
ofibroblasts. Some have argued that expression

of SMA itself is not sufficient or required to

define a myofibroblast but rather requires stress
fiber formation and a contractile phenotype.

Given their heterogeneity, some have suggested

that the term myofibroblast may better define a
phenotype rather than a specific cell type (Hinz

2013). Furthermore, although myofibroblasts
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are important fibrogenic effector cells, fibrosis is

clearly a multicellular process. Also, myofibro-
blasts are an important source of type I collagen

during fibrosis, but type I collagen expression is

clearly not limited to myofibroblasts (Zhang
et al. 1994). Furthermore, cell type–specific ex-

pression of a cytotoxic protein that can be acti-

vated, such as thymidine kinase or the diptheria
toxin receptor, enables deletion of specific cell

types and shows that M2 macrophages and my-

ofibroblasts are necessary for fibrogenesis (Duf-
field et al. 2005; LeBleu et al. 2013). Further

evidence shows a critical role for M2 polarized

macrophages during fibrosis (Gibbons et al.
2011; Osterholzer et al. 2013).

Deletion of the TGF-b receptor in fibro-

blasts, epithelial cells, or bone marrow cells re-
sults in abrogated fibrosis (Hoyles et al. 2011; Li

et al. 2011; LeBleu et al. 2013). TGF-b clearly

elicits a phenotypic response in many cell types
that might be viewed as an “activated” state

(Katsuno et al. 2013; Derynck et al. 2014; La-

mouille et al. 2014). Although the epithelial
response to TGF-b might result in profibrotic

effects other than EMT, epithelial-specific dele-

tion of a gene encoding an EMT transcription
factor leads to attenuated fibrosis. For example,

hepatocyte-specific deletion of Snai1 attenuates

fibrosis in the CCl4 model of liver fibrosis, and
deletion of the gene encoding Forkhead boxM1

(FoxM1) in alveolar epithelial cells blunts lung

fibrosis after bleomycin or radiation (Rowe et al.
2011; Balli et al. 2013). In models of kidney

fibrosis, epithelial-specific deletion of the genes

encoding the EMT transcription factor Snail1
or Twist leads to attenuated fibrosis (Grande

et al. 2015; Lovisa et al. 2015). These studies

support a complex role of the EMT program
beyond a simplistic view of EMT-derived cells

contributing to a pool of activated myofibro-

blasts. Rather, cells in partial EMT may play a
unique role necessary for fibrogenesis, through

regulation of TGF-b-induced cell-cycle arrest

and cross-talk with other cell types.
Some studies show that fibrosis can be

attenuated by epithelial cell-specific deletion of

secreted proteins that have been attributed to the
function of activated fibroblasts. For example,

connective tissue growth factor (CTGF) is a pro-

fibroticmatricellular protein,whose expression is

induced by TGF-b. CTGF expression has been
used as a marker of activated fibrotic fibroblasts,

but several studies indicate that epithelial cells

may be themajor source of CTGF during fibrosis
and deletion of CTGF within epithelial cells

blocks fibrosis (Leask and Abraham 2003; Ma-

kino et al. 2013; Al-Alawi et al. 2014). Finally,
production of type I collagen may be the most

basic function of fibrogenic effector cells and de-

letion of the Col1a1 gene within lung epithelial
cells leads to significant reduction in bleomycin-

induced lung fibrosis (Rhim et al. 2014).

Thus, using a loss-of-function approach,
there is strong evidence that epithelial cells con-

tribute to fibrosis inways that overlapwith those

of other fibrogenic effector cells. Whether this is
sufficient to be labeled EMT depends on the

precise definition of EMT. A broader question

is whether fibrogenesis requires a differentiation
event or whether cells can undergo significant

phenotypic activation without necessarily dif-

ferentiating into another cell type. There is in-
creasing evidence that fibrosis is a multicellular

process. The overlapping versus nonredundant

functional contributions of these cell types
during fibrosis remains unclear. Finally, atten-

tion to how activation, proliferation, and apo-

ptosis of different cell types are orchestrated
in response to injury or other fibrotic stimulus

might reveal novel targets for intervention, with

better effects and fewer side effects than target-
ing single cell types.

TGF-b REGULATION OF CELL
PROLIFERATION AND APOPTOSIS

TGF-b activates the expression of a number of
proteins involved in cell-cycle control, includ-

ing regulators of cyclin-dependent kinases, and

signaling by the MAP kinase and PI3K–Akt
signaling pathways that promote cell prolifera-

tion. Depending on the context and cell type,

TGF-b can have dramatic effects on cell prolif-
eration, cell-cycle arrest, senescence, or apopto-

sis. Although these effects have mainly been

studied in the context of cancer biology, these
changes can have important consequences on

the progression of fibrosis.
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Regulation of Fibroblast Proliferation and
Apoptosis

Fibrosis is characterized by accumulation of
fibroblasts and myofibroblasts. The roles of

TGF-b in fibroblast activation to a profibrotic

phenotype are well described; however, the role
of TGF-b in fibroblast proliferation as a way to

account for the abundance of these cells remains

unresolved (Bartram and Speer 2004). TGF-b
was initially identified as an extracellular growth

factor that enables anchorage-independent fi-

broblast proliferation (Roberts et al. 1980).
Many early studies show TGF-b-induced pro-

liferation of fibroblasts from multiple tissues

(Hill et al. 1986; Moses et al. 1987, 1994; Schre-
ier et al. 1993). However, other studies have

found either no effect on proliferation (Fine

and Goldstein 1987) or inhibition of fibroblast
proliferation by TGF-b in cell culture and in

vivo (Moses et al. 1990; McAnulty et al. 1997;

Keerthisingam et al. 2001; Hostettler et al. 2008.
Furthermore, immunostaining tissue sections

from animal models of fibrosis or from lungs

of patients with IPF for proliferation markers,
such as Ki67, shows substantial proliferation of

epithelial cells but seldom of myofibroblasts

of fibroblast foci (El-Zammar et al. 2009; Lomas
et al. 2012. These conflicting reports on the

ability of TGF-b to induce fibroblast prolifera-

tion might be resolved by understanding the
costimulatory activation of other signaling

pathways that affect the cellular response to

TGF-b (Grotendorst et al. 2004). TGF-b can
induce the activation of several signaling path-

ways that promote cell proliferation (e.g.,

MAPK, PI3K, and Rho signaling). However,
the activation of these pathways is not unique

to TGF-b, and many other mitogens also pro-

mote cell proliferation. Therefore, the microen-
vironment with the cytokines that stimulate

fibroblast proliferation may determine the

proliferative response in fibrosis. Importantly,
TGF-b can stimulate the expression and secre-

tion of a number of growth factors and cyto-

kines by fibroblasts or other cell types. Many of
these TGF-b-induced factors, such as FGF2,

PDGF, and CTGF, may secondarily act in auto-

crine or paracrine fashion to induce fibroblast

proliferation (Kay et al. 1998; Strutz et al. 2001;

Bartram and Speer 2004; Leask and Abraham
2004; Leask 2009; Xiao et al. 2012). Some stud-

ies argue that the TGF-b responses of fibroblasts

toward activation and myofibroblast differenti-
ation versus proliferation are mutually exclusive

(Grotendorst et al. 2004).

Finally, there is evidence that fibroblasts
from fibrotic tissue are resistant to apoptosis,

and that TGF-b may confer resistance to apo-

ptosis by classic death pathways such as the
Fas-caspase cascade (Zhang and Phan 1999;

Chodon et al. 2000; Tanaka et al. 2002; Than-

nickal andHorowitz 2006). However, themech-
anism for their resistance to apoptosis is

poorly characterized. It may be mediated

through activation of signaling pathways, such
as p38MAPKandPI3K–Akt (Kulasekaran et al.

2009), and involve regulation of “inhibitor of

apoptosis” (IAP) family members (Horowitz
et al. 2012; Sisson et al. 2012). TGF-b may

also promote fibroblast resistance to apoptosis

through cell-cycle regulators such as p14ARF

(Cisneros et al. 2012). Inhibition of fibroblast

and myofibroblast apoptosis through these

pathways may account for some of the accumu-
lation of these cells during fibrosis.

TGF-b Regulation of Cell Senescence and
Apoptosis

The response to TGF-b by epithelial and endo-
thelial cells includes inhibition of growth, cell-

cycle arrest, senescence, or apoptosis (Tucker

et al. 1984; Heimark et al. 1986; Takehara et al.
1987). Various insults can lead to damaged cells

or undamaged cells that have become essentially

nonfunctional within the context of a damaged
tissue, promoting either epithelial cell senes-

cence or apoptosis with resulting initiation of

fibrosis (Fig. 3).
Cellular senescence can be broadly defined

as a process by which cells irreversibly cease

to proliferate and typically acquire altered cell
shapes and secretory profiles (Kuilman et al.

2010; Campisi 2013; Munoz-Espin and Serrano

2014) whereas apoptosis results from a process
of programmed cell death (Campisi 2003). Sen-

escence and apoptosis are adaptive necessary
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processes in response to injury. Senescence is

characterized by the absence of markers of pro-
liferation and increased expression of tumor

suppressor proteins that function as cyclin-de-

pendent kinase inhibitors including p16INK4a

and p21Cip1. Strong mitogenic activators such

as activated Ras or growth factor receptor acti-

vation can provoke a shut down in the cell cycle
with induction of senescence (Blagosklonny

2003; Senturk et al. 2010).

Apoptosis can be initiated through an ex-
trinsic or intrinsic pathway (Kuwano et al. 1998,

2004; Kuwano 2007). The extrinsic pathway in-

volves engagement of an extracellular ligand to a
cell surface death receptor. Awell-studied inter-

action in this context is the activation of Fas by

Fas ligand (FasL), but other ligands such as
TNF-a can also initiate an apoptotic pathway.

The intrinsic or mitochondrial pathway is ini-

tiated by cell stresses, such as oxidative stress. As
noted above, this stress can lead to senescence or

apoptosis through activation of pro-apoptotic

Bcl-2 family members, or release of cytochrome
C. The role of p21Cip1 may be particularly im-

portant in determining the epithelial cell re-

sponse to stress toward senescence or apoptosis
(Zhang et al. 2005).

TGF-b signaling through Smad-dependent

and -independent pathways intersects with
many senescence and apoptotic pathways (Mu-

noz-Espin et al. 2013; Munoz-Espin and Ser-

rano 2014). Smad complexes can directly
activate transciption of p21Cip1 (Datto et al.

1995), which, as discussed above, is a critical

inducer of cellular senescence (Munoz-Espin
et al. 2013). Transcription of the gene encoding

p21Cip1 is also regulated in response to PI3Kand

ROS, which are both downstream mediators
from TGF-b signaling. ROS generation can

also lead to activation of latent TGF-b poten-

tially perpetuating senescence (Yu et al. 2009).
In a more delayed fashion, TGF-b can also

suppress the expression of transcription factors,

such as Id (inhibitor of differentiation or DNA-
binding) family members, which have been

associated with cell proliferation and inhibition

of senescence (Shibanuma et al. 1994; Di et al.
2006). Finally, TGF-b-induced secreted factors

could indirectly contribute to epithelial cell

senescence and apoptosis. As mentioned, ROS

generation in response to TGF-b can initiate
cell-cycle arrest or apoptosis. TGF-b can also

induce expression and secretion of pro-apopto-

tic factors, including FasL and angiotensin
(Wang et al. 1999). As with effects on prolifer-

ation, concurrent stimulation or activation by

other signaling pathways has the potential to
tune the degree of this TGF-b response.

Early studies in cell culture indicate that ep-

ithelial and endothelial cells undergo apoptosis
in response to TGF-b. These observations cor-

relate well with the increased epithelial cell ap-

optosis in fibrotic tissue and in animal models
of fibrosis (Uhal et al. 1998; Barbas-Filho et al.

2001). Indeed, expression of activated TGF-b1

using transgenic approaches or adenoviral gene
transfer is sufficient to induce epithelial cell ap-

optosis and subsequent fibrosis (Lee et al. 2004,

2006; Ask et al. 2008). Importantly, TGF-b1-
induced fibrosis is attenuated by treating mice

with a pan-caspase inhibitor, and in mice with

inactivation of BH3-interacting domain death
agonist (BID) or BCL-2-associated (BAX) ex-

pression, suggesting that apoptosis is critical for

fibrosis (Lee et al. 2004; Kang et al. 2007).
The roles of senescence and apoptosis in

injury, repair, and fibrosis depend on the con-

text. Transient apoptosis or senescence may
result in removal of unwanted cells and cell de-

bris, and facilitate repair to reinstate a homeo-

static architecture and function. Conversely,
sustained or abnormal senescence or apoptosis

could lead to a pathological wound repair

response that progresses to fibrosis. Excessive
senescence or apoptosis could also lead to de-

layed restoration of a damaged endothelial or

epithelial barrier, thus promoting persistent
leak of serum components into the lumen

with continued activation of damage response

pathways and sustained inflammation. Epithe-
lial cell turnover and impaired proliferationmay

also delay production of antifibrotic factors,

such as prostaglandin E2 (Moore et al. 2003).
Activation of senescence leads to dramatic tran-

scriptional changes that are mediated in large

part by responses to activation of the NF-kB
and C/EBP-b transcription factors (Campisi

2013; Campisi and Robert 2014). In particular,
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significant changes occur in the expression of

many secreted factors, including cytokines,
growth factors, and proteases in what has been

called a “senescence-associated secretory phe-

notype” (SASP). The SASP thus allows the sen-
escent cell to become an abundant source of

injury and inflammatorymediators with poten-

tial important effects on promoting fibrosis
(Fig. 3) (Aoshiba et al. 2003; Coppe et al.

2008, 2010; Aoshiba et al. 2013). Thus, the

role of TGF-b in regulating fibrosis is mediated
by divergent effects on both fibroblast and epi-

thelial cell survival.

ROLE OF TGF-b1 IN DIVERSE FIBROTIC
DISEASES

Tissue fibrosis is a common consequence of

many different acute and chronic insults, which

can severely impair the function of nearly every
organ system. Fibrosis can also occur as a pri-

mary progressive process without an apparent

inciting event. Collectively, fibrosis is a leading
cause of death and morbidity in the developed

world, accounting for up to 45% of all deaths by

some estimates (Wynn 2007). There is consid-
erable overlap among the different fibrotic

conditions, with TGF-b1 signaling having a

prominent role. Although progressive fibrosis,
in general, is difficult to reverse or even slow

down, understanding the role of TGF-b1 sig-

naling in this process offers insight into poten-
tial novel therapeutic strategies. A review of the

history and current thinking of the roles of

TGF-b1 in pulmonary fibrosis serves to high-
light this principle.

Evidence Linking TGF-b1 to Fibrosis in the
Lung Parenchyma

As the promoting role of TGF-b1 in experimen-
tal fibrosis was well described soon after discov-

ery of TGF-b1 (Roberts et al. 1986), the role of

TGF-b1 in pulmonary fibrosis was examined
decades ago. TGF-b1 expression was found to

appear early in the bleomycin-inducedmodel of

pulmonary fibrosis, preceding collagen deposi-
tion, and to localize to sites of subsequent col-

lagen accumulation in both a mouse model and

in humans with fibrotic lung disease (Hoyt DG

1988). Active TGF-b1, when overexpressed in
the lung using a viral vector, was found to

be sufficient to cause severe lung fibrosis in

rodents, requiring signaling through Smad3
(Sime et al. 1997; Gauldie et al. 1999). Interest-

ingly, in an inducible model of TGF-b1 expres-

sion in lungs, reversal of TGF-b1 expression led
to substantial resolution of the fibrotic process

(Lee et al. 2004). TGF-b1 proved to be both

necessary and sufficient for lung fibrosis. As
discussed above, activation of endogenous,

latent TGF-b1, via the integrin avb6, was found

to be required for lung fibrosis in both bleomy-
cin- and radiation-induced lung fibrosismodels

(Munger et al. 1999), as well asmodels of kidney

fibrosis. The critical role of TGF-b1 in fibrosis
was further validated by expression profiling of

human fibrotic lungs. Microarray profiles reveal

that ≏80% of the genes activated in fibrotic
human lungs are known TGF-b1 target genes

(Kaminski et al. 2000).

Epithelial Activation and Fibrogenesis

Genetic analysis of patients with familial inter-
stitial pneumonitis point to type II alveolar

epithelial dysfunction as a consequence of SP

gene mutations and as a causal mechanism for
pulmonary fibrosis (Nogee et al. 2001; Thomas

et al. 2002; Wang et al. 2009; Garcia 2011).

Mouse models expressing mutant SPs support
this conclusion. This has led to the general con-

cept that epithelial cells are both vulnerable to

further injury and “activated” as a driver of
fibrosis. There is evidence to support the devel-

opment of at least three distinct dysfunctional

states in the context of chronic injury and/or
stress to the epithelium: TGF-b1-induced mes-

enchymal transition (EMT as defined above),

senescence, and ER stress (Fig. 3). As discussed
above, TGF-b1 may itself contribute to both

senescence and ER stress. Each of these dysfunc-

tional states have distinct biological features but
all show evidence of enhanced secretory activity,

at least some of which consists of profibrotic

and/or pro-inflammatory cytokines and medi-
ators. Frequently superimposed on these dys-

functional states are hypoxia, enhanced oxidant
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production, and exposure to environmental tox-

ins such as smoke and viruses, further contrib-
uting to alveolar dysfunction. Collectively, these

stresses reprogram the epithelium toward a se-

cretory phenotype altering the immune milieu
andpromotingmesenchymal expansion (Fig. 3).

Progressive dysfunction of the alveolar epi-

thelium can lead to apoptosis and alveolar col-
lapse. Collapse of small distal airways (,2 mm

diameter) and surrounding alveoli is prominent

during parenchymal lung injury and repair
(Seeger et al. 1993; Lutz et al. 2015). Active sites

of fibrogenesis, termed fibrotic foci, in intersti-

tial pneumonitis have been noted by many in-
vestigators to contain basement membrane

within the interstitium, suggesting that the fo-

cus of fibrogenesis may emanate from hypoxic
areas of small airway and alveolar collapse with

incorporation of epithelial lining and inflam-

matory alveolar cells into a mesenchymal com-
partment (Myers and Katzenstein 1988). This

phenomenon has been termed induration fi-

brosis and may be unique to lung architecture
because incorporation of epithelial cells into a

mesenchymal compartment has not been ob-

served during either liver or kidney fibrogenesis
(Lutz et al. 2015). Airway and alveolar collapse

may promote direct epithelial–mesenchymal

interactions, including activation and signaling
by TGF-b1. The ultimate fate of such epithelial

cells is uncertain but could be either apoptosis

and/or persistent EMT, as discussed above.
Hypoxia is known to promote collagen expres-

sion in fibroblasts and TGF-b1-dependent

EMT in primary epithelial cells and within tu-
mors (Falanga et al. 2002; Tzouvelekis et al.

2007; Zhou et al. 2009; Kottmann et al. 2012).

Alveolar collapse also likely contributes to in-
creased tissue stiffness that itself can propagate

TGF-b1 activation as discussed above, raising

the possibility that such collapse is an impor-
tant trigger for disease progression.

TGF-b1 Signaling in Airway Fibrosis:
Integration of Immunity and Stromal Signaling

The major lung airways are a frequent site of
injury from environmental exposures. The

most common chronic lung diseases, asthma

and chronic obstructive pulmonary disease

(COPD), are airway-centric inflammatory
processes and in both cases there is repeated

epithelial dysfunction and disordered ECM

remodeling with collagen accumulation in the
submucosa of airways (Aoshiba and Nagai

2004; Davies 2009; Hirota and Martin 2013).

The development of fixed airway obstruction
in some asthmatic patients over time is thought

to result from airway wall remodeling in which

airway collagen accumulation is a common and
prominent feature. In some studies, high-reso-

lution imaging of asthmatic airway wall thick-

ness correlates with lung function and fixed
airflow obstruction, cardinal features of airway

disease (de Jong et al. 2005; Bosse et al. 2008).

Airway remodeling, however, is not simply fi-
brotic tissue accumulation in the airway walls.

Remodeling involves almost all elements of the

airway wall: chronic inflammation involving
innate and adaptive immune cells, epithelial

goblet cell and subepithelial smooth muscle

hyperplasia, as well as submucosal neovascula-
rization in addition to thickening of the sube-

pithelial lamina reticularis, one of the hallmarks

of asthma histopathology (Postma and Timens
2006; Hirota and Martin 2013). Lying immedi-

ately below the basement membrane, the lami-

na reticularis is a membranous, collagenous
airway structure found in large conducting

airways and thickened in asthmatics by the ac-

cumulation of several ECM proteins, including
the fibrillar collagens type I and type III. Colla-

gen accumulation in the lamina reticularis in

asthma is not as well organized into fibrillar
bundles as fibrils in fibrotic tissues, but none-

theless collagen fibrils are commonly observed

throughout these structures (Saglani et al.
2006). In addition, the airway submucosal col-

lagens surrounding fibroblasts are frequently

expanded in both animal models of chronic
asthma and asthmatic patients. Similar changes

in airway collagen accumulation occur to a

somewhat lesser degree in COPD airways (Jef-
fery 2001; Aoshiba and Nagai 2004; Postma and

Timens 2006). Such airway accumulation of

fibrillar collagens may restrict airway lumen
size, and this has been argued in rodent models.

Because of the many elements involved in air-
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way remodeling, it has not been determined to

what degree collagen deposition per se contrib-
utes to fixed airway obstruction in longstanding

active asthma. Nonetheless, airway remodeling

involving accumulation of collagen is a promi-
nent feature of asthma, and, as discussed below,

accumulating evidence links this pathobiology

to TGF-b1 activation (Makinde et al. 2007).
The dynamic interplay between activated

epithelial cells and surrounding airway stromal

elements in asthma has led to the concept of an
epithelial–mesenchymal “trophic unit,” imply-

ing that airway homeostasis is maintained by an

ongoing exchange of solublemediators between
the epithelium and surrounding mesenchymal

cells (Holgate et al. 2004). In contrast, there is

no evidence that activated epithelial cells cross
the airway basement membranes to directly

contact mesenchymal cells or become mesen-

chymal cells, in either asthma or COPD. The
impact of signaling interactions between the ep-

ithelial lining cells and underlying stromal ele-

ments has largely been studied in the context of
perturbed epithelial and immune cell function

in inflammatory airway disease. Most studies

point to mediators released by native and adap-
tive immune cells that activate epithelial cells

to release cytokines impacting airway broncho-

constriction and remodeling (Boxall et al. 2006;
Doherty et al. 2011; Halwani et al. 2011; Hirota

and Martin 2013; Trian et al. 2015). Given the

collagen accumulation as a prominent part of
airway wall remodeling, it is not surprising that

a major target of immune-mediated cytokine

signaling is increased TGF-b1 expression and
activation in both the epithelium and the airway

walls of asthmatic and COPD patients. Epithe-

lial–mesenchymal cross-talk has been studied
in COPD, focusing on the squamousmetaplasia

commonly observed in large conducting air-

ways of COPD patients (Araya et al. 2007).
Squamous epithelial cells in culture, but not

the airway basal cells from which they are de-

rived, release cytokines, especially IL-1b, which
then induce TGF-b1 activation and myofibro-

blast accumulation. Activated fibroblasts are

thought to promote a positive feedback for
this process by further releasing TGF-b1 to im-

pair epithelial proliferation and promote the

squamous phenotype. The squamousmorphol-

ogy of cultured bronchial epithelial cells and the
high expression of involucrin and the cyclin-

dependent kinase inhibitor p21Cip1 are sugges-

tive of a senescent phenotype, a phenotype
known to be promoted by stress and accompa-

nied by release of pro-inflammatory cytokines,

although this possibility has not been directly
addressed in the lung (Rodier and Campisi

2011). Similar pathways are likely activated in

asthma. In this case, the production of Th2 cy-
tokines by innate and adaptive immune cells is

increased, and their activities on epithelial cells,

as well as epithelial injury, lead to the release of
cytokines including TGF-b1, PDGF, and insu-

lin-like growth factors by the epithelial cells.

These then promote proliferation of fibroblasts
and smooth muscle cells that is characteristic of

airway remodeling in asthma (Holgate et al.

2004; Boxall et al. 2006; Davies 2009). As dis-
cussed below, a common and important ele-

ment in altered fibroblast function in all these

settings involves TGF-b1 activation, which is
the likely driver of submucosal airway collagen

accumulation.

Stromal elements involved in remodeling
of asthmatic airways show enhanced sensitivity

to immune Th2 cytokine signals. Primary hu-

man airway fibroblasts in culture respond to
IL-13, a prominent Th2 cytokine implicated

in asthma pathobiology, with activation of

COL1A2 mRNA expression and collagen pro-
tein deposition. This response is greater in

primary cells isolated from asthmatic patients

when compared with cells of healthy individu-
als (Firszt et al. 2014). IL-13-induced collagen

expression was found to depend on TGF-b1

activation and signaling by fibroblasts. IL-13
also promotes TGF-b1 expression and release

from asthmatic epithelium. Earlier studies

exploring the response of airway fibroblasts to
IL-4 report similar findings, suggesting that in

some way the ongoing inflammation and stim-

ulation of stromal elements primes these airway
fibroblasts for further response (Saito et al.

2003). In addition, smooth muscle cell prolifer-

ation has been reported to be hyperactive in
asthmatic airways (Trian et al. 2015). Bronchial

smooth muscle cells from asthmatic large air-
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ways express higher levels of the cysteinyl leuko-

triene receptor CysLTR1, a receptor for leuko-
triene C4, and display an increased proliferative

response to the epithelial-derived leukotriene

C4 compared with smooth muscle cells from
normal airways (Trian et al. 2015). These find-

ings underscore the paradigm that the epitheli-

al-derived signals are in part responsive to cy-
tokine stimulation from immune cells, and

activate bidirectional signaling that leads to air-

way remodeling with airway fibrosis in both
asthma and COPD.

The effector mechanisms of TGF-b1-de-

pendent fibrogenesis in airways do not appear
different from other sites of fibrosis driven by

TGF-b1, but the mechanisms of latent TGF-b1

activation are distinct in the conducting air-
ways. Whereas alveolar epithelial TGF-b1 acti-

vation depends on integrinavb6, large conduct-

ing airway epithelial TGF-b1 activation is
mediated by both avb6 and avb8 integrins

(Munger et al. 1999; Mu et al. 2002). The mech-

anism of activation of TGF-b1 by avb8 requires
metalloproteinase (MMP)-mediated cleavage

of latent TGF-b1, in contrast to cytoskeleton-

mediated conformational strain on integrins in
avb6-mediated TGF-b1 activation. Dendritic

cells also require avb8 to activate surface TGF-

b1 that in turn promotes differentiation of CD4
T cells to T cells that produce IL-17 along with

IL-6, and to regulatory T cells (Tregs) (Travis

and Sheppard 2014). Expansion of IL-17-pro-
ducing CD4þ T cells enhances airway smooth

muscle contraction in response to binding of

IL-17 to its receptors that are expressed on
smooth muscle cells, extending the well-known

role of IL-17 as a pro-inflammatory cytokine

(Kudo et al. 2012). Mice that lack expression
of the dendritic cell integrin avb8, as a result

of Cre recombinase expression from the Itgax

promoter and Cre-mediated deletion of b8,
spontaneously develop an autoimmune colitis

at about six months of age, consistent with the

well-known role of TGF-b1 in promoting dif-
ferentiation of T cells toward an immunosup-

pressive Treg lineage (Wan and Flavell 2007).

The anti-inflammatory and immune regulatory
effects of TGF-b1, mediated in large part by

dendritic cells, are prominent in asthma and

are layered on top of the profibrotic pathways

initiated in activated epithelial cells and fibro-
blasts. Hence, it may not be meaningful to

attempt to correlate the overall levels of latent

TGF-b1 expression or even TGF-b activity
in the lung with the severity or progression of

asthma and COPD. For example, inhibition of

TGF-b1 signaling protects mice from airway
remodeling in an allergen-induced model, but

what affected cell type accounts for this protec-

tion is uncertain (McMillan et al. 2005). Mice
deficient in periostin expression have enhanced

bronchoconstrictor responses and higher aller-

gen-induced IgE expression in an allergy model
(Gordon et al. 2012). Periostin interacts with

collagen and promotes its organization into

fibrils. In the absence of periostin, TGF-b1 ac-
tivation is reduced resulting in decreased Treg

cell differentiation with an enhanced immune

response. Thus, the pathogenic role of TGF-b1
in asthma pathobiology, and peri-airway fibro-

sis specifically, is complicated by the high acti-

vation level of the mucosal immune system in
asthma. Indirect effects through changes in im-

mune cell function rather than directly altered

fibroblast collagen production could be a major
mechanism for TGF-b1 effects in asthma and

COPD.

THERAPEUTIC IMPLICATIONS

Integrin-mediated TGF-b activation has been
shown to substantially contribute to tissue

pathology in a number of disease models. For

example,mice lacking theavb6 integrin are pro-
tected in murine models of lung, kidney, and

biliary fibrosis (Munger et al. 1999; Jaramillo

et al. 2003; Hahm et al. 2007). These mice are
also protected in models of acute lung injury

(Pittet et al. 2001), allergic asthma (Sugimoto

et al. 2012; Jolly et al. 2014), and severe influen-
za infection (Jolly et al. 2014), and in each case,

protection appeared to be explained by local

inhibition of TGF-b activation. These results,
together with evidence that avb6 integrin ex-

pression is dramatically increased in dysfunc-

tional epithelial cells overlying regions of pul-
monary fibrosis in humans (Horan et al. 2008),

suggest that this integrin could be a promising
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therapeutic target. The development of potent

blocking monoclonal antibodies that inhibit
avb6-mediated TGF-b1 activation in multiple

species hasmade it possible to evaluate their use

in disease models after tissue pathology has
already been established. The success of these

antibodies in multiple disease models (Horan

et al. 2008; Puthawala et al. 2008) has stimulated
the development of a humanized monoclonal

antibody that targets avb6 and is currently in a

phase II clinical trial for treatment of IPF.
avb8-dependent TGF-b1 activation has also

emerged as a promising therapeutic target.Mice

lacking this integrin on dendritic cells are dra-
matically deficient in antigen-specific T helper

17 (Th17) cells, and are protected in experimen-

tal autoimmune encephalitis (Melton et al.
2010) and allergic asthma (Kudo et al. 2012).

Mice lacking avb8-mediated TGF-b1 activation

in fibroblasts are protected in models of airway
inflammation, and studies in mice engineered

to replace murine b8 with its human ortholog

show that a monoclonal antibody against hu-
man avb8 that blocks TGF-b1 activation pro-

tects against allergic airway inflammation and

remodeling induced by exposure to cigarette
smoke (Minagawa et al. 2014).

As noted above, recent evidence suggests

that the avb1 integrin on fibroblasts contributes
to tissue fibrosis in multiple organs (Lawson

et al. 2008, 2011; Tanjore et al. 2011, 2012,

2013; Torres-Gonzalez et al. 2012; Henderson
et al. 2013; Reed et al. 2015). Therapeutic inter-

vention with a broadly active av integrin inhib-

itor or a highly specific avb1 small molecule
inhibitor in mice with already established liver

or pulmonary fibrosis causes a marked reduc-

tion in collagen accumulation, suggesting that
avb1 could also be a therapeutic target for treat-

ment of diseases characterized by excessive tis-

sue fibrosis.
Besides the strong rationale for therapeutic

agents directed at integrin-dependent TGF-b1

activation, elements of TGF-b1 signaling and
other aspects of the pathophysiology of fibro-

genesis are also potential therapeutic targets. As

noted above, a number of profibrotic cytokines
such as CTGF, FGF, and PDGF have been

explored as potential targets for antifibrotic

therapy, in large part because of their conver-

gence with the TGF-b pathway. Studies of EMT
in fibrosis began largely because of the strong

parallels between signaling pathways of fibrosis

and pathways of EMT in cell culture. One of the
ironies then about the possible roles of EMT in

fibrosis is that, from a clinical viewpoint, ther-

apeutic agents directed at either pathways of
EMT or pathways of fibroblast expansion and

ECM secretion may almost completely overlap,

making definitions and cells of origin of little
importance. For example, the best-studied EMT

transcription factors are Snail1, Slug/Snail2,
Twist, ZEB1, and Sip1/ZEB2. Their expression
can be induced by TGF-b1 in both epithelial

and mesenchymal cells. Understanding these

pathways and the epithelial cell response to
TGF-b offers potential for therapeutic interven-

tion in fibrosis, even if many of these pathways

are not unique to EMT. In addition, expansion
of the ECM impacts fibrogenesis downstream

from TGF-b1 activation by exerting strong

prosurvival signals as a result of integrin activa-
tion. Activated b1 integrins promote FAK and

Akt activation leading to accumulation of anti-

apoptotic factors that could counter the pro-
apoptotic signaling in response to TGF-b1

in the epithelium, ER stress, and senescence

(Horowitz et al. 2007; Thannickal et al. 2014).
Moreover, recent studies point to ECM stiffness

and integrin activation as a TGF-b1-indepen-

dent pathway of epithelial Stat3 activation with
subsequent further fibroblast activation and

ECM accumulation (Prele et al. 2012; Duffield

2016). These studies highlight some additional
sites of potential therapeutic intervention

downstream from TGF-b1 activation that are

studied in clinical and preclinical trials (Ahlu-
walia et al. 2014; Blackwell et al. 2014). The

current rationales and status of trials directed

at TGF-b signaling in fibrosis have recently
been well summarized (Ahluwalia et al. 2014).

Emerging evidence indicating the promi-

nence of ER stress and cell senescence in the
pathobiology of fibrotic lung disease also offers

new therapeutic possibilities (Lawson et al.

2008, 2011; Tanjore et al. 2011, 2012, 2013; Tor-
res-Gonzalez et al. 2012). TGF-b1 signaling

may contribute to this pathophysiology indi-
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rectly by the induction of enhanced collagen

secretion in cells that are already stressed by
the accumulation of misfolded proteins. In-

deed, collagen itself is only marginally soluble

and its complicated helical structure is prone to
misfolding. Whether and how the UPR can be

manipulated to attenuate the potentially profi-

brotic and self-destructive elements in its
response to ER stress (Fig. 3) is an important

avenue for further investigation. Likewise, the

accumulation of senescent cells in the context
of chronic and recurring injury, as well as aging

itself, may offer new insights (Sanders et al.

2013; Thannickal 2013; Hecker and Thannickal
2016). For example, mice lacking caveolin 1

expression were found to be protected from

fibrosis through decreased epithelial senescence
after bleomycin-induced injury (Shivshankar

et al. 2012). Further studies of telomerase acti-

vators have been suggested as a potential point
of therapeutic intervention in senescence-initi-

ated fibrosis (Le Saux et al. 2013). Similarly,

targeting nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 4 (NOX4), a

TGF-b1-responsive gene, attenuates lung fibro-

sis at least in part through inhibition of NOX4-
or ROS-mediated senescence (Hecker et al.

2009). The potentially profibrotic and pro-in-

flammatory character of the SASP secretome
and regulators of senescence during fibrogene-

sis need better clarification (Kang et al. 2007).

It remains unclear to what degree the SASP
and the secretory profile of TGF-b1-induced

EMT and ER stress (Fig. 3) share expression

of common profibrotic mediators or exert their
effects on fibrosis through distinct pathways.

These uncertainties remain important to

clarify as attempts to develop new therapeutics
center around the early events that lead to ep-

ithelial dysfunction and a disordered repair

process, not only in the lung but at all sites of
fibrogenesis.
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