
TGFF: Task Graphs forFree

Robert P. Dick ~,David L. Rhodes t, and Wayne Wolf j:

~HDepartment of Electrical Engineering

Princeton University

Princeton, New Jersey 08544

Abstract

We present a user-controllable, general-purpose,

pseudorandom task graph generator called Task

Graphs For Free (TGFF). TGFF creates problem

instances for use in allocation and scheduling re-

search. It has the ability to generate independent

tasks as well as task sets which are composed of par-

tially ordered task graphs. A complete description of

a scheduling probl~m instance is created, including

attributes for processors, communication resources,

tasks, and inter-task communication. The user may

parametrically control the correlations between at-

tributes. Sharing TGFE's parameter settings allows

researchers to easily reproduce the examples used by

others, regardless of the platform on which TGFF is
run.

1. Introduction

Research in embedded real-time systems and op-

erating systems, as well as in more general allo-

cation and scheduling fields, is hampered by the

lack of a common base of examples. In general,

an example used in allocation and scheduling re-

search consists of a task set and a database of pro-
cessors and communication resources. A task set

is a collection of task graphs, each of which is

a directed acyclic graph (DAG) of communicating

tasks. Generation of sample task sets is often a re-

quirement when comparing allocation or schedul-

ing methods with each other [1], [2]. There are

generally no standard task sets available, making

comparison of different methods all but impossible.

Moreover, since task set generation is only a sec-

ondary aspect of scheduling research, the details

necessary to enable exact recreation of another re-

~This work was supported in part by an NSF Graduate Fellow-

ship and in part by NSF under Grant No. MIP-9423574.

We would like to thank Niraj K. Jha, at Princeton University,

for his valuable comments regarding this paper.

1092-6100/98 $10.00 @ 1998 IEEE

[

rUs Army CECOM/RDEC
AMSEL-RD-C2-SC-M

Fort Monmouth, New Jersey 07703

searcher's task sets are usually lacking. At best,

re-implementation of another researcher's random

task set generation algorithm is tedious. At worst,

the new implementation subtly differs from the al-

gorithm used in the work with which a comparison

is made, resulting in misleading experimental re-

sults. These problems conspire to make it difficult

to compare one's new allocator or scheduler with

existing algorithms.

This situation would be improved by the exis-

tence of a standard, shareable base of task sets

which are sufficiently general to enable applicabil-

ity to a wide range of areas (e.g., embedded systems

and parallel computing) and which can be tuned to

particular problem domains. Shareable examples

have been critical to progress in other areas such as

computer-aided design and computer science, e.g.,

the standard ISCAS digital circuits used to com-

pare digital circuit simulators [3] or the DIMACS

Boolean formula sets used for satisfiability solvers

[4]. However, a survey in the area of task sets re-

veals that researchers are "on their own"; this is

true among both the industrial and academic re-

search communities. Allocation and scheduling re-

search is a sufficiently broad area that any static

set of examples meeting the needs of the majority

of researchers would be gigantic. TGFF gives re-

searchers the flexibility to dynamically tailor exam-

ples to their work while making it easy for others

to regenerate these examples, given knowledge of a

few command line parameters. It has been used in

our current allocation and scheduling research [5].

Some allocation and scheduling research for very

high-level system design assumes that there are

no data dependencies between different tasks in a

task set, while at the other extreme, directed, cyclic

task graphs usually arise in low-level or small-

grain arenas, for example, in instruction-level code

analysis. TGFF's task graph format, the DAG, is

commonly used in medium-level and high-level al-

97

location and scheduling research in academia and

industry [6]-[8]. TGFF is nonetheless capable of

generating sets of independent tasks as a special
case of the sets of DAGs for which it is primarily

intended,

TGFF includes a pseudorandom number gener-

ator [9]. This generator behaves identically on any

machine which represents mantissas with 24 or
more bits. Given the same command line options,

TGFF will generate the same task set, processors,
and communication resources when run on nearly

any architecture which supports floating point com-

putation.

2. Task Set Generation

Task graphs may be roughly categorized by their

structural properties. DAGs generated to solve

some numeric or algorithmic method, for exam-

ple an FFT computation or a Quicksort, exhibit

a particularized (and predictable) structure. Al-

though there also appears to be a lack of shareable

task graphs in this 'structured-graph' regime, these

types of graphs are more easily documented and
re-created than more randomly structured graphs.

Thus, the TGFF effort focuses on random task

graph generation subject to the limitations and pa-

rameters provided by the user.

TGFF generates a given number of random task

graphs, where the graph nodes are tasks and

the graph arcs represent communication between
tasks. Arcs are associated with parametrically con-

trolled data volume scalars; they represent inter-

process communication and impose a partial order

on nodes. TGFF accepts a random number genera-

tor seed parameter, among others. The value of the
seed affects both the structure as well as other as-

pects of the task set. Task set families containing

an arbitrary number of task sets may be generated

by varying the seed while holding all other param-
eters constant.

Documentation is provided with the software.

Therefore, only a high-level description is given

here. One of the most challenging aspects of gen-

erating task graphs is developing an algorithm for

defining their structure. For TGFF, there are a

number of parameters relevant to the task graph

structure: the average (n) and multiplier (m) for

the lower bound on the number of nodes in a graph,

and the maximum in-degree (id) and out-degree

(od) of graph nodes. While id and od are fixed for

every task graph generated in the task set, a value
for the lower bound is selected at random from the

uniform range [n - m, n + m].
Let x be a lower bound on the number of nodes

in a task graph, as randomly selected from the

[n - m, n + m] range. The task graph is constructed

by first creating a single-node graph and then iter-

atively augmenting it until the number of nodes in

the graph is greater than or equal to x.

The augmentation operates as follows. First ran-

domly select either a fan-out step or a fan-in step

(with equal probability). If it is a fan-out step, find
the set of nodes that have the largest amount of

'available' out-degree, i.e., those with the maximum
difference between od and the actual number of out-

arcs, and call this maximum difference r. Assum-

ing that r > 0, randomly pick a node, p, from the

set, and then add y nodes and arcs to the graph

from p to each of these new y nodes where y is a

random number ranging from 0 to r.

If it is a fan-in step, find a set of existing nodes
which are not over their ad limit and call the cardi-

nality of this set q. Assuming that q > 0, randomly

select a value z in the range [0, max (q, id)]. Add a

single node to the graph and z arcs from z nodes
from the set to this new node.

This procedure generates DAGs which honor the

in-degree and out-degree limits, contain at least x

nodes, have a single start node, and do not have

duplicated arcs (e.g., those between the same pair
of nodes). The actual number of nodes in the gen-

erated task graph ranges from x to x + od - 1.
TGFF associates a deadline with every termi-

nalnode (a node which has no outgoing arcs) in

the task graphs it produces. A heuristic is used

to generate deadlines which are likely to be chal-

lenging but tractable. If depth is the length of the

maximum-length path from a task graph's start

node to a given node, av_exec.time is the user-

specified average amount of time taken to execute

a task, and dJaxity is an arbitrary scalar, then the
deadline for that node is set in the following man-

ner: deadline = depth. av_exec.time . dJaxity.

Task sets containing task graphs with differing

periods are termed multi-rate task sets. TGFF is

capable of parametrically generating the periods of

task graphs in multi-rate task sets. The user spec-

ifies an array of period multipliers which is used

to determine the relative periods of different task

graphs in the task set. Selecting only small integer

multipliers allows one to generate a task set which

98

can feasibly be scheduled with the least common
multiple scheduling method [10]. However, a user
is free to specify multipliers which are vastly dif-
ferent or for which the least common multiple is
large, relative to the individual multipliers. Given
muLar (an array of user-provided period multipli-
ers), pJaxity (a user-provided scalar), and tg_ar (an
array containing all the task graphs in the task
set), TGFF uses the algorithm in Figure 1 to assign
a period to each task graph. This algorithm gen-
erates periods which are based on the period mul-
tiplier array provided by the user and are loosely
related to the deadlines of individual task graphs.

muLar is a user-specified array of multipliers
tg_ar is an array of task graphs
muUs is an empty list
pJaxity is a user-specified scalar

while muLJs-'telements < tg_ar-'telements:

select mul randomly from muLar

append mul to muLJs

sort muUs in increasing order

sort tg_ar in order of increasing deadlines

gr = tg.1Lr[1ast]-'tdeadline / muUs[1ast]

for each i in all task graph indexes:

tg_ar[i]-'tperiod = gr . muLJs[i] . pJaxity

Figure 1: Period computation algorithm
An important characteristic of task sets is the

relation between the deadlines and the periods of

their task graphs. While some schedulers allow

periods that are less than deadlines (e.g., [5], [8]),

many do not. If requested, TGFF prevents the pe-

riod of any task graph from being greater than any
of the deadlines within it.

In addition to the primary output file, a

PostScript file depicting the task set is generated.

Figure 2 shows an example task graph output by

TGFF's PostScript facility. This is a problem in-

stance with a single task graph (-nl), a maxi-

mum in-degree and out-degree of two (-e2: 2), a

number of nodes ranging from eight to twelve per

task graph (-glO: 2), and a random seed of four

(-s4). In this illustration, each task is repre-

sented by a square and is labeled with its num-

ber. In addition to its task number, each ter-
minal node is labeled with its deadline. A task

graph family of 50 single task graphs can be gen-

-

erated by running TGFF with the following flags,
'-n 1 -sx,' where x is given values over the range
{a, 1,2,..., 49}. This statement is sufficient docu-
mentation to enable other researchers to reproduce
exactly the same fam-
ily. Figure 4 shows
the task set produced
when TGFF is run

with its in-degree re-
stricted to one and its

out-degree restricted
to two (-el :2), forcing
TGFF to generate
out-trees rather than

more general DAGs.
As another exam-

ple, Figure 5 shows
the generation of
three task graphs

with widely varying Figure 2: Resultfortgff
numbers of tasks. -nl -e2: 2 -glO: 2 -s4

TASK GRAPH 0
Period: 900

In/OUtDegree Limits:2 / 2

3. DatabaseGeneration

Some work in allocation and scheduling optimizes

multiple attributes, e.g., execution time, power con-

sumption, testability, and cost. TGFF supports

this by allowing an arbitrary number of attributes,

which may be correlated or uncorrelated, to be as-

sociated with each processor and communication
resource.

Average

Multiplier

A............

Communications: _Y
resourcetype B. .(!:.-! !.

C 110.2

price packet packet
size power

Parameter

Figure 3: Setting communication resource
attributes

Although attribute generation for processors and
communication resources is similar, communica-
tion resource attribute generation is more straight-
forward. This process is most easily illustrated
with an example. Figure 3 depicts attribute gen-
eration for communication resources. TGFF gener-
ates a random scalar (com-'trand), ranging from-l
to 1, for each communication resource. The user
specifies an average (av) and a multiplier (mul)

99

TASK GRAPH 0
Period= 400
In/OutDegree Limits= 1 / 2

d=500 d=500

TASK GRAPH 1
Period= 1200
In/Out DegreeLimits= 1 / 2

TASK GRAPH 2
Period= 800

In/Out DegreeLimits=1 / 2

d=600

..1...
d=700d=700 d=700 d=700

Figure4: Resultfortgff -e1: 2 -g15: 14

TASK GRAPH 0

Period= 675

In/Out Degree Limits= 3 / 4

d=300

TASK_GRAPH 1
Period= 1350

In/Out Degree Limits= 3 / 4

d=800 d=800

Figure 5: Result for tgff -e3: 4 -g20: 18 -87

value for each communication resource attribute,

as well as a jitter (jit) for the task set. Given a

scalar (x) and the task set jitter (jit) the function

jitter (x,jit) returns a randomly selected number

from the uniform range [x . (1 - jit), x. (1 + jit)].

With this function, and the parameters specified by

the user, TGFF generates the attributes for each

~

I

communication resource, i.e.,

d=600

TASK GRAPH 2

period= 675

In/Out Degree Limits= 3 / 4

d=300 d=300

attrib = av + jitter (mul . com-+rand, jit)

A processor has attributes which are indepen-

dent of tasks, as well as attributes which indicate

the behavior of each task on that processor. Inde-

pendent attribute generation is analogous to com-

100

munication resource attribute generation. Task-

processor intersection attributes, which provide in-

formation about a task's execution on a particular

processor, are generated with procedure similar to

the one illustrated in Figure 3. However, for task-

processor intersections, the procedure operates in
three dimensions instead of two. In addition to an

array of random numbers associated with proces-

sors, there is a similar array associated with tasks.

Each attribute depends on the processor and task

for which the attribute is being generated.

TGFF has a number

of default attributes:

cost for processors,
cost and transmit_-

rate for communi-

cation resources, and
exec_time for tasks.

These attributes can

be augmented or al-

tered. As an example

demonstrating TGFF's

generality, consider the

following scenario: one
wants to add an at-

tribute which defines a L2
setuptime for commu- Figure6:
nication resources. This Communication

attribute is, in general, resource attributes

to be inversely related to cost. By giving TGFF the

following command-line flag, -c '10:5:t:cast

100: -80: f:setup',one declares that cost has
an average value of 10, a multiplier of 5, and is

an integer. Similarly, setup has a average value

of 100, a multiplier of -80, and is a real number.

Setting cast's multiplier to a positive value and
setup's multiplier to a negative value causes

them, in general, to be inversely related to each

other. A portion of the resulting output appears in

Figure 6.

@COMMUN 0 {

cost setup
12 68.5145

}

@COMMUN 1 {

cost setup
9 119.64

}

@COMMUN 2 {

cost setup
10 92.5214

4. Conclusions

TGFF provides a standard method for generat-

ing random allocation and scheduling problem in-

stances involving periodic or non-periodic task sets.

Users have parametric control over an arbitrary

number of attributes for tasks, processors, and

communication resources. TGFF is capable of gen-

erating problem instances which are tuned to par-

ticular domains in allocation and scheduling re-

I
-- -~ -

search. However, the ease with which its param-

eters can be changed allows it to be applied to

many allocation and scheduling domains. Although

TGFF simplifies the rapid production of large fam-

ilies of examples, this work's primary goal is to en-

courage comparison of allocation and scheduling al-

gorithms by. making it practical to reproduce the

examples used by other researchers. The source

code for TGFF is available via the "projects" link on

the http: //www.ee.princeton.edu/-cad web
page.

References

[1] T. Yang and A. Gerasoulis, "DSC: scheduling paral-

lel tasks on an unbounded number of processors,"

IEEE Trans. on Parallel and Distributed Systems,

vol. 30, pp. 951-67, Sep 1994.

[2] W. Zhao, K. Ramamrithan, and J. Stankovic, "Pre-

emptive scheduling under time and resource con-
straints," IEEE Trans. on Computers, vol. 36,

pp.949-60,Aug.1987.

[3] M. Sengupta, "IS CAS '89 benchmark information,"

http: / /www.cbl.ncsu.edu/CBL.Docs/iscas89.html,
Mar. 1995.

[4] D. Du, J. Gu, and P. M. Pardalos, eds., Satisfiability

Problem: Theory and Applications, vol. 35 of DI-
MACS: Series in Discrete Mathematics and Com-

puter Science. Providence, RI: American Mathe-

matical Society, 1997.

[5] R. P. Dick and N. K. Jha, "MOGAC: A Multiobjec-

tive Genetic Algorithm for the Hardware-Software

Co-Synthesis of Distributed Embedded Systems,"
submitted to IEEE Trans. on Computer-Aided De-

sign.

[6] S. Prakash and A. Parker, "SOS: Synthesis of

application-specific heterogeneous multiprocessor

systems," J. Parallel & Distributed Computers,

vol. 16, pp. 338-351, Dec. 1992.

[7] T.-Y. Yen and W. H. Wolf, "Communication synthe-

sis for distributed embedded systems," in Proc. Int.

Conf Computer-Aided Design, pp. 288-294, Nov.
1995.

[8] B. Dave, G. Lakshminarayana, and N. K. Jha,

"COSYN: Hardware-software co-synthesis of em-

bedded systems," in Proc. Design Automation Conf,

pp. 703-708, June 1997.

[9] G. Marsaglia and A. Zaman, "Toward a universal

random number generator," Statistics & Probability

Letters, vol. 9, pp. 35-39, Jan. 1990.

[10] E. L. Lawler and C. U. Martel, "Scheduling period-

ically occurring tasks on multiple processors," In-

formation Processing Letters, vol. 7, pp. 9-12, Feb.
1981.

101

