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In this paper, we present some fixed point results for generalized θ-ϕ-contraction in the framework of (α, η)− compete rectangular
b-metric spaces. Further, we establish some fixed point theorems for this type of mappings defined on such spaces. Our results
generalize and improve many of the well-known results. Moreover, to support our main results, we give an illustrative example.

1. Introduction

,e well-known Banach contraction theory is one of the
methods used, which states that if (X, d) is a complete
metric space and T: X⟶ X is self-mapping with con-
traction, then T has a unique fixed point [1].

In 2000, Branciari [2] introduced the notion of gener-
alized metric spaces, for example, the triangle inequality is
replaced by the inequality d(x, y)≤d(x, u)+
d(u, v) + d(v, y) for all pairwise distinct points x, y, u, and
v ∈ X. Since then, several results have been proposed by
many mathematicians on such spaces (see [3–8]).

,e concept of metric space, as an ambient space in fixed
point theory, has been generalized in several directions, such
as, b− metric spaces [9] and generalized metric spaces.

Combining conditions are used for definitions of b-
metric and generalized metric spaces. Roshan et al. [10]
announced the notion of rectangular b-metric space.

Hussain et al. [11] introduced the concept of
α − η− complete rectangular b− metric space and proved
certain results of fixed point theory on such spaces.

In this paper, we provide some fixed point results for
generalized θ − ϕ− contraction in the framework of
(α, η)− compete rectangular b− metric spaces, and also we
give two examples to support our results.

2. Preliminaries

Definition 1 (see[10]). Let X be a nonempty set, s≥ 1 be a
given real number, and let d: X ×X⟶ [0,+∞[ be a
mapping such that for all x, y ∈ X and all distinct points
u, v ∈ X, each distinct from x and y:

(1) d(x, y) � 0, if only if x � y
(2) d(x, y) � d(y, x)
(3) d(x, y)≤ s[d(x, u) + d(u, v) + d(v, y)](b −
rectangular inequality)
,en, (X, d) is called a b− rectangular metric space.

Lemma 1 (see [10]). Let (X, d) be a rectangular b-metric
space.

(a) Suppose that sequences (xn) and (yn) in X are such
that xn⟶ x and yn⟶ y as n⟶∞, with x≠y,
xn ≠x, and yn ≠y for all n ∈ N. 5en, we have

1

s
d(x, y)≤ limn⟶∞infd xn, yn( )≤ limn⟶∞supd xn, yn( )
≤ sd(x, y).

(1)
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(b) If y ∈ X and (xn) is a Cauchy sequence in X with
xn ≠xm for any m, n ∈ N, m≠ n, converging to x≠y,
then

1

s
d(x, y)≤ limn⟶∞infd xn, y( )≤ limn⟶∞supd xn, y( )
≤ sd(x, y),

(2)

for all x ∈ X.

Zheng et al. [12] introduced a new type of contractions
called θ − ϕ-contractions in metric spaces and proved a new
fixed point theorems for such mapping.

Definition 2 (see [13]). We denote by Θ the set of functions
θ: ]0,∞⟶ 1,∞[, satisfying the following conditions:

(θ1) θ is increasing

(θ2) for each sequence
(xn) ∈ ]0,∞[, limn⟶∞θ(xn) � 1⇔limn⟶∞xn � 0

(θ3) θ is continuous on ]0,∞[

Definition 3 (see [12]). We denote by Φ the set of functions
ϕ: [1,∞[⟶ [1,∞[ satisfying the following conditions:

(Φ1) ϕ: [1,∞[⟶ [1,∞[ is nondecreasing
(Φ2) for each t> 1, limn⟶∞ϕn(t) � 1

(Φ3) ϕ is continuous on [1,∞[

Lemma 2 (see [12]). If ϕ ∈ Φ, then ϕ(1) � 1 and φ(t)< t for
each t> 1.

In 2014, Hussain et al. [14] introduced a weaker notion
than the concept of completeness and called it α-completeness
for metric spaces.

Definition 4 (see [14]). Let T: X⟶ X and α, η
:X ×X⟶ [0,+∞[. We say that T is a triangular
(α, η)− admissible mapping if

(T1)α(x, y)≥ 1⟹ α(Tx, Ty)≥ 1, x, y ∈ X
(T2)η(x, y)≤ 1⟹ η(Tx, Ty)≤ 1, x, y ∈ X

(T3)
α(x, y)≥ 1
α(y, z)≥ 1{ ⟹ α(x, z)≥ 1 for all x, y, z ∈ X

(T4)
η(x, y)≤ 1
η(y, z)≤ 1{ ⟹ η(x, z)≤ 1 for all x, y, z ∈ X

Definition 5 (see [14]). Let (X, d) be a b-rectangular metric
space and let α, η:X ×X⟶ [0,+∞[ be two mappings. ,e
space is said to be as follows:

(a) T is α− continuous mapping on (X, d), if for given
point x ∈ X and sequence (xn) in X, xn⟶ x and
α(xn, xn+1)≥ 1 for all n ∈ N imply that Txn⟶ Tx.

(b) T is η subcontinuous mapping on (X, d), if for given
point x ∈ X and sequence (xn) in X, xn⟶ x and
η(xn, xn+1)≤ 1 for all n ∈ N imply that Txn⟶ Tx.

(c) T is (α, η)− continuous mapping on (X, d), if for
given point x ∈ X and sequence (xn) in X, xn⟶ x
and α(xn, xn+1)≥ 1 or η(xn, xn+1)≤ 1 for all n ∈ N
imply that Txn⟶ Tx.

,e following definitions were given by Hussain et al.
[11].

Definition 6 (see [11]). Let d(X, d) be a rectangular b-metric
space and let α, η:X ×X⟶ [0,+∞[ be two mappings. ,e
space X is said to be

(a) α− complete, if every Cauchy sequence (xn) in X
with α(xn, xn+1)≥ 1 for all n ∈ N converges in X

(b) η − subcomplete, if every Cauchy sequence (xn) inX
with η(xn, xn+1)≤ 1 for all n ∈ N converges in X

(c) (α, η)− complete, if every Cauchy sequence (xn) inX
with α(xn, xn+1)≥ 1 or η(xn, xn+1)≤ 1 for all n ∈ N
converges in X

Definition 7 (see [11]). Let (X, d) be a rectangular b-metric
space and let α, η:X ×X⟶ [0,+∞[ be two mappings. ,e
space X is said to be

(a) (X, d) is α-regular, if xn⟶ x, where α(xn, xn+1)≥ 1
for all n ∈ N implies α(xn, x)≥ 1 for all n ∈ N

(b) (X, d) is η− subregular, if xn⟶ x, where
η(xn, xn+1)≤ 1 for all n ∈ N implies η(xn, x)≤ 1 for
all n ∈ N

(c) (X, d) is (α, η)-regular, if xn⟶ x, where
α(xn, xn+1)≥ 1 or η(xn, xn+1)≤ 1 for all n ∈ N implies
that α(xn, x)≥ 1 or η(xn, x)≤ 1 for all n ∈ N.

3. Main Results

Definition 8. Let d(X, d) be a (α, η)-rectangular b-metric
space with parameter s> 1 and let T be a self-mapping onX.
Suppose that α, η: X ×X⟶ [0,+∞[ are two functions.
We say that T is an (α, η) − θ − ϕ− contraction, if for all
x, y ∈ X with (α(x, y)≥ 1 or η(x, y)≤ 1) and d(Tx, Ty)> 0,
we have

θ s2d(Tx, Ty)( )≤ϕ θ β1d(x, y) + β2d(Tx, x)([
+ β3d(Ty, y) + β4d(y, Tx))], (3)

where θ ∈ Θ,ϕ ∈ Φ, βi ≥ 0 for i ∈ 1, 2, 3, 4{ }, ∑i�4
i�0βi ≤ 1, and

β3 < (1/s).

Definition 9. Let (X, d) be a (α, η)-complete rectangular
b− metric space and T: X⟶ X be a mapping.

(1) T is said to be a θ − ϕ− Kannan-type contraction if
there exist θ ∈ Θ and ϕ ∈ Φ with α(x, y)≥ 1 or
η(x, y)≤ 1 for any x, y ∈ X, Tx≠Ty, we have

θ s2d(Tx, Ty)[ ]≤ϕ θ
(d(Tx, x) + d(Ty, y))

2s
( )[ ].

(4)
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(2) T is said to be a θ − ϕ− Reich-type contraction if there
exist θ ∈ Θ and ϕ ∈ Φ with α(x, y)≥ 1 or η(x, y)≤ 1
for any x, y ∈ X, Tx≠Ty, we have

θ s2d(Tx, Ty)[ ]≤ϕ θ
d(x, y) + d(Tx, x) + d(Ty, y)

3s
( )[ ].

(5)

(3) T is said to be a Kannan-type mapping, that is, if
there exists α ∈ ]0, (1/2s)[ with α(x, y)≥ 1 or
η(x, y)≤ 1 for any x, y ∈ X, Tx≠Ty, we have

s2d(Tx, Ty)≤ α(d(Tx, x) + d(y, Ty)). (6)

(4) T is said to be a Reich-type mapping, that is, if there
exists λ ∈ ]0, (1/3s)[ with α(x, y)≥ 1 or η(x, y)≤ 1
for any x, y ∈ X, Tx≠Ty, we have

s2d(Tx, Ty)≤ λ[d(x, y) + d(Tx, x) + d(Ty, y)]. (7)

Theorem 1. Let (X, d) be a (α, η)− complete rectangular b-
metric and let α, η: X ×X⟶ [0,+∞[ be two functions. Let
T: X ×X⟶ X be a self-mapping satisfying the following
conditions:

(i) T is a triangular (α, η)− admissible mapping

(ii) T is an (α, η) − θ − ϕ− contraction

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) T is a (α, η)− continuous.

5en T has a fixed point. Moreover, T has a unique fixed
point when α(x, y)≥ 1 or η(x, y)≤ 1 for all x, y ∈ X.

Proof. Let x0 ∈ X such that α(x0, Tx0)≥ 1 or η(x0, Tx0)≤ 1.
Define a sequence xn{ } by xn � Tnx0 � Txn− 1. Since T is

a triangular (α, η)− admissible mapping, then α(x0, x1) �
α(x0, Tx0)≥ 1⟹ α(Tx0, Tx1)≥ 1 � α(x1, x2) or
η(x0, x1) � η(x0, Tx0)≤ 1⟹ α(Tx0, Tx1)≤ 1 � α(x1, x2).

Continuing this process, we have α(xn− 1, xn)≥ 1 or
η(xn− 1, xn)≤ 1, for all n ∈ N. By (T3) and (T4), one has

α xm, xn( )≥ 1 or η xm, xn( )≤ 1, ∀m, n ∈ N, m≠ n.
(8)

Suppose that there exists n0 ∈ N such that xn0 � Txn0.
,en, xn0 is a fixed point of T and the proof is finished.
Hence, we assume that xn ≠Txn, i.e., d(xn− 1, xn)> 0 for all
n ∈ N. We have

xn ≠xm, ∀m, n ∈ N, m≠ n. (9)

Indeed, suppose that xn � xm for some m � n + k> n, so
we have

xn+1 � Txn � Txm � xm+1. (10)

Denote dm � d(xm, xm+1). ,en, (3) and Lemma 2 imply
that

θ dn( ) � θ dm( )≤ θ s2dm( ) � θ s2d Txm− 1, Txm( )( )
≤ϕ θ β1dm− 1 + β2dm− 1 + β3dm( )( )
< θ β1dm− 1 + β2dm− 1 + β3dm( ).

(11)

As θ is increasing, so

dn � dm < β1dm− 1 + β2dm− 1 + β3dm. (12)

Hence,

dm <
β1 + β2

1 − β3

dm− 1. (13)

Since

β1 + β2 + β3 ≤ 1. (14)

,us

dm <dm− 1. (15)

Continuing this process, we can prove that dn � dm < dn,
which is a contradiction. ,us, in the following, we can
assume that (8) and (9) hold.

We shall prove that

lim
n⟶+∞

d xn, xn+1( ) � 0 and lim
n⟶+∞

d nn, xn+2( ) � 0.

(16)
Since Tis (α, η) − θ − ϕ− contraction, we get

θ dn( ) � θ d Txn− 1, Txn( )( )≤ θ s2d Txn− 1, Txn( )( )
≤ϕ θ β1dn− 1 + β2dn− 1 + β3dn( )( )
< θ β1dn− 1 + β2dn− 1 + β3dn( ).

(17)

Since θ is increasing, we deduce that
dn < β1dn− 1 + β2dn− 1 + β3dn, and thus

dn <
β1 + β2

1 − β3

dn− 1. (18)

Since β1 + β2/1 − β3 ≤ 1, then
dn <dn− 1. (19)

,erefore, d(xn, xn+1) is monotone strictly decreasing
sequence of nonnegative real numbers. Consequently, there
exists α≥ 0, such that

lim
n⟶+∞

d xn, xn+1( ) � α, (20)

which again by (3) and (19) and property of (θ), we have

1< θ dn( )≤ϕ θ β1dn− 1 + β2dn− 1 + β3dn( )( )
≤ϕ θ dn− 1( )( )≤ϕ2 θ dn− 2( )( )≤ . . . ≤ϕn θ d0( )( )
� ϕn θ d x0, x1( )( )( ).

(21)

By taking the limit as n⟶∞ in (21) and using (Φ2),
we have

International Journal of Mathematics and Mathematical Sciences 3



1≤ lim
n⟶+∞

θ d xn, xn+1( )( )≤ϕn θ d x0, x1( )( )( ). (22)

,en, lim
n⟶+∞

θ(d(xn, xn+1)) � 1, by Θ2, we obtain

lim
n⟶+∞

d xn, xn+1( ) � 0. (23)

On the other hand,

θ s2d xn, xn+2( )( )≤ϕ θ β1d xn− 1, xn+1( ) + β2d xn− 1, xn( ) + β3d xn+1, xn+2( ) + β4d xn+1, xn( )( )[ ]
≤ϕ θ sβ1d xn− 1, xn+2( ) + sβ1d xn+2, xn( ) + sβ1d xn, xn+1( ) + β2d xn− 1, xn( ) + β3d xn+1, xn+2( ) + β4d xn+1, xn( )( )[ ],
≤ϕ θ s2β1d xn− 1, xn( ) + s2β1d xn, xn+1( ) + s2β1d xn+1, xn+2( ) + sβ1d xn+2, xn( )( ) + sβ1d xn, xn+1( )[
+ β2d xn− 1, xn( ) + β3d xn+1, xn+2( ) + β4d xn+1, xn( )].

(24)

By θ1 and Lemma 2, we obtain

s2d xn, xn+2( )< s2β1d xn− 1, xn( ) + s2β1d xn, xn+1( ) + s2β1d xn+1, xn+2( ) + sβ1d xn+2, xn( )
+ sβ1d xn, xn+1( ) + β2d xn− 1, xn( ) + β3d xn+1, xn+2( ) + β4d xn+1, xn( ). (25)

,erefore,

s2 − sβ1( )d xn, xn+2( )< s2β1d xn− 1, xn( ) + s2β1d xn, xn+1( ) + sβ1d xn+1, xn+2( )
+ sβ1d xn, xn+1( ) + β2d xn− 1, xn( ) + β3d xn+1, xn+2( ) + β4d xn+1, xn( ). (26)

Taking the limit as n⟶∞ in (28) and using (23), since
s2 − sβ1 > 0, we have

lim
n⟶+∞

d xn, xn+2( ) � 0. (27)
Hence, (16) is proved.
Next, we show that xn{ } is an Cauchy sequence in X, if

otherwise there exists an ε> 0 for which we can find se-
quences of positive integers xn(k){ }

k
and xm(k)

{ }
k
of (xn)

such that, for all positive integers k, n(k) >m(k) > k,

d xm(k)
, xn(k)( )≥ ε, (28)

d xm(k)
, xn(k)− 1( )< ε. (29)

From (30) and using the rectangular inequality, we get

ε≤d xm(k)
, xn(k)( )≤ sd xm(k)

, xm(k)+1
( ) + sd xm(k)+1

, xn(k)+1( )
+ sd xn(k)+1, xn(k)( ).

(30)
Taking the upper limit as k⟶∞ in (32) and using (16),

we get
ε

s
lim

n⟶+∞
supd xm(k)+1

, xn(k)+1( ). (31)

Moreover,

d xm(k)
, xn(k)( )≤ sd xm(k)

, xn(k)− 1( ) + sd xn(k)− 1, xn(k)+1( )
+ sd xn(k)+1, xn(k)( ).

(32)

,en, from (23) and (31), we get

lim
n⟶+∞

supd xm(k)
, xn(k)( )≤ sε. (33)

On the other hand, we have

d xn(k), xm(k)+1
( )≤ sd xn(k), xn(k)− 1( ) + sd xn(k)− 1, xm(k)

( )
+ sd xxm(k)

, xm(k)+1
( ).

(34)
,en, from (23) and 31 we get

lim
n⟶+∞

supd xn(k), xm(k)+1
( )≤ sε. (35)

Applying (3) with x � xm(k)
and y � xn(k), we have

θ s2d xm(k)+1
, xn(k)+1( )( ) � θ s2d Txm(k)

, Txn(k)( )( )

≤ϕ θ

β1d xm(k)
, xn(k)( ) + β2d xm(k)

, Txm(k)
( )

+β3d xn(k), Txn(k)( ) + β4d xn(k), Txm(k)
( )

  .
(36)

Now taking the upper limit as k⟶∞ in (38) and using
(θ1), (θ3), (ϕ3), (23), (33), (35), (37), and Lemma 2, we have
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θ s2.
ε

s
( ) � θ(ε.s) ≤ θ s2 lim

k⟶+∞
supd xm(k)+1

, xn(k)+1( )( )
≤ϕ θ β1 lim

k⟶+∞
sup d xm(k)

, xn(k)( )((
+ β2 lim

k⟶+∞
sup d xm(k)

, Txm(k)
( )

+ β3 lim
k⟶+∞

sup d xn(k), Txn(k)( )
+ β4 lim

k⟶+∞
sup d xn(k), Txm(k)

( )))
≤ϕ θ β1sε + β4sε( )( )< θ sε β1 + β4( )( ).

(37)
,erefore, ε.s< sε(β1 + β4) implies s< β1 + β4, which is a

contradiction.
Consequently, xn{ } is a Cauchy sequence in

α − η− complete rectangular b-metric space (X, d). Since
α(xn− 1, xn)≥ 1 or η(xn− 1, xn)≤ 1, for all n ∈ N.

,is implies that the sequence xn{ } converges to some
z ∈ X. Suppose that z≠Tz.,en, we have all the assumption
of Lemma 1 and T is (α, η)− continuous, then Txn⟶ Tz as
n⟶∞. ,erefore,

1

s
d(z, Tz)≤ lim

n⟶+∞
sup d xn, Txn( ) � 0. (38)

Hence, we have d(z, Tz) � 0 and so Tz � z. ,us, z is a
fixed point of T. □

3.1. Uniqueness. Let z, u ∈ Fix (T) where z≠ u and
α(z, u)≥ 1 or η(z, u)≤ 1.

Applying (3) with x � z and y � u, we have

θ(d(z, u)) � θ(d(Tz, Tu))≤ θ s2d(Tz, Tu)( )
≤ϕ θ β1d(z, u) + β2d(z, Tz) + β3d(u, Tu)((
+ β4d(Tz, u)))
≤ϕ θ β1d(z, u) + β4d(Tz, u)( )( )≤ϕ(θ(d(z, u))).

(39)

Since θ is increasing, therefore

d(z, u)<d(z, u), (40)

which is a contradiction. Hence, z � u and T have a unique
fixed point.

Recall that a self-mapping T is said to have the property
P, if Fix(T) � Fix(Tn) for every n ∈ N.

Theorem 2. Let α, η:X ×X⟶ R
+ be two functions and let

(X, d) be an (α, η)− complete rectangular b-metric space. Let
T: X⟶ X be a mapping satisfying the following conditions:

(i) T is a triangular (α, η)− admissible mapping

(ii) T is an (α, η) − θ − ϕ− contraction

(iii) α(z, Tz)≥ 1 or η(z, Tz)≤ 1, for all z ∈ Fix (T)
5en T has the property P.

Proof. Let z ∈ Fix (Tn) for some fixed n> 1. As α(z, Tz)≥ 1
or η(z, Tz)≤ 1 and T is a triangular (α, η)-admissible
mapping, then

α Tz, T2z( )≥ 1 or η T2z, Tz( )≤ 1. (41)

Continuing this process, we have

α Tnz, Tn+1z( )≥ 1 or η Tnz, Tn+1z( )≤ 1, (42)

for all n ∈ N. By (T3) and (T4), we get

α Tmz, Tnz( )≥ 1 or η Tmz, Tnz( )≤ 1, ∀m, n ∈ N,
n≠m.

(43)
Assume that z ∉ Fix (T), i.e., d(z, Tz)> 0.
Applying (3) with x � Tn− 1z and y � z, we get

d(z, Tz) � d Tnz, Tz( ) � d TTn− 1z, Tz( )≤ s2d TTn− 1z, Tz( ),
(44)

which implies that

θ d TTn− 1z, Tz( )( )≤ ϕ θ β1d Tn− 1z, z( ) + β2d Tn− 1z, Tnz( ) + β3d(z, Tz) + β4d z, Tnz( )( )[ ]
< θ β1d Tn− 1z, z( ) + β2d Tn− 1z, Tnz( ) + β3d(z, Tz) + β4d z, Tnz( )[ ]
� θ β1d Tn− 1z, Tnz( ) + β2d Tn− 1z, Tnz( ) + β3d(z, Tz)[ ].

(45)

Since θ is increasing, therefore,

d(z, Tz)< β1 + β2

1 − β3

d Tn− 1z, Tnz( )≤ d Tn− 1z, Tnz( ), (46)

which is a contradiction as d(Tn− 1z, Tnz)⟶ 0 and
d(z, Tz)> 0.

Assuming the following conditions, we prove that
,eorem 2 still holds for T not necessarily continuous. □
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Theorem 3. Let α, η:X ×X⟶ R
+ be two functions and let

d(X, d) be an (α, η)− complete rectangular b-metric space.
Let T: X⟶ X be a mapping satisfying the following

assertions:

(i) T is triangular (α, η)− admissible

(ii) T is (α, η) − θ − ϕ− contraction

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) (X, d) is an (α, η)-regular rectangular b-metric space

5en T has a fixed point. Moreover, T has a unique fixed
point whenever α(z, u)≥ 1 or η(z, u)≤ 1 for all
z, u ∈ Fix(T).

Proof. Let x0 ∈ X such that α(x0, Tx0)≥ 1 or η(x0, Tx0)≤ 1.
Similar to the proof of ,eorem 3, we can conclude that

α xn, xn+1( )≥ 1 or η xn, xn+1( )≤ 1( ), and xn⟶ z

as n⟶∞,
(47)

where xn+1 � Txn.
From (iv), α(xn+1, z)≥ 1 or η(xn+1, z)≤ 1 holds for

n ∈ N.
Suppose that Tz � xn0+1 � Txn0 for some n0 ∈ N. From

,eorem 3, we know that the members of the sequence xn{ }
are distinct. Hence, we have Tz≠Txn, i.e., d(Tz, Txn)> 0 for
all n> n0.,us, we can apply (3), toxn and z for all n> n0 to get

θ d Txn, Tz( )( )≤ θ s2d Txn, Tz( )( )≤ϕ θ β1d xn, z( )((
+ β2d xn, Txn( ) + β3d(z, Tz) + β4d z, Txn( ))).

(48)
By Lemma 2 and (θ1), we obtain

d Txn, Tz( )< β1d xn, z( ) + β2d xn, Txn( ) + β3d(z, Tz)(
+ β4d z, Txn( )).

(49)
By taking the limit as n⟶∞ in (51), we have

limn⟶∞supd Txn, Tz( )≤ β3d(z, Tz). (50)

Assume that z≠Tz. ,en, from Lemma 1,

1

s
d(z, Tz)≤ limn⟶∞supd Txn, Tz( )≤ β3d(z, Tz). (51)

By assumption β3 < 1/s, we have d(z, Tz) � 0 and so
z � Tz. ,us, z is a fixed point of T.

,e proof of the uniqueness is similarly to that of
,eorem 3.

above theorems, if we take ϕ(t) � tk, for some fixed
k ∈ ]0, 1[, where β1 � 1andβ2 � β3 � β4 � 0. We obtain the
following extension of Jamshaid et al. result (,eorem 1)
[13] of (α, η)− complete rectangular b-metric space. □

Corollary 1. Let α, η: X ×X⟶ [0,+∞[ be two functions
and d(X, d) be an (α, η)− complete rectangular b-metric
space and let T: X⟶ X be self-mapping. Suppose for all

x, y ∈ X with α(x, y)≥ 1 or η(x, y)≤ 1 and d(Tx, Ty)> 0,
we have

θ s2d(Tx, Ty)≤ [θ(d(x, y)])[ ]k, (52)

where θ ∈ Θ and k ∈ ]0, 1[. If the mapping T satisfies the
following assertions: point, if

(i) T is a triangular (α, η)− admissible mapping

(ii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iii) T is (α, η)-continuous or

(iv) is an (α, η)− regular rectangular b− metric space

5en T has a fixed point. Moreover, T has a unique fixed
point whenever α(z, u)≥ 1 or η(z, u)≤ 1 for all
z, u ∈ Fix(T).

Proof. Let ϕ(t) � tk, we prove that T is an
(α, η) − θ − ϕ− contraction, Hence, T satisfies in assumption
of ,eorem 3 or 2 and is the unique fixed point of T.

It follows from,eorem 3; we obtain the following fixed
point theorems for θ − ϕ-Kannan-type contraction and
θ − ϕ-Reich-type contraction. □

Theorem 4. Let (X, d) be a (α, η)− complete rectangular
b-metric space and let α, η: X ×X⟶ [0,+∞[ be two
functions. Let T: X ×X⟶ X be a self-mapping satisfying
the following conditions:

(i) T is a triangular (α, η)− admissible mapping

(ii) T is a (α, η) − θ − ϕ-Kannan-type contraction

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) Tis a (α, η)− continuous

5en T has a fixed point. Moreover, T has a unique fixed
point when α(x, y)≥ 1 or η(x, y)≤ 1 for all x, y ∈ X.

Proof. If T is a (α, η) − θ − ϕ-Kannan-type contraction, thus
there exist θ ∈ Θ and ϕ ∈ Φ with α(x, y)≥ 1 or η(x, y)≤ 1
for any x, y ∈ X, Tx≠Ty, we have

θ s2d(Tx, Ty)[ ]≤ ϕ θ
(d(Tx, x) + d(Ty, y))

2s
( )[ ]. (53)

,erefore,

θ s2d(Tx, Ty)[ ]≤ϕ θ β1d(x, y) + β2d(Tx, x) + β3d(Ty, y)([
+ β4d(Tx, y)],

(54)
where β1 � β4 � 0, β2 � β3 � 1/2s, which implies that T is a
(α, η) − θ − ϕ contraction ,erefore, from,eorem 2, T has
a unique fixed point. □

Theorem 5. Let (X, d) be a (α, η)− complete rectangular
b-metric space and let α, η: X ×X⟶ [0,+∞[ be two
functions. Let T: X ×X⟶ X be a self-mapping satisfying
the following conditions:
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(i) T is a triangular (α, η)− admissible mapping

(ii) T is a (α, η) − θ − ϕ− Reich-type contraction

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) T is a (α, η)− continuous

5en T has a fixed point. Moreover, T has a unique fixed
point when α(x, y)≥ 1 or η(x, y)≤ 1 for all x, y ∈ X.

Proof. If T is a (α, η) − θ − ϕ− Reich-type contraction, thus
there exist θ ∈ Θ and ϕ ∈ Φ with α(x, y)≥ 1 or η(x, y)≤ 1
for any x, y ∈ X, Tx≠Ty, we have

θ s2d(Tx, Ty)[ ]≤ϕ θ
(d(x, y) + d(Tx, x) + d(Ty, y))

3s
( )[ ].

(55)
,erefore,

θ s2d(Tx, Ty)[ ]≤ϕ θ β1d(x, y) + β2d(Tx, x) + β3d(Ty, y)([
+ β4d(Tx, y))],

(56)
where β1 � β2 � β3 � (1/3s) and β4 � 0, which implies
that T is a (α, η) − θ − ϕ contraction. ,erefore, from
,eorem 3, T has a unique fixed point. □

Corollary 2. Let (X, d) be a (α, η)− complete rectangular
b-metric space and let α, η: X ×X⟶ [0,+∞[ be two
functions. Let T: X ×X⟶ X be a self-mapping satisfying
the following conditions:

(i) T is a triangular (α, η)− admissible mapping

(ii) T is a (α, η)− Kannan-type mapping

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) Tis a (α, η)− continuous

5en T has a fixed point. Moreover, T has a unique fixed
point when α(x, y)≥ 1 or η(x, y)≤ 1 for all x, y ∈ X. 5en T
has a unique fixed point x ∈ X.

Proof. Let θ(t) � et for all t ∈ ]0,+∞[, and ϕ(t) � t2sα for
all t ∈ [1,+∞[.

It is obvious that θ ∈ Θ and ϕ ∈ Φ. We prove that T is a
θ − ϕ-Kannan-type contraction:

θ s2d(Tx, Ty)( ) � es2d(Tx,Ty) ≤ eα(d(Tx,x)+d(y,Ty))

� e2sα
d(Tx,x)+d(y,Ty)

2s( )
� e

d(Tx,x)+d(y,Ty)
2s( )[ ]2sα

� ϕ θ
d(Tx, x) + d(y, Ty)

2s
( )[ ].

(57)

,erefore, from ,eorem 3, T has a unique fixed point
x ∈ X. □

Corollary 3. Let (X, d) be a (α, η)− complete rectangular
b-metric space and let α, η: X ×X⟶ [0,+∞[ be two
functions. Let T: X ×X⟶ X be a self-mapping satisfying
the following conditions:

(i) T is a triangular (α, η)− admissible mapping

(ii) T is a (α, η)− Reich-type mapping

(iii) 5ere exists x0 ∈ X such that α(x0, Tx0)≥ 1 or
η(x0, Tx0)≤ 1

(iv) Tis a (α, η)− continuous

5en T has a fixed point. Moreover, T has a unique fixed
point when α(x, y)≥ 1 or η(x, y)≤ 1 for all x, y ∈ X.

Proof. Let θ(t) � et for all t ∈ ]0,+∞[, and ϕ(t) � t3sλ for
all t t ∈ [1,+∞[.

We prove that T is a θ − ϕ-Reich-type contraction:

θ s2d(Tx, Ty)( ) � es2d(Tx,Ty) ≤ e3λs((d(x,y)+d(Tx,x)+d(y,Ty))/3s)

� e
(d(x,y)+d(Tx,x)+d(y,Ty))

3s[ ]3λs

� ϕ θ
(d(x, y) + d(Tx, x) + d(y, Ty))

3
( )( )[ ].

(58)
,erefore, from ,eorem 3, T has a unique fixed point

x ∈ X. □

Example 1. Consider the set X � 1, 2, 3, 4{ }. It is easy to
check that the mapping d: X ×X⟶ [0,+∞[ given by

(i) d(x, y) � d(y, x), d(x, x) � 0 for all x, y ∈ X
(ii) d(1, 2) � 1/24, d(1, 3) � 3, d(1, 4) � 4

(iii) d(2, 3) � 5, d(2, 4) � 6, and d(3, 4) � 18

Clearly (X, d) is a rectangular b− metric space with
parameter s � 2.

Define mapping T: X⟶ X and
α, η: X ×X⟶ [0,+∞[ by

T(1) � 1,

T(2) � 1,

T(3) � 1,

T(4) � 2.


(59)

α(x, y) � x + y
max x, y{ }, (60)

η(x, y) � |x − y|
max x, y{ }. (61)

,en, T is an (α, η)− continuous triangular
(α, η)− admissible mapping.

Let θ(t) �
�
t

√
+ 1, ϕ(t) � 2t + 1/3, and β1 � 4/10,

β2 � 1/10, β3 � 3/10, and β4 � 2/10. It is obvious that θ ∈ Θ
and ϕ ∈ Φ. Evidently, (α(x, y)≥ 1 or (x, y)≤ 1) and
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d(Tx, Ty)> 0 are when, or x, y{ } � 3, 4{ }. Consider the
following four possibilities:

For x � 1 and y � 4, then

θ s2d(T1, T4)( ) � �
1

6

√
+ 1 � 1.4, (62)

ϕ θ β1d(1, 4) + β2d(1, T1)( ) + β3d(4, T4) + β4d(4, T1)( )
� ϕ θ

21

5
( )( ) � 2.36.

(63)
,en

θ s2d(T1, T4)( )≤ϕ θ β1d(1, 4) + β2d(1, T1)( )(
+ β3d(4, T4) + β4d(4, T1)). (64)

For x � 2 and y � 4, then

θ s2d(T2, T4)( ) � �
1

6

√
+ 1 � 1.4, (65)

ϕ θ β1d(2, 4) + β2d(2, T2)( ) + β3d(4, T4) + β4d(4, T2)( )
� ϕ(θ(3.65)) � 2.27.

(66)
,en

θ s2d(T2, T4)( )≤ϕ θ β1d(2, 4) + β2d(2, T2)( )(
+ β3d(4, T4) + β4d(4, T2)). (67)

For x � 3 and y � 4, then

θ s2d(T3, T4)( ) � �
1

6

√
+ 1 � 1.4, (68)

ϕ θ β1d(3, 4) + β2d(3, T3)( ) + β3d(4, T4) + β4d(4, T3)( )
� ϕ(θ(10.1)) � 3.13.

(69)
,en

θ s2d(T3, T4)( )≤ϕ θ β1d(3, 4) + β2d(3, T3)( ) + β3d(4, T4)(
+ β4d(4, T3)).

(70)
Hence, T satisfying the assumption of ,eorems 3 and 1

is the unique fixed point of T.

Example 2. Let X � A∪B, where
A � (1/n): n ∈ 2, 3, 4, 5, 6, 7{ }{ } and B � [1, 2]. Define d: X ×
X⟶ [0,+∞[ as follows:

d(x, y) � d(y, x) for all x, y ∈ X,

d(x, y) � 0⇔y � x,

 (71)

d
1

2
,
1

3
( ) � d 1

4
,
1

5
( ) � d 1

6
,
1

7
( ) � 0.05,

d
1

2
,
1

4
( ) � d 1

3
,
1

7
( ) � d 1

5
,
1

6
( ) � 0.08,

d
1

2
,
1

6
( ) � d 1

3
,
1

4
( ) � d 1

5
,
1

7
( ) � 0.4,

d
1

2
,
1

5
( ) � d 1

3
,
1

6
( ) � d 1

4
,
1

7
( ) � 0.24,

d
1

2
,
1

7
( ) � d 1

3
,
1

5
( ) � d 1

4
,
1

6
( ) � 0.15,

d(x, y) �(|x − y|)2 otherwise.



(72)

,en, (X, d) is a rectangular b-metric space with coef-
ficient s� 3. However, we have the following:

(1) (X, d) is not a metric space, as
d((1/5), (1/7)) � 0.4> 0.29 � d((1/5), (1/4)) +
d((1/4), (1/7))

(2) (X, d) is not a b-metric space for s� 3, as
d((1/3), (1/4)) � 0.4> 0.39 � 3[d((1/3), (1/2)) +
d((1/2), (1/4))]

(3) (X, d) is not a rectangular metric space, as
d((1/5), (1/7)) � 0.4> 0.28 � d((1/5), (1/4)) +
d((1/4), (1/2)) + d((1/2), (1/7))

Define mapping T: X⟶ X and
α, η: X ×X⟶ [0,+∞[ by

T(x) �

��
x6

√
, if x ∈ [1, 2],

1, if x ∈ A,

 (73)

α(x, y) �
sinh(x + y), if x, y ∈ [1, 2],

1

ex+y
, otherwise,

 (74)

η(x, y) �
x + y
4
, if x, y ∈ [1, 2],

1 + e− (x+y), otherwise.

 (75)

,en, T is an (α, η)− continuous triangular
(α, η)− admissible mapping.

Let θ(t) �
�
t

√
+ 1, ϕ(t) � t + 1/2 and taking β1 � 1 and

β2 � β3 � β3 � 0. It is obvious that θ ∈ Θ and ϕ ∈ Φ.
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Evidently, (α(x, y)≥ 1 or (x, y)≤ 1) and d(Tx, Ty)> 0 are
when x, y{ } ∈ [1, 2] with x≠y.

Consider two cases:

Case 1: x>y:

θs2d(Tx, Ty) � 3
��
x6

√
− ��

y6
√( ) + 1, (76)

ϕ[θd(x, y)] � x − y
2

+ 1. (77)

On the other hand

θ s2d(Tx, Ty)( ) − ϕ[θ(d(x, y))] �
6

��
x6

√
− ��

y6
√( ) − (x − y)

2

� 1

2

��
x6

√
− ��

y6
√( )( ) 6 −

��
x5

6
√

+
����
x4y6

√
+

����
x3y26

√
+

����
x2y36

√([
+ 6xy4 +

��
y56

√√ )].
(78)

Since x, y ∈ [1, 2], then

6 −
��
x5

6
√

+
����
x4y6

√
+

����
x3y26

√
+

����
x2y36

√
+

����
xy46

√
+

��
y56

√( )[ ]≤ 0,
(79)

which implies that

θs2d(Tx, Ty)≤ ϕ[θ(d(x, y))]
� ϕ θ β1d(x, y)( ) + β2d(x, Tx) + β3d(y, Ty)[
+ β4d(y, Tx)].

(80)

Case 2: y>x:

θs2d(Tx, Ty) � 3
��
y6

√ −
��
x6

√( ) + 1, (81)

ϕ[θ(d(x, y))] � y − x
2

+ 1. (82)

Similarly for Case 2, we conclude that

θs2d(Tx, Ty)≤ ϕ θ β1d(x, y)( ) + β2d(x, Tx) + β3d(y, Ty)[
+ β4d(y, Tx)].

(83)

Hence, condition (3) is satisfied. ,erefore, T has a
unique fixed point z � 1.
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