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Th1 cytokines, true functional signatures for protective
immunity against TB?

Gucheng Zeng1, Guoliang Zhang2 and Xinchun Chen3

The lack of an effective preventative vaccine against tuberculosis (TB) presents a great challenge to TB control.
Since it takes an extremely long time to accurately determine the protective efficacy of TB vaccines, there is a
great need to identify the surrogate signatures of protection to facilitate vaccine development. Unfortunately,
antigen-specific Th1 cytokines that are currently used to evaluate the protective efficacy of the TB vaccine, do not
align with the protection and failure of TB vaccine candidates in clinical trials. In this review, we discuss the
limitation of current Th1 cytokines as surrogates of protection and address the potential elements that should be
considered to finalize the true functional signatures of protective immunity against TB.
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INTRODUCTION

In the past 50 years, accumulating evidence has demonstrated
that T cells play critical roles in host defense against Myco-
bacterium tuberculosis (Mtb) infection. An insufficient T-cell
response renders the host unable to clear Mtb and therefore
results in the establishment of persistent Mtb infection. In both
systematic and aerosol-challenged murine TB models, T cells
were shown to be required for host protective immunity
against TB.1–3 While CD8+T cells play a critical role in
mediating immune protection against TB, the protective role
of T cells was initially shown to be mainly mediated by CD4
T cells (Figure 1).4,5 Interestingly, CD4+ cells can act as innate-
like cells to contain the very early extrapulmonary dissemina-
tion of Mtb and slow down the rapid progression of TB.
Protective roles against TB can possibly be attributed to CD4+
cells’ master helper function to sustain the systemic and
pulmonary anti-TB responses of CD8+ T cells and CD3-
non-T lymphocytes.6 In agreement with these findings, clinical
observations suggested that HIV-1-induced loss of CD4 T cells
renders TB susceptibility and increases reactivation of latent
Mtb infection, further highlighting the importance of T cells in
defense against TB.7,8

After encountering the Mtb antigen presented by antigen-
presenting cells (APCs), naive CD4 T cells differentiate into
effector and/or memory cells. Depending on the specificity and
affinity of TCR, availability of cognate Mtb antigens, co-
stimulation signaling, and so on, naive CD4 T cells can be
differentiated into various subsets, including at least Th1, Th2,
Th17, Treg and TFH cells. Among these subsets, IFN-γ-
producing Th1 cells are accepted as the major population that
mediates protective immunity against TB. Indeed, mice defi-
cient in Th1 cytokines (for example, IFN-γ, IL-12p40) suc-
cumbed early to Mtb infection with high bacillus loads.9–11

Furthermore, mice with defects in IFN-γ-dependent enzymes
show a similar susceptible phenotype.12–15 Rapid clonal expan-
sion, pulmonary trafficking and the accumulation of many
PPD Ag-specific IFN-γ+CD4+ and few CD8+ T effector cells
in BCG-vaccinated macaques upon pulmonary Mtb challenge
further highlighted the critical importance of Th1 cytokines in
mediating protective immunity against TB infection.16 In
humans, individuals carrying genotypes (that is, IFNGR1,
IL-12B, IL12RB1) with impaired Th1 immune response are
associated with increased susceptibility to mycobacterial
diseases.17–19
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Nevertheless, it is noteworthy that IFN-γ is essential, but not
sufficient, for bacterial control after Mtb infection, as mice with
intact IFN-γ but which were deficient in TNF-α, GM-CSF, IL-1
or IL-6 all succumbed to Mtb infection. In other words, these
results suggest that additional cellular responses are involved in
protective immunity against TB. In contrast to its protective
role, recent evidence showed that Th1-mediated IFN-γ
response inhibited inflammation during TB and was involved
in TB immunopathology.15,20,21

Due to the discrepant efficacy of Mycobacterium bovis Bacille
Calmette-Guerin (BCG) in preventing reactivation or re-
infection of Mtb in adults, at least 15 vaccine candidates have
entered clinical trials within the last decades.22 Although they
are excellent in induction of Mtb antigen-specific IFN-γ-
producing Th1 immune responses after systematic administra-
tion, none were proven to be more effective at preventing TB
than BCG. One of the most promising vaccine candidates, a
modified Vaccinia Ankara vector expressing Mtb antigen 85A
(MVA85A), was able to elicit powerful Th1 responses, but no
significant protection beyond BCG alone was observed.23

While these TB vaccine candidates varied in antigen selection
or strategies (such as vaccination routes), the fact that they all
failed to elicit efficient protection against TB argues against the
consensus that Th1 cytokines are useful surrogate markers of
protective immunity against TB in humans. Clearly, fine
delineation of the surrogate markers of protective immunity
against TB, alternative to the current Th1 cytokine IFN-γ, is
fundamental for the development of a TB vaccine. In this
review, we discuss potential questions that need to be addressed
to envision useful signatures for protective immunity
against TB.

DO PERIPHERAL TH1 RESPONSES REPRESENT TRUE

PROTECTIVE IMMUNITY IN THE LUNGS?

The acquisition of T-cell immunity in the lung upon Mtb
infection is exceedingly slow after aerosol challenge. Generally,
Mtb enters deeper alveoli in the form of minute alveoli, where
they are engulfed by alveolar macrophages. After ~ 9 days, the
bacteria can be transported into draining lymph nodes, where
dendritic cells (DCs) present Mtb antigens to T
lymphocytes.24,25 Once T cells are activated in the lymph
nodes, they differentiate into effector cells, which can migrate
into the lungs.26 Effective T-cell-mediated protection is
initiated by day 14 post infection in mice.27 In humans, T-cell
responses were detected after 42 days post exposure.28,29

Therefore, it has been postulated that although systematic
immunization elicits peripheral Th1 cell responses, delayed
immune responses in the lung provide an excellent timeframe
for Mtb growth and persistent infection establishment, render-
ing adaptive immunity unable to successfully eradicate the
bacterial infection. In support of this concept, previous studies
have indicated that it is not the magnitude of the Th1 response,
but the rate of Th1 cell migration into the lung, that
determines protective immunity against TB.30–32 In other
words, earlier arrival of effector Th1 cells (measured as
antigen-specific IFN-γ-producing CD4 T cells) to the site of
infection correlated with earlier restriction of mycobacterial
growth in the lung of BCG-vaccinated mice.33 Consequently,
the Th1 responses in peripheral blood, as assayed by the
frequency of Th1 cells or the ability to produce INF-γ after Mtb
antigen stimulation ex vivo, cannot faithfully reflect the
immune responses that occur in the lung or at least cannot
accurately reflect the rate of Th1 cell migration.

Figure 1 Protective immunity against Mtb infection. Upon exposure to Mtb, antigen-presenting cells (APC) in the lungs process bacterial
antigens and present them to naive T cells, which become activated shortly thereafter. Both B-cell immunity and T-cell immunity are
essential for the successful clearance of bacteria. B-cell-mediated immune responses are represented by the activation of B cells and
subsequently the elevated production of Mtb-specific antibodies. T-cell immunity can be mediated by a variety of T cells, including CTLs,
non-conventional T cells, Th1, Th17, Th2, Treg, TFH and other cells. Among them, cells involved in Th1 responses against Mtb are the
best characterized, and they are composed of multifunctional Th1 cells that secrete IFN-γ, TNF-α and IL-2, Th1/Th17-like cells that
secrete IL-17 and other cytokines, and other uncharacterized T cells. Recent studies also emphasize the protective role of Trm in TB. Trm
cells are a subset of T cells that permanently reside in lung tissue to respond rapidly to re-exposure to cognate antigens.
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Given that the lung is the place where infected bacillus is
cleared, it has been increasingly recognized that tissue resident
memory T cells (Trm) in the lung are critical for protection
against TB 34–36 in addition to the T cells that have migrated into
the lung. Trm cells, expressing mainly the surface markers of
CD69 and CD103, have been recognized as the third subset of
memory T cells with distinct properties of phenotype, migration,
retention, and functional maintenance that are different from
peripheral T cells. Unlike central memory T cells, which migrate
to lymphoid organs in response to L-selectin ligands, and effector
memory T cells, which recirculate between blood and peripheral
tissues, Trm cells permanently reside in non-lymphoid tissues
and therefore cannot be detected in peripheral blood.37 They are
clonally expanded memory T cells that have the ability to
respond rapidly to re-exposure to cognate antigens.38

Although early findings did not characterize the exact role of
Trm in protective immunity against TB using the surface
markers of CD69 and CD103, it has been observed that the
inhibition of mycobacterial growth coincides with the presence
of activated CD4 T cells detected in the lung.39 In addition, it
has been found that memory CD8 T cells in the airway can
confer protection in the absence of peripheral T-cell
recruitment.34 By using fingolimod, a ligand for sphingosine-1
phosphate receptors, to prevent CD4 T-cell egress from the
existing lymph node, it was further demonstrated that memory
T cells residing in the lung were sufficient for earlier BCG-driven
control of an intranasal BCG challenge and that they did not
require help from T cells recruited from the lymph node.35

Notably, the protection did not correlate with the magnitude of
either IFN-γ- or IFN-γ/TNF-α/IL-2-producing Th1 cell
responses, arguing against the concept that these typical Th1
cytokines, even those produced in the lung, act as sufficient
surrogates for protective immunity against TB. The protective
role of lung Trm was recently established by adoptive transfer of
Trm collected from mice that received mucosal BCG
vaccination.36 Phenotypic analysis showed that these Mtb
antigen-specific CD8 Trm (CD8+CD103+CD69+) cells dis-
played prototypical Trm features with significantly higher levels
of IFNG, TNFA and CXCR6 compared to CD8 effector memory
counterparts. In contrast, CD4 Trm cells, defined as CD4
+CD103+CD69+ cells, comprise a mixture of regulatory and
effector T cells, specifically T-bet- and FoxP3-expressing T-cell
subsets, with enhanced IL-10 transcripts. These findings suggest
that lung CD4 T cells confer diverse functions well beyond the
classical Th1 responses that were previously considered to be
correlated with protection; therefore, CD4 T-cell activities
cannot be reflected by typical peripheral Th1 cytokines.36

However, most of the current studies showing the impor-
tance of Trm in Mtb infection are correlational studies. There
is a notable lack of direct evidence demonstrating a causal
relationship between the immune characteristics of Trm and
the protective roles of Trm against TB. Additionally, we cannot
rule out the possibility that Trm may play a pathological role
during TB infection. Furthermore, CD8+Trm and CD4+Trm
may display distinct immune features during microbial
infections. Further studies are required to identify accurate

molecular markers (not limited to CD surface makers) for
TB-specific CD8+Trm and CD4+Trm. Considering that
CD103 was expressed in CD8+ T cells for maintenance in
different types of locations or epithelium, the existence of
transcriptional factors or other biomarkers dictating the
differentiation and maintenance of Trm in the lung is highly
possible. In addition, details on Trm-mediated immunological
events and underlying mechanisms during Mtb infection
remain to be fully characterized. Specifically, these details are
related to antigen-presentation, interactions between immune
cells (for example, macrophages (MΦ)-Trm) or with local cells,
such as epithelial cells, cross-talk between different signaling
pathways, interweaving between different molecular events for
the maintenance of Trm in the lungs, and Trm reactivation and
deletion during reencounters with TB antigens.

DO CLASSICAL TH1 CYTOKINES REPRESENT THE TRUE

FUNCTIONAL SIGNATURE OF PROTECTIVE IMMUNITY?

As discussed above, classical Th1 cytokines are thought to be
inadequate as surrogate protective markers, and new functional
signatures for protective immunity against TB need to be
identified. With the emergence of omics science, TB protective
biomarkers can be identified through large-scale omics studies,
which involve gene expression (transcriptomics), proteins
(proteomics) and metabolites (metabolomics) in the blood
and lungs. Omics approaches provide a great opportunity to
potentially discover new protective biomarkers. Interestingly, a
previously unrecognized signature of type I interferon signaling
has been identified as a key immune mediator for human TB.40

In addition, a 144-transcript signature associated with pul-
monary TB has also been identified.41

Up until now, a series of cytokines, chemokines and other
factors have been shown to be implicated in protective
immunity against TB (Table 1) in addition to IFN-γ. Among
them, IL-17 represents the best characterized cytokine in the
expanding signature panel that illustrates TB protective immu-
nity. IL-17, which is mainly produced by Th17 cells, has been
shown to drive Th1 cell responses by overcoming IL-10-
mediated inhibition after BCG vaccination.84 In addition,
BCG vaccination expands lung resident IL-17-producing CD4
T cells that produce chemokines, recruiting IFN-γ-producing
CD4 T cells after Mtb challenge.39 Although an early study with
Mtb-infected mice shows that Th17 cells had little effect on
infection control,85 IL-17− /− mice infected with hypervirulent
Mtb strain HN878 exhibited increased bacterial burden in
lungs compared to WT B6 mice.56 The fact that adoptive
transfer of ESAT-6-specific Th17 cells partially inhibits Mtb
growth supports the involvement of Th17 in TB protection.86

Human studies also support a protective role for Th17/IL-17
responses by comparing the responses in TB patients and
healthy individuals. It has been reported that the frequency of
Th17 cells in active TB patients is significantly lower than that
in healthy controls and LTB individuals, implicating that Th17
cells may contribute to the protection.87 Taken together, these
results suggest that IL-17 also represents an important mediator
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of resistance to Mtb, which could be considered to be a
surrogate of protection.

During chronic Mtb infection, immune-mediated tissue
damage is frequently more harmful to the host than the pathogen
itself. The balance between pro- and anti-inflammatory signals
determines TB development.88 PD-1, as a mediator of T-cell
exhaustion, has been proven to play a central role in anti-TB
immune responses. Inhibition of PD-1 signaling rescues Mtb-
specific IFN-γ-producing T cells from apoptosis and enhances
the specific degranulation of CD8 T cells for more efficient
protection.89,90 However, PD-1− /− mice are extraordinarily
sensitive to TB.60 Dysregulation of CD4 T cells promotes rather
than controls TB in the absence of PD-1 signaling.61 Therefore,
PD-1 deficient mouse studies suggest that PD-1-mediated T-cell
exhaustion is essential to controlling excessive immunopathology
after Mtb infection. Interestingly, one case report shows that a
patient with advanced NSCLC rapidly developed pulmonary TB
during anti-PD-1 therapy.62 The above studies suggest that
immune modulatory molecules, such as PD-1, should also be
considered in the design of a successful TB vaccine.

Recent studies have demonstrated that it is feasible to identify
novel functional signatures for protective immunity through a
comparison of different immune phenotypes of LTBI, active TB,
etc. Although approximately 1/4 of the world population is
estimated to be infected with Mtb, less than 5–10% of affected
individuals eventually develop active TB diseases. In addition, a
perspective cohort study shows that over half of newly identified
IGRAs-positive subjects reversed to IGRAs-negative in the
second year of follow-up, suggesting that self-clearance of Mtb
infection commonly occurs.91 Thus, representative immunity in
the LTBI population, including transiently IGRAs-positive
individuals, potentially represents an immune status that is
more effective at containing Mtb infection compared to that in
the active TB population. LTBI patients represent a valuable
pool for potential biomarker discovery for protective immunity.
Following this selective strategy, one study found that IL-32 was
a mediator of IFN-γ-vitamin D-dependent antimicrobial
immunity.59 In addition, IL-2, MCP-2, IP-10, IFN-γ, TNFSF14,
MIG, and granzyme B have also been identified as associated
with LTBI.92 A plasma proteomic fingerprint that distinguished
active TB from LTBI has also been identified.93 However, it is
also possible that the immune status in LTBI only represents
protective outcomes, not true protective immunity that can
successfully control the development of active TB in humans.

The distinct immune profiles between LTBI and active TB
infection do not appear to be limited to circulating cytokine/
chemokines. Metabolic products may also be involved in TB
development. It was shown that decreased serum 5-oxoproline
in TB patients is associated with pathological damage in the
lung.94 Metabolic profiles of decreased activity of indoleamine
2,3 dioxygenase 1 (IDO1) and increased phospholipase activity
were observed specifically in LTBI but not in active TB
patients.95 These results suggest that LTBI and active TB
display different metabolic profiles. However, we still cannot
conclude that these differentiated profiles of cytokine/chemo-
kines and metabolic products are driving immune protection

or simply reflecting the outcomes of successful control of Mtb
infection. Further animal and human studies should be
implemented to investigate the exact roles of the above
signatures during Mtb infection.

DO HETEROGENEOUS TH1 CELLS CONFER

COMPREHENSIVE T-CELL-MEDIATED PROTECTIVE

IMMUNITY?

While the Mtb-specific Th1 population is highly heteroge-
neous, it still remains unknown which subpopulation produ-
cing IFN-γ plays a more critical role against Mtb infection.
First, Mtb contains more than 4000 protein antigens, and there
is extensive diversity of immunodominant responses in infected
individuals. In addition, gene expression profiles of Mtb are
highly dynamic, depending on different immunological/phy-
siological stresses or microenvironments. Mtb could change its
gene expression profile from active replication to slow or non-
replication status during infection to fit certain immunological/
physiological stresses or microenvironments, and the resulting
protein expression variations might therefore impact the
protective capacity of antigen-induced T cells.96 Thus, the
immune responses of T cells derived from PBMC or BAL may
not be the ones that are specifically desired for currently
existing pathological Mtb antigens. In other words, the T-cell
immune responses that are driven by current TB vaccine
candidates may not truly cover protective Mtb antigens.

One study provided evidence that protective CD4 T cells
targeting Mtb cryptic epitopes conferred superior protection to
those recognizing immunodominant Mtb epitopes by eliciting
a higher proportion of T-betintKLRG1− CD4 T cells.97 By
comparing the protective efficiency of ESAT-6 and a truncated
ESAT-6 molecule (Δ15 ESAT-6) that lacks the immunodomi-
nant ESAT-6 epitope, it was shown that the most efficient
protection against Mtb aerosol challenge is mediated by the
subdominant T-cell repertoire primed by Δ15 ESAT-6.98 In
this regard, definition of true protective or pathological Mtb
antigens and/or epitopes is certainly critical for an improved
understanding of TB immunobiology and for the development
of vaccines and immunodiagnostics.

Second, Th1 cells can gain the capacity to secrete several
cytokines, and these ‘multifunctional’ Th1 cells mainly produce
IFN-γ, TNF-α, and IL-2 (Figure 1).99 However, the exact roles of
multifunctional Th1 cells in TB diseases remain controversial.
Several studies show higher frequencies of IFN-γ+TNF-α+IL-2+
Mtb-specific CD4 T cells in LTBI compared to TB patients.100–103

However, other studies have found that frequencies of IFN-γ
+TNF-α+IL-2+ CD4 T cells increased in active TB patients and
normalized after anti-TB treatment.104–106 In addition, there is
evidence indicating that most multifunctional T cells produce
cytokines in a sequential fashion. For example, it was proven that
multifunctional Th1-skewed cytokine responses (IFN-γ, IL-2
andTNF-α) are initiated asynchronously and that TNF-α pro-
duction generally precedes IFN-γ and IL-2 synthesis through
time-dependent, single-cell analysis of primary human T cells.107

Third, the heterogeneity of Th1 cells also comes from a new
subset of Th1/Th17-like cells coexpressing T-bet and RORγt,
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which exhibit Th1-like and Th17-like characteristics.108

Although Th1/Th17-like cells were proven to be pathogenic
in the gut of patients with Crohn’s disease,15 the exact roles of
Th1/Th17-like cells in TB patients are unclear. One study
demonstrated that higher frequencies of Th1/Th17-like cells,
the main source of IL-17, are highly correlated with disease
severity in TB patients.109 Studies of Mtb-specific memory
T cells have revealed that CCR6+CXCR3+CD4+ T cells, dis-
playing hallmarks of both Th1 and Th17 transcriptional
programs, are significantly increased in LTBI donors compared
to healthy controls.110 Furthermore, isolated CXCR3+CCR6+

CD4+ T cells from LTBI individuals exhibit higher proliferative
ability upon stimulation with Mtb antigens.111

Finally, deep sequencing T-cell receptor (TCR) of T cells
stimulated by Mtb antigens demonstrates that human memory
CD4+ T-cell clones are highly heterogenic in function, and
different patterns of clonotype sharing among three Mtb-
specific CCR6+ T-cell subsets were observed.112 Thus, Mtb-
specific Th cells are comprised of not only clones polarized
toward a single fate but also clones whose progenies have
acquired multiple fates. However, the exact molecular mechan-
isms by which the heterogeneities of Mtb-specific Th cells are
shaped and how these heterogeneities dictate the pathological or
protective outcomes of Mtb infection remain to be elucidated.

Thus, the current Th1 cell responses defined by limited
known antigen specificity and classical cytokines profiles
cannot represent comprehensive protective immunity due to
the heterogeneity of Th1 cells. It is reasonable to hypothesize
that only some TB-specific Th1 cells or T cells are truly and
fully protective and that only these T cells should serve as
targets for new TB vaccines. To overcome this limit, a better
solution should analyze not only Th1 cells but also other
T cells, at single-cell level, to clearly delineate TCR specificity
and characterize each TB-specific T-cell in Mtb infection.

DO HUMORAL IMMUNE RESPONSES PROVIDE

PROTECTION AGAINST MTB INFECTION?

Unlike well-established T-cell-mediated immune responses, the
role of humoral immune responses remains largely controversial.
Humoral immunity has long been believed to play little or no
function against Mtb, an intracellular pathogen that is tradition-
ally considered to be out of the reach of antibodies. However,
this view has been progressively changing. Recently, an antibody
profiling study on Mtb-specific humoral responses revealed that
LTBI individuals have unique antibody Fc functional profiles,
selective binding to FcγRIII, and distinct antibody glycosylation
patterns that clearly distinguish them from active TB patients.113

Most notably, the PPD-specific antibody purified from the sera
of LTBI, but not active TB, could inhibit Mtb growth in
macrophages.113 The potential involvement of humoral immu-
nity in Mtb defense is further supported by evidence that passive
transfer of Mtb-specific monoclonal antibodies,114–117 intrave-
nous immunoglobulins,118 and homologous immune sera119,120

is efficient at providing protection against Mtb infection in
murine models. On the other hand, another study has shown
that the blocking activity of antibodies against Mtb is dependent

on antibody isotype and independent of Fc alpha receptor
expression on host cells.121 Furthermore, antibodies from unin-
fected healthcare workers who had no prior evidence of latent TB
infection, a subset of ‘restrictors’, show moderate protection
against Mtb in aerosol-challenged mice, but this protection is
absent with antibodies derived from Mtb active patients.122

Taken together, the exact protective role and underlying
mechanisms of antibodies against TB need to further defined,
as antibody-mediated potential protection might be an impor-
tant contributor to the true functional signature of protective
immunity. More importantly, emerging evidence suggesting the
protective effects of antibodies implicates that our current view
of TB immunobiology is still in its infancy stage. More protective
paradigms are still hidden and waiting to be identified.

CONCLUDING REMARKS

The lack of useful surrogate markers for protective immunity
hinders TB vaccine development. Although antigen-specific
Th1 cytokines have been currently used to determine the
protective efficacy of TB vaccines, vaccine candidates with a
strong ability to induce Th1 cytokine production did not
confer full protection against TB in humans. Future studies
using integrated omics and single-cell sequencing to elucidate
the comprehensive, delicate, precise T-cell responses in the
lung will eventually discover true protective functional signa-
tures. The recent findings on the protective role of antibodies
suggest that antibodies might be an important contributor to
the true functional signature of protective immunity.
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