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Abstract: Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like
epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as
a possible treatment against disease development. However, the evidence for these effects is limited.
Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague
Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status
epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The
lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological
treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and
28 days after SE. TNF-α, IL-6, and IL-1β concentrations were quantified. TOP and TAL (50 mg/kg)
increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS
frequency, as well as decreasing TNF-α and IL-1β concentrations in the hippocampus. In conclusion,
the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic
effects, possibly by decreasing neuroinflammation.

Keywords: thalidomide; antiepileptogenic; anti-ictogenic; neuroinflammation; temporal lobe epilepsy

1. Introduction

Temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults [1,2];
it is characterized by focal seizures originating from one of the temporal lobes [3,4]. TLE
usually develops secondary to an initial brain insult such as trauma, infection, or status
epilepticus (SE). The initial insult is followed by a latent period (epileptogenesis), after
which spontaneous recurrent seizures (SRS) occur [5]. Although there has been signifi-
cant progress in research and treatment over the past few decades, epilepsy still affects
approximately 65 million people globally [6], and 30% of epileptic patients are refractory to
pharmacological therapies [7]. In addition, there are some concerns about current epilepsy
treatments. First, existing medications do not address all comorbidities that occur in epilep-
tic patients, for example, neuroinflammation and neuronal loss [8,9], and, unfortunately,
no medication has been shown to prevent epilepsy in people at risk or modify disease pro-
gression [10]. Therefore, it is necessary to find new antiepileptic and/or antiepileptogenic
drugs to treat the disease [11–13].

Epileptogenesis is a dynamic process that transforms a healthy brain into a tissue
capable of generating SRS, resulting in an epileptic condition and/or the progression of
epilepsy after it is established (often termed “secondary epileptogenesis”) [14,15]. This pe-
riod starts when the injury has been produced and ends when the first SRS appears [16–18].
This offers a window of opportunity following acute brain insults that allows intervention
with preventive treatment [19,20]. There is evidence that neuroinflammation plays a key
part in epileptogenesis [21,22]. In turn, it affects other processes such as neurogenesis
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and leads to abnormal reorganization of neuronal networks, mainly in the hippocampus,
further promoting neuronal death [23–25]. Consequently, inhibiting neuroinflammation
may be effective for the reduction or even prevention of epileptogenesis. In animal models
of acquired epilepsy, several drugs have been shown to have antiepileptogenic properties
or disease-modifying effects, as well as anti-inflammatory properties. These promising
agents include atorvastatin, ceftriaxone, topiramate (TOP) [20], levetiracetam [26], and
thalidomide (TAL) [27] among others.

TAL was synthesized as a sedative and antiemetic drug in 1950. However, due
to its high teratogenicity incidence, it was withdrawn [28]. In 1965, it was observed
that patients with leprosy erythema nodosum treated with TAL had a significant health
improvement [29]. Thus, the Drug and Food Administration (FDA) approved the use
of TAL for leprosy in 1998, and in 2006, it was approved for the treatment of multiple
myeloma [30]. Regarding epilepsy, TAL has shown antiepileptic effects in different ani-
mal models [27,31,32] and in patients with refractory epilepsy [33]. Although its possible
antiepileptic mechanism of action is not completely understood, it has been closely associ-
ated with immunomodulatory and neuromodulatory actions [30]. The inhibition of tumor
necrosis factor alpha (TNF α) [34,35], nitric oxide signaling, N-methyl-D-aspartate acid
receptor (NMDAR), cyclooxygenases (COXs), and opiopeptidergic transmission by TAL
may contribute to its anti-seizure activity [32,36,37].

Herein, the possible antiepileptic effect of TAL was evaluated using an animal model
of TLE induced by lithium and pilocarpine in rats. In addition, whether this property is
due to an anti-inflammatory effect in the hippocampus was investigated.

2. Results
2.1. Antiepileptogenic Effect of Thalidomide

Figure 1 illustrates the effect of treatment with TOP (60 mg/kg) or different TAL doses
(25 and 50 mg/kg, i.p.) on the latency to the first SRS. A SRS was scored when rats reached
≥4 in Racine scale (tonic clonic bilateral seizures) [38]. A two-way ANOVA revealed a
significant effect of pharmacological treatments (F(3, 60) = 13.78, p ≤ 0.001) and evaluation
time (F(2, 60) = 12.20, p ≤ 0.001), but the interaction between the two factors (F(8, 60) = 1.75,
p = 0.106) was not significant; therefore, global comparisons were made. The post-hoc
analysis showed an increased latency to the first convulsion in the TAL50 and TOP groups
compared with the SE group at all periods (8, 18, and 28 days). In contrast, no significant
change in the latency to the first SRS was found for TAL at a dose of 25 mg/kg. With
respect to the evaluation time, the global latency to the first SRS was lower at day 8, greater
at day 18, and intermediate at day 28. The SE group had the shortest latency to the first
SRS at all times evaluated (4.8 ± 0.60; 6.60 ± 0.71 and 5.33 ± 0.80 days). In this study, one
rat died as a result of SE and was replaced.

2.2. Anti-ictogenic Effect of Thalidomide

A two-way ANOVA showed significant differences in the number of seizures for
treatment (F(3, 57) = 14.88) and post-SE time (F(3, 60) = 20.88); however, the interaction
between factors (F(3, 60) =1.18) was not significantly different, thus global comparisons
were made. For seizure duration, the analysis showed a significant difference for treat-
ment (F(3, 57) = 31.78), time post-SE (F(3, 60) = 16.99) and the interaction between them
(F(3, 60) = 3.94), thus simple main effects were analyzed.

An anticonvulsant effect of TAL was observed; it decreased the duration of epileptic
seizures compared with the SE group on days 18 and 28. It also reduced the SRS number
during all periods of evaluation (8, 18, and 28 post-SE day). The number and duration of
epileptic seizures increased significantly from days 8 to 28 post-SE in all groups (Table 1). It
is important to note that the number and duration of seizures were expected to increase
given more days of observation. Indeed, this is the case for the SE group, where the total
number of seizures significantly increases during the temporal disease course. However,
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both TAL doses (25 mg/kg and 50 mg/kg) and TOP (60 mg/kg) significantly reduced SRS
number and duration.
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recurrent seizure observed 8, 18 and 28 days after status epilepticus (SE). Each bar represents the
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among times, lowercase letters designate p ≤ 0.05 among treatments within times, two-way ANOVA
followed by Student-Newman-Keuls post-hoc test. The tables show the results of statistical analysis.

2.3. Anti-Inflammatory Effect of Thalidomide

In order to explore the anti-inflammatory activity of TAL, the hippocampal concen-
trations of TNF-α, IL-6, and IL-1β was quantified. The results are shown in Figure 2. A
two-way ANOVA revealed that both treatment and time lowered TNF-α concentration in
the hippocampus. Since their interaction was significant (F(4, 75) = 15.63), simple main ef-
fects were analyzed. TNF-α levels were approximately 20 pg/mg in the C and TOP groups,
and they remained at that value during the 3 periods evaluated (8, 18 and 28 post-SE). In
the SE group, TNF-α concentration was 46.22 pg/mg on day 8, and it decreased signifi-
cantly to 35.23 and 28 pg/mg on days 18 and 28, respectively. In the TAL25 group, TNF-α
concentration was 20 pg/mg on day 8, increasing significantly at day 18 (30.51 pg/mg)
and 28 (27.11 pg/mg). Regarding TAL treatment (50 mg/kg), TNF-α concentration on
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day 8 and 18 was around 15 pg/mg, it increased significantly to 25 pg/mg on day 28.
On day 8, TNF-α concentration in the SE group increased significantly. Pharmacological
treatment with TAL or TOP significantly returned TNF-α levels to control values, showing
a protective effect against the increment induced by SE. On day 18, TNF-α concentration
is still increased in the SE group; 25 mg/kg TAL no longer protects against this increase,
while treatment with a higher TAL dose or TOP lowered TNF-α concentration (it showed a
similar value to controls). Finally, at day 28, only the protective effect of TOP was observed
(Figure 2A).

Table 1. Effect of thalidomide and topiramate on the number and duration of spontaneous recurrent
seizures (SRS) observed 8, 18 and 28 days after SE.

Number of Seizures

TIME POST-SE
(Days) SE TAL25 TAL50 TOP

8 6.00 ± 0.68 a 4.00 ± 0.63 b 1.66 ± 0.55 b 1.33 ± 0.66 b

18 8.50 ± 1.11 a 5.16 ± 0.87 b 4.00 ± 1.06 b 4.50 ± 1.56 b

28 13.80 ± 1.57 a 8.50 ± 1.52 b 5.80 ± 0.70 b 6.16 ± 0.60 b

Duration of Seizures (s)

8 191.97 ± 30.34 97.20 ± 15.55 32.21 ± 14.69 13.21 ± 10.91
18 311.91 ± 44.6 a 137.56 ± 28.87 b 118.61 ± 31.20 b 69.16 ± 31.27 b

28 636.78 ± 73.58 a 285.15 ± 62.03 b 154.18 ± 19.43 b 119.16 ± 14.99 b

Data represents the mean ± S.E.M. of 6 animals per group. The different lowercase letters denote p ≤ 0.05 among
treatments within times, two-way ANOVA followed by the Student-Newman-Keuls post-hoc test.

IL-1β levels were approximately 44 pg/mg in the C group and they remained at that
value in the 3 periods evaluated (8-, 18-, and 28-days post-SE). In the SE group, IL-1β
levels were 171.24, 162.49 and 149.26 pg/mg on days 8, 18 and 28, respectively. IL-1β
concentration was 80 pg/mg in rats treated with TAL (25 mg/kg) at day 8, 115 pg/mg
on day 18 and 144 pg/mg on day 28. Rats treated with 50 mg/kg TAL showed a similar
IL-1β concentration to the C group (44.16 pg/mg) at day 8; however, IL-1β increased to 105
and 109 pg/mg on days 18 and 28, respectively. IL-1β concentration in the TOP group was
74.91 pg/mg at day 8 and 109 pg/mg on days 18 and 28. IL-1β concentration increased
significantly on days 8, 18 and 28 in the SE group compared with C rats. On the same
day of evaluation, all treatments (TAL and TOP) showed a protective effect against the
IL-1β increment induced by SE. These treatments significantly decreased the levels of this
proinflammatory cytokine. It is important to note that the TAL50 group showed values
similar to the C group. On day 18, TAL25, TAL50 and TOP decreased IL-1β concentration
with respect to the SE group; however, all these groups presented a higher concentration
than the C group.

On day 28, only the TAL50 and TOP groups maintained the IL-1β concentration below
the SE group, although the values were far from the values of the C group (Figure 2B).
Finally, with respect to IL-6 no significant differences were found (Figure 2C).

Additionally, Pearson correlations were performed among the variables, to know
if increases in the hippocampal concentrations of TNF-α, and IL-1β are correlated with
the latency to the first seizure or number and duration of seizures. The analysis showed
three significant correlations (Figure 3). In the TAL50 group on day 8, the latency to the
first seizure and TNF-α concentration were significantly correlated (r = −0.83, p = 0.04).
It shows that if TNF-α concentration increases, the latency to the first seizure is reduced
(Figure 3A). The second correlation was between the number of seizures and TNF-α
concentration in the TOP group on day 28 (r = 0.83, p = 0.04, Figure 3B). It shows that if
TNF-α concentration increases, the number of seizures also increases. The third correlation
was between the duration of seizures and IL-1β concentration in the TAL25 group on day
18 (r = 0.86, p = 0.03; Figure 3C). This indicates that if IL-1β concentration increases, the
seizure duration increases too.
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3. Discussion

Despite the wide range of pharmacological options to treat epilepsy, most drugs
focus exclusively on preventing or suppressing seizures, which are the final product of
epileptic process [5]. Recent experimental data in rodents indicates that immediate use of
certain anti-seizure drugs after SE or trauma reduces the risk of presenting epilepsy and
other alterations related to this disease; thus, these drugs are known as antiepileptogenic
drugs [20] and offer the opportunity for disease prevention. Additionally, many studies
indicated that inflammation plays an important role in the initiation and maintenance of
epileptogenesis and epilepsy [39–42]. This has raised the question of whether drugs with
anti-inflammatory activity could constitute new therapies for the treatment of epilepsy
and/or its development (epileptogenesis). As far we know, herein is the first time that
antiepileptogenic and anti-ictogenic effects of TAL in a chronic animal model of epilepsy
have been describe. Similarly, herein a novel finding is that anti-inflammatory properties
of TAL are related to anti-ictogenic and anti-epileptogenic effects.

Our results show that one-week treatment with TAL (50 mg/kg) increases the onset
of the first seizure, suggesting potential antiepileptogenic activity. Furthermore, TAL
showed anti-ictogenic effects during the chronic disease phase since it decreased both
the number and duration of SRS. There are few studies that support the effect of TAL
as an “antiepileptic drug”. For example, TAL significantly decreased the frequency and
intensity of seizures in patients with Rasmussen syndrome; a syndrome characterized by
CNS inflammation [43]. Similar results were reported in a clinical study on patients with
refractory epilepsy [33]. In preclinical studies, TAL significantly decreased acute seizures
induced by both pentylenetetrazol (PTZ) [31,44] and pilocarpine in mice [32] and rats;
additionally, TAL showed protection of the CA1 hippocampal region [45].

TAL has multiple mechanisms of action; thus, the exact mechanisms underlying its
antiseizure effects remain elusive. For instance, it has been reported that TAL can act
as a neuroprotective drug by activating the PI3K/Akt signaling pathway [46], which is
critical for cell survival and growth. Another mechanism may be an increase in inhibitory
transmission by TAL interaction with the allosteric site of the GABAA receptor. Docking
simulations have shown that TAL and its analogs act on this receptor [47,48] and may cause
a possible antagonism to PTZ, based on the effectiveness of TAL in this animal model [32].
Recently, a study demonstrated that TAL exerted a dose-dependent anticonvulsant effect
against clonic seizures induced by PTZ in mice. The authors suggested that opiopeptidergic
transmission and its interaction with neuronal NO signaling may contribute to the anti-
seizure activity of TAL [44].

The results showed that SE significantly enhanced the level of hippocampal proin-
flammatory cytokines at all evaluation times compared with the control group, particularly
TNF-α and IL-1β. This confirms that inflammation participates in the development of
epilepsy. This agrees with other works, where it was established that there is a four-fold in-
crease above baseline values in the concentration of proinflammatory cytokines [49]. TNF-α
can activate the TNFR1 receptor on astrocytes, which mediates triphosphate/adenosine
diphosphate (ATP/ADP) release. This, in turn, activates P2Y1 purinergic receptors, causing
an increase in intracellular Ca2+, resulting in glutamate release that activates pre and post
synaptic NMDA neuronal receptors to increase neuronal excitability [50,51]. TNF-α also
up-regulates microglial glutaminase, inducing glutamate release from gap junction CX32
hemi-channels, which promotes neuroexcitotoxicity [52]. Several studies have proposed
that gap junctions play a key role in the synchronization of neuronal circuits. Hence, it has
been postulated that enhanced gap junctional communication underlies the mechanism
involved in both the generation and maintenance of seizures [53–55]. Studies in human
fetal skin fibroblasts and in rat liver epithelial cells show that TAL enhanced the gap junc-
tional, which correlates to a teratogenic effect [56,57]. On this basis, TAL could increase the
neuroexcitability; however, our results show the opposite.

On the other hand, TNF-α promotes GABAA receptor endocytosis, decreasing neu-
ronal inhibition [58]. On these bases, inhibition of this cytokine by TAL may help to restore
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the balance between excitatory and inhibitory systems and explain the reduction in SRS
observed herein (Figure 4A).

TAL is considered an immunomodulatory drug with anti-proliferative, anti-inflammatory,
and anti-angiogenic activities [59,60]. It can downregulate TNF-α [61,62], IL-6, and IL-
1β concentrations [60,63]. In vitro, TAL selectively inhibits TNF-α production of human
monocytes stimulated with lipopolysaccharide (LPS) [62]. There are many proposed mech-
anisms to explain the TNF-α decrease due to TAL. One of them suggests that TAL reduces
TNF-α protein synthesis and inflammatory pathways by destabilizing the 3′-untranslated
region of TNF-α mRNA [64,65]. Another suggests that reduced NF-κB function decreases
TNF-α activity. The NF-κB signaling pathway plays a central role in various immuno-
logical responses and has been shown to be a key regulator of inflammatory genes, such
as TNF-α and IL-8. NF-κB inhibition is associated with reduced inflammation in animal
models [34,35]. TAL blocks NF-κB activation by diminishing IKK complex function, which
keeps IkB active in its non-phosphorylated form, which in turn impedes the translocation
and activation of NF-κB [66] (Figure 4B). Additionally, it has been reported that TAL inhibits
MyD88 (myeloid differentiating factor 88) expression at the RNA and protein levels [67].
MyD88 is an important upstream mediator of NF-kB signaling and is also a key adapter
molecule for innate immune response signaling, programmed cell-death, and LPS-induced
septic shock syndrome [35] (Figure 4B). Other TNF-α regulators are reactive oxygen species
(ROS) [68] and α1-acid glycoprotein (AGP) [69]. Finally, TAL binds to cereblon (CRBN), a
protein that functions as a substrate receptor of an E3 ubiquitin ligase complex to degrade
proteins [59,70,71], such as the transcription factors IKZF1 (Ikaros) and IKZF3 (Aiolos),
which leads to IL-2 upregulation [72,73]. However, there is no evidence to associate CRBN
with epilepsy, the anti-inflammatory or anti-ictogenic effects of the drug. In fact, the lack of
CRBN in CRBN KO mice does not affect PTZ-induced seizures in these animals [74].

With respect to IL-1β, the interaction with its receptor, IL-1R1, promotes the phos-
phorylation of the NR2B subunit of the NMDA receptor by Scr kinase, which increases
intracellular calcium as well as excitotoxicity [75]. IL-1β can also increase glutamate con-
centrations by both inhibiting astrocytic reuptake [76,77] and increasing astrocytic release
either directly or by microglial TNF-α release [78–80]. Moreover, in endothelial cells and
perivascular astrocytes, IL-1β impairs blood-brain barrier permeability, contributing to
inflammation [81]. Finally, several studies show that L-1β concentrations are augmented in
TLE, decreasing by 30% GABAergic neurotransmission and contributing to neuronal hy-
perexcitability [82–84]. All these mechanisms contribute to seizure generation [58,85]. They
also explain why rats with a significant IL-1β increase show a lower latency to the first SRS
(antiepileptogenic effect). TAL treatment, particularly the higher dose (50 mg/kg) at day 8
post-SE, decreases IL-1β concentrations. This could be related to both its anti-ictogenic and
antiepileptogenic effects. In accordance, a study using cultures of normal human whole
blood stimulated with LPS found that TAL suppressed IL-1β [63].

Surprisingly, IL-6 did not show significant changes in the SE group. In agreement with
this finding, no changes in IL-6 concentration were found in the cortex and hippocampus
of rats subjected to kindling [86]. In contrast, there are data indicating that this cytokine is
increased after SE in the parietal cortex, hippocampus, and amygdala of rats treated with
kainic acid [49] and in the serum of patients diagnosed with TLE [87]. TAL decreases IL-6
levels in human lung fibroblasts [88], but otherwise there is no other information about
its effects on IL-6, especially in epileptic tissue. Differences in IL-6 levels depend on the
type of tissue sample and the moment when the evaluation is completed. Therefore, it is
possible that IL-6 could augment along the course of the disease. However, since at the
evaluation times of this study IL-6 levels did not change, this suggests that IL-6 did not
intervene in the inflammation generated during epileptogenesis.

TOP was originally approved for the treatment of both partial-onset and generalized-
onset seizures [89]. However, it has also shown efficacy against several neurological
disorders, including pain syndromes, migraine, and treatment for drug-abuse [90–93].
Our data show that one week of TOP treatment increased the latency to onset of the first
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epileptic seizure, as well as seizure number and duration of seizures. This agrees with
other studies showing that TOP administration after pilocarpine-induced SE was effective
in reducing the number of rats that developed epilepsy (>60%) compared with the positive
control group [94]. Similar results were reported by Suchomelova et al. (2006) [95]. A
neuroprotective effect in the pilocarpine model was also reported; TOP treatment sup-
pressed SE-induced neuronal damage in limbic structures, including the dorsal and ventral
hippocampus, basolateral amygdala, and piriform cortex. The authors suggest that neu-
roprotection is a key mechanism of TOP against SRS and concomitant emotional and
cognitive impairments [96]. In contrast, Mazarati et al., (2007) observed that TOP failed to
block epileptogenesis in a kindling model but exhibited age-dependent disease-modifying
effects [97]. The antiepileptic mechanisms proposed for this drug are the blockade of
voltage-gated sodium channels [98], GABAergic transmission potentiation via the GABAA
receptor [99], and AMPA/KA glutamate receptor antagonism [100]. The overall effect is to
decrease excitatory activity and favor inhibitory activity.

Additionally, in both preclinical and clinical studies, TOP decreased the concentra-
tion of various proinflammatory cytokines, such as IL-1β, IFN-7, IL-6, IL-10, IL-17 and
TNF-α [101,102]. This data is in accordance with our results showing a decrease in the
concentrations of IL-1β and TNF-α in the TOP group. Its anti-inflammatory property has
been associated with two of its main mechanisms of action as an antiepileptic drug. The
first is by modulating GABA signaling, since GABA may also act as an immunomodulatory
molecule that modulates cytokine release [103,104]. The second mechanism involves block-
ade of voltage-gated sodium channels [104]. For example, phenytoin, an antiepileptic drug
that blocks voltage-gated sodium channels, decreases IL-1β and TNF-α release [105]. In
addition, has been reported that TOP has anti-apoptotic features [106,107]. Taken together,
this information suggests that the anti-inflammatory and anti-apoptotic properties of TOP
could be important for its antiepileptic effects.

Inflammation is an important factor for epileptogenesis [108–110] and epilepsy. There-
fore, anti-inflammatory drugs could be integrated into epilepsy therapy. Indeed, the
addition of anti-inflammatory drugs to antiepileptic drugs has been shown to decrease
epilepsy-related neurological problems in clinical studies [111–113]. Further studies are
necessary in order to understand the impact and mechanisms of the inflammatory pro-
cess during epileptogenesis. The investigation of various anti-inflammatory drugs and
antiepileptics that can prevent epilepsy development after an initial precipitating injury
should be intensified. This constitutes one of the main challenges in the field of epilepsy.
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Figure 4. (A) Active microglia release proinflammatory cytokines, such as tumor necrosis factor alpha
(TNF-α) and interleukin 1 beta (IL-1β). TNF-α induces microglial glutamate release through two
mechanisms (1) from gap junction CX32 hemichannels [52] and (2) by activating the TNFR1 receptor
in astroglia, which in turn release ATP/ADP to activate the P2Y1 purinergic receptor increasing
the intracellular calcium concentration. Glutamate interacting with NMDA receptors promotes
neuroexcitotoxicity [50,51]. TNF-α also induces GABAA receptor endocytosis and recruits AMPA
receptors lacking GluR2 subunits, a conformation that favors the Ca2+ entry, amplifying the glutamate
response [58] and activating TNFR1 neuronal receptors inducing cell death. IL-1β promotes NMDA
receptor phosphorylation by interacting with its IL-1R1 receptor, which increases intracellular Ca2+

and excitotoxicity [75]. IL-1β can also increase glutamate concentrations by inhibiting its recapture
by astrocytes and neurons [76,77], as well as by increasing astrocytic release [78–80]. Thalidomide
(TAL) blocks IL-1β and TNF-α activity, decreasing neuronal damage and inflammation [34,35,73].
(B) Putative mechanism of action. TAL blocks TNF-α signaling by destabilizing the 3’unstranslated
region (3´UTR) of TNF-α mRNA, inhibiting TNF-α protein synthesis [73]. TAL blocks nuclear factor
kappa B (NF-κB) signaling which induces the expression of various pro-inflammatory genes by
blocking the IKK complex [34,35] and via myeloid differentiating factor 88 (MyD88) [67]. Finally,
TAL also can inhibit TNF-α by blocking α1-acid glycoprotein (AGP) [69]. Orange arrows represent
the IL-1β processes while purple arrows represents the TNF-α processes. TAL mechanism are in red
arrows. Imagen created with BioRender.com (accessed on 20 February 2023).

4. Materials and Methods
4.1. Animals

Adult male Sprague Dawley rats weighing 260–300 g were used in this study. Rats
were maintained individually in acrylic cages under controlled environmental conditions:
regulated temperature (22 ± 2 ◦C), light/dark cycle (12:12 h; lights on 7:00 a.m.) plus
food and water available ad libitum. All the experimental procedures were performed in
accordance with the Mexican law (SAGARPA NOM-062-Z00-1999) and the NIH Guide for
the Care and Use of Laboratory Animals. The protocol was approved by the local ethics
committee for animal experimentation (CEI-ENCB-004-2017). All efforts were made to
reduce the number of animals used and to minimize their suffering.

4.2. Experimental Groups

The animals were randomly allocated to one of the following five groups (n = 18 per
group): (1) a control group (C), (2) a group subjected to SE (3) a SE group treated with
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25 mg/kg TAL (TAL25) (4) a SE group treated with 50 mg/kg TAL (TAL50) and (5) a SE
group treated with 60 mg/kg TOP (TOP is used as a control antiepileptic drug). For the
quantification of hippocampal cytokines, the above groups were divided into 3 subgroups
according to the day of sacrifice: 8, 18, and 28 post-SE (n = 6 per group, Figure 5).
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Figure 5. Experimental design. At time 0, status epilepticus (SE) was induced in male Sprague-
Dawley rats via administration of lithium-pilocarpine. One day after SE induction rats received
daily pharmacological treatment with topiramate (TOP) or thalidomide (TAL) for seven days. One
day after treatment the first determination was performed (evaluation time 8). The animals were
sacrificed, and hippocampus were collected to determine the concentrations of interleukin IL-1β, IL-6
and necrosis tumoral factor-α (TNF-α) at three different evaluation times: 8, 18 and 28 post-SE days
respectively. From 1 to 28 days post-SE, rats were video monitored during 24 h/7 days to observe the
latency to the first spontaneous recurrent seizure (SRS) as well as, SRS number and duration.

4.3. Status Epilepticus Induction

Animals were administered lithium chloride (127 mg/kg, i.p.; SIGMA, St. Louis,
MO, USA) for 19 h before receiving scopolamine methyl-bromide (1 mg/kg, i.p.; SIGMA,
St. Louis, MO, USA) [114,115]. Thirty minutes later, the animals were administered pi-
locarpine hydrochloride (50 mg/kg, i.p.; SIGMA, St. Louis, MO, USA) to induce SE.
Convulsions were scored according to the Racine scale (Table 2). The onset of SE was
defined as continuous convulsive activity for more than 5 min, reaching stage 4 or 5 on the
Racine scale [38].

Table 2. Racine Scale.

Score Behavioral Stage

0 No change in behavior
1 Sudden behavior arrest, motionless staring (with orofacial automatism)
2 Head nodding
3 Forelimb clonus with lordotic posture
4 Forelimb clonus with rearing and falling
5 Generalized tonic—clonic activity with loss of postural tone, wild jumping

After 60 min of SE, rats were administered with an intramuscular (i.m.) injection of
diazepam (5 mg/kg; PISA, Mexico city, Mexico) to suppress the behavioral seizure and
were placed on an ice bed for 1 h to reduce the hyperthermia produced by SE [116,117].
The animals received a second dose of diazepam (5 mg/kg, i.m.; PISA, Mexico city, Mexico)
eight hours after receiving the first dose. Finally, the rats received an injection of NaCl
0.9% (5 mL s.c.) for rehydration and were housed overnight in a room at 17 ± 2 ◦C.
Nutritional supplements were provided as a source of food until all the rats returned to
eating pellets (~3 days) [118]. Beginning two days after SE, the room temperature was
returned at 22 ± 2 ◦C. To monitor animal health, the experimenters constantly observed
them for 8 h after the pilocarpine injection, 3 times a day for an hour for the next 3 days,
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and daily until the end of the experiment. Control rats only received 0.9% NaCl injections
(PISA, Mexico city, Mexico) at each time point.

4.4. Spontaneous Recurrent Seizure Monitoring

The rats were placed in individual acrylic cages and continuously (24 h/7 days) video
monitored using a camera system (Steren Model CCTV-212, Mexico City) one day after
SE induction until 28 days later (Figure 5). Video analysis was performed using the H.264
PlayBack program for Windows (v.1.0.1.15, Infinova, Guangdong, China) to register the
latency to the first SRS, as well as the number and duration of seizures. The videos were
analyzed by trained blinded observers using the fast-forward speed (eight times normal
speed) of the video recorder. Once seizure-like activity was observed, the videotape was
rewound to the beginning of the behavior and examined at real-time speed [118]. An animal
was considered to have SRS when reaching ≥4 in Racine scale [38]. With these criteria, SRS
were considered to be tonic clonic bilateral seizures, as suggested by Goffin et al. 2007. In
this classification, stages 1–3 were referred to as focal seizures and grade 4–6 as secondarily
generalized seizures [119]. Datasets were generated, recording the latency to the first
seizure, as well as the total number and duration of seizures per evaluation period (8, 18
and 28 post-SE days).

4.5. Thalidomide and Topiramate Treatment

Drugs were administered i.p. daily for seven days after SE induction (Figure 5).
Different doses of TAL (Cayman Chemical, Mexico city, Mexico) were suspended in PBS
with 0.5% carboxymethyllcellulose (Sigma-Aldrich St. Louis, MO, USA), while TOP was
dissolved in water (PISA, Mexico city, Mexico).

4.6. Hippocampal Quantification of TNFα, IL-6 and IL-1β

On days 8, 18, or 28 after SE induction, animal subgroups were killed by decapitation
after an anesthetic overdose with sodium pentobarbital (PISABENTAL®; 60–90 mg/kg i.p).
All efforts were made to minimize animal suffering. After decapitation, the hippocampus
was removed [120] and stored at −80 ◦C until use (Figure 5). To obtained hippocampal
homogenates, 50 mg of tissue was homogenized by sonication on ice in 200 µL of lysis
buffer: phosphosaline solution 0.05 M, pH 7.4, 0.025 M EDTA, 0.08% Sodium azide 0.05,
Triton X-100, protease inhibitor (AEBSF, aprotinin, bestatin, E-64, leupeptin, and pepstatin;
ENZO. Homogenates were centrifuged at 12,000× g at 4 ◦C for 20 min. The supernatant
was separated and a 1:10 dilution with sample diluent buffer was made for enzyme-
linked immunosorbent assay (ELISA) and total protein quantification. The total protein
concentration was assessed with bicinconinic acid assays [121].

4.7. Enzyme-Linked Immunosorbent Assay

ELISA kits (Sigma-Aldrich, St. Louis, MO, USA) were used to quantify the presence of
TNFα, IL-6, and IL-1β in the supernatant of homogenized hippocampi. The kits were used
according to manufacturer instructions. Briefly, serial dilutions of protein standards and
samples were added to ELISA plates, followed by biotinylated anti-IL-1β, TNFα, and IL-6
antibody addition. Then, a prepared solution of avidin-horseradish peroxidase conjugate
complex was added, and the unbound conjugates were washed away with phosphate
buffered saline. The reaction was stopped by adding a stopping solution, and absorbance
was read at 450 nm.

4.8. Statistical Analysis

The results are expressed as the mean ± SEM. Data regarding latency to the first
seizure, number of seizures, and duration of generalized seizures were analyzed using two-
way analysis of variance (ANOVA) followed by t Student–Newman–Keuls (SNK) post-hoc
multiple comparison test. A Pearson correlation of TNF-α, IL-1β, and IL-6 concentrations
with respect to the latency to the first seizures, number of seizures, and the duration of
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generalized seizures was also carried out. A p < 0.05 was considered statistically significant.
Statistical analysis was performed with Sigma Plot 12.0.

5. Conclusions

During epileptogenesis and the chronic phase of epilepsy, the hippocampal concentra-
tions of TFN-α and IL-1β increase on days 8, 18, and 28 post-SE, while the IL-6 concentration
did not change at any of these three evaluation times.

TAL and TOP showed an antiepileptogenic and anti-ictogenic effects in rats; in the
former case, its effects were dose dependent. TAL reduced TNF-α and IL-1β concentrations
in the hippocampus, particularly at the highest dose, on day 8 post-SE. TOP also decreased
the concentration of both proinflammatory cytokines at this time. These results suggest
that the antiepileptic and antiepileptogenesis effects of these drugs may be related to their
anti-inflammatory properties.
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