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ABSTRACT

Protoplanetary discs are poorly ionised due to their low temperatures and high column densities and are therefore subject to three
“non-ideal” magnetohydrodynamic (MHD) effects: Ohmic dissipation, ambipolar diffusion, and the Hall effect. The existence of mag-
netically driven turbulence in these discs has been a central question since the discovery of the magnetorotational instability (MRI).
Early models considered Ohmic diffusion only and led to a scenario of layered accretion, in which a magnetically “dead” zone in
the disc midplane is embedded within magnetically “active” surface layers at distances of about 1–10 au from the central protostellar
object. Recent work has suggested that a combination of Ohmic dissipation and ambipolar diffusion can render both the midplane and
surface layers of the disc inactive and that torques due to magnetically driven outflows are required to explain the observed accretion
rates. We reassess this picture by performing three-dimensional numerical simulations that include all three non-ideal MHD effects
for the first time. We find that the Hall effect can generically “revive” dead zones by producing a dominant azimuthal magnetic field
and a large-scale Maxwell stress throughout the midplane, provided that the angular velocity and magnetic field satisfy Ω · B > 0.
The attendant large magnetic pressure modifies the vertical density profile and substantially increases the disc scale height beyond its
hydrostatic value. Outflows are produced but are not necessary to explain accretion rates .10−7 M⊙ yr−1. The flow in the disc midplane
is essentially laminar, suggesting that dust sedimentation may be efficient. These results demonstrate that if the MRI is relevant for
driving mass accretion in protoplanetary discs, one must include the Hall effect to obtain even qualitatively correct results.
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1. Introduction

The formation and evolution of protoplanetary discs is a long-
standing problem in accretion theory. Observations indicate that
T Tauri stars accrete mass from their surrounding discs at a
rate of 10−9–10−7 M⊙ yr−1 on timescales of about 1–10 Myr
(Hartmann et al. 1998). However, the physical mechanism driv-
ing this accretion has remained elusive for decades. Such a
mechanism is not only necessary for understanding how the cen-
tral protostellar object accretes mass at the observed rates but
also represents a crucial component in any theory for the forma-
tion of planets. To effectively accrete, angular momentum must
be removed from the infalling gas and transferred to other fluid
elements within the disc and/or in the surrounding medium. It
can either be transported radially, in which case the transport is
usually modelled as a viscous process (so-called α-disc models;
Shakura & Sunyaev 1973), or transported vertically by large-
scale magnetically driven outflows or winds (Blandford & Payne
1982).

The rediscovery of the magnetorotational instability (MRI;
Velikhov 1959; Chandrasekhar 1960) by Balbus & Hawley
(1991, 1998) in the context of astrophysical discs vastly
improved our understanding of enhanced angular-momentum

⋆ Appendices are available in electronic form at
http://www.aanda.org
⋆⋆ NASA Einstein Post-doctoral Fellow.

transport in differentially rotating plasmas. This instability pro-
duces vigorous turbulence and efficiently transports angular mo-
mentum outwards in discs with an effective viscosity α & 10−3

(Hawley et al. 1995). The MRI has since become the main con-
tender1 to explain accretion in many types of astrophysical sys-
tems. However, protoplanetary discs are cold (T . 300 K at
1 au), dense (n & 1013 cm−3), and thus poorly ionised. Their
evolution is well-described by a set of magnetohydrodynamic
(MHD) equations that include three non-ideal effects (Norman
& Heyvaerts 1985; Wardle & Ng 1999): Ohmic dissipation, am-
bipolar diffusion, and the Hall effect. In a magnetised plasma
composed of neutral molecules, ions, and electrons, Ohmic dis-
sipation is caused by collisions between electrons and neutrals,
ambipolar diffusion by collisions between ions and neutrals,
and the Hall effect by the velocity difference (“drift”) between
electrons and ions (or, more generally, between positively and
negatively charged species). These non-ideal effects tend to de-
couple the gas from the magnetic field, casting doubt upon the
relevance of the MRI to protoplanetary discs (Blaes & Balbus
1994; Wardle 1999; Kunz & Balbus 2004; Desch 2004).

The impact of Ohmic dissipation on stratified protoplanetary
discs was first studied by Gammie (1996) and Sano & Miyama
(1999) and led to a model of layered accretion at distances of

1 Hydrodynamical processes are an interesting alternative, despite se-
rious theoretical difficulties; see Turner et al. (2014b) for a review.
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about ∼1–10 au from the central protostellar object: a quies-
cent magnetically “dead” midplane that is surrounded by turbu-
lent magnetically “active” surface layers located at a few disc
scale heights. This layered-accretion model has been studied
extensively with increasingly complex analytical models (Sano
et al. 2000; Fromang et al. 2002; Ilgner & Nelson 2006a,b) and
three-dimensional numerical simulations (Fleming et al. 2000;
Fleming & Stone 2003; Turner et al. 2007; Ilgner & Nelson
2008). Depending upon the chemical network and the presence
of well–mixed dust grains, these models predict a vertically in-
tegrated turbulent transport that is roughly consistent with the
observed accretion rates. However, recent work by Bai & Stone
(2013b) and Simon et al. (2013a) has shown that ambipolar
diffusion can render the surface layers magnetically inactive.
Magnetically driven outflows, which naturally occur in stratified
shearing boxes with a mean vertical field (Suzuki & Inutsuka
2009; Moll 2012; Ogilvie 2012; Lesur et al. 2013; Fromang et al.
2013; Bai & Stone 2013a), are then needed to produce accretion
rates comparable to those observed.

Although the influence of the Hall effect on the linear prop-
erties of the MRI is well understood (Wardle 1999; Balbus &
Terquem 2001), its impact on the non-linear evolution and, in
particular on the dynamics of putative dead zones, has remained
mostly speculative (Sano & Stone 2002; Salmeron & Wardle
2003, 2005; Wardle 2007; Salmeron & Wardle 2008; Wardle
& Salmeron 2012). In a recent publication, Kunz & Lesur
(2013, hereafter KL13) discovered a new saturation mecha-
nism for Hall-dominated magnetorotational turbulence, whereby
the vertical magnetic field self-organises into coherent, long-
lived axisymmetric (“zonal”) structures and the rate of angular-
momentum transport becomes vanishingly small. While inter-
esting in itself, this result was based on a crude representation
of a protoplanetary disc – an incompressible, dust-free and un-
stratified shearing box without ion-neutral drift. It is natural to
ask whether this result applies to stratified models that include
Ohmic dissipation and ambipolar diffusion.

This is precisely the question we address in this paper. We
perform three-dimensional numerical simulations of the MRI in
a compressible, vertically stratified shearing box, taking Ohmic
dissipation, ambipolar diffusion, and the Hall effect into account.
This marks the first time that all three non-ideal magnetohydro-
dynamic (MHD) effects have been accounted for in a numerical
simulation of the MRI. To accomplish this feat, we have imple-
mented an original formulation of ambipolar diffusion and the
Hall effect in the finite-volume code P. A simplified ioni-
sation model is used to determine vertical diffusivity profiles for
all three non-ideal MHD effects at distances of 1, 5, and 10 au
from the central protostellar object.

The paper is organised as follows. In Sect. 2.1, we present
the equations of non-ideal MHD in the stratified shearing-box
approximation. In Sects. 2.2 and 2.3, we introduce our numerical
method and define the diagnostics used to quantify the efficiency
of angular-momentum transport and the production of outflows.
We defer to Appendices A and B for the technical details and
tests of our numerical implementations of the Hall effect and
ambipolar diffusion. We then present the model used to deter-
mine the ionisation rate and the diffusivity tensor (Sect. 2.4).
The results are presented, first with models that neglect ambipo-
lar diffusion (Sects. 3.1–3.2) and then with all three non-ideal
MHD effects treated self-consistently (Sect. 3.3). Since our ion-
isation model does not account for the chemical and dynamical
effects of dust grains, we briefly address their impact on our re-
sults in Sect. 4. Finally, we provide a summary of our results and

comment on their implications for the evolution of protoplane-
tary discs and the formation of planetesimals in Sect. 5.

2. Method of solution

2.1. The stratified shearing-box model

We study the evolution of a poorly ionised protoplanetary disc
in the shearing-box approximation (Hawley et al. 1995). A local
patch of the disc centred at R0 with an extent ∼H (the vertical
scale height) rotates with the disc at a constant angular speed
Ω = ΩK(R0). The local frame is defined by (ex, ey, ez), where ex

is aligned with the radial direction, ey with the azimuthal direc-
tion, and ez with the vertical direction. The computational do-
main has a size (Lx, Ly, Lz) with Li ∼ O(H); we assume the disc
to be geometrically thin, which implies H ≪ R0. This allows
us to neglect curvature terms – the so-called Hill approxima-
tion (Hill 1878). Taking the flow to be locally isothermal, the
equations of non-ideal MHD that govern the evolution of the
mass density ρ, the velocity u, and the magnetic field B are,
respectively,

∂t ρ + ∇ · ρu = 0, (1)

∂t ρu + ∇ · ρuu = −c2
s∇ ρ + J × B − 2ρΩ × u + ρg, (2)

∂t B−∇× (u × B)=−∇×
(

ηO J+ηH J × eb−ηA J × eb × eb

)

,(3)

where cs is the isothermal sound speed, Ω = Ω ez is the local
angular velocity, g = 2qΩ2x ex −Ω2z ez is the local gravitational
acceleration with q = −d lnΩ/d ln R (=3/2 for a Keplerian disc),
eb = B/|B|, and J = ∇ × B. We include all three non-ideal
MHD effects: Ohmic dissipation, the Hall effect, and ambipolar
diffusion, which are characterised by their respective diffusivity
coefficients ηO, ηH, and ηA. These coefficients are evaluated for
a simple ionisation model in Sect. 2.4. Note that ηH and ηA are
functions of B = |B|, making the induction equation non-linear.

It should be pointed out that the use of the isothermal shear-
ing box approximation automatically removes large scale radial
gradients and vertical thermal buoyancy effects.

The above equations admit a simple solution corresponding
to an unperturbed Keplerian disc:

ρ = ρ0 exp
(

−z2/2H2
)

, u = −qΩx ey, and B = Bz0 ez, (4)

where H ≡ cs/Ω and Bz0 is a constant. We take this solution as
our initial equilibrium state from which the MRI may develop.
We often make use here of the velocity peculiar to the equilib-
rium shear flow, u = u+qΩx ey. The strength of the mean vertical
magnetic field is quantified by a modified plasma β0,

β0 ≡ sign(ΩBz0)
2ρ0c2

s

B2
z0

· (5)

This quantity equals the usual plasma β in the midplane times
a sign function that describes the polarity of the magnetic field
threading the disc. The Hall effect impacts the disc dynamics
in a polarity-dependent way (Wardle 1999; Balbus & Terquem
2001).

The boundary conditions are shearing-periodic in the x di-
rection and periodic in the y direction. The vertical boundary
conditions are:

– vertical hydrostatic equilibrium for ρ;
– zero vertical gradient for vx and vy;
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– outflow for vz; and
– vertical field for B.

We have checked that the final condition can be replaced by
a zero-current condition on the boundary without having any
significant impact on our results.

2.2. Numerical method

We use a modified version of the finite-volume code P
(Mignone et al. 2007) to numerically integrate Eqs. (1)–(3).
Ohmic dissipation is treated using the resistivity module that
is included in the publicly available version of the code. We
have introduced original implementations of ambipolar diffu-
sion (Appendix B) and the Hall effect (Appendix A), which
will be included in a future release of the code. Our version of
P implements a standard Godunov method using second-
order accurate spatial reconstruction with a monotonized cen-
tral flux limiter, a modified HLL Riemann solver (described
in Appendix A), and the constrained transport method (CT)
of Evans & Hawley (1988), which maintains ∇ · B = 0 to
machine precision. Face-centered electromotive forces (EMFs)
computed by the Riemann solver are interpolated to cell corners
using arithmetic averaging. Flock et al. (2010) demonstrated that
such averaging can affect MRI growth rates when combined
with HLLD or Roe Riemann solvers. However, since we use an
HLL solver, we do not anticipate any numerical artefacts from
the arithmetic averaging. Indeed, we show that we recover the
linear properties of the MRI in Sect. 3.1. The equations, in-
cluding diffusion terms, are advanced in time explicitly using
a second-order-accurate Runge-Kutta scheme2.

We choose our units such that Ω = cs = ρ0 = 1, which im-
plies H = 1. Unless otherwise stated, the total integration time
is set to τ = 1000 Ω−1, which corresponds to ≈160 local orbital
periods. Time averages are computed from t = 200 Ω−1 to τ
to avoid transients resulting from the initial conditions. We con-
sider a box of size 4×8×12 and resolution 64×64×192. While
this resolution (16 points per H) is poorer than that used in most
contemporary ideal MHD simulations of the MRI, we find it to
be more than enough to capture the relevant physical processes
in our simulations. This is because the large magnetic diffusivi-
ties involved in our calculations render much of the flow laminar.
Besides, at this resolution one run which includes all of the non-
ideal MHD effects at R0 = 1 au requires 70 000 core hours on
the best available CPUs. Doubling this resolution would lead to
an increase in the CPU time by a factor of 32, making a system-
atic exploration of the parameter space that is impractical, given
our computational resources. To test convergence, we repeated
run 1-OHA-5 with a doubled resolution for τ = 100 Ω−1, find-
ing a quantitative difference of <10% in the transport diagnostics
between 80 Ω−1 and 100 Ω−1 (see Table 1). This increases our
confidence in the results. Unless otherwise stated, the initial con-
ditions are the equilibrium (4) to which we add white noise on vx
with a typical rms amplitude of 0.057.

The evolution of the MRI in our simulations generically pro-
duces outflows, and our box continuously loses mass (and hor-
izontal magnetic flux). To mimic a steady state with a global
accretion flow replenishing the disc, we use a mass renormalisa-
tion procedure: at each time step, we multiply ρ in each cell by
a constant factor such that the total mass in the box is conserved

2 Super-time-stepping schemes are of no use in our case since the Hall
effect is directly incorporated into the Riemann solver and causes one
of the most severe CFL conditions on the time step.

(Ogilvie 2012). This procedure implies that the total momen-
tum in the box is not conserved, since the velocity field is kept
constant during the renormalisation.

2.3. Diagnostics

We use several diagnostics to quantify the efficiency of angular-
momentum transport and the production of outflows. These rely
on two averaging procedures:

〈Q〉 ≡ 1
LxLy

"

dx dyQ, (6)

Q ≡ 1
LxLyτ

$

dx dy dt Q· (7)

The amount of transport is determined by the Reynolds stress
Ri j = ρviv j and the Maxwell stress Mi j = −BiB j. This allows us
to define an effective (radial) transport parameter,

α ≡
∫

dz (Rxy + Mxy)

c2
s

∫

dz ρ
· (8)

Outflows are characterised by the mass-loss rate,

Ṁoutflow ≡
ρvz|z= zt − ρvz|z= zb

ρ0cs
, (9)

and the (dimensionless) surface magnetic stress

T S
yz ≡

∣
∣
∣
∣
∣
∣
∣

Myz

ρ0c2
s

∣
∣
∣
∣
∣
∣
∣
z= zt

, (10)

which is evaluated at the top (zt = 4.5H) and bottom (zb =

−4.5H) of the disc surface. These (arbitrary) locations are cho-
sen to be sufficiently far from the vertical boundaries and yet far
enough from the disc midplane to always be in the magnetically
dominated region of the outflow (i.e., where β < 1).

These diagnostics can be directly related to large-scale quan-
tities, such as the accretion rate Ṁacc. Assuming a 1 M⊙ cen-
tral object, smooth surface density and temperature profiles, and
neglecting O(1) pre-factors in Fromang et al. (2013),

Ṁacc ≃ ΣΩH2



α +
R

H

T S
yz√
2π



 (11a)

≃ 10−8

(

Σ

103 g cm−2

) (
ǫ

0.1

)2 (
R

1 au

)1/2

×




α

10−3
+

(

0.1
ǫ

)
T S
yz

2.5 × 10−4



 M⊙ yr−1. (11b)

where ǫ ≡ H/R. The above expression is made up of two contri-
butions to the accretion rate. The first term in the square brackets
leads to the traditional viscous α-disc accretion rate of Shakura
& Sunyaev (1973), while the second term accounts for the stress
from a magnetically driven outflow. For the latter, we have taken
the stress to be opposite on both sides of the disc. We show later
that this is not necessarily supported by our simulations; the con-
tribution of this term should thus be considered an upper bound.

2.4. Ionisation profiles

Our disc model is the minimum mass solar nebula (MMSN;
Hayashi 1981), whose column density and temperature profiles,

Σ(R) = 1700 (R/1 au)−3/2 g cm−2,

T (R) = 280 (R/1 au)−1/2 K,
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Table 1. List of runs discussed in this paper.

Simulation R0 Ohmic Hall Ambipolar β0 α Ṁoutflow T S
yz

1-O-5 1 au × 105 2.5 × 10−3 1.3 × 10−4 N/A
1-OH-5 1 au × × 105 4.5 × 10−1 2.0 × 10−2 N/A
1-OA-5 1 au × × 105 5.9 × 10−4 5.8 × 10−5 1.5 × 10−4

1-OHA-5 1 au × × × 105 5.0 × 10−2 1.4 × 10−3 6.5 × 10−4

1-OHA-mB 1 au × × × −105 3.9 × 10−4 3.8 × 10−5 N/A
1-OHA-znf 1 au × × × ∞ 5.4 × 10−6 1.7 × 10−7 N/A
1-OA-5-e 1 au × × 105 4.7 × 10−4 4.6 × 10−5 1.3 × 10−4

1-O-3 1 au × 103 2.4 × 10−1 9.3 × 10−3 1.6 × 10−2

1-OH-3 1 au × × 103 1.5 9.7 × 10−2 4.7 × 10−2

1-OA-3 1 au × × 103 2.4 × 10−2 8.4 × 10−4 4.3 × 10−3

1-OHA-3 1 au × × × 103 3.1 × 10−1 5.5 × 10−3 1.2 × 10−2

5-OHA-5 5 au × × × 105 2.3 × 10−2 4.6 × 10−4 4.0 × 10−4

10-OA-5 10 au × × 105 1.3 × 10−3 1.3 × 10−4 2.5 × 10−4

10-OHA-5 10 au × × × 105 1.0 × 10−2 2.4 × 10−4 3.5 × 10−4

10-OA-gr 10 au × × 105 7.8 × 10−4 8.7 × 10−5 1.7 × 10−4

10-OHA-gr 10 au × × × 105 2.4 × 10−3 8.7 × 10−5 1.9 × 10−4

Notes. Each simulation is of a stratified shearing box of size 4 × 8 × 12 located a radial distance R0 from the central protostellar object. The
plasma β0 is given in the initial state (see Eq. (5)). The effective (radial) transport parameter α, the mass-loss rate due to outflows Ṁoutflow, and the
(dimensionless) surface magnetic stress T S

xy are defined by Eqs. (8)–(10), respectively.

are sampled at R0 = 1, 5, and 10 au. To compute the ionisation
profiles, we assume hydrostatic balance in the vertical direction
and consider the following contributions to the ionisation rate ζ:

– X-ray ionisation due to 3 keV photons (Igea & Glassgold
1999; Bai & Goodman 2009, see their Eq. (21));

– cosmic-ray ionisation with ζcr = ζ0 exp(−Σ/96 g cm−2) s−1

(e.g. Umebayashi & Nakano 1981) and ζ0 = 10−16 s−1, cor-
responding to the cosmic-ray ionisation rate that is observed
in the direction of ζ Persei (McCall et al. 2003) ;

– radioactive decay with ζrad = 10−19 s−1 (Umebayashi &
Nakano 2009).

The ionisation fraction xe is obtained by balancing these ioni-
sation sources with dissociative recombination in a metal- and
dust-free environment (Gammie 1996; Fromang et al. 2002):

xe =

√

ζ

nnαdr
+ xFUV, (12)

where αdr = 3 × 10−6 T−1/2 cm2 s−1 is the dissociative recombi-
nation rate coefficient for molecular ions.

The final term in Eq. (12) represents the contribution from
FUV radiation, which is known to almost fully ionise carbon
and sulfur and lead to ionisation fractions xFUV ∼ 10−5–10−4

for a penetration depth ∼10−2 g cm−2 (Perez-Becker & Chiang
2011). We use

xFUV = 2 × 10−5 exp
[

−
(

Σ/0.03 g cm−2
)4
]

(13)

as a rough estimate for the FUV ionisation fraction, which cap-
tures the essence of the FUV ionisation front. A similar approach
has been used by Bai & Stone (2013b), replacing the exponential
in Eq. (13) by a step function. The resulting ionisation profiles at
R = 1, 5, and 10 au are given in Fig. 1. For simplicity, we assume
that these profiles are fixed throughout the course of our simu-
lations. This simplification is not likely to be satisfied in actual
protoplanetary disks, since changes in the density profile, as well
as turbulent mixing in the disc, could lead to local changes in the
ionisation fraction. A more sophisticated treatment, in which the
chemistry evolves alongside the dynamics, will be employed in
a future publication.

z/H

x
e

−6 −4 −2 0 2 4 6
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

1 au

5 au

10 au

Fig. 1. Ionisation fraction xe versus height z at 1, 5, and 10 au.

These ionisation profiles, along with a choice of β0, deter-
mine the diffusivity coefficients for Ohmic, Hall, and ambipolar
diffusion (in the absence of dust grains; Balbus & Terquem 2001;
Wardle 2007):

ηO =
c2me

4πe2

n

ne
〈σv〉e, (14a)

ηH =
Bc

ene
√

4π
, (14b)

ηA =
B2

γiρρi
, (14c)

where

〈σv〉e = 8.28 × 10−9
(

T

100 K

)0.5

cm3 s−1

is the electron-neutral collision rate (Draine et al. 1983), ρi is the
ion mass density, γi = 〈σv〉i/(mn + mi), and

〈σv〉i = 1.3 × 10−9 cm3 s−1

A56, page 4 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423660&pdf_id=1


G. Lesur et al.: Thanatology in protoplanetary discs

1 au10
−4

10
−2

10
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10
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10
4

10
6

10 au

z/H

−6 −4 −2 0 2 4 6
10−6

10−4

10−2

100

102

104

Λ

Ha

Am

Fig. 2. Ohmic (Λ; Eq. (15)), Hall (Ha; Eq. (16)), and ambipolar (Am;
Eq. (17)) Elsasser numbers in the initial state versus height z at 1 au
(top) and 10 au (bottom), assuming a constant vertical magnetic field
with β0 = 105.

is the ion-neutral collision rate (Draine 2011); mn and mi are
the average masses of the neutrals and ions, respectively. Due to
our normalisation of the magnetic field in Eqs. (2) and (3), fac-
tors of

√
4π and 4π appear in our expressions for the Hall and

ambipolar diffusivities. Note that the upper layers of protoplan-
etary discs at 1 au are likely to be strongly ionised and heated
by X-rays to temperatures up to ∼8000 K (Aresu et al. 2011).
Our simple isothermal model thus breaks down for column den-
sities .10−3–10−2 g cm−2. In response, we arbitrarily multiply
our diffusivities by a constant factor of exp(−Σ/0.01 g cm−2) to
mimic a hot and fully ionised gas in the upper layers.

Introducing the Alfvén speed vA = B/
√
ρ, the diffusivi-

ties (14) can be cast in terms of dimensionless Elsasser numbers:

Λη ≡
v2A

ΩηO
, (15)

Ha ≡
v2A

ΩηH
, (16)

Am ≡
v2A

ΩηA
· (17)

Example profiles of these Elsasser numbers are given in Fig. 2;
note that they evolve throughout the simulation only via changes
in density and magnetic-field strength. These profiles are similar

z/H

ℓ
H
/
H

−6 −4 −2 0 2 4 6
10

−2

10
−1

10
0

10
1

10
2

10
3

1 au

5 au

10 au

KL13

Fig. 3. Hall lengthscale ℓH (Eq. (18)) versus height z at 1, 5, and
10 au. The dotted line denotes the threshold above which saturation via
zonal magnetic fields occurs in unstratified simulations with net vertical
magnetic flux (KL13).

to those used by Bai & Stone (2013b)3. Another useful way
of quantifying Hall diffusion, which is independent of the
magnetic-field strength, is the Hall lengthscale:

ℓH ≡
vA

ΩHa
· (18)

When ℓH & 0.2H, KL13 found that unstratified simulations of
the Hall-MRI with net vertical magnetic flux saturate by the pro-
duction of strong axisymmetric (“zonal”) magnetic fields (see
also Appendix A). In Fig. 3, we present ℓH as a function of z
for our ionisation profiles, demonstrating that most of the disc
midplane is in the putative zonal-field regime.

The non-ideal MHD terms introduce second derivatives of
the magnetic field into the induction equation. This often yields
a tight constraint on the maximum allowed stable timestep in
our simulations. To circumvent this problem, we follow Bai &
Stone (2013b) by introducing a capping procedure on the mag-
netic diffusivities ηO,H,A. Whenever one of these diffusivities be-
comes larger than ηcap = 10ΩH2, we automatically set its value
to ηcap. We have briefly explored the impact of the cap value on
our results: increasing ηcap for ηO and ηA does not quantitatively
impact our results at 1 au. However, increasing ηcap for ηH by a
factor of 4 tends to increase α significantly (by ∼50% at 1 au).
Therefore, our stress values for ΩBz0 > 0 should be understood
as lower bounds when the Hall effect is included.

3. Results

3.1. Linear evolution of stratified discs subject
to Ohmic and Hall diffusion

We first concentrate on the influence of the Hall effect on the lin-
ear evolution of an MRI-unstable, stratified disc. We set ηA = 0
to isolate the effects of Hall diffusion but include Ohmic dissipa-
tion. We use a setup that is identical to run 1-OH-5, except that
we seed the instability with very small perturbations to the veloc-
ity field (RMS = 10−6) so as to produce a clean linear phase. We
compare the vertical profile of the resulting azimuthal magnetic

3 Note that Bai & Stone (2013b) included a numerical cap to limit
diffusion coefficients in their Fig. 1 for |z| < 2, which we do not include
in our plot.
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Table 2. Fastest-growing eigenmodes in run 1-OH-5 with growth rate γ
(in units of Ω) and symmetry label σ (see Eq. (19)).

Mode number γ (Ω) σ

1 0.728 1
2 0.727 −1
3 0.660 −1
4 0.658 1
5 0.550 1
6 0.531 −1
7 0.406 1
8 0.372 −1

field, By(z), at t = 10 Ω−1 with that predicted by linear theory,
where the latter is calculated with a pseudo-spectral method sim-
ilar to that used by Latter et al. (2010). Each linear eigenmode is
characterised by its growth rate γ and its symmetry with respect
to the midplane, σ = ±1:

Bx(−z) = σBx(z), vx(−z) = −σvx(z),
By(−z) = σBy(z), vy(−z) = −σvy(z),
Bz(−z) = Bz(z), vz(−z) = −vz(z). (19)

The fastest-growing eigenmodes, their calculated growth rates,
and their symmetries are listed in Table 2. For the ionisation pro-
files, we consider that the n = 1 and n = 2 eigenmodes have very
similar growth rates, making the identification of each individ-
ual mode difficult. To isolate each mode, we decompose By(z)
from the numerical simulation into symmetric (σ = 1) and anti-
symmetric (σ = −1) parts, each of which can then be compared
to the two fastest-growing eigenmodes obtained by linear the-
ory (Fig. 4). We find that the most unstable modes are accurately
captured by our implementation of the Hall effect at this reso-
lution. Moreover, the measured growth rate γnum = 0.726Ω in
our numerical simulation matches the theoretical value for the
fastest growing mode to less than one percent.

The above calculation assumed an isothermal fluid, for
which buoyancy-driven modes are absent. We refer the reader
to Urpin & Rüdiger (2005) for a local, linear calculation that
couples vertical buoyancy to the Hall effect.

3.2. Non-linear evolution of stratified discs subject to Ohmic
and Hall diffusion

3.2.1. Fiducial runs

In Fig. 5, we present space–time diagrams of 〈By〉 for runs 1-O-5
(top) and 1-OH-5 (bottom). The Ohmic run (1-O-5) presents an
alternating pattern in the upper layers commonly referred to as a
“butterfly diagram”, which was first described in the context of
magnetorotational turbulence by Brandenburg et al. (1995) and
Stone et al. (1996). When the Hall effect is included (1-OH-5),
this butterfly pattern is replaced by a strong quasi-steady az-
imuthal magnetic field that fills the disc midplane. This strong
azimuthal field is accompanied by a weaker radial field (not
shown), which feeds the azimuthal component via shear.

The Ohmic run exhibits the usual layered accretion model
(Gammie 1996; Fleming & Stone 2003) with a very weak
Maxwell stress in the disc midplane and a turbulent layer in
the ionised atmosphere (Fig. 6-top). When the Hall effect is
included, we find that the magnetic stress is increased by al-
most two orders of magnitude (from α = 2.5 × 10−3 to α =
4.5 × 10−1) and is clearly located in the Hall-dominated region
(−3H . z . 3H; Fig. 6-bottom). This stress is not a “turbulent”
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Fig. 4. Comparison of By(z) from the simulation (red circles) and from
the linear calculation (black line), which include Ohmic and Hall dif-
fusion computed at 1 au with β0 = 105. Top: n = 1 eigenmode and
symmetric component of By(z). Bottom: n = 2 eigenmode and antisym-
metric component of By(z).

stress in the usual sense but rather is a consequence of the
large-scale magnetic structure shown in Fig. 5. In the upper at-
mosphere (|z| > 4), we find a more classical turbulent layer
qualitatively similar to the active layer in run 1-O-5.

The presence of a vertical magnetic flux is known to trig-
ger outflows in shearing-box simulations (Suzuki & Inutsuka
2009; Lesur et al. 2013; Fromang et al. 2013; Bai & Stone
2013a); our simulations exhibit outflows as well. We find that
these outflows are sensitive to the presence of the Hall effect:
mass-loss rates increase by more than two orders of magnitude.
However, the outflows do not have any well-defined orienta-
tion: they can be directed toward either positive or negative x,
which is a phenomenon previously observed in ideal-MHD sim-
ulations presented by Fromang et al. (2013) and Bai & Stone
(2013a). This is one consequence of the neglect of curvature
terms in the shearing-box approximation. Because of this asym-
metry, we find no average stress T S

yz exerted at the disc surface
by the outflow.

The very large mass-loss rate found in the Ohmic-Hall run
can be explained by the modification of the vertical equilib-
rium, which is no longer hydrostatic. As revealed by Fig. 7,
the pressure associated with the strong azimuthal magnetic field
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Fig. 5. Space–time diagram of the horizontally averaged azimuthal magnetic field, 〈By〉, in the Ohmic (1-O-5; top) and Ohmic-Hall (1-OH-5;
bottom) runs.
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Fig. 6. Space–time diagram of the logarithm of the horizontally averaged Maxwell stress, log〈−BxBy〉, in the Ohmic (1-O-5; top) and Ohmic-Hall
(I-OH-5; bottom) runs.

puffs up the disc, thereby increasing the amount of mass in the
disc atmosphere where the outflow originates (near z = 4.5H).
On the other hand, the vertical velocity is not significantly af-
fected by the Hall term. This explains the increase in the rate
of mass loss by two orders of magnitude between runs 1-O-5
and 1-OH-5.

We note that a similar thickening of the disc atmosphere has
been found by Hirose & Turner (2011) using resistive MHD sim-
ulations including radiative transfer. This thickening has been
used to explain the infrared excess in Herbig stars, which can-
not be explained by a disc in vertical hydrostatic equilibrium
(Turner et al. 2014a). Our model presents an alternative sce-
nario, in which the strong magnetic pressure driven by the Hall-
amplified azimuthal magnetic field dominates the total pressure
in the disc midplane.

3.2.2. Origin of the Hall-driven azimuthal field

The presence of a very strong mean azimuthal magnetic field
in the disc midplane of our Hall-MHD simulations is surpris-
ing. To understand its origin, we decompose the horizontal
components of the horizontally averaged induction equation

(Eq. (3)) into several pieces, of which each is identified with
a physical process:

∂〈Bx〉
∂t

=
∂〈Bxvz〉
∂z

︸   ︷︷   ︸

outflow

− ∂〈Bzvx〉
∂z

︸   ︷︷   ︸

stretching

− ∂
∂z

c(〈JxBz〉 − 〈JzBx〉)√
4πene

︸                      ︷︷                      ︸

Hall

+
∂

∂z
η
∂〈Bx〉
∂z

︸      ︷︷      ︸

Ohmic

, (20a)

∂〈By〉
∂t

=
∂〈Byvz〉
∂z

︸   ︷︷   ︸

outflow

−
∂〈Bzvy〉
∂z

︸   ︷︷   ︸

stretching

− ∂
∂z

c(〈JyBz〉 − 〈JzBy〉)√
4πene

︸                      ︷︷                      ︸

Hall

+
∂

∂z
η
∂〈By〉
∂z

︸      ︷︷      ︸

Ohmic

− qΩ〈Bx〉
︸  ︷︷  ︸

shear

. (20b)

We have identified five types of terms:

outflow: describes the vertical transport of horizontal flux tubes.
It measures the rate at which the outflow evacuates horizontal
magnetic-field lines from the disc midplane;
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Fig. 7. Horizontally averaged density profile ρ (top) and vertical veloc-
ity vz (bottom) versus height z, averaged over ≈140 orbits, from runs
1-O-5 (solid line) and 1-OH-5 (dashed line).

stretching: quantifies the horizontal bending of vertical field
lines due to horizontal motions;

shear: measures the creation of azimuthal field from radial field
by the mean Keplerian shear;

Hall: denotes the contributions from the Hall effect; and
Ohmic: denotes the contributions from Ohmic dissipation.

The saturated state of run 1-OH-5 is shown in Fig. 8 with each
of these terms identified4. We focus on the inner disc region |z| <
3H, where Hall and Ohmic diffusion dominate the dynamics.

We first describe the contributions of the right-hand side of
the x-component of the induction equation (Fig. 8-top). We find
that the stretching term is totally negligible and that the equilib-
rium is dominated by a balance between the Hall term, which
amplifies the radial field (note that Bx < 0 in the disc midplane),
and the outflow term, which carries Bx out of the midplane. This
quasi-equilibrium is different than that found in ideal-MHD sim-
ulations, in which the driving term is due to stretching. On the
other hand, the y-component of the induction equation (Fig. 8-
bottom) is a resistive MHD quasi-equilibrium, in which the shear

4 The Hall term is artificially large in Fig. 8-top. This is because of
the capping procedure used in the code (Sect. 2.4): highly magnetised
cells see their Hall diffusivities artificially decreased, which is an effect
we can only approximate when post-processing horizontally averaged
quantities.
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Fig. 8. Contributions in run 1-OH-5 to the right-hand side of the hor-
izontally averaged induction equation deduced from Eqs. (20a; top)
and (20b; bottom).

production of the azimuthal field from the radial field is balanced
by the outflow term in the atmosphere and the Ohmic term in the
disc midplane. The Hall terms are completely negligible here.

This analysis allows us to present a self-consistent picture of
run 1-OH-5. We first note that

〈JxBz〉 − 〈JzBx〉 = −∂z〈ByBz〉,
〈JyBz〉 − 〈JzBy〉 = +∂z〈BxBz〉.

Moreover, since the fluctuations δBz are small compared to the
mean vertical field Bz0, we have ∂z〈ByBz〉 ≃ Bz0∂z〈By〉 and
∂z〈BxBz〉 ≃ Bz0∂z〈Bx〉. Retaining only the driving terms in
Eq. (20) and neglecting the outflow, we find

∂〈Bx〉
∂t
≃ Bz0

∂

∂z

c
√

4πene

∂

∂z
〈By〉, (21a)

∂〈By〉
∂t
≃ −

(

Bz0
∂

∂z

c
√

4πene

∂

∂z
+ qΩ

)

〈Bx〉. (21b)

These reduced equations for 〈Bx〉 and 〈By〉 describe a non-
local version of the “Hall-shear” instability (cf. Kunz 2008,
Eq. (46)): Keplerian shear generates an azimuthal magnetic-
field component from a radial one, and the Hall effect conser-
vatively reorients this azimuthal field back into the radial direc-
tion. When qΩBz0 > 0, this feedback loop can lead to growth.
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Fig. 9. Space–time evolution of the logarithm of the horizontally-averaged magnetic stress, log〈Mxy〉, in the Ohmic (1-O-5; top), Ohmic-ambipolar
(1-OA-5; middle), and Ohmic-ambipolar-Hall (1-OHA-5; bottom) runs.

Note that the Hall-shear instability is not a version of the MRI
and does not rely on the Coriolis force (though it can be obtained
from the Hall-MRI dispersion relation by taking the highly dif-
fusive limit – see Rüdiger & Kitchatinov 2005 and Wardle &
Salmeron 2012). It is, however, sensitive to the polarity of the
vertical magnetic field. This is discussed more extensively in
Sect. 3.3.2.

It is possible to understand the physical content of Eq. (21)
by observing that ∂z〈By〉 = −〈Jx〉 = 〈vd,x〉

√
4πene, where ud is

the drift velocity of the electrons relative to the ions. Hence,
the term on the right-hand side of (21a) is simply the mag-
netic stretching term due to electron motion. In protoplanetary
discs, the number of free electrons can be very small, so that
the drift speed can be large for a given current density. As a re-
sult, the usual stretching term of ideal MHD caused by the bulk
motion of the gas is replaced by a stretching term due to the
electron motion. The electron drift produces a radial field from
the vertical mean field (Eq. (21a)), which is then sheared by the
Keplerian flow to produce an azimuthal field (Eq. (21b)). It is
this azimuthal field that sustains the drift through Ampère’s law.

In our simulations, the non-linear saturated state results from
a balance between this Hall-shear instability, an outflow which
transports the magnetic energy away from z ∼ H, and Ohmic
diffusion which diffuses the field from the midplane to the base
of the outflow (see Fig. 8).

3.3. Non-linear evolution of stratified discs subject to Ohmic,
Hall, and ambipolar diffusion

3.3.1. Fiducial runs

With an understanding of how a strong Hall effect impacts re-
sistive protoplanetary discs, we now turn to simulations that
also include ambipolar diffusion. A comparison of the mag-
netic stresses measured in the Ohmic (1-O-5), Ohmic-ambipolar
(1-OA-5), and Ohmic-ambipolar-Hall (1-OAH-5) runs at R0 =

1 au is presented in Fig. 9. The first two simulations are quanti-
tatively similar to runs O-b5 and OA-b5 of Bai & Stone (2013b),

and we recover their main statistical properties. However, the
inclusion of Hall diffusion dramatically changes the picture.
Similar to the behaviour discussed in Sect. 3.2, we find a large
vertical band of strong Maxwell stress in the disc midplane,
which substantially increases the transport by almost two orders
of magnitude.

The resulting stress profiles averaged over the entire simula-
tion from t = 300 Ω−1 are presented in Fig. 10. The addition of
ambipolar diffusion tends to weaken the activity in the surface
layers (cf. Bai & Stone 2013b). The addition of the Hall effect
does not alter this picture, and we find that the surface activity is
even more reduced in the OAH run. However, magnetic activity
is greatly enhanced in the midplane, where stresses as high as
Mxy = 3 × 10−2 are found. The Reynolds stress is not signifi-
cantly affected by the Hall effect. This implies that the flow is
not “turbulent” in the usual sense.

The presence of a strong Hall effect in the midplane also
affects the vertical structure of the disc. We find a turbulent
plasma beta β ∼ 1 in the disc midplane in run 1-OAH-5
(Fig. 11). The hydrostatic equilibrium is significantly affected
by the magnetic structure and the disc scale height increases,
as in Sect. 3.2. Outflows are also affected in this new quasi-
equilibrium state, producing mass-loss rates a factor of 20 larger
than those obtained in the Ohmic-ambipolar simulations.

3.3.2. Parameter study

Field polarity: it is well known that the linear Hall-MRI is sen-
sitive to the field polarity P = sign(β0) (Wardle 1999; Balbus &
Terquem 2001). To test whether or not this result carries over to
the non-linear regime, we have performed a simulation identical
to run 1-OHA-5 but with a reversed mean field: P = −1 (run
1-OHA-mB). In this case, we find that the level of transport, the
surface stress, and the mass-loss rate to be smaller than in the run
without the Hall effect (run 1-OA-5). Therefore, when P = −1,
the Hall effect weakens the efficiency of the MRI and the strength
of the outflow. This sensitivity to the field polarity was already
pointed out in Sect. 3.2.2 as a natural consequence of the fact
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that the radial drift of electrons drives the non-linearly satu-
rated state. A similar trend was found by Sano & Stone (2002)
in unstratified shearing boxes, though the Hall effect was much
weaker in their case and the result less extreme.

Zero vertical-net-flux configuration: the zero vertical-net-flux
configuration has been largely explored in the past, with both
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Fig. 12. Horizontally and temporally averaged Maxwell (top) and
Reynolds (bottom) stress versus height z for runs 1-O-3 (dash-dotted),
1-OA-3 (dashed), and 1-OAH-3 (solid).

unstratified (Hawley et al. 1996; Fromang & Papaloizou 2007)
and stratified simulations (Brandenburg et al. 1995; Stone et al.
1996; Fleming & Stone 2003; Simon et al. 2012, 2013b). We
have only explored one such situation including all three non-
ideal effects (run 1-OHA-znf). This simulation is identical to
run 1-OHA-5 except that the initial magnetic-field configura-
tion is given by Bz = Bz0 sin(2πx/Lx), where Bz0 is the initial
field strength from run 1-OHA-5. This initial condition rapidly
collapses into a quiet state with virtually no transport and no
outflow (see Table 1).

Mean field strength: the runs 1-xxx-5 have an initially weak
mean vertical magnetic field in the disc midplane. To test how
this initial condition might influence the subsequent evolu-
tion, we have run a set of simulations with β0 = 103 (runs
1-O-3, 1-OA-3, 1-OAH-3). The resulting profiles are presented
in Fig. 12, which may be directly compared to the weak field
case (Fig. 10). An initially stronger mean field significantly in-
creases the transport in the active surface layers of the Ohmic
run, as anticipated using results from ideal-MHD simulations
(cf. Hawley et al. 1995). A strong Maxwell stress also ap-
pears in the disc midplane, which is most likely due to hori-
zontal field lines diffusing down from the active layers (Turner
& Sano 2008). Taken as a whole, these three simulations exhibit
Maxwell stresses in the midplane that are roughly one order of
magnitude larger than those found in run 1-OHA-5; this scal-
ing is qualitatively similar to the 〈Mxy〉 ∝ β−1/2

0 scaling found in
ideal MHD simulations (Hawley et al. 1995). Note, however, that
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α (the vertically integrated stress) does not increase that steeply
(see Table 1); the stress is less vertically distributed for β0 = 103.
Fitting our results with a simple power law, we obtain α ∝ β−0.4

0 .
The outflow is also affected by the mean field strength.

We recover approximately the scalings Ṁoutflow ∝ β−0.54
0 and

T S
yz ∝ β−0.7

0 found by Bai & Stone (2013b) in runs that include
only Ohmic and ambipolar diffusion. When the Hall effect is in-
cluded, the scaling for T S

yz still holds but the scaling for Ṁoutflow

is shallower with Ṁoutflow ∝ β−0.3
0 .

Distance from the central protostellar object: the ionisation
profile depends strongly upon the radial location in the disc, R0
(Sect. 2.4). At larger distances, the gas density is lower, and not
only do cosmic rays penetrate deeper into the disc interior, but
also the recombination time is longer. Both effects lead to an
increase in the ionisation fraction. For this reason, the saturation
properties of the MRI vary with radius. We have performed three
simulations with β0 = 105, varying R0 from 1 au to 10 au. The
resulting Maxwell stress profiles are presented in Fig. 135.

We find that the Maxwell stress in the disc midplane de-
creases as one moves to larger radii, since Ha increases and
approaches Am. Note that the outflow surface stress and the
mass-loss rate decrease in a similar fashion (see Table 1). By
contrast, the Maxwell stress tends to increase in the surface lay-
ers, contributing roughly to 1/5 of the vertically integrated stress
at 10 au. We find that this component of the stress at 5 and 10 au
is due to turbulence in the surface layer, in a way that is quali-
tatively similar to that found in run 1-OH-5. Overall, this trend
indicates that, as we move outward, we approach the point at
which the stress contribution due to the surface layers dominates
that of the vertically integrated disc. This corresponds to the clas-
sic layered accretion picture, which is a limit that corresponds to
“region III” described by Bai (2013) and studied extensively by
Simon et al. (2013a,b) in situations where ambipolar diffusion
suppresses the MRI in the disc midplane.

Symmetries: the saturated states of all the OAH runs exhibit
the same σ = 1 symmetry (see Eq. (19)). However, this sym-
metry implies that the outflow points inwards on one side of the

5 The Reynolds stress is negligible in these runs.

disc and outwards on the other side. A more physical outflow
solution has σ = −1. It has been shown by Bai & Stone (2013b)
that ambipolar-diffusion–dominated simulations can exhibit so-
lutions having outflows with the proper symmetry at |z| & 3.5H
if particular initial conditions are chosen. These solutions ex-
hibit a strong off-midplane current layer, which was found to
be stable by Bai & Stone (2013b). We have tried to find simi-
lar solutions including the Hall effect but have failed: we have
only found σ = 1 solutions when Hall diffusion is included.
However, we are able to find long-lived σ = −1 solutions when
only Ohmic and ambipolar diffusion are included (see run 1-
OA-5-e in Fig. 14). These solutions start to develop a strong off-
midplane current layer (around t ∼ 1000 Ω−1), which is very
similar to the one presented by Bai & Stone (2013b). However,
we find that this layer is eventually ejected on longer timescales,
and the system ultimately relaxes into a σ = 1 symmetry. This
casts doubt upon the stability and even the applicability of these
outflow solutions in actual protoplanetary discs.

3.3.3. Magnetic self-organisation in Hall-dominated
magnetorotational turbulence

KL13 have shown that the saturated state favoured by Hall-
dominated magnetorotational turbulence in unstratified shear-
ing boxes with net vertical magnetic flux is characterised by a
strong axisymmetric (“zonal”) magnetic field and a vanishingly
low level of turbulent transport. Remarkably, none of the simula-
tions presented in this paper exhibit this behaviour. This dispar-
ity is not caused by the different numerical algorithms employed.
Indeed, we were able to reproduce their results with our fiducial
16 points per H (see Sect. A.2.3). Instead, the difference is due
to the strong azimuthal field that is naturally produced in our
stratified simulations. In unstratified simulations, the net mag-
netic flux is conserved and, if there is initially no net azimuthal
flux, none will be generated (〈By〉 = 0). In contrast, the out-
flow boundary conditions imposed at the top and bottom of the
stratified shearing box allows a net azimuthal field to develop:
azimuthal flux of opposite polarity is ejected during the gener-
ation of the outflow. As a result, stratified simulations with the
Hall effect can produce a (very large) mean azimuthal field rela-
tive to the mean vertical field, typically with 〈By〉 ∼ 200〈Bz〉. As
pointed out by KL13, this magnetic configuration (〈By〉 ≫ 〈Bz〉)
does not saturate via the production of zonal magnetic fields.

4. Influence of dust grains

Dust grains comprise ∼1% by mass of protostellar cores and,
by extension, protoplanetary discs (Hayashi 1981). In the latter,
micron-sized grains can dramatically increase the rate of mag-
netic diffusion, mainly because of their propensity to soak up
free charges at high densities. This tends to decouple the gas
from the magnetic field (Semenov et al. 2004; Wardle 2007;
Bai 2011). Since these models usually involve complex chem-
ical networks and various grain distributions, it is difficult to ob-
tain a good physical intuition for the effect grains can have on
the physics of accretion disc turbulence. To clarify the situation,
we discuss the qualitative effects of dust grains on the chem-
istry and dynamics of a protoplanetary disc. Our discussion fo-
cuses on the disc midplane, where the ionisation rate is very low
(typically ∼O(10−14)).
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Fig. 14. Space–time evolution of the horizontally averaged azimuthal magnetic field, 〈By〉, as a function of time in run 1-OA-5-e. The run starts
with odd symmetry for the azimuthal field. At t ≃ 1000 Ω−1 a current layer forms and is ejected at t = 1410 Ω−1, leaving an azimuthal field with
even symmetry.

4.1. Diffusivity tensor

Dust grains preferentially capture free electrons, since electrons
have less inertia than the ions. This process occurs quickly, so
that grains are usually the dominant negative charge carriers
when they are well mixed with the gas. Since grains carry nega-
tive charges, they also tend to increase the effective recombina-
tion rate with ions, acting as a catalyst for recombination. This
decreases the total ionisation fraction by one or two orders of
magnitude, depending upon the grain size. A typical situation
is presented in Bai (2011, fig. 1), where we clearly see that the
presence of 0.1µm-sized grains decreases the ionisation fraction
and makes singly charged grains the dominant charge carriers.

In addition to the modification of the ionisation equilibrium,
dust grains also have an impact on the gas dynamics. From a
plasma point of view, the presence of charged grains indicates
that some charge carriers are much heavier than electrons and
ions. This suggests that the average mobility of charge carriers
and their coupling time with neutral H2 are drastically reduced.
The diffusivities associated to the three non-ideal MHD effects
(ηO, ηH, ηA) are therefore significantly altered.

To compute the diffusivities in such a plasma, one should fol-
low the derivation of the complete diffusivity tensor of Wardle
(2007), which takes into account all charged species. This cal-
culation is beyond the scope of this paper, but we can rely on
the work of Salmeron & Wardle (2008) to investigate the impact
of dust grains on protoplanetary disc midplanes. Consider their
Fig. 1, which presents diffusivity profiles for various grain con-
tents. Without grains, we observe that the dominant non-ideal
effect in the midplane is Hall at 5 and 10 au, which matches our
own diffusivity profiles (see Sect. 2.4). When 1 µm grains are
introduced, the respective ratios of Ohmic, Hall, and ambipolar
diffusion are largely unaffected in the midplane, although each
of these diffusivities are increased by roughly three orders of
magnitude. The most dramatic modification comes from 0.1 µm
grains: at 10 au, those authors found that ambipolar diffusion
dominates in the disc midplane, followed by the Hall effect at
about a factor of 10 smaller. At 5 au, all three diffusivities are
comparable in the midplane, although their absolute values are
increased by five to six orders of magnitude.

4.2. Vertical distribution

Despite the presence of a strong magnetic torque and the con-
sequent large rates of angular-momentum transport observed in
our Hall-dominated simulations, the flow appears to be predom-
inantly laminar. One might then expect any population of large
dust grains to slowly settle into the disc midplane and thereby af-
fect the diffusivity tensor. However, the driven outflows may lift
up these grains and, in doing so, mimic the role traditionally as-
cribed to turbulent stirring. It is therefore natural to ask whether

or not grains are expected to sediment under the conditions
found in our simulations.

To this end, let us consider the vertical equilibrium for dust
grains obtained by balancing vertical gravity with gas drag:

0 = −mggz + 〈σv〉g ρvz,

where gz is the vertical component of gravity, vz is the vertical
gas velocity, and 〈σv〉g is the rate of momentum exchange of
grains with neutral gas molecules. We approximate 〈σv〉g ∼ a2cs

and mg ∼ a3ρS, where ρS is the grain material density and a is
the grain radius. Using gz = Ω

2z, we find

zmax ∼
ρ

ρS

csvz

aΩ2

to be the equilibrium height reached by the grains when they are
dragged by the outflow. The continuity equation implies that ρvz
is conserved along z, defining the mass-outflow rate. Assuming
ρS = 1 g cm−3 and using Eq. (9) to quantify the mass-loss rate,
we obtain

zmax

H
∼ 107

(

Σ

103 g cm−2

) (

a

1 µm

)−1

Ṁoutflow· (22)

This estimate suggests that dust grains with sizes up to 1 mm
(30 µm) can be lifted up at 1 au (10 au) for typical outflow mass-
loss rates found in our simulations (i.e. Ṁoutflow & 10−4).

4.3. Impact on this work

Overall, it appears that 1 µm grains should not have too much
of an impact on our results at 5 and 10 au: the Hall effect still
dominates in the midplane, and the increase in the diffusivities
by three orders of magnitude leads to Elsasser numbers close to
the midplane values we adopted at R0 = 1 au. Hence, the role
played by the Hall effect is likely to be qualitatively comparable
to what we presented in Sect. 3.3 though quantitatively different.
To test this conjecture, we performed two simulations at 10 au
in which the diffusivities are artificially increased by a factor
of 1000 throughout the vertical extent of the disc (runs 10-OA-
gr and 10-OHA-gr). Even in this worst-case scenario, the Hall
effect still significantly enhances the magnetic stress in the disc
(see α values in Table 1).

For 0.1 µm grains, the impact is less obvious. The Hall effect
can still be a major player at 5 au, but the dramatic increase of the
diffusivities brings us into new territory, for which we have no
numerical simulations to guide our intuition. This regime is quite
difficult to study numerically, since the diffusivities are much
larger than the cap values we used in this work (see Sect. 2.4).
Increasing the cap values to the predicted diffusivities would
lead to extremely small time steps, making explicit numerical
simulations, such as ours, impractical at this time.
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5. Summary

In this paper, we have explored the linear and non-linear be-
haviour of poorly ionised, vertically stratified protoplanetary
discs. For the first time, all three relevant non-ideal MHD effects
– Ohmic dissipation, ambipolar diffusion, and the Hall effect –
are self-consistently included. To accomplish this feat, we have
implemented an original formulation of ambipolar diffusion and
the Hall effect in the finite-volume code P.

Our results demonstrate that none of these effects can be
safely neglected at distances ∼1–10 au from the central proto-
stellar object. En route to this conclusion, we have confirmed
previous work on the effects of Ohmic dissipation and ambipo-
lar diffusion on magnetorotational turbulence in stratified discs:
Ohmic diffusion quenches the MRI in the disc midplane, and
ambipolar diffusion suppresses turbulence in the surface layers,
making the traditional viscous disc model insufficient to explain
the observed accretion rates (α ≈ 6 × 10−4 at 1 au). Our prin-
cipal finding is that the Hall effect alters this picture dramati-
cally. A strong azimuthal magnetic field is produced in the disc
midplane, which generates a vertical magnetic pressure gradient
strong enough to substantially increase the vertical scale height
of the disc. This azimuthal field correlates with a weak radial
field to produce very efficient angular-momentum transport with
α ∼ 10−2. These values are compatible with accretion rates
Ṁ . 10−7 M⊙ yr−1 (Eq. (11b)) without a need to invoke external
stresses generated by disc outflows (as in Bai & Stone 2013b).

The MRI-driven outflows are also modified by the Hall ef-
fect. The mass-loss rates increase by a factor .20 over those
found in runs with only Ohmic dissipation and ambipolar dif-
fusion. The surface stresses also increase by a factor of ∼4 at
1 au. However, we caution that these numbers may be inappro-
priate for global disc models, since outflows (and in particular
the mass-loss rates) are affected by the vertical boundary condi-
tions in the shearing-box approximation (Fromang et al. 2013;
Lesur et al. 2013). Shearing-box outflows should be treated with
caution.

Surprisingly, our stratified simulations do not produce the
axisymmetric (“zonal”) magnetic-field structures and the atten-
dant steep reduction in turbulent transport found by KL13 in un-
stratified simulations with a net vertical magnetic flux. This is
despite our simulations being in the right regime (ℓH & 0.2H).
We speculate that this difference is due to the strong azimuthal
magnetic field produced in the disc midplane for the stratified
case, which “hides” the vertical field from the dynamics. This
is related to our choice of vertical boundary conditions, which
permits the evacuation of magnetic flux tubes from the computa-
tional domain and the production of a net azimuthal field (despite
none being present initially). This build-up of azimuthal flux is
not possible in unstratified shearing boxes. It is suggestive that
KL13 did not find the zonal-field route to saturation in unstrat-
ified shearing boxes with 〈By〉 ≫ 〈Bz〉. We therefore conjecture
that both the global topology of the magnetic field threading the
accretion disc and the radial and vertical ionisation profiles may
play a role in determining which saturated state is favoured.

It is well-known that the influence of the Hall effect on the
linear stability of the disc depends upon the field polarity Ω · B
(Wardle 1999; Balbus & Terquem 2001), which is a result we
have found to hold true in the non-linear regime as well (see
also Sano & Stone 2002). Configurations with Ω · B > 0 show
enhanced transport, while configurations withΩ·B < 0 show re-
duced transport (viz. α ∼ 10−4 and no significant outflow). This
suggests that one could have disconnected regions of the disc
with different field polarities, which are either actively accreting

or relatively quiet and evolve according to the global topology
and the long-term evolution of the large-scale magnetic field.

The relatively large magnetic stresses generated by the Hall
effect are not associated with turbulent fluctuations. Rather, they
are associated with large-scale amplification of an azimuthal
magnetic field via the shearing of a Hall-induced radial field (cf.
Kunz 2008). Indeed, the Reynolds stresses are always very small
in the midplane (with 〈Rxy〉 . 10−6). This effect is distinct from
the process found by Turner & Sano (2008), in which the mag-
netic field Ohmically diffuses from the upper active layers down
into the midplane, where it exerts a large-scale stress. One con-
sequence of our result is that the Hall-dominated MRI “turbu-
lence” may be unable to stir up dust grains that would otherwise
slowly settle into the disc midplane under the action of vertical
gravity. This could be a problem, since observations have im-
plied that sub-µm grains are present in the upper atmospheres of
protoplanetary discs (Pinte et al. 2008). On the other hand, such
small grains could have been lifted up by a weak outflow (cf.
Sect. 4.2).

Finally, using Salmeron & Wardle (2008) results, we have
shown that µm-sized grains should not have much of an im-
pact on our conclusions: the Hall effect remains the dominant
non-ideal term in disc midplanes at 5 and 10 au with diffusiv-
ity coefficients comparable to that at 1 au without grains. The
0.1 µm-sized grains have a more severe impact on the diffusiv-
ities, though Hall remains an important player at 5 au. We have
not explored this regime numerically because of the cost of our
explicit numerical scheme. We note, however, that there is no
reason a priori to neglect the Hall effect at these distances.

While a more sophisticated treatment of the chemistry, in
which dust grains are included and species abundances are time-
dependent, is necessary to make accurate quantitative predic-
tions, the results presented here provide unequivocal evidence
that Ohmic dissipation, ambipolar diffusion, and the Hall effect
must all be taken into account to obtain a realistic description of
angular-momentum transport in protoplanetary discs.
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Appendix A: Numerical implementation

of the Hall effect

In this appendix, we provide details of the modifications made
to the P code (v4.0) to include the Hall effect. While these
modifications are quite general to any conservative finite-volume
numerical scheme, the interested reader would benefit by fa-
miliarising themselves with both Mignone et al. (2007) and the
P user manual.

A.1. Conservative finite-volume scheme

The implementation of Hall effect in P has proven to be a
difficult task. Our naive attempts to include the Hall effect as a
source term in a way that is analogous to that used for Ohmic dif-
fusion have failed. Since the Hall effect is in essence a dispersive
term rather than a true diffusive term, we have instead incorpo-
rated the Hall effect into the heart of the conservative integration
scheme.

We begin by writing Eqs. (1)–(3) in conservative form:

∂U

∂t
= ∇ · F(U) + S(U), (A.1)

where U is a vector of conserved quantities, F is the conservative
flux function, and S is the source term function. The equations
of isothermal Hall-MHD dictate

U =





ρ

ρu

B





and F(U) =





ρu

ρuu − BB − pTI

uB − Bu − xH(JB − BJ)





, (A.2)

where pT = ρc
2
s − B2/2 is the total pressure and xH = ηH/B is

the control parameter for the Hall effect.
In the above formulation, we have explicitly used J = ∇ × B

in the flux function, which implies that the flux depends upon the
conserved variables and their derivatives. This has dramatic con-
sequences on the mathematical nature of the Riemann problem
since it is ill-defined in this formulation (to wit, if B is discon-
tinuous, then J is not defined). Another way to see this is to note
that the linearised flux function, which defines the characteris-
tic speeds of the system, depends upon the wavelength of the
perturbation (due to the presence of whistler waves). If a dis-
continuity appears in the flow, one obtains infinitely fast char-
acteristic speeds, which are, of course, unphysical.6 Because of
this mathematical difficulty, we have not found any sensible way
to derive accurate Riemann solvers, such as the Roe or HLLD
solvers. Instead, we follow Tóth et al. (2008) and implement an
HLL solver, which approximates the dynamics of Hall-MHD by
assuming that J is an external parameter (i.e., not related to B).
In doing so, we circumvent the difficulties exposed above at the
expense of large numerical diffusivities.

The algorithm we designed to integrate Eqs. (A.1) and (A.2)
using P is as follows:

1. Compute the primitive cell-averaged variables V from the
conserved variables U.

2. Reconstruct the primitive variables at the cell edges
using a “well-chosen” second-order, total-variation-
diminishing (TVD) spatial-reconstruction scheme (see
below). This defines a left state (VL) and a right state (VR)
at each cell face.

6 In a realistic plasma, the whistler wave speed is limited by finite
Larmor radius effects that are excluded in the MHD approximation.

3. Compute the left and right conserved variables UR/L from
VR/L.

4. Compute the face-centered J from the cell-averaged B us-
ing finite-difference formulae. Care is taken at this stage to
apply the proper boundary conditions; shearing-sheet bound-
ary conditions have to be applied explicitly to the currents to
avoid spurious oscillations at radial boundaries due to inter-
polation errors.

5. Compute the left and right fluxes using the left and right
states and the face-centered current: FL/R = F(UL/R, J).

6. Compute the Godunov flux F∗ using the whistler-modified
HLL solver (described below).

7. Evolve the conservative variables in time according to the
equations of motion (see Mignone et al. 2007 for details). If
constrained transport is used (Evans & Hawley 1988; Balsara
& Spicer 1999), then the Godunov flux is used to compute
the edge-centered electromotive forces (EMFs), which are
then used to evolve the magnetic field.

To compute the Godunov flux F∗, we follow the HLL scheme
by using the approximation

F
∗ = FL if S L > 0;

F
∗ = FR if S R < 0;

F
∗ =

S RS L(UR − UL) + S RFL − SLFR

S R − S L
otherwise,

where S L is the smallest algebraic signal speed for the left state
and S R is the largest algebraic signal speed for the right state.
Since we are solving the Hall-MHD equations, S R/L includes
both the fast magnetosonic speed and the whistler wave speed.
Therefore, we choose

S = v ±max(cf , cw),

where v is the flow speed, cf is the fast magnetosonic speed, and
cw is the whistler wave speed. As whistler waves are dispersive,
we choose cw to be equal to the whistler speed at the grid scale:

cw =

∣
∣
∣
∣
∣

xHB

2∆x

∣
∣
∣
∣
∣
+

√

(
xHB

2∆x

)2

+
B2

ρ
,

where ∆x is the grid spacing in the direction under consideration.

A.2. Numerical tests

A.2.1. Linear dispersion relation

We test our integration scheme by first considering a simple con-
figuration with a uniform mean magnetic field B0 plus small si-
nusoidal perturbations δB⊥ perpendicular to B0. We then com-
pute the frequency of the oscillation obtained in the code and
compare it to the theoretical dispersion relation (see KL13 for
details). The results are presented in Fig. A.1, where we have
quantified the Hall effect by the Hall lengthscale ℓH and the Hall
frequency ωH ≡ vA/ℓH.

In these numerical calculations, the Nyquist frequency is
such that kℓH = 80. We find very good agreement for the whistler
branch up to half of the Nyquist frequency. The non-propagating
ion-cyclotron wave is not obtained at large k because of the large
numerical dissipation: the dissipation rate of this wave is faster
than its oscillation period.

A56, page 15 of 17



A&A 566, A56 (2014)

kℓH

ω
/
ω
H

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Fig. A.1. Dispersion relation for whistler waves. Black line: analytical
prediction; circles: eigenfrequencies measured in P using our im-
plementation of the Hall effect.

Table A.1. Numerical damping rate γ/ωH of a whistler wave as a func-
tion of the number of points per wavelength n using the monotonized
centered (MC), Van Leer (VL), and minmod (MM) slope limiters.

Slope limiter n = 8 n = 16
MC 26 5.6
VL 29 7.7
MM 40 17

A.2.2. Convergence and numerical dissipation

The question of convergence in Hall-MHD was raised by Tóth
et al. (2008). Since the whistler wave speed ∝(dx)−1 and since
numerical dissipation is roughly proportional to the wave speed,
the convergence of the code at second order is not guaranteed
in the presence of fast whistler waves. As was demonstrated by
Tóth et al. (2008), this problem can be solved using a symmet-
ric slope limiter in the reconstruction scheme, which naturally
leads to a higher-order numerical diffusivity. To verify this, we
present the numerical damping rate γ/ωH for a whistler wave at
kℓH = 20 as a function of the number of points per wavelength
n in Table A.1. We find that both the monotonized centered and
Van Leer slope limiters show second-order convergence as the
resolution per wavelength is increased. This is not the case for
the minmod limiter, where only first-order convergence is ob-
tained. These results support the Tóth et al. (2008) argument and
demonstrate that great care is needed when choosing the slope
limiter in Hall-MHD. Unless otherwise stated, we always use the
monotonized centered slope limiter.

Tóth et al. (2008) also demonstrated that this algorithm leads
to numerical dissipation ∼cwU(4)(∆x)3, where U(n) stands for the
nth derivative with respect to x. This implies that

– numerical dissipation damps whistler waves at the grid scale
in one oscillation period; this explains why it is not possible
to measure the numerical eigenfrequency in Sect. A.2.1 at
the Nyquist frequency;

– at a given resolution, the damping rate decreases as k−4 (This
has been verified by our numerical implementation.). Hence,
numerical dissipation decreases very rapidly as one goes to
larger scales.

Finally, KL13 have shown that higher-order time-integration
schemes are one way to guarantee the stable propagation of
whistler waves if one desires spectral accuracy without any

Fig. A.2. Snapshot of Bz in our unstratified Hall-MRI run at t = 30. The
flow exhibits a zonal-field structure similar to that discovered by KL13.

numerical dissipation. Because of the numerical dissipation in-
herent to our algorithm, which is a natural consequence of the
Godunov flux as defined above, the use of a higher-order time-
integration scheme is not required in P. We use an ex-
plicit second-order accurate Runge-Kutta scheme unless other-
wise stated.

A.2.3. Unstratified shearing box

KL13 demonstrated that the Hall-dominated MRI with 〈By〉 .
〈Bz〉 saturates by producing large-scale axisymmetric structures
in the magnetic field (“zonal fields”). To further test our Hall-
MHD integration scheme and to control our numerical diffu-
sivity, we have tried to reproduce this non-linear behaviour in
P. We use very similar parameters to the run ZB1H1 of
KL13. We use a 4× 4× 1 box with a resolution 64× 64× 16. We
set ℓH = 0.55, Bz0 = 0.03, and η = ηA = 0. The resulting satu-
rated state is shown in Fig. A.2 and exhibits a zonal-field struc-
ture similar to the one presented by KL13. This demonstrates
that our scheme, despite being relatively diffusive due to the use
of an HLL solver, manages to capture zonal-field structures with
a resolution of 16 points per H.

Appendix B: Ambipolar diffusion

Ambipolar diffusion is implemented as a source term in a
way analogous to that used for Ohmic resistivity. However,
we noticed that grid-scale instabilities sometimes arise if the
shearing-sheet boundary conditions are not enforced on the cur-
rent density (a similar thing was observed with the Hall effect).
Therefore, we use the current density computed in the conserva-
tive scheme for the Hall effect to compute the EMFs associated
with ambipolar diffusion and Ohmic dissipation. This prevents
small-scale instabilities from occurring at the radial boundaries.

We have tested our ambipolar diffusion module against the
predictions of Kunz & Balbus (2004). An isothermal shearing
box of size 4 × 4 × 1 and resolution 128 × 32 × 32 is threaded
by a mean magnetic field with both vertical and horizontal com-
ponents, whose magnitudes are characterised by their respective
Alfvén speeds: Bz0 = 0.025 and By0 = 0.1. We introduce am-
bipolar diffusion by setting Am = 1. A typical snapshot of the
linear growth phase is shown in Fig. B.1. We find the fastest-
growing mode to have (kx, kz) = 2π × (−0.75, 1). To check that
this conforms to the expectation from linear theory, we show
the theoretical growth rate of the ambipolar-dominated MRI as
a function of (kx, kz) in Fig. B.2. We find that the mode seen
in the simulation corresponds to the fastest-growing mode from
linear theory that is available in the simulation. The theoretical
growth rate for this mode is γ = 0.171; we find numerically
γ = 0.17. This demonstrates the accuracy of our implementation
of ambipolar diffusion in P.
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Fig. B.1. Snapshot of Bx in our ambipolar-MRI test simulation at t =
100, just before saturation. The oblique nature of MRI channel mode,
as predicted by Kunz & Balbus (2004), is evident.
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Fig. B.2. Growth rate of the ambipolar-MRI for Bz0 = 0.025 and By0 =
0.1 as a function of the horizontal and vertical wavenumbers, kx and kz.
The largest growth rate available in the simulation obtains for (kx, kz) =
2π × (−0.75, 1) (white cross).
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