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Abstract

Can general-purpose neural models learn to navigate?

For PointGoal navigation (‘go to ∆x,∆y’), the answer is

a clear ‘yes’ – mapless neural models composed of task-

agnostic components (CNNs and RNNs) trained with large-

scale model-free reinforcement learning achieve near-

perfect performance [27]. However, for ObjectGoal navi-

gation (‘find a TV’), this is an open question; one we tackle

in this paper. The current best-known result on ObjectNav

with general-purpose models is 6% success rate [25].

First, we show that the key problem is overfitting. Large-

scale training results in 94% success rate on training envi-

ronments and only 8% in validation. We observe that this

stems from agents memorizing environment layouts during

training – sidestepping the need for exploration and directly

learning shortest paths to nearby goal objects. We show

that this is a natural consequence of optimizing for the task

metric (which in fact penalizes exploration), is enabled by

powerful observation encoders, and is possible due to the

finite set of training environment configurations.

Informed by our findings, we introduce Treasure Hunt

Data Augmentation (THDA) to address overfitting in Ob-

jectNav. THDA inserts 3D scans of household objects at ar-

bitrary scene locations and uses them as ObjectNav goals

– augmenting and greatly expanding the set of training lay-

outs. Taken together with our other proposed changes, we

improve the state of art on the Habitat ObjectGoal Navi-

gation benchmark by 90% (from 14% success rate to 27%)

and path efficiency by 48% (from 7.5 SPL to 11.1 SPL).

1. Introduction

Consider an agent given a task such as ‘Bring me a

teapot’ in a new environment. In order to successfully per-

form the command, it first must navigate around the envi-

ronment to find the teapot. This search subtask is referred

to as ObjectNav [1, 3] and is illustrated in Fig. 1.

*Correspondence to maksymets@facebook.com

In this work, we examine if general-purpose neural mod-

els learn to navigate when given their goal specified as

an object name. Specifically, models that are composed

of navigation-agnostic general architectural components

(CNNs, RNNs, fully-connected layers, etc.) and trained un-

der an experimental setup that provides no inductive bias

towards how humans believe this problem should be solved

e.g. no map-like or spatial structural components in the

agent, no mapping supervision, no auxiliary tasks – nothing

other than the task of navigation to a goal object. We find

this question interesting both from a scientific perspective

(what are the fundamental limits of learnability?) and an

engineering perspective (general-purpose architectures are

widely applicable across tasks and any advances made are

likely to have significant ripple effects).

In recent work studying PointGoal Navigation (or navi-

gating to a relative waypoint), task-agnostic neural models

trained with large-scale model-free reinforcement learning

(RL) achieve near-perfect performance [27]. We find how-

ever that similar models are unable to achieve even non-

trivial performance in unseen environments when applied

directly to ObjectNav. We show that the key problem is ex-

treme overfitting – even in the presence of standard tricks

like early stopping. Large-scale training results in 97% suc-

cess rate in training environments and only 8% success un-

seen environments from validation.1

We identify three key reasons for this poor generalization

and demonstrate techniques to reduce their effect:

1) Overly rich sensors. Given that ObjectNav relies on se-

mantic information, agents are often provided observations

in the form of RGB-D images and a semantic segmentation

of the current frame (via either ground-truth or a separately

trained network). However, we argue that this sensor suite is

‘too rich’ for the task, i.e. makes memorizing environments

1We encourage the reader to fight hindsight bias at this point – it is not

at all obvious that general-purpose neural networks trained with model-

free reinforcement learning should be able to achieve such high perfor-

mance on a large number of diverse training environments. We could very

well have found ourselves in a world where both training and validation

performance was poor, with approximation or optimization error to blame.
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Figure 1: In ObjectNav, an agent is spawned (at locations 1,2,3) and asked to find the ‘bed’, shown in (a). We introduce the idea of Treasure

Hunt Data Augmentation (THDA), where we insert common household objects from the YCB dataset (shown in (e)) at random locations

in the house (b,c,d) and ask the agent to find them. In the original ObjectNav dataset (left half of figure), the agent’s spawn position

varies (1−3), but the goal location does not. In THDA, both the robot spawn position and the goal location changes. This increases the

training data significantly by expanding the diversity of the (starting position, target category, target position) tuples in the training data.

We demonstrate empirical that this improve validation performance significantly on unseen scenes.

and goals during training easy. We empirically find that

limiting the agent to a minimal sensor suite of a Depth sen-

sor and a segmentation mask of the goal category reduces

overfitting (when combined with our other ideas below).

2) Mismatch between reward and necessary behavior at

inference. ObjectGoal navigation is fundamentally about

exploration – when an agent is put into an unseen environ-

ment, there are few priors it can rely on for finding the ob-

ject and thus it must explore. The typical reward used for

training navigation agents encourages them to reach their

goal as quickly as possible (called ‘slack penalty’). Unfor-

tunately, the direct implication is that this reward penalizes

exploration. Over a finite set of training environments, we

argue that this both encourages memorization and fails to

teach the agent how to explore. We propose a reward called

ExploreTillSeen where the agent is initially rewarded for

exploring the environment and then for navigating to a tar-

get object as quickly as possible after seeing it.

3) Limited training data. Even with reduced sensors and

a exploration-promoting reward, the fundamental challenge

of data scarcity remains. Datasets for ObjectNav depend

on large 3D scenes with high quality semantic annotations

which are difficult to collect. We introduce Treasure Hunt

Data Augmentation as a way to combat this. THDA inserts

objects into existing 3D environments to generate synthetic

ObjectNav episodes to augment the training set. This idea

is illustrated in Fig. 1 with inserted objects mug, pliers, jug.

By addressing these causes of overfitting, we are able to

train an agent that generalizes better to novel scenes.

Contributions. We summarize our contributions below:

– We significantly improve the performance of a simple

mapless model-free RL baseline on the challenging Habi-

tat ObjectNav benchmark – from 6.2% [25] to 21.2% suc-

cess rate. We also demonstrate significant improvements on

path efficiency – from 2.1% SPL to 7.7% SPL. Even with-

out THDA, this already sets a new state of art on the task.

– We propose an effective ExploreTillSeen reward func-

tion for the ObjectNav task that combines exploration and

distance to target rewards with the object identified reward.

– We introduce Treasure Hunt Data Augmentation (THDA)

that is highly effective for pre-training the improved RL

baseline, further improving the start of art from 21.2% suc-

cess (7.7% SPL) to 27.4% success (11.1% SPL). All three

of our ideas together result in a relative improvement in

the state of art by +48% SPL and +90% Success. In fact,

THDA shows competitive results with prior state of art even

in a zero-shot setting, i.e. without any training on the target

dataset used by the challenge.

2. Related work

Simulators and datasets for ObjectGoal navigation. The

challenging task of object-goal navigation has received a

lot of interest in the recent years. Photorealistic 3D indoor

environments [29, 7, 18] are well suited for ObjectNav be-

cause they capture the distribution of layouts of real houses

with a high-quality visual rendering, which might be needed

for sim2real transfer [3]. We choose the Habitat-Challenge

framework [3] to focus on multi-room navigation in multi-
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floor photo-realistic scenes.

ObjectNav policy with explicit spatial representations.

Some of the recent learning-based approaches for object-

goal navigation construct and update an intermediate rep-

resentation from observations which is then used for plan-

ning. This includes methods using a mapping module such

as [8, 24] which use simultaneous localization and mapping

(SLAM) to construct a map. Similarly, [13] learns a map-

ping strategy to construct a belief map of the world and use

it for planning. More recently, [9, 26] use a semantic map-

ping module to learn semantic priors. In addition, other

methods use topological representations [28, 30]. In [30],

semantic priors are incorporated into a deep RL framework

by using Graph Convolutional Networks. Whereas [28],

learns a probabilistic graphical model to capture the seman-

tic properties of houses. Furthermore, [5] stores previous

joint encoded observations (including semantic features) in

an unstructured memory. A transformer network is used on

top of that memory for planning. In all the above methods,

intermediate representations are used for planning. In this

work, the learnt navigation policy is not constrained to a

specific representation and does not rely on any motion or

task planning. Instead, the agent learns to act directly from

its egocentric observations. The resulting policy is faster

and more generic, and does not suffer from errors accumu-

lated from intermediate modules.

Augmentation by Inserting Objects. Prior work has ex-

amined object insertion as a data augmentation technique

for instance segmentation in 2D images [10, 11] and in 3D

object detection [22]. Likewise in this work, we insert ob-

jects into large 3D scenes in order to create new episodes

for pretraining model-free reinforcement learning agents for

semantic navigation.

3. Preliminaries: ObjectNav & Agents

We begin by detailing the ObjectNav task, agent specifi-

cations, and common model-free visual navigation agents.

3.1. ObjectNav Task Description

Objects as Navigation Goals. In ObjectNav [2, 3], an

agent is spawned in a never-before-seen environment and

tasked with finding an instance of a specified object class –

akin to simple instructions like ‘Find a chair’.

We focus on the Habitat Challenge ObjectNav bench-

mark. This dataset provides ObjectNav episodes in large,

photorealistic, simulated environments from the Matter-

port3D dataset [7]. These episodes consist of a start loca-

tion for the agent, a target class, and ground truth locations

for target object instances. Each episode requires navigat-

ing across multiple rooms (3-27 meter shortest-paths) as en-

vironments in the Matterport3D dataset are typically large.

Rarely ever is the target object visible from the spawn loca-

tion, with the average distance of the nearest target object

from spawn being approximately 8m. The target object is

almost surely always in a different room than the agent. As

such, agents must explore the environment to spot a target

object instance before invoking a ‘stop’ action.

Agent Specification. Following [3], our simulated agent

is designed to match the height and radius of the Locobot

robot (http://www.locobot.org/) with a simple action space

of move forward 0.25m, turn right/left by 30 degrees, look

up/down by 30 degrees, and stop. We dropped the look

up/down actions from our policy, after observing that their

exclusion accelerates training in our initial experiments.

Evaluating Success and Path Efficiency. An agent trajec-

tory is considered successful if the agent invokes the ‘stop’

action within 1m of a target object instance and with direct

line-of-sight to it. Note that the agent does not need to be

looking at the object, merely that it is possible to do so from

the terminal location [3]. Beyond success, agents are also

evaluated based on their efficiency relative to an optimal

oracle agent that moves along the shortest path to the near-

est target object instance. This is captured via the Success

weighted by inverse Path Length (SPL) metric [2]. Formal-

izing this for an episode, let L denote the oracle shortest-

path length, P the agent’s path length, and S be a binary

indicator whether the agent succeeded. SPL is then defined

as S · (L/max(P,L)) and is bounded in [0, 1] where 1 (or

100%) reflects optimal performance. Both success and SPL

are reported as averages over episodes in the dataset.

As ObjectNav requires a degree of search, achieving an

SPL of 1 seems infeasible for both humans and agents with-

out oracle information. Simply put, without knowing the lo-

cation of the object a priori, moving towards it along a short-

est path consistently is not possible over many episodes. In

later sections, we will demonstrate that naively optimizing

for this metric encourages overfitting during training.

3.2. Common ModelFree Navigation Agents

Generic agent architectures that directly map observa-

tions into low-level actions have shown near-perfect perfor-

mance on navigating to relative point goals in indoor envi-

ronments [27]. However, their application to ObjectNav has

not shown similar results – with agents failing to generalize

from training. These ‘vanilla’ agents form our starting point

for analysis in this work and are described below.

Agent Architecture. We follow [27] and consider agents

composed of two main components – a visual encoder and

a recurrent policy network. For the vanilla model, the obser-

vation consists of an RGB-D frame from a forward-facing

camera, the agent’s position / heading in coordinates rela-

tive to its spawn configuration, and an encoding of the tar-

get object class. The policy network outputs a categorical

distribution over the set of actions.

For RGB-D, the visual encoder is a modified ResNet-
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50 [14] architecture with the number of output channels

at every layer reduced by half. We use a first layer of

2x2-AvgPool to reduce resolution (essentially performing

low-pass filtering + downsampling) same as in [27]. In later

experiments, we will also consider augmenting the input

with semantic segmentation of the scene.

The recurrent policy network is parameterized by a 2-

layer LSTM with a 512-dimensional hidden/cell state. It

takes four inputs: the previous action, the object goal cat-

egory embedding, the agent’s position and heading relative

to its initial pose, and the output of the visual encoder. The

LSTM’s output is used to produce a softmax distribution

over the action space and an estimate of the value function

for actor-critic style training – both are computed as linear

functions of the current hidden state.

Training Procedure. We use PPO with Generalized Ad-

vantage Estimation [21]. We set the discount factor γ to

0.99 and the GAE parameter τ to 0.95. Each worker col-

lects (up to) 64 frames of experience from 6 agents run-

ning in parallel (all in different environments) and then per-

forms 4 epochs of PPO with 2 mini-batches per epoch. We

use Adam [17] with a learning rate of 2.5 × 10−4 with-

out normalized advantages. To parallelize training, we use

Distributed Decentralized PPO (DD-PPO) [27] to train with

256 workers on 256 GPUs.

Reward. A natural first choice is to use the shaped

navigation reward commonly used for PointGoal Naviga-

tion [20, 27] which optimizes path efficiency. This shaped

navigation reward consists of a change in geodesic distance

term (∆geo dist) that encourages agents to make progress to-

wards the goal and a large reward for successful episodes

(rsucc). Specifically the reward at time t when the agent is

in state st and executes action at is

rt(st, at) =

{

S · rsucc If atis stop

−∆geo dist + rslack otherwise
(1)

where ∆geo dist is the change in geodesic distance to goal af-

ter executing action at in state st, S is a binary indicator of

success, and rslack is a slack penalty that encourage the agent

to quickly find its goal. It is easy to see that optimizing this

reward also optimizes SPL – an agent should successfully

reach the goal in as few actions as possible. This reward

works well for PointGoal Navigation and thus it has also

been adapted to ObjectNav by calculating the geodesic dis-

tance with respect to the closest object [9, 20]. We refer to

this reward as Dense Path-Efficiency throughout the paper,

since it is a dense reward and encourages path efficiency.

4. Overfitting in ObjectNav

In this section we analyse the performance of the vanilla

task-agnostic agent and training regime described above in

ObjectNav. We find this paradigm performs poorly – cor-

roborating the results demonstrated in Chaplot et al. [9] and

Figure 2: Training and validation metrics as a function of training

experience for an ObjectNav policy with input of RGB-D showing

strong overfitting behavior. Note the significant gap between train

and validation performance.

the Habitat challenge leaderboard [25]. Digging deeper, we

identify a specific problem – the agent achieves very high

performance during training but fails to generalize.

We begin with the vanilla agent taking only RGB-D as

visual input. This agent is trained with the dense path-

efficiency reward and the training settings described above

for 150 million steps. Figure 2 shows SPL and Success dur-

ing training for both train and val splits. While training per-

formance rises to high levels – reaching success rates of

94% – the performance on val scenes fails to rise – maxing

out at 8%. With reduced encoder capacity from ResNet50

to ResNet18 it achieves even higher success 98% on train,

while only 7.7% on val split.

This overfitting becomes even more evident when ex-

amining path efficiency. The agent reaches path efficiency

(as measured by SPL) of around 66% on train – suggest-

ing the agent has simply memorized training environments.

To achieve such high path efficiency, we conjecture that the

agent might be recognizing its location at spawn and then

moving directly to a memorized object location of the spec-

ified class. We see examples of this behavior in Figure 3

where an agent spawns in locations where it cannot see the

nearest target (‘toilet’) many rooms away, but moves di-

rectly to the target anyway following a near-shortest path on

episode (3). Notice the absolute lack of any search, back-

tracking, or switch-back behavior – this strongly suggests

that the agent has memorized this path.

In the following sections, we will argue that this is a nat-

ural consequence of optimizing for the path-efficiency re-

ward, and is further exacerbated by rich visual encoders and

the small number of training environments.

5. Mid-Level Visual Representation

From this initial experiment, we confirm that RGB-D-

equipped agents overfit significantly during training by

memorizing the training episodes. Recent work in Point-

Goal navigation has shown that the richness of RGB obser-

vations can be a source of this sort of poor generalization

in point-goal navigation tasks [20, 12] and it is common to

use agents based only on depth images to avoid overfitting.
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Navigation goal: toilet

(1)

(2)

(3)

Goal location

Success zones

Agent’s trajectory

Shortest path

Figure 3: Example paths in train environments for the baseline

RGBD agent. The agent is spawned multiple rooms from the goal

object yet manages to move in near-shortest paths to the closest

goal – providing strong evidence of memorization.

“Chair”

Policy

Semantic 
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...

at
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vtht-1
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GPS & Compass
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cabinet
sofa

GoalSeg

chair

RGB

Depth

Figure 4: Architecture of a vanilla RL ObjectGoal Navigation Pol-

icy using the set of visual inputs RGB-D + SemSeg + GoalSeg, the

target object and GPS + Compass. In all our experiments, ab-

lations are made to the visual encoder by restricting the ResNet

inputs to certain modalities.

However, in ObjectNav identifying target object instances

through depth images alone is a challenging task. In our

initial experiments with depth-only models, we found slow

convergence on train and poor generalization.

As such, we consider removing RGB but augmenting our

models with semantic segmentation masks produced by an

intermediate model. We use a pre-trained semantic segmen-

tation model (RedNet [16]) to predict semantic segmenta-

tion over the 21 goal categories. The agent is provided these

masks by augmenting the depth mask with these additional

21 channels before encoding with the visual encoder. We

denote this visual observation as SemSeg. Furthermore, we

dedicate an additional channel to the semantic segmentation

corresponding to the goal category (GoalSeg) – effectively

duplicating one of the SemSeg channels – for a total of 23

input channels. We denote this model as Depth +SemSeg

+GoalSeg. We train a Depth +SemSeg +GoalSeg agent

with the dense path-efficiency reward described previously.

The results of this model and our baseline RGB-D agent are

shown in Tab. 1. We find our Depth +SemSeg +GoalSeg

Train Val

Visual Input SPL SoftSPL DTS SR SPL SoftSPL DTS SR

(%) ↑ (%) ↑ (m) ↓ (%) ↑ (%) ↑ (%) ↑ (m) ↓ (%) ↑

RGB-D 66.2 67.3 0.171 94.2 1.8 13.4 6.9 8.0

Depth +SemSeg +GoalSeg 68.7 69.7 0.149 95.7 3.3 12.0 6.1 10.2

Table 1: Performance comparison of agents trained with different

input modalities under the standard path-efficiency reward. The

Depth +SemSeg +GoalSeg model shows to slightly reduce overfit-

ting and will be considered for the remaining experiments.

reduces overfitting somewhat – achieving a 10.2% success

rate in validation (vs 8.0% for the RGB-D baseline).

We use this Depth +SemSeg +GoalSeg model as our

base for the remaining experiments. As we will discuss in

Sec. 7, this use of mid-level semantic features makes syn-

thetic data augmentation straightforward by lowering the

need for fully-realistic object insertion. We also note that

this type of modular architecture separating semantic per-

ception from control has been examined in the context of

sim2real transfer for ObjectNav with positive results [9].

6. ExploreTillSeen Reward

As described in Sec. 3, the standard dense path-

efficiency reward is maximized by an agent that navigates

directly along a shortest path to the nearest target object in-

stance. In new environments, this is infeasible and an agent

must learn to explore in order to achieve high reward. As we

demonstrated in Sec. 4 however, memorizing the environ-

ments is an alternative highly-rewarded behavior if operat-

ing in a small training set. For large models, memorizing all

61 environments in ObjectNav is certainly plausible; how-

ever, such an agent does not learn to explore and does not

generalize. We note that given infinite environments during

training, such a reward is not necessarily degenerate.

We would like an agent that learns to efficiently ex-

plore and then moves directly to discovered target object

instances after they are first observed. To encourage this be-

havior, we devise an ExploreTillSeen reward for this task

that explicitly breaks the agent trajectory into two subtasks

– exploration/search and navigation to found/visible target

objects. Initially the agent is rewarded for simply exploring

the environment – given positive feedback for increasing the

fraction of the environment it has observed. Once the agent

sees an instance of the target class, the agents receives a

significant positive reward and then the reward switches to

a shaped path-efficiency promoting navigation reward.

Formalizing the ExploreTillSeen reward, let

∆% scene explored be the change in the fraction of envi-

ronment area observed by the agent when taking action

at in state st. We calculate this by projecting the agent’s

viewing frustum onto a 2D floor map of the environment

at each time step and keeping track of the fraction of area
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Train Val

Method SPL (%) ↑ SoftSPL (%) ↑ DTS (m) ↓ Success (%) ↑ SPL (%) ↑ SoftSPL (%) ↑ DTS (m) ↓ Success (%) ↑

1 Dense Path-Efficiency 68.7 69.7 0.149 95.7 3.3 12.0 6.067 10.2

2 Sparse Success 0.0 0.0 6.988 0.0 0.0 0.0 7.843 0.0

3 Sparse Success + Exploration 48.0 49.9 1.925 78.9 3.4 13.0 6.561 10.8

4 ExploreTillSeen 58.5 59.3 1.752 85.0 4.8 12.2 6.242 14.5

5 ExploreTillSeen (Depth + GoalSeg) 47.8 50.3 1.559 79.2 6.5 13.9 6.243 20.0

6 ExploreTillSeen (Depth + GT GoalSeg) 74.7 74.8 0.285 97.2 20.0 24.9 6.776 40.7

Table 2: Comparison of different reward functions and input modalities. Rows (1-4) are Depth +SemSeg +GoalSeg models trained under

different reward functions. The Depth +GT GoalSeg model uses ground truth segmentations at inference and acts as an upper bound on

Depth + SemSeg. We find in these experiments that ablating the SemSeg from input modalities further reduces overfitting.

observed at least once. Further let rgoal seen be a constant

reward for the first observation of a target object instance.

To define if the goal object was seen we check ground truth

goal segmentation occupies > 3% of the frame. Formally:

rt = rslack +











rexpl∆% scene explored Until goal seen

rgoal seen First time goal seen

−∆geo dist + S · rsucc otherwise

(2)

where rexpl is a scaling factor for the exploration reward and

∆geo dist and rsucc are defined as in Eq. (1). In practice, we

use values rsucc = 10, rslack = −0.01, rgoal seen = 3,

and rexpl = 25. Note that the reward switches to naviga-

tion once the agent sees the first instance of an object cat-

egory, but we use all object instances in the environment

when computing distance to goal. This is to handle cases

like the agent navigating to an instance closer than the one

observed first or if the instance it saw is not easily reachable.

We note that this reward too may result in a degenerate

solution on a finite training set – memorizing optimal ex-

ploration paths that intentionally do not observe an object

instance until some the slack reward overtakes the explo-

ration reward. However, we find this solution is more diffi-

cult for policies to achieve in practice and that the learned

behavior still encourages exploration followed by a switch

to goal-driven navigation once a target object is observed.

6.1. Reward Experiments

We train our Depth + SemSeg + GoalSeg agent under

four different reward schemes:

1) Dense Path-Efficiency. The standard dense shaped re-

ward used for navigation tasks explained in Section 4.

2) Sparse Success. While potential-difference-based re-

wards are known to not change the optimal policy or the

ordering of policies [20, 27], they may change the order

we find policies and using a sparse reward may cause us

to find suboptimal policies that generalize. We also con-

sider using a sparse reward with only the success term.

3) Exploration Only. The dense shaped coverage explo-

ration reward and success term from ExploreTillSeen

reward without the go-to-goal term.

4) ExploreTillSeen. The reward proposed here where the

agent explores the environment and then navigates to the

object once it encounters an instance.

While [20, 27] showed that longer training horizons are ben-

eficial we usually observe saturation of performance on val

for ObjectNav before 150 million steps. Therefore, we train

agents for 150 million steps and report train / val perfor-

mance by selecting checkpoints with the largest SPL for

each (i.e. each row of Tab. 2 shows two model checkpoints).

As in Sec. 4, we find that the Dense Path-Efficiency re-

ward agent overfits, with near-perfect success on train while

around 10% on val (row 1). The sparse success reward agent

is unable to learn at all (row 2). Adding an exploration re-

ward to the sparse reward (row 3) enables learning and per-

form similarly to the dense path-efficiency agent. Finally,

our ExploreTillSeen reward significantly reduces the gap

between training and validation – gaining around 4% suc-

cess and 4.8 SPL. This amounts to a +42% higher SPL and

Success compared to the dense path-efficiency and explo-

ration rewards. While ExploreTillSeen leads to improve-

ments, there remains a large gap between the best check-

points for train (85% success) and validation (14% success)

– indicating significant overfitting is still occurring.

6.2. Revisiting Visual Representations

GoalSeg. After completing this battery of experiments,

we considered whether SemSeg may still provides suffi-

ciently rich representations of the environment to encour-

age overfitting. In Tab. 2 (row 5) we ablate SemSeg,

keeping only depth and GoalSeg for models trained with

ExploreTillSeen. This agent observes the world via depth

and a sparse semantic segmentation channel corresponding

to the goal object category. We find this ablation improves

performance significantly from 14.5% to 20% success and

from 4.8 to 6.5 SPL (+35%).

Headroom Analysis of Semantic Segmentation. To inves-
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tigate the importance of semantic segmentation prediction

accuracy, we train a Depth + GoalSeg model using ground

truth goal category segmentation at both train and inference.

In the last row of Tab 2, we see significant (+160%) boost in

performance for both SPL and Success. This suggests im-

provements in semantic segmentation prediction can drive

future improvements of ObjectNav task.

7. Treasure Hunt Data Augmentation

Despite the improvements from ExploreTillSeen and

the GoalSeg observation space, the fundamental problem

remains – the training set is finite and partially memoriz-

able by our agents. The natural response then is to either

regularize the agent or to increase the number and diversity

of training data. As effectively regularizing deep networks

for RL is difficult [15], we opt to explore data augmentation.

Generating entirely new photorealistic 3D environments

along with correct semantic category annotations is an

open research area. Instead, we synthesize new Object-

Nav episodes by inserting new objects into existing environ-

ments in a data augmentation scheme we refer to as Trea-

sure Hunt Data Augmentation (THDA). As demonstrated in

Figure 1, we expand the finite set of goals in ObjectNav by

inserting 3D object models into the simulated training envi-

ronments at random locations. These objects may be goals

themselves (extending the goal space of ObjectNav during

training), or simply serve to increase layout diversity.

We hypothesize that such data augmentation will make

memorization of object positions in the training dataset

more difficult and favor agents that explore the environment

until the goal object is observed. However, THDA inserts

objects not considered in ObjectNav and the policy may

learn incorrect biases. As such, we use it as a pretraining

stage before finetuning on the unagumented dataset.

Inserted Objects. We use the YCB dataset objects [4] as

inserted objects. We characterize YCB objects into 7 cat-

egories based on synset intersections from Wordnet [19]:

‘game equipment’, ‘foodstuff’, ‘hand tool’, ‘kitchenware’,

‘plaything’, ‘stationery’, ‘fruit’. While YCB objects differ

substantially from goal categories in ObjectNav (scissors vs

chairs) THDA focuses on the exploration and navigation

portions of the task. In initial experiments, we observed

inserting large objects such as a furniture can make part of

the scene unreachable – complicating goal sampling.

Episode Generation. The objects are placed in free navi-

gable locations to avoid situations where an object is hard to

get near to after being spawned in the middle of the table or

on a bed. To avoid the ObjectNav problem devolving into

”find the YCB object”, we sample and insert up to five YCB

objects per episode – one of which will be selected as the

goal class. To replicate conditions from the original dataset

when there can be several goal objects in the agent’s view

(like chairs) we insert each of these sampled objects at up

to 3 different locations. As result, we can insert from 1 to

15 additional objects per episode.

The agent spawn position is sampled 1-20 meters away

from the closest goal. In initial experiments, we find that in-

cluding some short episodes is crucial for policy’s learning.

After the position sampling procedure, we check navigabil-

ity of areas around the goal objects from the agent’s spawn

position and re-sample the objects and agent positions until

navigable. Additionally, objects are scaled up by 5 times to

be closer to objects scale in Matterport3D scenes.

Relaxed Success Criteria. To simplify episode generation

and reward computation, we relax the success criteria dur-

ing training. Rather than precomputing positions where the

object would be visible as in ObjectNav, we simply con-

sider an episode successful if the agent stops within 1m Eu-

clidean distance to the goal object’s center. This success

criteria is slightly different than the one from ObjectNav

(defined in Sec. 3), as the agent does not need to be able to

see the object at the final position. Considering the size of

THDA inserted objects, this criteria is more strict in terms

of distance, but less in terms of visibility. Training regime,

model and hyper-parameters remains the same as in Sec. 6.

THDA with GoalSeg. THDA synergies well with GoalSeg

as the agent’s visual input is agnostic to the specific goal

category and the number of goal categories. Further, we do

not need to consider the effects that adding an object has on

lighting (i.e. shadows and reflections due to the added object

or the effect of the scene’s lighting on the inserted object)

beyond training the semantic segmentation network.

7.1. THDA Experiments

We experiment with adding THDA as a pretraining step

and Tab. 3 shows our results which we discuss below.

We first train a Depth + GoalSeg model with

ExploreTillSeen reward using THDA from scratch for 56

million steps until it reaches a plateau with 0.45 SPL and

54% Success on train. We evaluate the model on the orig-

inal ObjectNav dataset and it reaches 0.038 SPL and 11%

Success without ever been trained on MP3D goal object

categories. We denote this model as Depth + GoalSeg +

THDA (zero-shot) in Tab. 3. We note that this is competi-

tive with the original RGBD and Depth +SemSeg +GoalSeg

models trained on ObjectNav train that we considered in

Sec. 5. Further, these results already outperform prior

model-free agents on this task [25].

To further analyze this model, we also generate a valida-

tion split for THDA with the same goal object set and proce-

dure but in validation ObjectNav scenes. We observe that

for a model reaching 0.45 SPL on train, validation perfor-

mance drops relatively little to 0.41 SPL. This supports the

hypothesis that the THDA policy trained is not overfitting

to training scenes. With THDA, we face a domain adaptation
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Val

Method SPL (%) ↑ SoftSPL (%) ↑ DTS (m) ↓ Success (%) ↑

Depth + GoalSeg 6.5 13.9 6.243 20.0

Depth + GoalSeg + THDA + fine-tune 11.0 18.9 5.585 28.4

Depth + GoalSeg + THDA (zero-shot) 3.8 13.0 6.194 11.4

Table 3: Experiment results on the validation split for Depth +

GoalSeg models with/without THDA pretraining.

Test

Method SPL (%) ↑ SoftSPL (%) ↑ DTS (m) ↓ Success (%) ↑

Depth + GoalSeg + THDA (Ours) 11.1 18.6 7.782 27.4

Depth + GoalSeg (Ours) 7.7 14.4 7.770 21.2

SRCB-robot-sudoer 7.5 16.8 9.578 14.4

SemExp [9] 7.1 14.5 8.818 17.9

Habitat Team (RGBD+DD-PPO) 2.1 14.7 9.316 6.2

Table 4: Comparison of our experiment results with the state-of-

the-art on test-standard split from Habitat Challenge Leaderboard.

problem rather than overfitting.

Given the pretrained Depth + GoalSeg + THDA (zero-

shot) model, we then finetune on the original ObjectNav

dataset. Validation performance peaks within 11 million

steps. We denote the resulting agent as Depth + GoalSeg

+ THDA + fine-tune in Tab. 3. This model reaches 0.11 SPL

and 28.4% Success on validation split – a +69% SPL and

+42% Success relative improvement compare to Depth +

GoalSeg alone. Further, this result is a more than 4x im-

provement over baselines from [25]. These results suggest

that THDA is an effective data augmentation scheme for

ObjectNav. We speculate that it may be a fairly general

way to reduce overfitting in embodied problems that results

from finite training environments and is not specific to RL.

Comparison on ObjectNav leaderboard. In Tab. 4 we

compare performance of our fine-tuned Depth + GoalSeg

+ THDA agent on the Habitat ObjectNav 2020 Challenge.

We observe a +48% relative improvement for SPL metric

and +90% for Success compared to best-performing prior

methods. These works integrate map building strategies,

semi-analytic planning, and pre-trained object detectors.

To re-emphsize this result, our model lacks any architec-

tural elements or inductive biases towards mapping, builds

no map, and does not execute any planning with external al-

gorithms. That we find our agent outperforming prior work

using these tools is a surprising result that demonstrates the

potential for general-purpose architectures. However, de-

veloping appropriate training methods to avoid overfitting

in low-data regimes remains a significant hurdle. One fair

criticism of this entire line of work may be that inductive

biases derived from human knowledge have ‘merely’ been

shifted from architectural design to reward and training de-

sign. One mitigating perspective is that our work may be

viewed as providing as a kind of ‘existence proof’ – answer-

ing the question of how far general-purpose models may be

scaled. The answer appears to be ‘surprisingly far’.

mIoU mRecall mPrecision Acc

tr
ai

n All Objects 44.02 93.61 45.84 81.66

Goal-Objects 37.13 92.25 39.23 81.96

YCB 65.69 97.89 66.61 99.17

v
al

All Objects 27.38 53.24 32.04 69.02

Goal-Objects 15.93 39.45 21.65 69.01

YCB 63.36 96.55 64.71 98.59

Table 5: Semantic segmentation module [16] performance on the

Matterport dataset on the combination of the goal target categories

of the ObjNav Challenge and the newly inserted YCB categories.

7.2. Semantic Segmentation Predictor for THDA.

To produce SemSeg and GoalSeg inputs, we predict Se-

mantic Segmentation using using RedNet [16]. RedNet is

a network designed for the task of semantic segmentation

of indoor scenes and its architecture structure has proven to

be effective for parsing indoor environments [6]. We fine-

tune RedNet using publicly available pre-trained weights

(learned on the SUN-RGBD dataset [23]) on our dataset.

The predictor is trained to predict the sets of goal objects

categories from the ObjectNav Challenge plus the new goal

objects introduced in THDA leading to a total number of 29

categories (including background). The training data is gen-

erated by rendering images from randomly sampled view

points in the Matterport3D houses [7] with YCB inserted

objects [4]. Tab. 5 reports similar overfitting behavior with

a significant drop in mIoU between train and validation sets:

37.13 > 15.93 for the Goal-Objects and 44.02 > 27.38 for

all objects. The same YCB objects are inserted in train and

val so segmentation performances are similar across splits.

8. Conclusions

In this paper, we investigate if task-agnostic neural mod-

els can learn to navigate to goals specified as object names.

We show the primary failure mode is overfitting – specifi-

cally, the model memorizing the locations of goal objects in

the training data. We propose a series of modifications, use

of mid-level visual representation, a reward function that

initially rewards exploration and then switches to Object-

Nav, and introduce Treasure Hunt Data Augmentation to

increase the amount of training data. As result, we observe

a +48% relative improvement for SPL and +90% for Suc-

cess compared to previous state-of-the-art.
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