
The 007 Benchmark*

Michael J. Carey David J. DeWitt Jeffrey

Computer Sciences Department

Univ&sity of Wisconsin-Madison

Abstract

The 007 Benchmark represents a comprehensive test of

00DBMS performance. In this paper we describe the

benchmark and present performance results from its im-

plementation in three 00DBMS systems. It is our hope

that the 007 Benchmark will provide useful insight for

end-users evaluating the performance of 00DBMS sys-

tems; we also hope that the research community will find

that 007 provides a database schema, instance, and

workload that is useful for evaluating new techniques

and algorithms for OODBMS implementation.

1 Introduction

Builders of object-oriented database management sys-

tems are faced with a wide range of design and imple-

ment ation decisions, and many of these decisions have

a profound effect on the performance of the resulting

system. Recently, a number of OODBMS systems have

become publically available, and the developers of these

systems have made very different choices for fundamen-

t al aspects of the systems. However, perhaps since the

technology is so new, it is not yet clear precisely how

these systems differ in their performance characteristics;

in fact, it is not even clear what performance metrics

should be used to give a useful profile of an OODBMS’S

performance. We have designed the 007 Benchmark

as a first step toward providing such a comprehensive

00DBMS performance profile.

Among the performance characteristics tested by 007

are:

*DEC provided the funding that began this research. The

bulk of this work was funded by DARPA under contract num-

ber DAAB07-92-C-Q508 and monitored by the US Army Research

Laboratory. Sun donated the hardware used as the server in the

experiments.

Permission to copy without fee all or part of this material is

granted provided that the copies are not mede or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ite date appear, and notice is given

that copying is by permission of the Association for Computing

Meohinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

SIGMOD 151931Washington, DC, USA
@1993 ACM 0.89791.592.5/93/0005/001 2.,$1.50

F. Naughton

●

●

●

The speed of many different kinds of pointer traver-

sals, including traversals over cached data, traversals

over disk-resident data, sparse traversals, and dense

traversals;

The efficiency of many different kinds of updates,

including updates to indexed and unindexed object

fields, repeated updates, sparse updates, updates of

cached data, and the creation and deletion of objects;

The performance of the query processor (or, in cases

where the query language was not sufficiently ex-

pressive, the query programmer) on several different

types of queries.

By design, the 007 Benchmark produces a set of num-

bers rather than a single number. A single number

benchmark has the advantage that it is very catchy and

easy to use (and abuse) for system comparisons. How-

ever, a benchmark that returns a set of numbers gives a

great deal more information about a system than does

one that returns a single number. A single number

benchmark is only truly useful if the benchmark itself

precisely mirrors the application for which the system

will be used.

In this paper, we describe the benchmark and give

preliminary performance results from its implementa-

tion in one public-domain research system (E/Exodus)

and two commercially available OODB systems (Objec-

tivity/DB, which is also available as DEC Object/DB

VI .0, and Ontos). Due to tight space constraints, the

descriptions here are necessarily sketchy, and not all of

the results can be presented. A more detailed bench-

mark description, together with a full and final set of

performance results for all of the participating systemsl

can be found in [GDN93]. Lastly, it should be mentioned

that we had also expected to include results for another

commercial system, the ObjectStore system from Ob-

ject Design, Inc. Unfortunately, on the day before the

camera-ready deadline for this proceedings, ODI had

their lawyers send us a notice saying that they were dis-

satisfied with the way that we had run the benchmark-

ing process and that we had to drop our ObjectStore

1We are currently finishing up the benchmark on another

comercial system (02), and its performance will be included

in [CDN93]. We also invited Versant to participate in the bench-

mork, but they declined to participate until the next release of

their system was available.

12

results from the paper or else face possible legal action.

It is unfortunate that they chose to withdraw, as ODI’S

approach to persistence provided some interesting con-

trasts with the other systems.

The remainder of the paper is organized as follows.

Section 2 compares the 007 Benchmark to previous ef-

forts in 00DBMS benchmarking. Section 3 describes

the structure of the 007 Benchmark database. Section 4

describes the hardware testbed configuration we used to

run the benchmark, and gives a brief overview of the

systems tested. Section 5 describes the benchmark’s op-

erations and discusses the experimental results for each

operation as it is presented. Finally, Section 6 contains

some conclusions and our plans for future work.

2 Related Work

In this section, we briefly discuss the previous bench-

marking efforts that are related to 007, and we cite

the reasons why we felt that there was a need for ad-

ditional work in the 00DBMS benchmarking area. A

much more in-depth treatment of related work can be

found in [CDN93].

2.1 Previous 00DBMS Benchmarks

The 001 Benchmark2 [CS92], commonly referred to as

the Sun Benchmark, was the first widely accepted bench-

mark that attempted to predict DBMS performance for

engineering design applications. Because of its early vis-

ibility and its simplicity, 001 has became a de facto

standard for 00DB benchmarking.

Another benchmark that 007 is closely related

to is the HyperModel Benchmark developed at Tek-

tronix [And90]. Compared to 001, Hypermodel in-

cludes both a richer schema (involving several differ-

ent relationships and covering a larger set of basic data

types) and a larger collection of benchmark operations

(including a wider variety of lookup, traversal, and up-

date operations).

There are several other 00DB studies related to our

work on 007. Ontologic used the initial Sun Bench-

mark to study the performance of Vbase, their first

00DB product offering [DD88]. Researchers at Al-

tair designed a complex object benchmark (ACOB)

for use in studying alternative client/server process

architectures [DFMV90]. Finally, Winslett and Chu

recently studied 00DB (and relational DB) perfor-

mance by porting a VLSI layout editor onto several

systems [WC92]. However, only the file 1/0 portions

of the editor were modified, so this work focused on

save/restore performance rather than performance when

applications are operating on database objects.

2Object Operations, version 1.

2.2 Why Another Benchmark?

001 and HyperModeI both represent significant efforts

in the area of OODB benchmarking. Why, then, did

we feel a need for “yet another” benchmark in this

area? As mentioned briefly in the introduction, neither

of the existing benchmarks was sufficiently comprehen-

sive to test the wide range of 00DB features and per-

formance issues that must be tested in order to method-

ically evaluate the currently available suite of 00DB

products. For example, both benchmarks lack any real

notion of complex objects, yet these are expected to be

the natural unit for clustering in real OODBMS appli-

cations. In addition, neither benchmark provides more

than rudimentary testing of associative operations (ob-

ject queries), and neither covers issues such w sparse vs.

dense traversals, updates to indexed vs. non-indexed ob-

ject attributes, repeated object updates, or the impact

of transaction boundary placement [CD N93].

3 007 Database Description

Since the 007 Benchmark is designed to test many dif-

ferent aspects of system performance, its database struc-

ture and operations are nontrivial. The most precise

descriptions of the 007 Benchmark are the implemen-

tations of the benchmark. These implementations are

available by anonymous ftp from the 007 directory of

f tp. cs. wise. edu. In addition, we have written a ref-

erence (1++ implementation of the benchmark. This

C++ implementation is also available. The informal de-

scription of the benchmark given here should suffice for

understanding the basic results; a more detailed descrip-

tion of the benchmark, including a schema, is presented

in [CDN93]. Anyone planning to implement the bench-

mark should obtain a copy of one of the available imple-

ment at ions.

The 007 Benchmark is intended to be suggestive

of many different CAD/CAM/CASE applications, al-

though in its details it does not model any specific ap-

plication. Recall that the goal of the benchmark is to

test many aspects of system performance, rather than

to model a specific application. Accordingly, in the fol-

lowing when we draw analogies to applications we do so

to provide intuition into the benchmark rather than to

justify or motivate the benchmark. There are three sizes

of the 007 Benchmark database: small, medium, and

large. Table 1 summarizes the parameters of the 007

Benchmark database.

3.1 The Design Library

A key component of the 007 Benchmark database is

a set of composite parts. Each composite part corre-

sponds to a design primitive such as a register cell in

a VL~ .CL$D application, or perhaps a procedure in a

13

Parameter I Small

NumAtomicPerComp I 20

NumConnPerAtomi~

DocumentSize (bytes)

Manual Size (bytes)

NumCompPerModule

NumAssmPerAssm

NumAssmLevels

NumCompPerAssm

3,6,9

2000
lOOK

500
3
7
3

NumModules 1

Medium

200
3,6,9

20000
lM

500
3
7
3
1

Large

200
3,6,91

20000
lM

500
3
7
3

10

Table 1: 007 Benchmark database parameters.

CASE application; the set of all composite parts forms

what we refer to as the “design library” within the 007

database. The number of composite parts in the design

library, which is controlled by the parameter NumC’omp-

PerModule, is 500. Each composite part has a number

of attributes, including the integer attributes i.d and

buildDate, and a small character array type. Asso-

ciated with each composite part is a document object,

which models a small amount of documentation associ-

ated with the composite part. Each document hss an

integer attribute id, a small character attribute title,

and a character string attribute text. The length of

the string attribute is controlled by the parameter Doc-

urnent5’ize. A composite part object and its document

object are connected by a hi-directional association.

In addition to its scalar attributes and its association

with a document object, each composite part has an as-

sociated graph of atomic parts. Intuitively, the atomic

parts within a composite part are the units out of which

the composite part is constructed. In the small bench-

mark, each composite part’s graph cent ains 20 atomic

parts, while in the medium and large benchmarks, each

composite part’s graph contains 200 atomic parts. (This

number is controlled by the parameter NumAiomicPer-

Comp.) For example, if a composite part corresponds to

a procedure in a CASE application, each of the atomic

parts in its associated graph might correspond to a vari-

able, statement, or expression in the procedure. One

atomic part in each composite part’s graph is designated

aa the “root part .“

Each atomic part has the integer attributes id,

buildDate, x, y, and docId, and the small char.

acter array type. (The reason for including all of

these attributes will be apparent from their use in the

007 Benchmark operations, described in Sections 5.1

through 5.3.) In addition to these attributes, each

atomic part is connected via a hi-directional association

to several (3, 6, or 9) other atomic parts, m controlled

by the parameter NumConnPerAtomic. Our initial idea

wae to connect the atomic parts within each compos-

ite part in a random fashion. However, random con-

nections do not ensure complete connectivity. To en-

sure complete connectivity, one connection is initially

added to each atomic part to connect the parts in a

ring; more connections are then added at random. In

addition, our initial plans did not specify a 3/6/9 in-

terconnection variation. This variation was included to

ensure that 007 provides satisfactory coverage of the

00DBMS performance space, as our preliminary tests

“indicated that some systems can be very sensitive to the

value of this particular benchmark parameter.

The connections between atomic parts are imple-

mented by interposing a connection object between each

pair of connected atomic parts. Here the intuition is that

. the connections themselves contain data; the connection

object is the repository for that data. A connection ob-

ject contains the integer field length and the short char-

acter array type.

Figure 1 depicts a composite part, its associated doc-

ument object, and its associated graph of atomic parts.

One way to view this is that the union of all atomic parts

corresponds to the object graph in the 001 benchmark;

however, in 007 this object graph is broken up into se-

mantic units of locality by the composite parts. Thus,

the composite parts in 007 provide an opportunity to

test how effective various 00DBMS products are at sup-

porting complex objects.

text = ‘widqmt#27 &s”, t r..lly &
-~ ~ch but U= Put . . . in th.
.Pec ,0 here it is”

I M =248590

type = “typeNumber3”

buildDate = 3587341

- documentation

...

..4

Figure 1: A Composite Part and its associated Docu-

ment object.

3.2 Assembling Complex Designs

The design library, which contains the composite parts

and their associated atomic parts (including the connec-

tion objects) and documents, accounts for the bulk of

the 007 database. However, a set of composite parts

by itself is not sufficiently structured to support all of the

operations that we wished to include in the benchmark.

Accordingly, we added an “assembly hierarchy” to the

database, Intuitively, the assembly objects correspond

to higher-level design constructs in the application be-

ing modeled in the database. For example, in a VLSI

CAD application, an assembly might correspond to the

14

design for a register file or an ALU. Each assembly is

either made up of composite parts (in which case it is a

base assembly) or it is made up of other assembly objects

(in which case it is a complex assembly).

The first level of the assembly hierarchy consists of

base assembly objects. Base assembly objects have the

integer attributes id and buildDate, and the short

character array type. Each base assembly has a bi-

directional association with three “shared” composite

parts and three “unshared” composite parts. (The num-

ber of both shared and unshared composite parts per

base assembly is controlled by the parameter NumComp-

Per-Assm.) The 007 Benchmark database is designed

to support multiuser workloads as well as single user

tests; the distinction between the “shared” and “un-

shared” composite parts was added to provide control

over sharing/conflict patterns in the multiuser workload.

This paper only deals with the single user tests; only the

“unshared” composite part associations are used in the

single user benchmark. The “unshared” composite parts

for each base assembly are chosen at random from the

set of all composite parts.

Higher levels in the assembly hierarchy are made up

of complex assemblies. Each complex assembly has the

usual integer attributes, id and buildDate, and the

short character array type; additionally, it has a bi-

directional association with three subassemblies (con-

trolled by the parameter NumAssmPerAssm), which can

either be base assemblies (if the complex assembly is at

level two in the assembly hierarchy) or other complex

assemblies (if the complex assembly is higher in the hier-

archy). There are seven levels in the aswembl y hierarchy

(controlled by the parameter NumAssmLevek).

Each assembly hierarchy is called a module. Mod-

ules are intended to model the largest subunits of the

database application, and are used extensively in the

multiuser workloads; they are not used explicitly in the

small and medium databases, each of which consists of

just one single module. Modules have several scalar

attributes — the integers id and buildDate, and the

short character array type. Each module also has an

associated Manual object, which is a larger version of a

document. Manuals are included for use in testing the

handling of very large (but simple) objects.

Figure 2 depicts the full structure of the single user

007 Benchmark Database. Note that the picture is

somewhat misleading in terms of scale; there are only

(27 – 1)/2 = 1093 assemblies in the small and medium

databases, compared to 10,000 atomic parts in the

small database and 100,000 atomic parts in the medium

database.

complex

meembiieo

[

bexe
assmbliee

[

compoeite
pl?ate

dowmente

[

................
/ Module 81

! l-l ‘\

Figure 2: Structure of a module.

4 Testbed Configuration

4.1 Hardware

As a test vehicle we used a pair of Sun workstations on an

isolated piece of Ethernet. A Sun IPX workstation con-

figured with 48 megabytes of memory, two 424 megabyte

disk drives (model Sun0424) and one 1.3 gigabyte disk

drive (model Sunl .3G) was used as the server. One of

the Sun 0424s was used to hold system software and

swap space. The Sun 1.3G drive was used to hold the

database (actual data) for each of the database systems

tested, and the second Sun 0424 drive was used to hold

recovery information (the transaction log or journal) for

each system. The data and recovery disks were config-

ured as either Unix file systems or raw disks depending

on the capabilities of the corresponding 00 DBMS. Ob-

jectivity, for example, uses NFS to read and write non-

local files, so the disks were formatted as Unix files for

that system. Exodus, on the other hand, prefers to use

raw disks to hold its database and log volumes.

For the client we used a Sun Spare ELC workstation

(about 20MIPS) configured with 24 megabytes of mem-

ory and one 207 megabyte disk drive (model Sun0207).

This disk drive was used to hold system software and aa

a swap device. Release 4.1.2 of the SunOS was run on

both workstations.

4.2 Software

E/Exodus

Exodus consists of two main components: The Exodus

Storage Manager (ESM) and the E programming lan-

guage. The ESM provides files of untyped objects of

arbitrary size, B-trees, and linear hashing. The current

version of the ESM (version 2.2) [EX092] uses a page-

server architect ure [D FMV90] where client processes re-

quest pages that they need from the server via TCP/IP.

The E programming language [RC89] extends C++,
adding persistence as a basic storage class, collections

of persistent objects, and B-tree indices. The services

provided by E are relatively primitive compared to its

commercial counterparts. There is no support for asso-

ciations, iterators with selection predicates, queries, or

versions.

For these experiments, we used adisk page size of 8

Kbytes (this is also the unit of transfer between a client

and the server). The client and server buffer pools were

set to 1,500 (12 MBytes) and 4,500 pages (36 Mbytes)

respectively. Raw devices were used for both the log and

data volumes.

Objectivity y/DB, Version 2.0

Unlike Exodus, Objectivity/DB, also available as

DEC Object/DB VI .0, employs a file server architec-

ture [DFMV90]. In this architecture, there is no server

process for handling data. Instead, client processes ac-

cess database pages via NFS. Since NFS does not provide

locking, a separate lock server process is used. We placed

this lock server on the same Sun IPX that was used to

run the server process in the other configurations. The

current release of Objectivity/DB provides only coarse

grain locking, at the level of a container, and the current

B-tree implementation cannot index objects distributed

across multiple containers.

Objectivity, like Ontos (described next), employs a

library-based approach to the task of adding persistence

to C++. Instead of modifying the C++ compiler (the

approach taken by E), persistent objects are defined by

inheritance from a persistent root class. In addition to

persistence, Objectivity/DB provides sets, relationships

and iterators. Access to persistent objects is through a

mechanism known as a handle. By overloading the “->”

operator, handles permit the manipulation of persistent

objects in a reasonably transparent fashion.

For the benchmark tests, the client buffer pool was set

at 1,500 8K byte pages. Since the Objectivity architec-

ture does not employ a server architecture, it was not

necessary to set its buffer pool size. However, because

SunOS uses all memory available to buffer file pages,

the actual memory for buffering pages was roughly the

same as for the other systems. As mentioned above, the

database and shadow files were both stored as Unix files.

Ontos Version 2.2

Like ObjectStore and Exodus, Ontos employs a client-

server architecture. However, Ontos is unique in its ap-

proach to persistence. Objects (which inherit from an

Ontos defined root object class) are created in the con-

text of one of three different storage managers. The “in-

memory” storage manager manages transient objects

much as the heap does in a standard C++ implemen-

tation. The “standard” storage manager implements an

object-server architecture [DFMV90], with both the unit

of locking and the unit of transfer between the client and

server processes being an individual object. The third

storage manager is called the “group” storage manager,

and it implements a page-server architecture; the granu-

larity for locking and client/server data transfers in this

mode is a disk page.

All three mechanisms can be used within a single ap-

plication by specifying a storage manager when the ob-

ject is created (the C++ newo operator is overloaded

appropriately). For the 007 Benchmark, composite

parts, atomic parts, and connection objects were created

using the group manager. The standard object manager

was used for the remaining classes of objects.

The features provided by Ontos are slightly richer

than the other systems. Ontos provides three forms

of bulk types: sets, lists, and associations. Associa-

tions can be either arrays or dictionaries (B-tree or hash

indices). Iterators are provided over each of the bulk

types, including a nice object-SQL interface. Unfortu-

nately, the system lacks a query optimizer for object-

SQL, so we did not use object-SQL to express the bench-

mark’s queries (as performance would not have been ac-

ceptable). Support is also provided for nested trans-

actions, an optimistic concurrency cent rol mechanism,

notify locks, and databases spanning multiple servers.

The approach to buffering on the client side is differ-

ent in Ontos from each of the other systems. Instead

of maintaining a client buffer pool, persistent objects

are kept in virtual memory under the control of a client

cache. This approach limits the set of objects a client

can access in the scope of a single transaction to the size

of swap space of the processor on which the application

is running. It also relies on the operating system (or

the application programmer, by explicit deallocate ob-

ject calls) to do a good job of managing physical memory.

For the benchmark, we used the default disk page size

of 7.5 Kbytes (this is also the unit of transfer between

a client and the server for the group object manager).

Unix file systems were used to hold the database and

journal files, as Ontos cannot use a raw file system.

5 Results

This section presents the results of 007 running on three

00 DBMSS. In order to ensure that all three implemen-

tations were “equivalent” and faithful to the specifica-

tions of the benchmark, all three implementations were

written by the authors of this paper. One interesting re-

sult of this exercise was that, despite the lack of a st an-

dard 00DBMS data model/programming language, we

found the features provided by all of these systems to

be similar enough that implementations in one system

could be ported to another fairly easily.

In addition to doing all three implementations our-

selves, we took pains to configaze the systems identi-

16

tally when running the benchmark, again in the interest

of fairness. We also cent acted the companies concerned

and used their comments on our implementations to en-

sure that we were not inadvertently misusing their sys-

tems. We gave all of the companies a March 1 dead-

line by which time they had to send us bug fixes and

application-level comments. The results quoted below

represent numbers we achieved on the systems that we

had received as of March 1. We should emphasize here

that the vendors have not yet had a chance to react to

the added feature of varying atomic part fanouts from

3 up to 9; for the final results reported in [CDN93], all

participants will be given one last chance to provide us

with last minute feedback as well as any final bug fixes

or soon-to-be released system enhancements. 3

In the following, all times are in seconds,

5.1 Traversals

The 007 traversal operations are implemented as meth-

ods of the objects in the database. A traversal navigates

procedurally from object to object, invoking the appro-

priate method on each object as it is visited. Some of

the traversals update objects as they are encountered;

other traversals simply invoke a “null” method on each

object.

We ran each traversal over both the “small” and

“medium” single user 007 Benchmark databases;

“large” database results will be reported later

(in [CDN93] if all goes well). For the “small” bench-

mark, each of the read-only traversals (Traversals 1, 6,

and 7) were run in two ways: “cold” and ‘(hot.” In a

cold run of the traversal, the traversal begins with the

database cache empty (both the client and server caches,

if the system supports both). We took great pains to

flush all cache(s) between runs. Because of architectural

implementation differences, the actual technique used

varied from system to system; however, in all cases the

mechanisms were tested thoroughly to confirm their ef-

fectiveness. The hot run of the traversal consists of first

running a “cold” traversal and then running the exact

same query three more times and reporting the average

of those three runs. We also tried two ways of running

the “cold” and “hot” traversal: as a single transaction,

and as two separate transactions.

For the medium single user 007 Benchmark database,

we ran only the “cold” traversals, since with the medium

database size, either (1) The traversal touched signifi-

cantly more data than could be cached, so “cold” and

“hot” times were similar, or (2) The traversal touched a

3T0 ensure that our results reflect the performance that each

tested system is capable of, we chose to allow all vendors to provide

pre-released versions of their systems (i.e., versions where known

problems in the corresponding product releases have been fixed).

We required each vendor to certify that all changes have been

accepted internally for their next release and to estimate the date

of that release.

!
-O-E

U- obJy/D~ ODB

-+ CMOs

4 6 i

Connections/AtomicPart

Figure 3: T1, cold traversal, small database.

small enough subset of the database that the data could

be cached, in which case the “hot” time provided no

information not already present in the small configura-

tion “hot” time. Similarly, for the update traversals on

both the small and medium databases, we ran only cold

traversals; running multiple update traversals caused the

logging traffic from one transaction to appear in the time

for the next, so hot traversals provided no more infor-

mation beyond that already in the cold. The effect of

updating cached data is investigated in the “CU” traver-

sal.

We present the descriptions and results of the traver-

sals below. Gaps in the numbering of traversals cor-

respond to traversals that we tested, but that we ei-

ther eliminated from the benchmark (because they con-

tributed no significant new system information) or omit-

ted from this paper due to space constraints; results from

the latter traversals can be found in [CDN93].

5.1.1 Traversal #1: Raw traversal speed

Traverse the assembly hierarchy. As each base assembly

is visited, visit each of its referenced unshared composate

parts. As each composite part is vtsited, perform a depth

first search on its graph of atomic parts. Return a count

of the number of atomic parts visited when done.

This traversal is a test of raw pointer traversal speed,

and it is similar to the performance metric most fre-

quently cited from the 001 benchmark. Note that due

to the high degree of locality in the benchmark, there

should be a non-trivial number of cache hits even in the

“cold” case. Figure 3 shows the results of traversal 1 on

the small database in the “cold” case.

Initially, Ontos is the fastest, followed by Exodus and

then objectivity. As the fanout is increcmed, Exodus

scales the most gracefully. Perhaps the most interesting

feature here is the discontinuity in Ontos between fanout

of 3 and fanout of 6, We are unsure of the reason for

17

1
U- Objy/DEC ODB

+ Gltos

o~
Connections/Atom icPart

Figure 4: T1, hot traversal, small database.

this, but it could be due to a discontinuity in how the

association that represents the outgoing connections for

the atomic parts grows from 3 to 6.

The results from the “hot” traversal on the small

database when both the “cold” and the “hot” traversal

were run as a single transaction appear in Figure 4. Both

Ontos and Exodus employ software swizzling schemes

that allow them to have fast “hot” times. Objectivity

does no swizzling, and its “hot” time is slower as a result.

The following table compares the performance of the

systems on the hot traversal with the cold and hot

traversals run as a single transaction (“one”) and as mul-

tiple transactions (“many”). These traversals were run

over the small database with fanout 3.

I Exodus I Objy/DEC ODB [Ontos

one 10.6 I 17.9 I 8.1

I many I 13.8 I 22.6 \ 21.2 /

Here we see the benefit of client caching. Exodus

can cache data in the client between transactions, so

its multiple-transaction hot times are close to those of

the single transaction case. Objectivity and Ontos can

cache data in the client between transactions if one uses

special forms of commit (“CommitAndHold” in Objec-

tivity, “KeepCache” in Ontos) but we did not feel that

using these protocols was just ified, since in both systems

you must retain locks (which the server has no way of

breaking) on cached data to keep the data consistent,

(Exodus caches data but reaquires locks from the server

before it is re-accessed.) Both Ontos and Objectivity do

benefit from server caching — in the server buffer pool

for Ontos, and in the NFS cache (on the client worksta-

tion, which helps some) for Objectivity — in this test.

Since this caching effect is duplicated in every operation

of the benchmark, when discussing subsequent results

for read-only queries we only report on cold and hot

times that were run as a single transaction.

T---zzU
4 6 8

ConnectionJAtomicPart

Figure 5: T1, cold traversal, medium database.

Figure 5 shows the cold times of the systems on the

medium database. For Ontos, we present only the times

for the fanout 3 and fanout 6 databases because a bug

prevented us from generating fanout 9. Ontos sent us a

simple bug fix for this problem, but it arrived after our

March 1 deadline, so in keeping with our stated policies

we do not include the fanout 9 numbers in this paper.

(The numbers will appear in (CDN93].) We should men-

tion that Objectivity and Ontos both were surprisingly

reliable in our experience.

The most interesting performance change for the

medium database (versus the small database) is the

performance of Ontos. The medium database is sig-

nificantly larger than client memory, and Ontos copies

objects from the database into virtual memory, so its

performance degradation is likely a result of paging

the client memory image. (We did not experiment

with Ontos’s explicit virtual memory allocate/deallocate

facilities.) Comparing the other systems, Objectiv-

ity starts out faster than Exodus, probably because of

the efficiency of using NFS reads versus TCP/IP mes-

sages [DFMV90], but the time for Exodus increases

much more gradually as a function of the fanout.

5.1.2 Traversal #2: Traversal with updates

Repeat Traversal #1, but update objects during the

traversal. There are three types of update patterns in

this traversal. In each, a sangle update to an atomic

part consists of swapping its (z, y) attributes The three

types of updates are: (1) Update one atomic part per

composite part. (.2) Update every atomic part as it is

encountered. (3) Update each atomic part in a compos-

ite part four times. When done, return the number of

update operations that were actually performed.

The following table gives the results of T2ABC on the

small fanout 6 database.

18

Comparing the t2 times to the corresponding t 1 times

(42.4, 53.5, and 58.4, respectively), it is evident that the

update overhead in Exodus is significantly lower than

that of the other systems, with Objectivity having the

largest update overhead due to the cost of NFS writes.

This is likely due to the fact that Exodus logs changed

portions of objects, not entire pages, thereby generat-

ing much less recovery data to be written. In terms of

trends, Exodus logs changes at the object level, so the

Exodus time increases somewhat from t2A to t2B since

the number of updated objects increases; there is little

change in going to t2C because only the last change is

logged in the case of repeated updates to a cached ob-

ject. The other two systems both do page-level logging

on these operations, so their times are relatively inde-

pendent of the number of objects updated per page and

the number of updates per object. (Note that the set of

atomic parts associated with a given composite part is

small enough here that they can be placed on a single

page.)

For the medium fanout 6007 database, we obtained

the following results.

t2 I Exodus] Objy/DEC ODB] Ontos

t2A I 1000.8 I 1468.8 I 2101.2

t2B 1227.9 2199.4 2277.4

t2c 1212.0 2107.4 2243.4

Here, the update time increases when going from t2A

to t2B, while no such increase was observed for the small

database. This is because in the medium and large

databases, the atomic parts within a composite part can

span several pages; thus, moving from t2A to t2B leads

to more page updates. Moving from t2B to t2C again

produces no such effect, ss all pages (and of course ob-

jects, which is what matters to Exodus) that t2C up-

dates are also updated by t2B. Again, a comparison of

the corresponding t 2 and t 1 times shows that Exodus

does relatively well, while Objectivity’s update overhead

is significant due to the high cost of NFS writes; the

performance of Ontos is suffering here due to paging, w

discussed earlier.

5.1.3 Traversal #3: ‘Ikaversal with indexed

field updates

Repeat Tkaversal #2, except that now the update is on

the date jield, which is indexed. The specijic update is to

increment the date if it is odd, and decrement the date

if it is even.

The goal here is to check the overhead of updating an

indexed field. This should be done using the same three

variants used in Traversal #2, and again the number of

updates should be returned at the end.

For the small 007 fanout 6 database, we obtained the

following results.

t3 Exodus I Objy/DEC ODB I Ontos

t3A] 48.9] 79.8] 79.6

t3B 100.8 140.5 118.7

t3c 244.6 309.9 214.9

In our implementations, only Objectivity used auto-

matic index maintenance. The Exodus and Ontos num-

bers reflect the overhead of explicit index maintenance

coded by hand in those systems. Ontos does provide im-

plicit index maintenance, although we did not use this

feature in the tests presented in this paper. The main

point to notice here is that the systems are unable to

“hide” the multiple index updates within a single log

record, since every update (even a repeated update to

an object or page) must also update the index. This is

why we see an increase from t3B to t3C that we didn’t

see from t2B to t2C.

For the medium 007 database, again fanout 6, we

obtained the following results.

t3 Exodus I Objy/DEC ODB [Ontos

t3A I 1083.9 I 1389.7 [6467.3

5.1.4 Traversals #8 and #9: Operations on

Manual.

Traversal #8 scans the manual object, counting the num-

ber of occurrences of the character “1.” Traversal #9

checks to see if the jirst and last character in the man-

ual object are the same.

For the medium 007 database (lM byte manual), we

obtained the following cold times. These results

independent of the atomic part fanout.

Exodus Objy/DEC ODB Ontos

t8 12.3 11.5 5.5

t9 0.2 11.0 4.8

were

Ontos has extremely fast t8 times, perhaps due to

the fact that in Ontos persistent character data can be

stored and processed just like (non-persistent) C “char

*“ attributes of objects, Exodus has a fast t9 time be-

cause it is able to page large objects, hence t9 reads

only the first and last page of the manual, whereas both

Objectivity and Ontos must read in the entire manual.

5.1.5 Traversal CU (Cached Update)

Perform traversal Tl, followed by T2A, in a single trans-

action. Report the total time minus the T1 hot time

minus the T1 cold time.

The goal of this traversal is

formance d Updates to cached

to investigate the per-

data. The original T1

19

traversal warms the cache; the T2A traversal updates

some of the objects touched by T1. The time to report

is defined in such a way as to isolate the time for the

updates themselves (and the associated log writes); re-

call that T2A is like T1 except for the updates to some

at omit parts.

For the small fanout 6 database we obtained the fol-

lowing times:

] Exodus I Objy/DEC ODB I Ontos

Cu 0.9 I 20.9 I 10.4, ,

Exodus does very well, again because it writes log

records rather than shadowing or logging up dated pages,

and many of the log records generated should fit on a

single log page. Objectivity y suffers from its need to do

an NFS write per updated page.

5.1.6 Traversals Omitted

We ran a number of traversals for which, due to space

constraints, the results will appear in [CDN93] rather

than in this paper.

One of the most interesting omitted traversals was

Traversal #6, which is the same as Traversal #1 in the

assembly hierarchy, but instead of performing a depth

first search on all the atomic parts in each composite

part, Traversal #6 merely visits the root atomic part in

each composite part. This test coupled with traversal #1

provides interesting insight into the costs and benefits of

the full swizzling approach to providing persistent vir-

tual memory. Unfortunately, after ODI withdrew from

the benchmark, this test became less interesting.

We also experimented with traversals that changed

the size of document objects, traversals that scanned

documents instead of traversing atomic part subgraphs,

and “reverse-traversals” that go from an atomic part to

the root of the assembly hierarchy.

5.2 Queries

The queries are operations that ideally would be ex-

pressed aa queries in a declarative query language. Not

all of the 007 queries could be expressed entirely declar-

atively in all of the systems; whenever a query could not

be expressed declaratively in a system we implemented it

as a “free” procedure that essentially represents a hand

coded version of what the query execution engine would

do in order to evaluate the query.

5.2.1 Query #1: exact match lookup

Generate 10 random atomic part id’s; for each part id

generated, lookup the atomic part with that id. Return

the number of atomic parts processed when done. Note

that this is like the lookup query in the 001 Bench-

mark. On the small database, fanout 6, we obtained the

following numbers,

ql-one \ Exodus I Objy/DEC ODB I Ontos

cold 0.71 8.4] 2.4

hot 0.008 I 0.05 \ 0.005 J

In Exodus, the query was hand-coded to use a B+ tree

index. In Objectivity y, the query was hand-coded to use

a ‘(hashed container,” which essentially gives a key index

that can be used for exact-match lookups like query #1.

Exodus appears to have the most efficient index lookup

implementation, by a significant margin, followed next

by Ontos.

On the medium fanout 6 database:

ql Exodus \ Objy/DEC ODB] Ontos

cold 0.8 [9.6 I 9.7

In each case, the systems used the index to avoid scal-

ing the response time with the database; the relative

ordering of the systems’ performance is consistent with

that of the small results.

5.2.2 Queries #2, #3, and #7.

These queries are most interesting when considered to-

gether:

●

●

●

Query #.$?: Choose a range for dates that will con-

tain the last 1% of the dates found in the database’s

atomic parts. Retrieve the atomzc parts that sattsfy

this range predicate.

Query #3: Choose a range for dates that will con-

tain the last 10!% of the dates found in the database’s

atomic parts. Retrieve the atomic parts that satisfy

this range predicate.

Query #7: Scan all atomic parts.

Note that queries #2 and #3 are candidates for a

B+ tree lookup. On the medium fanout 6 database we

obtained the following ‘(cold” numbers.

Exodus Objy/DEC ODB Ontos

q2 19.1 37.1 39.5

q3 35.0 129.4 63.0

q7 31.8 136.3 52.6

In Exodus, this query was implemented as a hand-

coded B+tree lookup. In Objectivity, it was not nec-

essary to hand code this scan — the query was imple-

mented by using an Objectivity y iterator with a selection

predicate. The Ontos times shown are again for ‘a hand-

coded index (B+ tree, in this case) lookup. The index

implementation insights from q2 and q3 are fairly con-

sistent with the results of ql; comparing these times to

q7, it is clear that for a selectivity of 10Yo, it is as fast

or faster in these systems to scan the entire atomic part

set than to use the B+trees.4

4It ~= ~w intent to generate a case where a sequentitd sc~

is clearly superior to an uuclustered index scau in q3, providing

a chance to test the cost-evaluation intelligence of the query op-

$ktdzer in any 00DBMS that supports queries. The size of the

@/@ ranges will be adjusted accordingly in [CDN93].

20

5.2.3 Queries Omitted

Due to space constraints, we have omitted most of

the 007 queries from this paper, including a path-

join query, a “single-level make” query, and an ad-hoc

join query. The results from these queries will appear

in [C DN93]. Our original query set also included a “tran-

sitive make” query, which we dropped; the results from

that query failed to provide any unique insights relative

to the other 007 operations.

5.3 Structural Modification Operations

Again due to space constraints, in this paper we omit the

results from an insert operation (insert five new compos-

ite parts) and a delete operation (delete five composite

parts).

6 Conclusion

The 007 Benchmark is designed to provide a comprehe-

nsive profile of the performance of a OODBMS. It is

more complex than the 001 Benchmark and more com-

prehensive than both the 001 and HyperModel Bench-

marks; however, the results of our tests indicate that

the added complexity and coverage has provided a sig-

nificant benefit, as the 007 test results reported in this

paper (and observed in the tests that were not reported

for space or legal reasons) exhibit system performance

characteristics that could not have been observed in 001

or HyperModel.

007 has been designed from the start to support mul-

tiuser operations. While these operations are not yet im-

plemented, the database structure as described in this

paper already provides the framework in which to con-

struct a multiuser benchmark. Specifically, the modules

and assembly structure, with their “shared” and “pri-

vate” composite parts, will allow us to precisely vary

degrees of sharing and conflict in multiuser workloads.

In future work, we will be refining and experimenting

with these multiuser workloads to investigate the per-

formance of 00DB systems’ concurrency and versioning

facilities. We also plan to add structural modifications

that test the ability of an 00DBMS to maintain clus-

tering in the face of updates.

Acknowledgment

Designing 007 and getting it up and running on all the

systems we tested was a huge task that we could not

have completed without a lot of help. We would like to

thank Jim Gray, Mike Kilian, Ellen Lary, Pat O’Brien,

Mark Palmer, and Jim Rye of DEC for initial discus-

sions that led to this project, and for useful feedback

aa it progressed. Rick Cattell shared his thoughts with

us early on about what he would change in a succes-

sor to 001, and gave us some feedback on our design.

Rosanne Park and Rick Spickelmier at Objectivity, Ger-

ard Keating and Mark Noyes at Ontos, and Jack Oren-

stein and Dan Weinreb of ODI were extremely helpful

in teaching us about their systems and debugging our

efforts. Joseph Burger, Krishna Kunchithapadam, and

Bart Miller helped us track down a strange interaction

between one of the systems and our environment. Foley,

Hoag, and Eliot kept our FAX machine humming and

our mailboxes full. Finally, we would like to give a spe-

cial thanks to three staff members at the University of

Wisconsin — Dan Schuh, C. K. Tan, and Mike Zwilling

— for their help in getting the testbed up and running.

References

[~nd90] T. Anderson et al. The HyperModel Benchmark. In

Proc. EDBT Conf., March 1990.

[CDN93] M. J. Carey, D. J. DeWitt, and J. F. Naughton.

The 007 benchmark. CS Tech Report, Univ. of Wisconsin-

Madison, April 1993.

[CS92] R. Cattell and J. Skeen. Object operations bench-

mark. ACM TODS, 17(1), March 1992.

[DD88] J. Duhl and C. Damon. A performance comparison

of object and relational databases using the sun benchmark.

In Proc. ACM 00PSLA Conf., Sept. 1988.

[DFMV90] D. J. DeWitt, P. Futtersack, D. Maier, and F.

Velez. A study of three alternative workstation-server ar-

chitectures for object-oreinted database systems. In Proc.

VLDB Conf,, Aug. 1990.

[EX092] The EXODUS Group. Using the EXODUS storage

manager V2.O.2. Technical Documentation, Jan. 1992.

[FZT+92] M. J. Franklin, M. J. ZwiUing, C. K. Tan, M. J.

Carey, and D. J. De Witt. Crash recovery in client-server

EXODUS. In Proc. ACM SIGMOD Conf., June 1992.

[Gra81] Jim N. Gray et al. The recovery manager of the

System R databsse manager. ACM C’omp. Surveys, June

1981.

[RC89] J. E. Richardson and M. J. Carey. Persistence in the

E language: Issues and implementation. Software Practice

and Experience, Dec. 1989.

[RKC87] W. Rubenstein, M. Kubicar, and R. Cattell. Bench-

marking simple database operations. In Proc. ACM SIG-

MOD Conf., May 1987.

[SCD] D. Schuh, M. Carey, and D. DeWitt. Implementing

persistent object bases: Principles and practice. In Proc. 4th

Int’1 Workshop 00 Persistent Object Systems.

[WC92] M. Winslett and S. Chu. Database management sys-

tems for ECAD applications: Architecture and performance.

In Proc. NSF Conf. on Design and Manufacturing Systems,

Jan. 1992.

[WD92] S. White and D. DeWitt. A performance study of

alternative object faulting and pointer swizzling strategies.

In Proc. VLDB Conf., Aug. 1992.

21

