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Abstract
We propose a new way to self-adjust the mutation rate in population-based

evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of
creating half the offspring with a mutation rate that is twice the current mutation
rate and the other half with half the current rate. The mutation rate is then updated
to the rate used in that subpopulation which contains the best offspring.

We analyze how the (1+λ) evolutionary algorithm with this self-adjusting muta-
tion rate optimizes the OneMax test function. We prove that this dynamic version
of the (1+λ) EA finds the optimum in an expected optimization time (number of fit-
ness evaluations) of O(nλ/log λ+n logn). This time is asymptotically smaller than
the optimization time of the classic (1 + λ) EA. Previous work shows that this per-
formance is best-possible among all λ-parallel mutation-based unbiased black-box
algorithms.

This result shows that the new way of adjusting the mutation rate can find
optimal dynamic parameter values on the fly. Since our adjustment mechanism is
simpler than the ones previously used for adjusting the mutation rate and does not
have parameters itself, we are optimistic that it will find other applications.

1 Introduction

Evolutionary algorithms (EAs) have shown a remarkable performance in a broad range
of applications. However, it has often been observed that this performance depends cru-
cially on the use of the right parameter settings. Parameter optimization and parameter
∗An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolu-

tionary Computation Conference (GECCO 2017).
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control are therefore key topics in EA research. Since these have very different character-
istics in discrete and continuous search spaces, we discuss in this work only evolutionary
algorithms for discrete search spaces.

Theoretical research has contributed to our understanding of these algorithms with
mathematically founded runtime analyses, many of which show how the runtime of an
EA is determined by its parameters. The majority of these works investigate static
parameter settings, i. e., the parameters are fixed before the start of the algorithm and
are not changed during its execution. More recently, a number of results were shown
which prove an advantage of dynamic parameter settings, that is, the parameters of the
algorithm are changed during its execution. Many of these rely on making the parameters
functionally dependent on the current state of the search process, e.g., on the fitness
of the current-best individual. While this provably can lead to better performances,
it leaves the algorithm designer with an even greater parameter setting task, namely
inventing a suitable functional dependence instead of fixing numerical values for the
parameters. This problem has been solved by theoretical means for a small number of
easy benchmark problems, but it is highly unclear how to find such functional relations
in the general case.

A more designer-friendly way to work with dynamic parameters is to modify the
parameters based on simple rules taking into account the recent performance. A number
of recent results shows that such on the fly or self-adjusting parameter settings can
give an equally good performance as the optimal fitness-dependent parameter setting,
however, with much less input from the algorithm designer. For example, good results
have been obtained by increasing or decreasing a parameter depending on whether the
current iteration improved the best-so-far solution or not, e.g., in a way resembling the
1/5-th rule from continuous optimization.

Such success-based self-adjusting parameter settings can work well when there is a
simple monotonic relation between success and parameter value, e.g., when one specu-
lates that increasing the size of the population in an EA helps when no progress was
made. For parameters like the mutation rate, it is not clear what a success-based rule
can look like, since a low success rate can either stem from a too small mutation rate
(regenerating the parent with high probability) or a destructive too high mutation rate.
In [17], a relatively complicated learning mechanism was presented that tries to learn
the right mutation strength by computing a time-discounted average of the past per-
formance stemming from different parameter values. This learning mechanism needed
a careful trade-off between exploiting the currently most profitably mutation strength
and experimenting with other parameter values and a careful choice of the parameter
controlling by how much older experience is taken less into account than more recent
observations.

1.1 A New Self-Adjusting Mechanism for Population-Based EAs

In this work, we propose an alternative way to adjust the mutation rate on the fly
for algorithms using larger offspring populations. It aims at overcoming some of the
difficulties of the learning mechanism just described. The simple idea is to create half
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the offspring with twice the current mutation rate and the other half using half the
current rate. The mutation rate is then modified to the rate which was used to create
the best of these offspring (choosing the winning offspring randomly among all best in
case of ambiguity). We do not allow the mutation rate to leave the interval [2/n, 1/4],
so that the rates used in the subpopulations are always in the interval [1/n, 1/2].

We add one modification to the very basic idea described in the first paragraph of this
section. Instead of always modifying the mutation rate to the rate of the best offspring,
we shall take this winner’s rate only with probability a half and else modify the mutation
rate to a random one of the two possible values (twice and half the current rate). Our
motivation for this modification is that we feel that the additional random noise will not
prevent the algorithm from adjusting the mutation rate into a direction that is more
profitable. However, the increased amount of randomness may allow the algorithm to
leave a possible basin of attraction of a locally optimal mutation rate. Observe that with
probability Θ(1/n2), a sequence of log2 n random modification all in the same direction
appears. Hence with this inverse-polynomial rate, the algorithm can jump from any
mutation rate to any other (with the restriction that only a discrete set of mutation
rates can appear). We note that the existence of random modifications is also exploited
in our runtime analysis, which will show that the new self-adjusting mechanism selects
mutation rates good enough to lead to the asymptotically optimal runtime among all
dynamic choices of the mutation rate for the (1+λ) EA.

In this first work proposing this mechanism, we shall not spend much effort fine-
tuning it, but rather show in a proof-of-concept manner that it can find very good
mutation rates. In a real application, it is likely that better results are obtained by
working with three subpopulations, namely an additional one using (that is, exploiting)
the current mutation rate. Also, it seems natural that more modest adjustments of the
mutation rate, that is, multiplying and dividing the rate by a number F that is smaller
than the value F = 2 used by our mechanism, is profitable. We conduct some elementary
experiments supporting this intuition in Section 8.

1.2 Runtime Analysis for the Self-Adjusting (1+λ) EA on OneMax

To prove that the self-adjusting mechanism just presented can indeed find good dynamic
mutation rates, we analyse it in the purest possible setting, namely in the optimization
of the classic test function

OneMax : {0, 1}n → R; (x1, . . . , xn) 7→
n∑
i=1

xi

via the (1+λ) EA (see Algorithm 1).
The runtime of the (1+λ) EA with fixed mutation rates on OneMax is well un-

derstood [11, 22]. In particular, Gießen and Witt [22] show that the expected runtime
(number of generations) is (1 ± o(1))

(
1
2 ·

n ln lnλ
lnλ + er

r ·
n lnn
λ

)
when a mutation rate of

r/n, r a constant, is used. Thus for λ not too large, the mutation rate determines the
leading constant of the runtime, and a rate of 1/n gives the asymptotically best runtime.
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As a consequence of their work on parallel black-box complexities, Badkobeh, Lehre,
and Sudholt [1] showed that the (1+λ) EA with a suitable fitness-dependent mutation
rate finds the optimum of OneMax in an asymptotically better runtime of O( n

log λ +
n logn
λ ), where the improvement is by a factor of Θ(log log λ). This runtime is best-

possible among all λ-parallel unary unbiased black-box optimization algorithms. In
particular, no other dynamic choice of the mutation rate in the (1+λ) EA can achieve
an asymptotically better runtime. The way how the mutation rate depends on the
fitness in the above result, however, is not trivial. When the parent individual has
fitness distance d, then mutation rate employed is p = max{ lnλ

n ln(en/d) ,
1
n}.

Our main technical result is that the (1+λ) EA adjusting the mutation rate according
to the mechanism described above has the same (optimal) asymptotic runtime. Con-
sequently, the self-adjusting mechanism is able find on the fly a mutation rate that is
sufficiently close to the one proposed in [1] to achieve asymptotically the same expected
runtime.

Theorem 1. Let λ ≥ 45 and λ = nO(1). Let T denote the number of generations of the
(1+λ) EA with self-adjusting mutation rate on OneMax. Then,

E(T ) = Θ
(

n

log λ + n logn
λ

)
.

This corresponds to an expected number of functions evaluations of Θ( λn
log λ + n logn).

To the best of our knowledge, this is the first time that a simple mutation-based EA
achieves a super-constant speed-up via a self-adjusting choice of the mutation rate.

As an interesting side remark, our proofs reveal that a quite non-standard but fixed
mutation rate of r = ln(λ)/2 also achieves the Θ(log log λ) improvement as it implies the
bound of Θ(n/log λ) generations if λ is not too small. Hence, the constant choice r =
O(1) as studied in [22] does not yield the asymptotically optimal number of generations
unless λ is so small that the n logn-term dominates.

Lemma 1. Let λ ≥ 45 and λ = nO(1), Let T denote the number of generations of the
(1+λ) EA with fixed mutation rate r = ln(λ)/2. Then,

E(T ) = O

(
n

log λ + n logn√
λ

)
.

This corresponds to an expected number of functions evaluations of O( λn
log λ +

√
λn logn).

The paper is structured as follows: In Section 2 we give a overview over previous
analyses of the (1+λ) EA and of self-adjusting parameter control mechanism in EAs
from a theoretical perspective. In Section 3 we give the algorithm and the mutation
scheme. For convenience, we also state some key theorems that we will frequently use
in the rest of the paper. The next three sections deal with the runtime analysis of the
expected time spent by the (1+λ) EA on OneMax in each of three regions of the fitness
distance d. We label these regions the far region, middle region and near region, each
of which will be dealt with in a separate section. The proof of the main theorem and of
Lemma 1 is then given in Section 7. Finally, we conclude in Section 9.
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2 Related Work

Since this is a theoretically oriented work on how a dynamic parameter choice speeds up
the runtime of the (1+λ) EA on the test function OneMax, let us briefly review what
is known about the theory of this EA and dynamic parameter choices in general.

2.1 The (1+λ) EA

The first to conduct a rigorous runtime analysis of the (1+λ) EA were Jansen, De Jong,
and Wegener [24]. They proved, among other results, that when optimizing OneMax a
linear speed-up exists up to a population size of Θ(log(n) log log(n)/log log log(n)), that
is, for λ = O(log(n) log log(n)/log log log(n)), finding the optimal solution takes an ex-
pected number of Θ(n log(n)/λ) generations, whereas for larger λ at least ω(n log(n)/λ)
generations are necessary. This picture was completed in [11] with a proof that the ex-
pected number of generations taken to find the optimum is Θ(n logn

λ + n log log λ
log λ ). The im-

plicit constants were determined in [22], giving the bound of (1±o(1))(1
2
n ln lnλ

lnλ + er

r
n lnn
λ ),

for any constant r, as mentioned in the introduction.
Aside from the optimization behavior on OneMax, not too much is known for the

(1+λ) EA, or is at least not made explicit (it is easy to see that waiting times for an im-
provement which are larger than λ reduce by a factor of Θ(λ) compared to one-individual
offspring populations). Results made explicit are the Θ(n2/ log(n) + n) expected run-
time (number of generations) on LeadingOnes [24], the worst-case Θ(n + n log(n)/λ)
expected runtime on linear functions [11], and the O(m2(logn + logwmax)/λ) runtime
estimate for minimum spanning trees valid for λ ≤ m2/n [31].

2.2 Dynamic Parameter Choices

While it is clear the EAs with parameters changing during the run of the algorithm (dy-
namic parameter settings) can be more powerful than those only using static parameter
settings, only recently considerable advantages of dynamic choices could be demonstrated
by mathematical means (for discrete optimization problems; in continuous optimization,
step size adaptation is obviously necessary to approach arbitrarily closely a target point).
To describe the different ways to dynamically control parameters, we use in the follow-
ing the language proposed in Eiben, Hinterding, and Michalewicz [21] and its extension
from [10].

2.2.1 Deterministic Parameter Control

In this language, deterministic parameter control means that the dynamic choice of a
parameter does not depend on the fitness landscape. The first to rigorously analyze a
deterministic parameter control scheme are Jansen and Wegener [23]. They regard the
performance of the (1+1) EA which uses in iteration t the mutation rate 2k/n, where
k ∈ {1, 2, . . . , 2dlog2 ne−2} is chosen such that log2(k) ≡ t−1 (mod dlog2 ne−1). In other
words, they cyclically use the mutation rates 1/n, 2/n, . . . ,K/n, where K is the largest
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power of two that is less than n/2. Jansen and Wegener demonstrate that there exists an
example function where this dynamic EA significantly outperforms the (1+1) EA with
any static mutation rate. However, they also observe that for many classic problems,
this EA is slower by a factor of Θ(logn).

In [32], a rank-based mutation rate was analyzed for the (µ+1) EA. A previous ex-
perimental study [5] suggested that this is a profitable approach, but the mathematical
runtime analysis in [32] rather indicates the opposite. While there are artificial exam-
ples where a huge runtime gain could be shown and also the worst-case runtime of the
(µ+1) EA reduces from essentially nn to O(3n), a rigorous analysis on the OneMax
function rather suggests that the high rate of offspring generated with a mutation rate
much higher than 1/n brings a significant risk of slowing down the optimization process.

For two non-standard settings in evolutionary computation, deterministic parameter
control mechanisms also gave interesting results. For problems where the solution length
is not known [4], more precisely, where the number or the set of bits relevant for the
solution quality is unknown, again random mutation rates gave good results [14, 19].
Here however, not a power-law scheme was used, but rather one based on very slowly
decreasing summable sequences. For problems where the discrete variables take many
values, e.g., the search space is {0, . . . , r − 1}n for some large r, the question is how to
change the value of an individual variable. The results in [15] suggest that a harmonic
mutation strength, that is, changing a variable value by ±i with i chosen randomly with
probability proportional to 1/i, can be beneficial. This distribution was analyzed earlier
in [7] for the one-dimensional case, where it was also shown to give the asymptotically
best performance on a OneMax type problem.

For randomized search heuristics outside evolutionary computation, Wegener [33]
showed that simulated annealing (using a time-dependent temperature) can beat the
Metropolis algorithm (using a static temperature).

2.2.2 Adaptive Parameter Control

A parameter control scheme is called adaptive if it used some kind of feedback from
the optimization process. This can be functionally dependent (e.g., the mutation rate
depends on the fitness of the parent) or success-based (e.g., a 1/5th rule).

The first to conduct a runtime analysis for an adaptive parameter control mechanism
(and show a small advantage over static choices) were Böttcher, Doerr, and Neumann [2].
They proposed to use the fitness-dependent mutation rate of 1/(LeadingOnes(x) + 1)
for the optimization of the LeadingOnes test function. They proved that with this
choice, the runtime of the (1+1) EA improves to roughly 0.68n2 compared to a time of
0.86n2 stemming from the classic mutation rate 1/n or a runtime of 0.77n2 stemming
from the asymptotically optimal static rate of approximately 1.59/n.

For the (1 + (λ, λ)) GA, a fitness-dependent offspring population size of or-
der λ = Θ(

√
n/d(x) ) was suggested in [13], where d(x) is the fitness-distance

of the parent individual to the optimum. This choice improves the optimization
time (number of fitness evaluations until the optimum is found) on OneMax from
Θ(n

√
log(n) log log log(n)/log log(n) ) stemming from the optimal static parameter
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choice [9] to O(n). Since in this adaptive algorithm the mutation rate p is function-
ally dependent on the offspring population size, namely via p = λ/n, the dynamic choice
of λ is equivalent to a fitness-dependent mutation rate of 1/

√
nd(x).

In the aforementioned work by Badkobeh et al. [1], a fitness-dependent mutation rate
of max

{ lnλ
n ln(en/d(x)) ,

1
n

}
was shown to improve the classic runtime of O

(n log log λ
log λ + n logn

λ

)
to O

(
n

log λ + n logn
λ

)
. In [17], the (1+1) EA using a k-bit flip mutation operator together

with a fitness-dependent choice of k was shown to give a performance on OneMax
that is very close to the theoretical optimum (among all unary unbiased black-box al-
gorithms), however, this differs only by lower order terms from the performance of the
simple randomized local search heuristic (RLS). For nature-inspired algorithms other
than evolutionary ones, Zarges [34, 35] proved that fitness-dependent mutation rates
can be beneficial in artificial immune systems.

2.3 Self-adjusting and Self-adaptive Parameter Control

While all these results show an advantage of an adaptive parameter setting, it remains
questionable if an algorithm user would be able to find such a functional dependence of
the parameter on the fitness. This difficulty can be overcome via self-adjusting parameter
choices, where the parameter is modified according to a simple rule often based on the
success or progress of previous iterations, or via self-adaptation, where the parameter is
encoded in the genome and thus subject to variation and selection. The understanding of
self-adaptation is still very limited. The only theoretical work on this topic [6], however,
is promising and shows examples where self-adaptation can lead to significant speed-ups
for non-elitist evolutionary algorithms.

In contrast to this, the last years have produced a profound understanding of self-
adjusting parameter choices. The first to perform a mathematical analysis were Lässig
and Sudholt [28], who considered the (1+λ) EA and a simple parallel island model to-
gether with two self-adjusting mechanisms for population size or island number, including
halving or doubling it depending on whether the current iteration led to an improve-
ment or not. These mechanisms were proven to give significant improvements of the
“parallel” runtime (number of generations) on various test functions without increasing
significantly the “sequential” runtime (number of fitness evaluations).

In [10] it was shown that the fitness-dependent choice of λ for the (1 + (λ, λ)) GA
described above can also be found in a self-adjusting way. To this aim, another success-
based mechanism was proposed, which imitates the 1/5-th rule from evolution strate-
gies. With some modifications, this mechanism also works on random satisfiability prob-
lems [3]. For the problem of optimizing an r-valued OneMax function, a self-adjustment
of the step size inspired by the 1/5-th rule was found to find the asymptotically best
possible runtime in [16].

These results indicate that success-based dynamics work well for adjusting parame-
ters when a monotonic relation like “if progress is difficult, then increase the population
size” holds. For adjusting a parameter like the mutation rate, it is less obvious how to do
this. For example, in the search space {0, 1}n both a too large mutation rate (creating
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a stronger drift towards a Hamming distance of n/2 from the optimum) and a too small
mutation rate (giving a too small radius of exploration) can be detrimental. For this
reason, to obtain a self-adjusting version of their result on the optimal number k to opti-
mize OneMax via k-bit flips [17], in [18] a learning mechanism was proposed that from
the medium-term past estimates the efficiency of different parameter values. As shown
there, this does find the optimal mutation strength sufficiently well to obtain essentially
the runtime stemming from the fitness-dependent mutation strength exhibited before.

In the light of these works, our result from the methodological perspective shows
that some of the difficulties of the learning mechanism of [18], e.g., the whole book-
keeping being part of it and also the setting of the parameters regulating how to discount
information over time, can be overcome by the mechanism proposed in this work. In
a sense, the use of larger populations enables us to adjust the mutation rate solely on
information learned in the current iteration. However, we do also use the idea of [18] to
intentionally use parameter settings which appear to be slightly off the current optimum
to gain additional insight.

3 Preliminaries

3.1 Algorithm

We consider the (1+λ) EA with self-adjusting mutation rate for the minimization of
pseudo-boolean functions f : {0, 1}n → R, defined as Algorithm 1.

The general idea of the mutation scheme is to adjust the mutation strength according
to its success in the population. We perform mutation by applying standard bit mutation
with two different mutation probabilities r/(2n) and 2r/n and we call r the mutation
rate. More precisely, for an even number λ ≥ 2 the algorithm creates λ/2 offspring with
mutation rate r/2 and with 2r each.

The mutation rate is adjusted after each selection. With probability a half, the
new rate is taken as the mutation rate that the best individual (i. e. the one with
the lowest fitness, ties broken uniformly at random) was created with (success-based
adjustment). With the other 50% probability, the mutation rate is adjusted to a random
value in {r/2, 2r} (random adjustment). Note that the mutation rate is adjusted in each
iteration, that is, also when all offspring are worse than the parent and thus the parent
is kept for the next iteration.

If an adjustment of the rate results in a new rate r outside the interval [2, n/4], we
replace this rate with the corresponding boundary value. Note that in the case of r < 2,
a subpopulation with rate less than 1 would be generated, which means flipping less
than one bit in expectation. At a rate r > n/4, a subpopulation with rate larger than
n/2 would be created, which again is not a very useful choice.

We formulate the algorithm to start with an initial mutation rate rinit. The only
assumption on rinit is to be greater than or equal to 2. The (1+λ) EA with this self-
adjusting choice of the mutation rate is given as pseudocode in Algorithm 1.
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Algorithm 1 (1+λ) EA with two-rate standard bit mutation
Select x uniformly at random from {0, 1}n and set r ← rinit.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Create xi by flipping each bit in a copy of x independently with probability

rt/(2n) if i ≤ λ/2 and with probability 2rt/n otherwise.
x∗ ← arg minxi f(xi) (breaking ties randomly).
if f(x∗) ≤ f(x) then

x← x∗.
Perform one of the following two actions with prob. 1/2:
• Replace rt with the mutation rate that x∗ has been created with.
• Replace rt with either rt/2 or 2rt, each with probability 1/2.
Replace rt with min{max{2, rt}, n/4}.

Let us explain the motivation for the random adjustments of the rate. Without such
random adjustments, the rate can only be changed into some direction if a winning
offspring is generated with this rate. For simple functions like OneMax, this is most
likely sufficient. However, when the fitness of the best of λ/2 offspring, viewed as a
function of the rate, is not unimodal, then several adjustments into a direction at first
not yielding good offspring might be needed to reach good values of the rate. Here,
our random adjustments enable the algorithm to cross such a valley of unfavorable rate
values. We note that such ideas are not uncommon in evolutionary computation, with
standard-bit mutation being the most prominent example (allowing to perform several
local-search steps in one iteration to cross fitness valleys).

A different way to implement a mechanism allowing larger changes of the rate to cross
unfavorable regions would have been to not only generate offspring with rates r/2 and
2r, but to allow larger deviations from the current rate with some small probability. One
idea could be choosing for each offspring independently the rate r2−i with probability
2−|i|−1 for all i ∈ Z, i 6= 0. This should give similar results, but to us the process appears
more chaotic (e.g., with not the same number of individuals produced with rates r/2
and 2r).

The runtime, also called the optimization time, of the (1+λ) EA is the smallest t
such that an individual of minimum f -value has been found. Note that t corresponds
to a number of iterations (also called generations), where each generation creates λ
offspring. Since each of these offspring has to be evaluated, the number of function
evaluations, which is a classical cost measure, is by a factor of λ larger than the runtime as
defined here. However, assuming a massively parallel architecture that allows for parallel
evaluation of the offspring, counting the number of generations seems also a valid cost
measure. In particular, a speed-up on the function OneMax(x1, . . . , xn) := x1 + · · ·+xn
by increasing λ can only be observed in terms of the number of generations. Note that
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for reasons of symmetry, it makes no difference whether OneMax is minimized (as in
the present paper) or maximized (as in several previous research papers).

Throughout the paper, all asymptotic notation will be with respect to the problem
size n.

3.2 Drift Theorems

Our results are obtained by drift analysis, which is also used in previous analyses of the
(1+λ) EA without self-adaptation on OneMax and other linear functions [11, 22].

The first theorems stating upper bounds on the hitting time using variable drift go
back to [25, 30]. We take a formulation from [29] but simplify it to Markov processes
for notational convenience.

Theorem 2 (Variable Drift, Upper Bound). Let (Xt)t≥0, be random variables describing
a Markov process over a finite state space S ⊆ {0} ∪ [xmin, xmax], where xmin > 0. Let
T be the random variable that denotes the earliest point in time t ≥ 0 such that Xt = 0.
If there exists a monotone increasing function h(x) : [xmin, xmax]→ R+, where 1/h(x) is
integrable on [xmin, xmax], such that for all x ∈ S with Pr(Xt = x) > 0 we have

E(Xt −Xt+1 | Xt = x) ≥ h(x)

then for all x′ ∈ S with Pr(X0 = x′) > 0

E(T | X0 = x′) ≤ xmin
h(xmin) +

∫ x′

xmin

1
h(x) dx.

The variable drift theorem is often applied in the special case of additive drift in
discrete spaces: assuming E(Xt −Xt+1 | Xt = x;Xt > 0) ≥ ε for some constant ε, one
obtains E(T | X0 = x′) ≤ x′/ε.

Since we will make frequent use of it in the following sections as well, we will also give
the version of the Multiplicative Drift Theorem for upper bounds, due to [12]. Again,
this is implied by the previous variable drift theorem.

Theorem 3 (Multiplicative Drift [12]). Let (Xt)t≥0 be random variables describing a
Markov process over a finite state space S ⊆ R+

0 and let xmin := min{x ∈ S | x > 0}. Let
T be the random variable that denotes the earliest point in time t ≥ 0 such that Xt = 0.
If there exist δ > 0 such that for all x ∈ S with Pr(Xt = x) > 0 we have

E(Xt −Xt+1 | Xt = x) ≥ δx ,

then for all x′ ∈ S with Pr(X0 = x′) > 0,

E(T | X0 = x′) ≤
1 + ln

(
x′

xmin

)
δ

.
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3.3 Chernoff Bounds

For reasons of self-containedness and as a courtesy to the reader, we state two well-
known multiplicative Chernoff bounds and a lesser known additive Chernoff bound that
is also known in the literature as Bennett’s inequality.

Theorem 4 (Bennett’s inequality, Chernoff Bounds [8, Theorem 1.12, Theorem 1.10]).
Let X1, . . . , Xn be independent random variables and let X =

∑n
i=1Xi. Furthermore, let

b such that Xi ≤ E(Xi) + b for all i = 1, . . . , n and σ2 = 1
n

∑n
i=1 Var(Xi). Then, for all

γ > 0

Pr(X ≥ E(X) + γ) ≤
(
−γ
b

((
1 + nσ2

bγ

)
ln
(

1 + bγ

nσ2

)
− 1

))
.

Moreover, if the Xi for all i = 1, . . . , n take values in [0, 1] then

• Pr(X ≤ (1− δ)E(X)) ≤ exp(−δ2E(X)/2) for all 0 ≤ δ ≤ 1.

• Pr(X ≥ (1 + δ)E(X)) ≤ exp(−δ2E(X)/(2 + δ)) for all δ > 0.

3.4 Occupation Probabilities

As mentioned above, we will be analyzing two depending stochastic processes: the ran-
dom decrease of fitness and the random change of the mutation rate. Often, we will prove
by drift analysis that the rate is drifting towards values that yield an almost-optimal
fitness decrease. However, once the rate has drifted towards such values, we would also
like the rates to stay in the vicinity of these values in subsequent steps. To this end, we
apply the following theorem from [27]. Note that in the paper a slightly more general
version including a self-loop probability is stated, which we do not need here.

Theorem 5 (Theorem 7 in [27]). Let a Markov process (Xt)t≥0 on R+
0 , where |Xt −

Xt+1| ≤ c, with additive drift of at least d towards 0 be given (i. e., E(Xt − Xt+1 |
Xt;Xt > 0) ≥ d), starting at 0 (i.e. X0 = 0). Then we have, for all t ∈ N and b ∈ R+

0 ,

Pr(Xt ≥ b) ≤ 2e
2d
3c (1−b/c).

We can readily apply this theorem in the following lemma that will be used through-
out the paper to bound the rate rt.

Lemma 2. If there is a point c ≥ 4 such that Pr(rt+1 < rt | rt > c) ≥ 1/2 + ε
for some constant ε > 0, then for all t′ ≥ min{t | rt ≤ c} and all b ≥ 4 it holds
Pr(rt′ ≥ c+ 2b) ≤ 2e−2bε/3.

Proof. Apply Theorem 5 on the process Xt := max{0, dlog2(rt/c)e}. Note that this
process is on N0, moves by an absolute value of at most 1 and has drift E(Xt −Xt+1 |
Xt;Xt > 0) = 2ε. We use c := 1 and d := 2ε in the theorem and estimate 1 − b ≤
−b/2.
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4 Far Region

In this first of three technical sections, we analyze the optimization behavior of our self-
adjusting (1+λ) EA in the regime where the fitness distance k is at least n/lnλ. Since
we are relatively far from the optimum, it is relatively easy to make progress. On the
other hand, this regime spans the largest number of fitness levels (namely Θ(n)), so we
need to exhibit a sufficient progress in each iteration. Also, this is the regime where
the optimal mutation rate varies most drastically. Without proof, we remark that the
optimal rate is n for k ≥ n/2 + ω(

√
n log λ), n/2 for k = n/2 ± o(

√
n log λ), and then

quickly drops to r = Θ(log λ) for k ≤ n/2− εn. Despite these difficulties, our (1+λ) EA
manages to find sufficiently good mutation rates to be able to reach a fitness distance of
k = n/lnλ in an expected number of O(n/ log λ) iterations.

Lemma 3. Let n be sufficiently large and 0 < k < n/2. We define c1(k) = (2 ln(en/k))−1

and c2(k) = 4n2/(n− 2k)2.

• If n/lnλ ≤ k and r ≤ c1(k) lnλ, then the probability that a best offspring has been
created with rate 2r is at least 0.5005.

• Let λ ≥ 50. If n/2 ≥ r ≥ c2(k) lnλ, then the probability that all best offspring have
been created with rate r/2 is at least 0.58.

• If r ≥ 2(1 + γ)c2(k) lnλ, then the probability that all best offspring are worse than
the parent is at least 1− λ−γ.

Proof. Let Q(k, i, r) be the probability that standard bit mutation with mutation rate
p = r/n creates from a parent with fitness distance k an offspring with fitness distance
at most k − i. Then

Q(k, i, r) =
k∑
x=i

x−i∑
y=0

(
k

x

)(
n− k
y

)
px+y(1− p)n−x−y.

By comparing each component in Q(k, i, r/2) and Q(k, i, 2r) we obtain

Q(k, i, 2r)/Q(k, i, r/2) ≥ 4i (1− 2r/n)n

(1− r/(2n))n ≥
(
1− o(1)

)
4ie−1.5r.

Here we notice that ln(1− x) ≥ −x− x2 for all 0 ≤ x ≤ 1/2. Then(
1− 2r

n

1− r
2n

)n
=
(

1− 1.5r
n− 0.5r

)n
≥ exp

(
−1.5rn
n− 0.5r −

2(1.5r)2n

(n− 0.5r)2

)
≥ (1− o(1))e−1.5r.

The above inequality applies λ = nO(1). Therefore r < lnλ = O(lnn). Since Q(k, i, r)
is monotone decreasing in i, let i∗ be the largest i such that Q(k, i, 2r) ≥ 4/λ. We will
then have i∗ ≥ 2r because

Q(k, 2r, 2r) ≥
(
k

2r

)
(2p)2r(1− 2p)n

12



≥ 2r · 2r
1 · 2 ·

(k − 1)(k − 2)
k2 ·

(
k

2r

)2r (2r
n

)2r
· (1− o(1))e−2r

> 2r
(
k

en

)2r
≥
(
k

en

)2c1(k) lnλ
≥ 4
λ
.

The second inequality which involves (1−2p)n again uses the fact that r < lnλ = O(lnn).
This means p = o(1/

√
n) and then we have (1 − 2p)n ≥ exp(−2pn − 4p2n) ≥ (1 −

o(1)) exp(−2r). The (1−o(1)) factor and (k−1)(k−2)/k2 is compensated by decreasing
(2r/2) to 1 if n is large enough. We notice that when r = 2 we have i∗ ≥ ln(λ)/(2 ln lnλ)
since

Q(k, i, 4/n) ≥
(4k
in

)i
e−4 ≥

( 1
i lnλ

)i
4ie−4 ≥ 4ie−4

λ
for i = lnλ

2 ln lnλ.

Let î = ln(λ)/(2 ln lnλ). We notice that

∂px+y(1− p)n−x−y

∂p
= px+y−1(1− p)n−x−y np− x− y

p− 1 ≥ 0 when x+ y ≥ i ≥ np,

Q(k, i, r) is increasing in r when r ≤ i. We obtain i∗ ≥ î for all r ≥ 2 which results in
4i∗e−1.5r ≥ exp(i∗(ln 4 − 1.5/2)) ≥ Θ(λ1/ ln lnλ). We also need an upper bound on i∗.
Since r ≤ ln(λ)/2 and k ≤ n/2 implies kr/n ≤ ln(λ)/4, then Chernoff Bounds shows
that the probability that 1.65 lnλ ≥ 6.6kr/n bits being flipped from k bits is less than
exp(−(5.6/7.6)1.4 lnλ) < 1/λ. This means i∗ < 1.65 lnλ. We use this to compute the
upper bound on Q(k, i∗, 2r). Let q(k, i, r) = Q(k, i, r)−Q(k, i+ 1, r) be the probability
of that the fitness distance is decreased by i. We regard the terms in q(k, i, r) where
x− y = i. If x and y both increase by 1, the terms change by a factor of

k − x
x+ 1 ·

n− k − y
y + 1 · p2

(1− p)2 ≤ (1 + o(1)) kp

x+ 1 ·
(n− k)p
y + 1 ≤ r2

4xy

If we consider y ≥ r then xy > r2 and the factor r2/(4xy) ≤ 1/4. The sum of these
factors for all y ≥ r is less than the geometric series with ratio 1/4. Therefore, the sum
from 0 ≤ y < r contributes to at least 2/3 of the total sum q(k, i, r). Consequently, if
we look at the first 2r terms in q(k, i∗, 2r) and q(k, i∗ + 1, 2r) we have

q(k, i∗ + 1, 2r)
q(k, i∗, 2r) ≥ 2

3 ·
(k − 2r − i∗ + 1)2p
(2r + i∗)(1− 2p) ≥

4kp
3(2/2 + 1)i∗ = 2rk

3i∗n.

Since q(k, i∗ + 1, 2r) ≤ Q(k, i∗ + 1, 2r) and k ≥ n/ lnλ we further more have

q(k, i∗, 2r)
Q(k, i∗ + 1, 2r) ≤

3i∗ lnλ
2r and Q(k, i∗, 2r)

Q(k, i∗ + 1, 2r) ≤ 1 + 3i∗ lnλ
2r .

So finally Q(k, i∗, 2r) ≤ 4(1 + 1.5i∗ lnλ/r)/λ and

Q(k, i∗, r/2) ≤ Q(k, i∗, 2r)
4i∗e−1.5r ≤

4(1 + 1.5i∗ lnλ
r )

4i∗e−1.5r · 1
λ
.
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If λ = ω(1) then the factor before 1/λ is Θ(ln2(λ)/λ1/ ln ln(λ)) = o(1). Otherwise if
lnλ ≥ 130 or r ≥ 8 or r < 8 but i∗ ≥ 16 we prove Q(k, i∗, r/2) < 0.8/λ so that with
probability less than 0.4 at least one offspring of r/2 achieve i∗. Then with probability
at least (1 − (1 − 4/λ)λ/2) · (1 − 0.4) > 0.86 ∗ 0.6 > 0.51 all the best offspring have
been created with 2r. We first regard large λ. If lnλ ≥ 130, we define t = i∗/r then
2 ≤ t ≤ (1.65 lnλ)/2 and the factor Q(k, i∗, r/2)/λ becomes

4(1 + 1.5t lnλ)
exp(i∗(ln 4− 1.5/t)) ≤

4(1 + 1.5t lnλ)
exp(̂i(ln 4− 1.5/t))

.

If t ≤ 3 it is
4(1 + 1.5t lnλ)

exp(̂i(ln 4− 1.5/t))
≤ 4(1 + 4.5 lnλ)

exp(̂i(ln 4− 1.5/2))
< 0.8

otherwise it is
4(1 + 1.5t lnλ)

exp(̂i(ln 4− 1.5/t))
≤ 4(1 + 1.5 ln2 λ)

exp(̂i(ln 4− 1.5/3))
< 0.8.

If lnλ < 130 and r ≥ 8 we can bound

4(1 + 1.5i∗ ln(λ)/r)
4i∗e−1.5r ≤ 4(1 + 1.5 · 1.65 ln2(λ)/r)

exp(2r ln(4)− 1.5r) <
4(1 + 41828/r)

exp(2r ln(4)− 1.5r) < 0.8.

If lnλ < 130, r < 8 but i∗ ≥ 16, then

4(1 + 1.5i∗ ln(λ)/r)
4i∗e−1.5r ≤ 4(1 + 1.5 · 130 · 16/2)

416e−12 < 0.3.

For lnλ < 130 and r < 8, we prove that the probability that the best progress i attains
1.5r is at least 1− 3 · 10−5. Conditioning on 1.5r ≤ i ≤ i∗ it is obvious that i obtained
from 2r with probability at least 0.5 since q(k, i, 2r)/(q, i, r/2) = (1− o(1))4ie−1.5r > 1.
For the remaining i ≥ i∗ + 1 which has probability no less than 1.2 · 10−3, its very
likely that a best offspring is from 2r. This can cancel 3 · 10−5. We first compute
Q(k, 1.5r, 2r) > 21/λ in the following way. Since 1.5r < 12 then for n large enough we
have

Q(k, 1.5r, 2r) ≥ (1− o(1))
(

k

1.5r

)(2r
n

)1.5r
e−2r ≥ (1− o(1))(2r)1.5r

(1.5r)!

(
n

k

)0.5r ( k

en

)2r
,

with (k/(en))2r ≥ (k/(en))2c1(k) lnλ = 1/λ, (2r)1.5r/((1.5r)!) ≥ 43/6 and (n/k)0.5r ≥
2. This means the best progress among λ/2 offspring attains 1.5r is at least 1 −
(1 − 21/λ)λ/2 > 1 − 3 · 10−5. For i ≥ i∗ + 1 according to the definition of i∗ and
Q(k, i∗, 2r)/Q(k, i∗ + 1, 2r) ≤ 1 + 1.5i∗ lnλ/r

4 > Q(k, i∗ + 1, 2r)
λ

≥ 4
1 + 1.5i∗ lnλ/r ≥

4
1 + 1.5 · 16 · 130/2 >

1
391 .
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Then for λ/2 offspring we have 1− (1−Q(k, i∗ + 1, 2r))λ/2 ≥ 1.2 · 10−3. Moreover, use
the fact that i∗ + 1 ≥ 2r + 1 we also have

Q(k, i∗ + 1, 2r)
Q(k, i∗ + 1, r/2) ≥

42r+1

e1.5r >
45

e3 > 50.

Therefore it is easy to bound

1− (1−Q(k, i∗ + 1, 2r))λ/2

1− (1−Q(k, i∗ + 1, r/2))λ/2
>

1− (1−Q(k, i∗ + 1, 2r))λ/2

Q(k, i∗ + 1, r/2) · λ/2 >
1− (1−Q(k, i∗ + 1, 2r))λ/2

Q(k, i∗ + 1, 2r)/50 · λ/2 .

We look at function fα(x) := (1− (1− x)α)/(αx) and gα(x) := (1− x)α(1 + αx). Since
g′α(x) < 0 for all α > 1 and 0 < x < 1, we have gα(x) < gα(0) = 1 when 0 < x < 1.
Therefore f ′α(x) = (gα−1(x)− 1)/(αx2) < 0 and

1− (1−Q(k, i∗ + 1, 2r))λ/2

Q(k, i∗ + 1, 2r)/50 · λ/2 >
fλ/2(4/λ)

50 = 1− (1− 4/λ)λ/2

(4/λ)/50 · λ/2 ≥ 1− 1/e2

1/25 > 21.

This means that if the best offspring made a progress of i∗ + 1 or more, then the
conditional probability that it is from the 2r-subpopulation is at least 21/22. Finally we
can bound the probability that a best offspring is from the 2r-subpopulation by

(1− 3 · 10−5 − 1.2 · 10−3) · 0.5 + 1.2 · 10−3 · 21
22 > 0.5005.

For the second statement, let X(k, r) denote the random decrease of the fitness
distance when apply standard bit mutation with probability p = r/n to an individual
with k ones. Then E(X) = kp− (n−k)p = (2k−n)p. According to Bennett’s inequality
(Theorem 4), for any ∆ > 0 we have

Pr(X ≥ E(X) + ∆) ≤ exp
(
−Var(X) · h

( ∆
Var(X)

))
where h(u) = (1 +u) ln(1 +u)−u. We compare h(u) with τu2 for any constant factor τ .
Let g(u) = h(u)− τu2 be the difference, then g(0) = g′(0) = 0 while g′′(u) = 1/(1 +u)−
2τ ≥ 0 when 1/(1 +u) ≥ 2τ . This means h(u) ≥ u2/(2u+ 2). We now apply this bound
with X = X(k, 2r) and ∆ = E(X(k, r/2)) − E(X(k, 2r)) = (n − 2k)1.5r/n > 0. We
have Var(X(k, 2r)) = n(2p)(1−2p) = 2r(1−2r/n) and ∆/Var = (3/4)(n−2k)/(n−2r).
Then,

Pr(X(k, 2r) ≥ E(X(k, r/2))) ≤ exp
(
− ∆2

(2 + 2u)Var(X(k, 2r))

)

= exp
(
− 9(n− 2k)2r

4n(7n− 8r − 6k)

)
≤ exp

(
−9(n− 2k)2c2(k) lnλ

28n2

)
= 1
λ9/7 .

We notice that we have 7n − 8r − 6k > 7n − 4n − 3n = 0 in the second inequality.
Therefore, with probability less than λ−9/7(λ/2) < 50−2/7/2 < 0.2 the best offspring
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of rate 2r is better than the expectation of rate r/2. For rate r/2, let X+ and X− be
the number of one-bits flipped and zero-bits flipped, respectively. Both X+ and X−

follow a binomial distribution and X = X+ − X−. We know E(X+) = kr/(2n) and
E(X−) = (n − k)r/(2n) ≥ lnλ. The median of X+ is between bE(X+)c to dE(X+)e
by [26]. This means Pr(X+ ≥ E(X+) − 1) ≥ Pr(X+ ≥ bE(X+)c) ≥ 1/2. For lnλ
large enough, we can use a normal distribution to approximate X− and have Pr(X− ≤
E(X−)− 1) = 1/2− o(1). Otherwise we notice that lnλ ≥ ln 50 > 3 and r/(2n) ≤ 1/4.
Let real number t denote E(X−) and m denote n− k. It is clear that

Pr(X− ≤ t− 1) = Pr(X− ≤ bt− 1c) ≥ Pr(X− ≤ dte − 2)
= Pr(X− ≤ dte)− Pr(X− = dte)− Pr(X− = dte − 1).

We see that Pr(X− ≤ dte) ≥ 1/2 and

Pr(X− = dte)
Pr(X− = dte − 1) = (m− t+ 1)t

dte ·m · (1− r/(2n)) <
t

dte(1− r/(2n)) <
1

1− r/(2n) <
4
3

and

Pr(X− = dte − 1)
Pr(X− = dte − 2) = (m− t+ 2)t

(dte − 1) ·m · (1− r/(2n)) <
t

(dte − 1)(1− r/(2n)) <
16
9 .

Then we obtain

Pr(X− ≤ E(X−)− 1) > 1
2 ·

1
1 + 16/9 + (16/9)(4/3) > 0.097

Therefore Pr(X(k, r/2) ≥ E(X(k, r/2))) ≥ 0.048, with probability at least 1 − (1 −
0.048)λ/2 > 0.7 one offspring beats E(X(k, r/2)). Therefore all best offspring are from
r/2 with probability at least 0.7 · (1 − 0.2) > 0.56, this proves the second statement of
the lemma.

An offspring of mutation rate r/n is not worse than the parent if and only if X(k, r) ≥
0 and, again by using Bennett’s inequality, we have

Pr(X ≥ 0) ≤ exp
(
−Var(X) · h

(−E(X)
Var(X)

))
≤ exp

(
− (n− 2k)2r

2n(2n− 2k − r)

)
≤ exp

(
−(n− 2k)2r

4n2

)
.

Therefore if r = 2(1 + γ)c2(k) lnλ, then the probability above for r/2 is 1/λ1+γ and for
2α is 1/λ4+4γ . This proves the third statement.

The lemma above shows that the rate r is attracted to the interval [c1(k) lnn, c2(k) lnn].
Unfortunately, we cannot show that we obtain a sufficient progress in the fitness for ex-
actly this range of r-values. However, we can do so for a range smaller only by constant
factors. This is what we do now (for large values of k) and in Lemma 5 (for smaller
values of k). This case distinction is motivated by the fact that c2(k) becomes very large
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when k approaches n/2. Having a good drift only for such a smaller range of r-values
is not a problem since the random movements of r let us enter the smaller range with
constant probability, see Theorem 6 and its proof.

Let ∆ := ∆(λ/2, k, r) denote the fitness gain after selection among the best of λ/2
offspring generated with rate r from a parent with fitness distance k := OneMax(x).
Let x(i), i ∈ {1, . . . , λ/2}, be independent offspring generated from x by flipping each
bit independently with probability r/n. Then the random variable ∆ is defined by
∆ := max{0, k −min{OneMax(x(i)) | i ∈ {1, . . . , λ/2}}}.

We next show that a narrow region contained in c1(k) lnλ and c2(k) lnλ provides at
least logarithmic drift on fitness. We first do the proof for large k because c2(k) will be
ω(1) when k is close to n/2.

Lemma 4. Let 2n/5 ≤ k < n/2 and n be large enough. Let c be such that c ≤
min{n2/(50(n − 2k)2), n/(4 lnλ)} and c ≥ 1/2. Let r = c lnλ ≥ 1 and λ ≥ 2, then
E(∆) ≥ 10−3 lnλ.

Proof. Note that if k ≥ 2n/5 then n2/(50(n − 2k)2) ≥ 1/(50 · 0.22) = 1/2. We look at
the number X of flips in k ones. This random variable follows a binomial distribution
Bin(k, p) where p = r/n. Assume u = kp ≥ 1, B(x) =

(k
x

)
px(1 − p)k−x and F (x) =∑k

i≥xB(i). If we use a normal distribution to approximate X, it’s not hard to see that
the probability of hitting the mean satisfies F (u) ≥ Ω(1). More specifically, if u < 1 then
F (u) = 1−B(0) = 1− (1− p)n ≥ 1− 1/e > 1/2. Otherwise if u ≥ 1 then the worst case
for F (u) is u = 1+o(1) and F (u) ≥ 1−(1−1/n)n−(1−1/n)n−1 > 1/4. We now estimate
F (u+δ). If F (u+δ) < F (u)/2 then F (u)−F (u+δ) ≥ F (u)/2 = 1/8. When comparing
F (u+ δ)−F (u+ 2δ) to F (u)−F (u+ δ) we first notice that B(x+ 1)/B(x) = k−x

x+1 ·
p

1−p
which means B(0) < B(1) < · · · < B(u) > B(u+ 1) > · · · > B(k). Comparing B(u) to
B(u+ 2δ) we see that

B(u+ 2δ)
B(u) = (k − u) · · · (k − u− 2δ + 1)

(u+ 1) · · · (u+ 2δ) · p2δ

(1− p)2δ

≥
(
k − u− 2δ
k(1− p)

)2δ u2δ

(u+ 1) · · · (u+ 2δ)

We take δ ≤
√
u/10 for u = Θ(k) and δ ≤ 1.4u otherwise for u = o(k) and then bound(

k − u− 2δ
k(1− p)

)2δ
=
(

1− 2δ
k − u

)2δ
≥ 0.98.

Using Stirling’s approximation for (u+ 1) · · · (u+ 2δ) we have

(u+ 2δ)! ≤
√

2π(u+ 2δ)
(
u+ 2δ
e

)u+2δ
exp

( 1
12(u+ 2δ)

)
,

and
u! ≥

√
2πu

(
u

e

)u
exp

( 1
12u+ 1

)
.
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Then
u!

(u+ 2δ)! ≥ (1− o(1))
√

u

u+ 2δ
uue2δ

(u+ 2δ)u+2δ ,

and therefore

B(u+ 2δ)
B(u) ≥ 0.98

√
u

u+ 2δ
uu+2δe2δ

(u+ 2δ)u+2δ

≥ 0.98
√

u

u+ 2.8u

(
1− 2δ

u+ 2δ

)u+2δ
e2δ

≥ 1
2 exp

(
ln
(

u

u+ 2δ

)
(u+ 2δ) + 2δ

)
≥ 1

2 exp
(
−
(2δ
u

)2
u

)
.

For u = Θ(k) we take δ =
√
u/10, otherwise let δ = 0.49u/

√
c satisfying δ ≤ 1.4u

for c > 0.5 which is required by assumption. Then (2δ/u)2 u ≤ 0.98 lnλ and B(u +
2δ)/B(u) ≥ 1/(2λ0.98). Then F (u + δ) > δB(u + 2δ) > δB(u)/(2λ0.98). Notice that
δB(u) ≥ F (u) − F (u + δ) therefore F (u + δ) ≥ 1/(16λ0.98). With probability at least
γ = 1− (1− 1/(16λ0.98))λ/2 > 1/32 > 0.03 we have that one offspring flips at least u+ δ
ones which shows that E(∆) ≥ γ(u + δ − (n− k)p) ≥ γ(δ − (n− 2k)p). We compare δ
to (n− 2k)p. If u = o(k) then δ = 0.49kp/

√
c ≥ 0.19np/

√
c. If c ≤ n2/(50(n− 2k)2) we

have δ/((n−2k)p) ≥ 0.19/
√

1/50 ≥ 1.34 and δ−(n−2k)p ≥ 0.25δ. Notice that γ ≥ 0.03
then E(∆) ≥ 0.03 · 0.25δ ≥ 0.03 · 0.25 · 0.19

√
c lnλ ≥ 10−3 lnλ. Otherwise, if u = Θ(k)

then r = Θ(n) will require n2/(n − 2k)2 ≥ r/lnλ. This means n − 2k = O(
√
n/log λ)

and (n−2k)r/n = O(
√
n/log λ) which is of lower order compared to δ =

√
u/10. Hence,

E(∆) ≥ lnλ.

We now extend the lemma to the whole region of n/lnλ ≤ k < n/2. If k < 2n/5
the situation becomes easier because 4 ≤ c2(k) < 100 and every r in the smaller range
[c1(k) lnλ, ln(λ)/2] provides at least an expected logarithmic fitness increase. Together
with the previous lemma, we obtain the following statement for the drift in the whole
region n/lnλ ≤ k < n/2.

Lemma 5. Let n/lnλ ≤ k < n/2 and n be large enough. Assume λ ≥ 2. If r ∈
[c1(k) lnλ, c2(k) ln(λ)/200] for k ≥ 2n/5 and r ∈ [c1(k) lnλ, ln(λ)/2] for k < 2n/5 with
c1(k), c2(k) defined as in Lemma 3, then E(∆) ≥ 10−3 ln(λ)/ln(en/k).

Proof. For r ≤ ln(λ)/2 we consider the probability Q(k, i, r) of creating from a parent
with distance k an offspring with fitness distance at least k − i and i := c1(k) lnλ =
0.5 ln(λ)/ln(en/k), via standard bit mutation with probability r/n.

Q(k, i, r) ≥
(
k

i

)
(p)i(1− p)n ≥

(
k

i
· r
n

)i
e−r ≥

(
k

en

)i
e−r ≥ e− ln(λ)/2e−r ≥ e− lnλ = 1

λ
.
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In the second greater or equal symbol we apply (1 − p)n ≥ exp(−pn − p2n) ≥ (1 −
o(1)) exp(−r) for p satisfying p2n = o(1). The (1− o(1)) factor will be compensated by
using (k/i)i to estimate

(k
i

)
. Hence, Pr

(
∆ ≥ c1(k) lnλ

)
≥ 1− (1− 1/λ)λ/2 ≥ 1− e−1/2 >

0.3 and consequently E(∆) > 0.15 ln(λ)/ln(en/k). For r > ln(λ)/2, note that this occurs
only for k > 2n/5. In this case we apply Lemma 4 and obtain E(∆) > 10−3 lnλ ≥
10−3 ln(λ)/ln(en/k).

If we only consider generations that use a rate within the right region, we can bound
the expected runtime to reach k ≤ n/ lnλ by O(n/log λ) since the drift on the fitness is of
order log λ. The following theorem shows that the additional time spent with adjusting
the rate towards the right region does not change this bound on the expected runtime.

Theorem 6. The (1+λ) EA needs O(n/log λ) generations in expectation to reach a
OneMax-value of k ≤ n/lnλ after initialization.

Proof. We first argue quickly that it takes an expected number of at most O(
√
n) iter-

ations to reach a fitness distance of k < n/2. To this end, we note that if k ≥ n/2, then
the probability for an offspring to have a strictly better fitness than the parent is at least
Θ(1) for any 2 ≤ r ≤ n/4. Consequently, the expected fitness gain in one iteration is at
least constant. The initial fitness distance k deviates from n/2 by Ω(

√
n) in expectation.

Hence, it takes O(
√
n) generations to obtain k < n/2.

Without loss of generality we assume k < n/2 for the initial state. Our intuition is
that once we begin to use rate r bounded by c1(k) lnλ and c2(k) lnλ at some distance
level k, we will have a considerable drift on the OneMax-value and the strong drift on
the rate keeps r within or not far away from the bounds. After we make progress and k
decreases to a new level, the corresponding c1 and c2 decrease, and the algorithm takes
some time to readjust r into new bounds.

We consider the stochastic process Xt = log2(rt) and the current OneMax-value
Yt. According to Lemma 3 we have E(Xt − Xt+1 | Xt;Xt > log2(c2(Yt) lnλ)) ≥ ε =
Ω(1) and E(Xt+1 − Xt | Xt;Xt < log2(c1(Yt) lnλ)) ≥ ε = Ω(1). We pessimistically
assume that all the iterations adjusting rt make no progress. Let k0 > k1 > · · · > kN
be the OneMax-values taken by Yt until kN hits n/lnλ. According to the additive
drift analysis from Theorem 2 it takes at most O(logn) iterations to bound rt/lnλ by
c1(k0) and c2(k0), no matter how we set the initial rate. Consider ti to be the last
time that Yt = ki. This means rt makes a progress of ki − ki+1 > 0. Referring to
Lemma 3 we know that rt ≤ 2(1 + γ)c2(ki) lnλ with probability at least 1 − λ−γ . For
rt ≤ 2(1 + γ)c2(ki) lnλ, according to the additive drift theorem, it takes an expected
number of at most O(log(2(1 + γ)c2(ki)/c2(ki+1)) iterations to reach rt+1 ≤ c2(Yt) lnλ.
When we sum up the different expectation on γ = 1, 2, . . . , the increase of log(1+γ) can
be neglect comparing to the probability decrease on (1−λ−γ)′. Thus we can bound this
runtime by O(log(4c2(ki)/c2(ki+1)). The total number of iterations of the readjustment
process for rt to satisfy the upper bound is

N−1∑
i=0

O

(
log

( 4c2(ki)
c2(ki+1)

))
= O

(
log

(
4N c2(k0)

c2(kN )

))
= O(N + logn).
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We then consider the iterations of the readjustment process for rt to satisfy the lower
bound. Since c1(ki) decreases along with ki, once c1(k0) is hit, the lower bound condition
is obtained for all the following ki.

Now we compute the expected number of generations for k0 to decrease to kN . We
choose b large enough such that 2e−2bε/3 ≤ 1/2 − δ/2 holds for some positive constant
δ > 0 and note that b is constant. Applying Lemma 2 we obtain Pr(rt ≥ c2(k) lnλ+2b) ≤
2e−2bε/3 and Pr(rt ≤ c1(k) lnλ − 2b) ≤ 2e−2bε/3. Once rt is between c1(k) lnλ and
c2(k) lnλ, before k decreases to another bound level, we have that c1(k) lnλ − 2b ≤
rt ≤ c2(k) lnλ + 2b happens with probability at least δ. We see that there are at
most log200

2 steps between range c1(k) lnλ ≤ r ≤ c2(k) lnλ and an even smaller range
c1(k) lnλ ≤ r ≤ c2(k) ln(λ)/200 which is described in Lemma 5. If rt reaches the wider
region, it takes at most a constant number of iterations α in expectation to reach the
narrow region because our mutation scheme employs a 50% chance to perform a random
step of the mutation rate. Based on Lemma 5 the narrow region for the rate ensures
0.05 ln(λ)/ln(en/k) drift on the fitness at distance k. This contributes to an average
drift of at least 0.05 ln(λ)/ln(en/k) ·δ/(1+α) = Ω(log(λ)/log(en/k) for all random rates
at distance k. Applying Theorem 2, we can estimate the runtime as

O

(
1

log(λ)/log(e log λ) +
∫ n/2

n/log λ

dk
log(λ)/log(en/k)

)
= O

(
n

log λ

)
.

Details about how to compute the above integral can be found in the proof of Theorem
4 of [1]. We notice that N is the number of different k values and N must be bounded
by the above runtime. Combining the expected number of O(N + logn) iterations to
adjust rt and the expected number of O(

√
n) iterations to hit k < n/2, the total runtime

is O(n/log λ) in expectation.

5 Middle Region

In this section we estimate the expected number of generations until the number of one-
bits has decreased from k ≤ n/lnλ to k ≤ n/λ. We first claim that the right region for
r is 1 ≤ r ≤ ln(λ)/2. Hence, the (1+λ) EA is not very sensitive to the choice of r here.
Intuitively, this is due to the fact that a total fitness improvement of only O(n/log λ)
suffices to cross the middle region, whereas an improvement of Ω(n) is needed for the
far region.

We estimate the drift of the fitness in Lemma 6 and apply that result afterwards to
estimate the number of generations to cross the region.

Lemma 6. Let n/λ ≤ k ≤ n/lnλ, λ ≥ 26 and 1 ≤ r ≤ ln(λ)/2. Then

E(∆) ≥ min
{

1
8 ,
√
λk

32n

}
.

Proof. The probability that no zero-bit flipped in a single mutation is (1 − r/n)n−k ≥
e−r ≥ 1/

√
λ. We regard the number Z of offspring that have no flipped zeros. The
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expectation E(Z) is at least 1/
√
λ·λ/2 =

√
λ/2. Applying Chernoff bounds (Theorem 4),

we observe that Z exceeds λ0 :=
√
λ/4 with probability at least 1− exp(−

√
λ/16) > 1/4

since λ ≥ 26. Assuming this to happen, we look at the first λ0 offspring without flipped
zeros. For i ∈ {1, . . . , λ0} let Xi be the number of flipped ones in the i-th offspring.
Then Xi are i.i.d. with Xi ∼ Bin(k, r/n). Let X∗ = max{Xi}. By applying a result
on order statistics for binomially distributed random variables by Gießen and Witt [22,
Lemma 4] we obtain the following:

If λ0kr/n ≥ α then E(X∗) ≥ α/(1 + α).

Therefore, λ0kr/n ≥ 1 implies E(X∗) ≥ 1/2, otherwise 1 + α < 2 implies E(X∗) ≥
λ0kr/(2n). Thus,

E(X∗) ≥ min{1/2,
√
λk/(8n)}.

Hence, using the law of total probability, we obtain the lower bound on the drift for the
middle region.

We now use our result on the drift to estimate the time spent in this region. We
notice that c2(k) = 4 + o(1) when k = o(n). This means we will have frequently often
rt ∈ [1, ln(λ)/2] which provides the drift we need.

Theorem 7. Let λ ≥ 26. Assume k ≤ n/lnλ for the current OneMax-value of the
self-adjusting (1+λ) EA. Then the expected number of generations until k ≤ n/λ is
O(n/log λ).

Proof. For k ≤ n/ lnλ the upper bound from Lemma 3 is c2(k) = 4/(1 − 2/ lnλ) < 11.
According to the lemma we have for Xt := dlog2 rte that E(Xt − Xt+1 | Xt;Xt >
log2(c2(k) lnλ)) ≥ ε = Ω(1). The additive drift theorem yields that in O(logn) time
we have rt ≤ c2(k) lnλ. We choose b large enough such that 2e−2bε/3 ≤ 1 − δ holds for
some positive constant δ > 0 and note that b is constant. Applying Lemma 2 we obtain
Pr(rt ≥ c2(k) lnλ + 2b) ≤ 2e−2bε/3 and rt ≤ c2(k) lnλ + 2b happens with probability at
least δ. Once rt < c2(k) lnλ + 2b < 11 lnλ + 2b it takes at most a constant number of
iterations α in expectation to draw rt to ln(λ)/2 or less. According to Lemma 6 this
ensures a drift of (1/4) min{1/2,

√
λk/(8n)}, which implies an average drift of at least

cmin{1,
√
λk/n} over all random rates at distance k, where c > 0 is a constant. The

minimum is taken on the first argument if k > n/
√
λ, and on the second if k < n/

√
λ.

We are interested in the expected time to reduce the OneMax-value to a most
n/λ. To ease the application of drift analysis, we artificially modify the process and
make it create the optimum when the state (OneMax-value) is strictly less than n/λ.
Clearly, the first hitting time of state at most n/λ does not change by this modification.
Applying the variable drift theorem (Theorem 2) with xmin = n/λ, X0 = k ≤ n/lnλ
and h(x) = cmin{1,

√
λk/n}, the expected number of generations to reach state at most

n/λ is bounded from above by

n/λ

c
√
λ(n/λ)/n

+
∫ n/

√
λ

n/λ

n

c
√
λx

dx+
∫ n/lnλ

n/
√
λ

1
c

dx = O

(
n√
λ

)
+O

(
n log λ√

λ

)
+O

(
n

log λ

)
,
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which is O(n/log λ). The overall expected number of generations spent is O(logn +
n/log λ) = O(n/log λ) since λ = nO(1) by assumption.

6 Near region

In the near region, we have k ≤ n/λ. Hence, the fitness is so low that we can expect
only a constant number of offspring to flip at least one of the remaining one-bits. This
assumes constant rate. However, higher rates are detrimental since they are more likely
to destroy the zero-bits of the few individuals flipping one-bits. Hence, we expect the
rate to drift towards constant values, as shown in the following lemma.

Lemma 7. Let k ≤ n/λ, λ ≥ 45 and 4 ≤ rt ≤ ln(λ)/4. Then the probability that
rt+1 = rt/2 is at least 0.5099.

Proof. To prove the claim we exploit the fact that only few one-bits are flipped in
both subpopulations. Using r := rt, we shall argue as follows. With sufficiently high
(constant) probability, (i) the 2r-subpopulation contains no individual strictly better
than the parent, that is, with fitness less than k, and (ii) all 2r-offspring with fitness
r are identical to the parent. Conditional on this, either the r/2-population contains
individuals with fitness less than k and the winning individual surely stems from this
subpopulation, or the r/2-population contains no better offspring. In the latter case, we
argue that there are many more individuals with fitness exactly k in the r/2-population
than in the 2r-population, which gives a sufficiently high probability for taking the
winning individual from this side (as it is chose uniformly at random from all offspring
with fitness k).

Let Nr/2 and N2r be the number of offspring that did not flip any zero-bits using rate
r/2 and 2r, respectively. Then E(Nr/2) = (λ/2)(1 − r/(2n))n−k ≥ (1 − o(1))λe−r/2/2,
since k ≥ 1 and(

1− r

2n

)n−1
≥ e−

r
2

(
1− r

2n

) r
2−1
≥ e−

r
2

(
1− c lnn

8n

) c lnn
4 −1

= (1− o(1))e−
r
2 ,

where we used that r ≤ lnλ/4 and λ = nO(1), i. e. lnλ ≤ c lnn for some constant c.
Using k ≤ n/λ we get E(N2r) = (λ/2)(1− 2r/n)n−k ≤ (λ/2)e−2r(1−1/λ). In fact, we can
discriminate N1 and N2 by using Theorem 4 in the following way: we have

Pr
(
Nr/2 ≤

λ

4 e
− r2
)
≤ exp

(
−(1− o(1))3 λ

16e
− r2
)

≤ exp
(
−(1− o(1)) 1

16λ
7/8
)

< 0.175,

for sufficiently large n, since r ≤ (lnλ)/4 and λ ≥ 45. Similarly, we obtain

Pr
(
N2r ≥ λe−2r(1− 1

λ
)
)
≤ exp

(
−1

6λ
1− 1

2 (1− 1
λ)
)
< 0.312.
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Note that e−2r(1−1/λ) < e−r/2/4 holds for all r ≥ 4 and λ ≥ 45. Since the offspring
are generated independently, the events Nr/2 > λe−r/2/4 and N2r < λe−2r(1− 1

λ
) happen

together with probability at least (1−0.175)·(1−0.312) ≥ 0.567 =: 1−perr1 . Conditioning
on this and by using a union bound the probability perr2 that at least one of the N2r
offspring that do not flip any zero-bits flips at least one one-bit can be upper bounded
by

perr2 := N2r ·
2kr
n
≤ 2re−2r(1− 1

λ) ≤ 0.004

using k/n ≤ 1/λ in the first and r ≥ 4 and λ ≥ 45 in the last inequality. By using a
union bound, we find the probability perr3 that at least one 2r-offspring flips exactly one
one-bit and exactly one zero-bit to be at most

perr3 := λ

2
2rk
n

(
1− 2r

n

)k−1 2r(n− k)
n

(
1− 2r

n

)n−k−1

≤ 2r2
(

1− 2r
n

)n−2
≤ (1 + o(1))2e2(ln(r)−r) < (2 + o(1))e−

6
5 r < 0.017,

for sufficiently large n, using k/n ≤ 1/λ for the first inequality. The third inequality is
due to ln x − x ≤ −(1 − e−1)x < −(3/5)x for all x > 0 and the last inequality stems
from r ≥ 4. The second inequality follows from(

1− 2r
n

)n−2
≤ e−

2r
n

(n−2) = e−2r(1− 2
n) = (1 + o(1))e−2r,

using again r ≤ lnλ ≤ c lnn for some constant c. Let Mr be the number of such
offspring. Any other fitness-decreasing flip-combinations of zeroes and ones in the 2r-
subpopulation require an offspring to flip at least two one-bits. The probability that
such an offspring is created is at most

perr4 := λ

2

(
k

2

)(2r
n

)2
≤ ln2 λ

16λ < 0.021,

using k ≤ n/λ and r ≤ lnλ/4 and the fact that (ln2 x)/x is decreasing for x ≥ e2 and
λ ≥ 45 > e2.

The events Nr/2 > λe−r/2/4, N2r < λe−2r(1− 1
λ

), Mr = 0, and the event that no
fitness-decreasing offspring is created in the 2r-subpopulation are sufficient to ensure
that the best individual is either surely from the r/2-population or chosen uniformly at
random from the Nr/2 +N2r offspring. Conditioning on these events, we have that the
probability that the best offspring is chosen from the r/2-population is at least

Nr/2
Nr/2 +N2r

≥ 1
1 + 4e−r(2(1− 1

λ)− 1
2 ) > 0.988.

Hence, using a union bound for the error probabilities, the unconditional probability is
at least

(1− perr1 − perr2 − perr3 − perr4) · 0.988 + 1
2

2 > 0.5099.

23



We note that the restriction rt ≥ 4 in the lemma above is not strictly necessary.
Also for smaller rt, the probability that the winning individual is chosen from the rt/2-
population is by an additive constant larger than 1/2. Showing this, however, would need
additional proof arguments as for smaller rt, the event that both subpopulations contain
individuals with fitness k− 1 becomes more likely. We avoid this additional technicality
by only arguing for rt ≥ 4, which is enough since any constant rt is sufficient for the
fitness drift we need (since we do not aim at making the leading constant precise).

In the following proof of the analysis of the near region, we use the above lemma
(with quite some additional arguments) to argue that the r-value quickly reaches 4 or
less and from then on regularly returns to this region. This allows to argue that in the
near region we have a speed-up of a factor of Θ(λ) compared to the (1+1) EA, since
every offspring only has a probability of O(1/λ) of making progress (see also [11, 22]).

Theorem 8. Assume k ≤ n/λ for the current OneMax-value of the self-adjusting
(1+λ) EA. Then the expected number of generations until the optimum is reached is
O(n log(n)/λ+ logn).

Proof. The aim is to estimate the OneMax-drift at the points in time (generations) t
where rt = O(1). To bound the expected number of generations until the muta-
tion rate has entered this region, we basically consider the stochastic process Zt :=
max{0, dlog2(rt/c)e}, where c := 4, which is the lower bound on rt from Lemma 7.
However, as we do not have proved a drift of Zt towards smaller values in the region
L := (lnλ)/4 ≤ rt ≤ 16 lnλ =: U (where 16 is an upper bound on c2(k) from Lemma 5),
we use the potential function

Xt(Zt) :=


Zt if c ≤ rt ≤ L
log2(L/c) +

∑dlog2(rt/L)e
i=1 4−i if L < rt < U

log2(L/c) +
∑log2(U/L)
i=1 4−i + 4− log2(U/L)dlog2(rt/U)e otherwise.

assuming that L and U have been rounded down and up to the closest power of 2,
respectively.

The potential function has a slope of 1 for c ≤ rt ≤ L. Lemma 7 gives us the drift
E(Xt − Xt+1 | Xt; c ≤ rt ≤ L) ≥ 0.5099 − 0.4901 = 0.0198. The function satisfies
Xt(Zt) − Xt(Zt − 1) ≥ 4(Xt(Zt) − Xt(Zt + 1)) if L < rt < U , which corresponds
to the region where the probability of decreasing Zt by 1 has only be bounded from
below by 1/4 due to the random steps. Still, E(Xt − Xt+1 | Xt;L < rt < U) ≥
(1/4)4log2(U/L)+1 − (3/4)4log2(U/L) = Ω(1) in this region due to the concavity of the
potential function. Finally, E(Xt − Xt+1 | Xt; rt ≥ U) = 4− log2(U/L)Ω(1) = Ω(1) by
Lemma 5. Hence, altogether E(Xt−Xt+1 | Xt; rt ≥ c) ≥ κ for some constant κ > 0. As
X0 = O(logn), additive drift analysis yields an expected number of O(logn) generations
until for the first time Xt = 0 holds, corresponding to rt ≤ c. We denote this hitting
time by T .

We now consider an arbitrary point of time t ≥ T . The aim is to show a drift on the
OneMax-value, depending on the current OneMax-value Yt, which satisfies Yt ≤ n/λ
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with probability 1. To this end, we will use Lemma 2. We choose b large enough such
that 2e−2b·κ/4 ≤ 1− δ holds for some positive constant δ > 0 and note that b is constant.
We consider two cases for rt. If rt ≤ c + 2b, which happens with probability at least δ,
we have rt = O(1) and obtain a probability of at least

1−
(

1−
(
Yt
1

)(
rt
n

)(
1− rt

n

)n−1
)λ
≥ 1−

(
1−Θ

(
Yt
n

))λ
= Ω(λYt/n)

to improve the OneMax-value by 1, using that Yt = O(n/λ). If rt > c+ 2b, we bound
the improvement from below by 0. Using the law of total probability, we obtain

E(Yt − Yt+1 | Yt;Yt ≤ n/λ) = δΩ(λYt/n) = Ω(λYt/n).

Now a straightforward multiplicative drift analysis (Theorem 3 using δ = Θ(λ/n)) gives
an expected number of O((n/λ) log Y0) = O(n log(n)/λ) generations until the optimum
is found. Together with the expected number O(logn) until the r-value becomes at
most c, this proves the theorem.

7 Putting Everything Together

In this section, we put together the analyses of the different regimes to prove our main
result.

Proof of Theorem 1. The lower bound actually holds for all unbiased parallel black-box
algorithms, as shown in [1].

We add up the bounds on the expected number of generations spent in the three
regimes, more precisely we add up the bounds from Theorem 6, Theorem 7 and Theo-
rem 8, which gives us O(n/log λ+n log(n)/λ+logn) generations. Due to our assumption
λ = nO(1) the bound is dominated by O(n/log λ+ n log(n)/λ) as suggested.

Proof of Lemma 1. We basically revisit the regions of different OneMax-values ana-
lyzed in this paper and bound the time spent in these regions under the assumption
r = ln(λ)/2. In the far region, Lemmas 4 and 5, applied with this value of r, imply a
fitness drift of Ω(log(λ)/log(en/k)) per generation, so the expected number of genera-
tions spent in the far region is O(n/log λ) as computed by variable drift analysis in the
proof of Theorem 6.

The middle region is shortened at the lower end. For k ≥ n/
√
λ, Lemma 6 gives a

fitness drift of Ω(1), implying by additive drift analysis O(n/log λ) generations to reduce
the fitness to at most n/

√
λ.

In the near region, which now starts at n/
√
λ, we have to argue slightly differently.

Note that every offspring has a probability of at least (1−r)n ≥ e− ln(λ)/2+O(1) = Ω(λ−1/2)
of not flipping a zero-bit. Hence, we expect Ω(

√
λ) such offspring. We pessimistically

assume that the other individuals do not yield a fitness improvement; conceptually, this
reduces the population size to Ω(

√
λ) offspring, all of which are guaranteed not to flip a
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Figure 1: Static and Self-adjusting (1+λ) EA average runtime comparison (n = 5000)
on OneMax

zero-bit. Adapting the arguments from the proof of Theorem 8, the probability that at
least of one of these individuals flips at least a one-bit is at least

1−
(

1−
(
Yt
1

)(
rt
n

))Ω(
√
λ)

≥ 1−
(

1−Θ
(
Yt
n

))Ω(
√
λ)

= Ω(
√
λYt/n),

which is a lower bound on the fitness drift. Using the multiplicative drift analysis, the
expected number of generations in the near region is O(n log(n)/

√
λ). Putting the times

for the regions together, we obtain the lemma.

8 Experiments

Since our analysis is asymptotic in nature we performed some elementary experiments in
order to see whether besides the asymptotic runtime improvement (showing an improve-
ment for an unspecified large problem size n) we also see an improvement for realistic
problem sizes. For this purpose we implemented the (1+λ) EA in C using the GNU
Scientific Library (GSL) for the generation of pseudo-random numbers.

The plot in Figure 1 displays the average runtime over 10000 runs of the self-adjusting
(1+λ) EA on OneMax for n = 5000 as given in Algorithm 1 over λ = 100, 200, . . . , 1000.
We set the initial mutation rate to 2, i. e., the minimum mutation rate the algorithm can
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attain. Moreover, the plot displays the average runtime of the classic (1+λ) EA using a
static mutation probability of 1/n.

The average runtimes of both algorithms profit from higher offspring population sizes
λ leading to lower average runtimes as λ increases. Interestingly, the classic (1+λ) EA
outperforms the self-adjusting (1+λ) EA for small values of λ up to λ = 400. For
higher offspring population sizes the self-adjusting (1+λ) EA outperforms the classic
one, indicating that the theoretical performance gain of ln lnλ can in fact be relevant
in practice. Furthermore, we implemented the self-adjusting (1+λ) EA without the
random steps, that is, when the rate is always adjusted according to how the best
offspring are distributed over the two subpopulations. The experiments show that this
variant of the self-adjusting (1+λ) EA performs generally slightly better on OneMax.
Since the OneMax fitness landscape is structurally very simple, this result is not totally
surprising. It seems very natural that the fitness of the best of λ/2 individuals, viewed
as a function in the rate, is a unimodal function. In this case, the advantage of random
steps to be able to leave local optima of this function is not needed. On the other hand,
of course, this observation suggests to try to prove our performance bound rigorously
also for the case without random rate adjustments. We currently do not see how to do
this. Lastly, we implemented the (1+λ) EA using the fitness-depending mutation rate
p = max{ lnλ

n ln(en/d) ,
1
n} as presented in [1]. The experiments suggest that this scheme

outperforms all other variants considered.
Additionally we implemented another variant of the self-adjusting (1+λ) EA using

three equally-sized subpopulations i. e. the additional one is using (that is, exploiting)
the current mutation rate. We compared this variant with the self-adjusting (1+λ) EA,
both with and without using random steps. The results are shown in Figure 2. The
experiments suggest that the variant using three subpopulations outperforms the self-
adjusting (1+λ) EA slightly for small population sizes. For very high population sizes,
using just two subpopulations seems to be a better choice.

To gain some understanding on how the parameters influence the runtime, we imple-
mented the self-adjusting (1+λ) EA using different mutation rate update factors, that
is, we consider the self-adjusting (1+λ) EA as given in Algorithm 1 where the mutation
rate rt is increased or decreased by some factor F (instead of the choice F = 2 made
in Algorithm 1). Note that we do not change the rule that we use the rates r/2 and
2r to create the subpopulations. Furthermore, after initialization, the algorithm starts
with rate F and the rate is capped below by F and above by 1/(2F ) during the run,
accordingly.

The results are shown in Figure 3. The plot displays the average runtime over 10000
runs of the self-adjusting (1+λ) EA on OneMax for n = 5000 over λ = 100, 200, . . . , 1000
using the update factors F = 2.0, 1.5, 1.01. The plot suggests that lower values of F yield
a better performance. This result is not immediately obvious. Clearly, a large factor F
implies that the rate changes a lot from generation to generation (namely by a factor
of F ). These changes prevent the algorithm from using a very good rate for several
iterations in a row. On the other hand, a small value for F implies that it takes longer
to adjust the rate to value that is far from the current one.
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Figure 2: Average runtime of the self-adjusting (1+λ) EA with two and three subpopu-
lations each with and without random steps on OneMax (n = 5000)
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Finally, to illustrate the nontrivial development of the rate during a run of the al-
gorithm we plotted the rate of three single runs of the self-adjusting (1+λ) EA using
different factors F over the fitness in Figure 4. Since the algorithm initialized with the
rate F , the rate increases after initialization decreases again with decreasing fitness-
distance to the optimum. The plot suggests that for higher values of F the rate is more
unsteady due to the greater impact of the rate adjustments while smaller rate updates
yield a more stable development of the rate. Interestingly, for all three values of F , the
rates seem to correspond to the same rate after the initial increasing phase from F . Note
that this illustration does not indicate the actual runtime. In fact, the specific runtimes
are 19766 for F = 1.01, 19085 for F = 1.05 and 19857 for F = 1.1. A similar, more
pronounced behaviour can be seen for F = 2.0; we chose these particular values of F for
illustrative purposes since for F = 2.0 the variance in the rate can be visually confusing
for the reasons given above.

While we would draw from this experiment the conclusion that a smaller choice of F
is preferable in a practical application of our algorithm, the influence of the parameter
on the runtime is not very large. So it might not be worth optimizing it and rather view
Algorithm 1 as a parameter-less algorithm.

9 Conclusions

We proposed and analyzed a new simple self-adjusting mutation scheme for the (1+λ) EA.
It consists of creating half the offspring with a slightly larger and the rest with a slightly
smaller mutation rate. Based on the success of the subpopulations, the mutation rate
is adjusted. This simple scheme overcomes difficulties of previous self-adjusting choices,
e.g., the careful choice of the exploration-exploitation balance and the forgetting rate in
the learning scheme of [18].

We proved rigorously that this self-adjusting (1+λ) EA optimizes the OneMax
test function in an expected number of O(nλ/ log λ + n logn) fitness evaluations. This
matches the runtime shown in [1] for a careful fitness-dependent choice of the mutation
rate, which was also shown to be asymptotically optimal among all λ-parallel black-
box optimization algorithms. Hence our runtime result indicates that the self-adjusting
mechanism developed in this work is able to find very good mutation rates. To the best
of our knowledge, this is the first time that a self-adjusting choice of the mutation rate
speeds up a mutation-based algorithm on the OneMax test function by more than a
constant factor.

The main technical challenge in this work is to analyze the quality of the best off-
spring. In contrast to most previous runtime analyses, where only the asymptotic order
of the fitness gain was relevant, we needed a much higher degree of precision as we
needed to make statements about in which sub-population the best offspring is, or, in
case of multiple best offspring, how they are distributed over the two subpopulations.
Note that the quality of the best offspring is not as strongly concentrated around its
expectation as, e.g., the average quality.
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As a side-result of our analyses, we have observed that using a fixed rate of r =
ln(λ)/2 gives the bound O(n/log λ+n log(n)/λ1/2), which is also asymptotically optimal
unless λ is small. However, this setting is far off the usual constant choice of r. It is the
first time that a significantly larger mutation rate was shown to be useful in a simple
mutation-based algorithm for a simple fitness landscape. Previously, it was only observed
that larger mutation rates can be helpful to leave local optima [20].

From this work, a number of open problems arise. A technical challenge is to prove
that our algorithm also without the random rate adjustments performs well. This re-
quires an even more precise analysis of the qualities of the offspring in the two sub-
populations, for which we currently do not have the methods. From the view-point of
understanding the mutation rate for population-based algorithms, two interesting ques-
tion are (i) to what extent our observation that larger mutation rates are beneficial for
the (1+λ) EA on OneMax generalizes to other algorithms and problems, and (ii) for
which other problems our self-adjusting choice of the mutation rate gives an improvement
over the classic choice of 1/n or other static choices.
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