
Ann. Henri Poincaré 12 (2011), 829–847
c© 2011 Springer Basel AG

1424-0637/11/050829-19

published online March 29, 2011
DOI 10.1007/s00023-011-0101-8 Annales Henri Poincaré

The 1/N Expansion of Colored Tensor
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Abstract. In this paper, we perform the 1/N expansion of the colored
three-dimensional Boulatov tensor model. As in matrix models, we obtain
a systematic topological expansion, with increasingly complicated topol-
ogies suppressed by higher and higher powers of N . We compute the first
orders of the expansion and prove that only graphs corresponding to three
spheres S3 contribute to the leading order in the large N limit.

1. Introduction

Random matrix models are a very important tool in modern theoretical phys-
ics. They arise in the most diverse contexts, from the seminal work of ’t Hooft
[1] on confinement, to string theory [2,3], two-dimensional gravity [4], critical
phenomena [5–7], black hole physics [8], and the list goes on. The crucial fea-
ture of matrix models is their 1/N topological expansion [9]. It is only due
to this expansion that notions like “planar diagrams”, “double scaling limit”,
etc. are meaningful. Most importantly, the simplest topologies (planar graphs
dual to spheres S2) dominate this expansion. For all their interest, random
matrix models are only two-dimensional. To approach a more realistic physi-
cal setting, one generalizes them in higher dimensions to random tensor models
[10–12] and Group Field Theories (GFT) [13,14].

In three dimensions, the Feynman graphs of GFT are built from ver-
tices dual to tetrahedra and propagators encoding the gluing of tetrahedra
along boundary triangles. Parallel to ribbon graphs of matrix models (dual
to discretized surfaces), GFT graphs are dual to discretized three-dimensional
topological spaces (not only manifolds but also more singular spaces). For
the simplest GFT models [15], the Feynman amplitude of a graph equals the
partition function of the discretized BF theory [16,17].1 Naturally, the first

1 More involved GFT models [18–21] have been proposed in an attempt to implement the
Plebanski constraints and reproduce the gravity partition function.
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question one asks about tensor models and GFTs is if there exist some kind of
1/N expansion generalizing the one of matrix models. Since their introduction
[15] no conclusive result in this direction has been established. It is the most
important challenge in the field today [22].

In this paper, we perform the complete 1/N expansion of the “colored
GFT” model [23–25] (CGFT). The terms in this expansion are indexed by
“Core Graphs” encoding various topologies. Although somewhat abstract, the
“Core Graphs” are a very convenient way to classify three-dimensional topolog-
ical pseudo manifolds. The classification is not canonical, i.e. the same pseudo
manifold is represented by multiple Core Graphs. Finding a complete, canoni-
cal, classification would amount to solving a very subtle and still open question
in topology. At leading order in 1/N only graphs dual to the three sphere S3

contribute.
The 1/N expansion we present uses estimates [26–30] of Feynman ampli-

tudes in CGFT and results in combinatorial topology and manifold crystalli-
zation theory [31,32]. Almost none of the concepts and techniques we use can
be applied to non-colored GFT models.

This paper is organized as follows. In Sect. 2, we recall the colored three-
dimensional Boulatov tensor model. Sections 3 and 4 introduce the techniques
required to perform in Sect. 5 the 1/N expansion of the model.

2. The Colored Boulatov Model

Let G be some compact multiplicative Lie group and denote h its elements, e
its unit, and

∫
dh the integral with respect to the Haar measure. Let ψ̄i, ψi,

i = 0, 1, 2, 3 be four couples of complex scalar (or Grassmann) fields over three
copies of G, ψi : G×G×G → C. We denote δN (h) the delta function over G
with some cutoff such that δN (e) is finite, but diverges (polynomially) when
N goes to infinity (further discussion on this point is presented in Sect. 6).
For G = SU(2) (denoting χj(h) the character of h in the representation j)
respectively G = U(1) we can choose

δN (h)|G=SU(2) =
N∑

j=0

(2j + 1)χj(h) δN (ϕ)|G=U(1) =
N∑

p=−N
eıpϕ. (1)

The partition function of the colored Boulatov model [23] over G is the
path integral

Z(λ, λ̄) = e−F (λ,λ̄) =
∫ 4∏

i=0

dμP (ψ̄i, ψi) e−Sint(ψ̄i,ψi), (2)

with normalized Gaussian measure of covariance P

Ph0h1h2;h′
0h

′
1h

′
2

=
∫

dμP (ψ̄i, ψi) ψ̄ih0h1h2
ψih′

0h
′
1h

′
2

=
∫

dh δN
(
h0h(h′

0)
−1
)
δN
(
h1h(h′

1)
−1
)
δN
(
h2h(h′

2)
−1
)
, (3)
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Figure 1. Colored GFT vertex and line

Figure 2. Examples of Colored GFT graphs

and interaction (denoting ψ(h, p, q) = ψhpq)

Sint =
λ

√
δN (e)

∫

G6

ψ0
h03h02h01

ψ1
h10h13h12

ψ2
h21h20h23

ψ3
h32h31h30

+
λ̄

√
δN (e)

∫

G6

ψ̄0
h03h02h01 ψ̄1

h10h13h12 ψ̄2
h21h20h23 ψ̄3

h32h31h30 , (4)

where hij = hji. We call “black” the vertex involving the ψ’s and “white” the
one involving the ψ̄’s.

The half lines of the CGFT vertex (represented in Fig. 1) have a color
i. The group elements hij in Eq. (4) are associated with the “strands” (repre-
sented as solid lines) common to the half lines i and j. The vertex is dual to
a tetrahedron, and its half lines represent the triangles bounding the tetrahe-
dron. The strand ij, common to the half lines i and j, represents the edge of the
tetrahedron common to the triangles i and j. The CGFT lines (Fig. 1) always
connect two vertices of opposite orientation (i.e. a black and a white vertex).
They have three parallel strands associated with the three arguments of the
fields. A line represents the gluing of two tetrahedra (of opposite orientations)
along triangles of the same color.

The strand structure of the vertex and propagator is fixed. One can rep-
resent a CGFT graph either as a stranded graph (using the vertex and prop-
agator in Fig. 1) or as a “colored graph” with (colored) solid lines and two
classes of oriented vertices. Some examples of CGFT graphs are given in Fig. 2.
We denote them from left to right G1, G2, G3;a, G3;b, G3;c and G3;d.

The lines of a vacuum CGFT graph G are oriented (say from the black
to the white vertex). The closed strands of G form “faces” and are labeled by
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couples of colors. A vacuum CGFT graph must have the same number of black
and white vertices. In this paper, we will only deal with connected graphs. We
denote NG , LG , FG the sets of vertices, lines and faces of G. Moreover, we
denote LiG the set of lines of color i and F ij

G the set of faces of colors ij of G.
The Feynman amplitude of G is

AG =
(λλ̄)

NG
2

[δN (e)]
|NG|

2

∫ ∏

�∈LG

dh�
∏

f∈FG

δNf

⎛

⎝
→∏

�∈f
hσ

�|f

�

⎞

⎠ , (5)

where the notation � ∈ f (which we sometimes omit) signifies that the line
� belongs to the face f and σ�|f = 1 (resp. −1) if the orientations of � and
f coincide (resp. are opposite). The δN functions are invariant under cyclic
permutations and conjugation of their arguments; hence, the amplitude of a
graph does not depend on the orientation of the faces or on their starting
point.

The first ingredient in our 1/N expansion is the scaling of the coupling
in Eq. (4). In [28], it is proved that AG obeys

AG ≤ (λλ̄)
|NG|

2

[δN (e)]
|NG|

2

[δN (e)]
|NG|

2 +2 = (λλ̄)
|NG|

2 [δN (e)]2, (6)

and that the bound is optimal (i.e. there exist graphs at any order saturating
it). In order to obtain a sensible large N limit, the scaling of the couplings λ
and λ̄ must be chosen such that the maximally divergent graphs have uniform
degree of divergence at all orders.

3. Ribbon Graphs

To any CGFT graph one associates two classes of ribbon graphs: its bub-
bles [23] and its jackets [29]. We denote in the sequel î = {0, 1, 2, 3}\{i},
îj = {0, 1, 2, 3}\{i, j} and îjk = {0, 1, 2, 3}\{i, j, k}.

3.1. Bubbles

The bubbles [23] of a CGFT graph are the maximally connected subgraphs
with three colors. They are dual to the vertices of the gluing of tetrahedra.2

The bubbles admit two representations, either as colored graphs or as ribbon
graphs [23,24]. The ribbon graph of a bubble with colors i, j, k is obtained by
deleting all the strands containing the color îjk. The bubbles of the graph G1

(Fig. 2) are represented in Fig. 3. We denote BG the set of all the bubbles of
G and BijkG the set of bubbles of colors ijk.

For a bubble b ∈ BG , we denote nb, lb and fb the sets of its vertices,
lines and faces. The graph G has four valent vertices (2|NG | = |LG |), while its

2 Recently an alternative definition for bubbles has been proposed in [33]. Although inter-
esting in itself, this definition is somewhat idiosyncratic, and it seems preferable to use the
more standard notion of bubbles dual to vertices of the gluing of tetrahedra.



Vol. 12 (2011) The 1/N Expansion of Colored Tensor Models 833

Figure 3. The bubbles of G1

Figure 4. The jackets of G1

bubbles have three valent vertices (3|nb| = 2|lb|). We have

4|NG | =
∑

b∈BG

|nb|, 3|LG | =
∑

b∈BG

|lb|, 2|FG | =
∑

b∈BG

|fb|,

|NG | − |LG | + |FG | − |BG | = −
∑

b∈BG

gb,
(7)

with gb the genus of the bubble b. A graph G is dual to an orientable pseudo
manifold. If all its bubbles are planar, then it is dual to an orientable mani-
fold [25].

3.2. Jackets

A second class of ribbon graphs associated with G are its jackets [29]. A jacket
of G is the ribbon graph obtained from G by deleting all the faces with col-
ors ij and îj. A CGFT graph has three jackets. The three jackets of G1 are
represented in Fig. 4, where the labels are associated with the faces.

The jackets of G have four valent ribbon vertices. The reader might be
worried that while the vertices of the jacket with faces 02, 13 deleted (the one
originally identified in [29]) are simple ribbon vertices, the ones of the other
two jackets (with the faces 03, 12 and 01, 23 deleted) appear twisted in Fig. 4.
This is just an illusion: permuting the half lines 0 and 1 and, respectively, 1
and 2 on every jacket vertex eliminates all the twists. The sets of vertices, lines
and faces of a jacket are NG , LG and FG\F ij

G \F îj
G .

3.3. Face Routing

In non-identically distributed matrix models [34–36], the amplitude of a
Feynman graph is computed via a “routing” algorithm, a digested version
of which we present below.
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Figure 5. Deletion of a ribbon line

To every ribbon graph H (with sets of vertices, lines and faces denoted
N , L and F), one associates a dual graph H̃. The construction is standard
(see for instance [30,36] and references therein). The vertices of H, correspond
to the faces of H̃, its lines to the lines of H̃ and its faces to the vertices of H̃.
The lines of H admit (many) partitions in three disjoint sets: a tree T in H,
(|T | = |N | − 1), a tree T̃ in the its dual H̃, (|T̃ | = |F| − 1), and a set L\T \T̃ ,
(|L\T \T̃ | = 2gH) of “genus” lines [30].

We orient the faces of H such that the two strands of every line have
opposite orientations. We set a face of H as “root” (denoted r). Consider a
face f sharing some line l(f, T̃ ) ∈ T̃ with the root (i.e. the two strands of
l(f, T̃ ) belong one to r and the other to f). The group element hl(f,T̃ ) appears
exactly once in the argument of δNf and δNr

δNr

( →∏

�

hσ
�|r

�

)

δNf

( →∏

�

hσ
�|f

�

)

= δNr

⎛

⎝

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|r

�

⎞

⎠hσ
l(f,T̃ )|r

l(f,T̃ )

⎞

⎠ δNf

⎛

⎝hσ
l(f,T̃ )|f

l(f,T̃ )

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠

⎞

⎠ , (8)

where we set l(f, T̃ ) as the last line of r and as the first line of f . By our choice
of orientations σl(f,T̃ )|rσl(f,T̃ )|f = −1 and Eq. (8) becomes

δNr

⎛

⎝

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|r

�

⎞

⎠

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠

⎞

⎠ δNf

⎛

⎝hσ
l(f,T̃ )|f

l(f,T̃ )

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠

⎞

⎠ .

(9)

This trivial multiplication has two consequences. First, the face f is canoni-
cally associated with the line l(f, T̃ ). Second, the face r becomes a root face
in the graph H − l(f, T̃ ), obtained from H by deleting l(f, T̃ ) and connecting
r and f into a new face r′ = r ∪ f (see Fig. 5). Iterating for all faces except
the root we get

∏

f∈H
δNf

( →∏

�

hσ
�|f

�

)

= δNr

⎛

⎝
→∏

�/∈T̃

hσ
�|∪f∈Hf

�

⎞

⎠
∏

f∈H,f �=r
δNf

⎛

⎝hσ
l(f,T̃ )|f

l(f,T̃ )

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠

⎞

⎠ . (10)

If H is planar, ∪f∈Hf is the exterior face of the tree T in H. The group
elements corresponding to lines of T touching leafs (vertices of coordination
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one in T ) appear consecutively hlh
−1
l and drop from the root face. Iterating

for all line in T we get

δNr

⎛

⎝
→∏

�/∈T̃

hσ
�|∪f∈Hf

�

⎞

⎠

∣
∣
∣
∣
∣
∣
H planar

= δN (e), (11)

for any base group G. Remark that only the argument of the root δNr changes
under routing.

3.4. An Example: Two-Dimensional GFT

The two-dimensional GFT (with G = SU(2)) is a non-identically distributed
matrix model. To see this, we develop the fields in Fourier modes

ψi(g1, g2) =
∑

ψi(j1,m1,n1);(j2,m2,n2)

√
dj1dj2D

j1
m1n1

(g1)D
j2
m2n2(g2), (12)

where dj = 2j + 1. We denote J1 = (j1,m1, n1). In this normalization, the
interaction is just a usual three-matrix interaction (the couplings do not need
to be rescaled in this case)

Sint = λψ0
J1;J2

ψ1
J2;J3

ψ2
J3,J1

+ λ̄ψ̄0
J1;J2

ψ̄1
J2;J3

ψ̄2
J3,J1

. (13)

On the contrary, the two-point correlation function is (defining χNj to be 1 if
j ≤ N and 0 otherwise)

〈
ψ̄iJ1;J2

ψiJ ′
1;J

′
2

〉
=
√
dj1dj2dj′

1
dj′

2

∫
Dj1
m1n1

(g1)

×Dj2
m2n2(g2)δ

N (g1h(g′
1)

−1)δN (g2h(g′
2)

−1)Dj′
1
m′

1n
′
1
(g′

1)D
j′
2
m′

2n
′
2
(g′

2), (14)

i.e., after performing the integrals over g′
1 and g′

2,
√
dj1dj2dj′

1
dj′

2

∫
Dj1
m1n1

(g1)D
j′
1
m′

1n
′
1
(g1h) D

j2
m2n2(g2)D

j′
2
m′

2n
′
2
(g2h) χNj′

1
χNj′

2

=
√
dj1dj2dj′

1
dj′

2

∑

k′
1,k

′
2

∫
Dj1
m1n1

(g1)D
j′
1
m′

1k
′
1
(g1) D

j′
1
k′
1n

′
1
(h)

×Dj2
m2n2(g2)D

j′
2
m′

2k
′
2
(g2) D

j′
2
k′
2n

′
2
(h) χNj′

1
χNj′

2

=
1

2j1 + 1
δj

′
1j

′
2 δj

′
1j1 δj

′
2j2

∑

k′
1,k

′
2

δm1m′
1
δn1k′

1
δm2m′

2
δn2k′

2
δk′

1k
′
2
δn′

1n
′
2

=
δj1j2

2j1 + 1
δj

′
1j1 δj

′
2j2 δm1m′

1
δm2m′

2
δn1n2δn′

1n
′
2
χNj′

1
χNj′

2
, (15)

which is certainly not identically distributed: not only the propagator has a
weight proportional with 1

2j1+1 , but also it presents a twist in the indices n.3

The free energy of the two-dimensional GFT admits a familiar “genus
expansion”. To see this, we expand it in Feynman graphs of amplitude given
by Eq. 5 (where G is, in this case, just a simple ribbon graph). By face routing,
one can integrate all group elements hl with l ∈ T̃ , and by a tree change of

3 We thank an anonymous referee for pointing out the apparition of this twist.
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Figure 6. “Third Filk move” on a super rosette

variables [26], one eliminates all group elements hl with l ∈ T . One is left with
an integral over the genus lines corresponding to a “super rosette graph” Rg
with only one vertex and one face obtained from G by deleting the lines in
T̃ and contracting the lines in T [30]. Each genus line appears twice in the
argument of the last δN function. To evaluate the amplitude of Rg, consider
its dual super rosette R̃g. The amplitude writes

ARg =
∫ ∏

�

dh� δN
( →∏

h
σ�

R̃g

�

)

, (16)

where the product is taken along the (unique) vertex of R̃g and σ�
R̃g

is 1 if the
line � enters the vertex and −1 if it exits. A super rosette can be simplified
by the “third Filk move” [30]. Consider two lines �1 and �2 forming a “nice
crossing” on R̃g, i.e. such that the end point of �1 is the successor of the start
point of �2 (see Fig. 6). Denote the rest of the half lines encompassed by �1
(resp. �2) by �a (resp. �b) and the remaining half lines �k. If one deletes both
�1 and �2 and permutes �a and �b, the resulting graph (R̃g)/�1,�2 will have
only one vertex and one face (hence will be a super rosette) but two less lines
(hence genus g′ = g− 1). In this way, one can reduce all (pairs of) genus lines.

Denoting ha =
∏
h
σ�a

R̃g

�a
, hb =

∏
h
σ

�b
R̃g

�b
and hk =

∏
h
σ

�k
R̃g

�k
, the contribution of �1

and �2 to the amplitude of Rg writes

ARg =
∫

δN (h�1hah�2h
−1
�1
hbh

−1
�2
hk) =

∑

j

dj

∫
χj(h�1hah�2h

−1
�1
hbh

−1
�2
hk)

=
∑

j

dj
1
d2
j

∫
χj(hahkhb), (17)

and the argument of χj corresponds to (R̃g)/�1,�2 . Iterating for all lines of the
super rosette, we get4

ARg =
∑

dj
1
d2g
j

χj(e) =
∑

d2−2g
j ≈ N3−2g. (18)

The particular super rosette to which a graph is reduced depends on the rout-
ing trees T and T̃ , but all super rosettes associated with a graph have the
same genus g. One can define [Rg] as the equivalence class of all super rosettes

4 To correctly identify the scaling with N one must use sliced δN functions, δN (h) =
∑N

N/2 djχj(h).
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Figure 7. 1-Dipole contraction in G and its dual gluing

of genus g. The amplitude of G equals the one of the super rosette classes to
which it belongs. The genus expansion of the free energy writes

F (λ, λ̄) =
∑

C [Rg](λ, λ̄)A[Rg] =
∑

C [Rg](λ, λ̄) N3−2g, (19)

with C [Rg](λ, λ̄) a combinatorial factor counting the graphs which reduce to the
super rosette class [Rg], i.e. all graphs of genus g. Of course in two dimensions,
as the super rosette amplitudes can be computed explicitly one completely
forgets about them, indexes the expansion of the free energy by the genus g
and concludes that higher and higher genus graphs are suppressed by larger
and larger powers of the cut off.

4. Dipoles

The second ingredient we need to establish our results are the Dipole moves
[31,32] encoding homeomorphisms of pseudo manifolds (we will make a precise
statement later). We will identify the various bubbles, faces and lines below
by their colors (in superscript) and their vertices (in subscript).

4.1. 1-Dipoles

Consider a line of color 3 with end vertices v and w (denoted L3
vw) in a graph

G. Call a0 (a1 and a2) the end vertex of the line of color 0 (1 and 2) touching
v, and b0 (b1 and b2) the end vertex of the line of color 0 (1 and 2) touching
w (see Fig. 7). The vertices v and w belong each to some three bubbles of
colors 012, B012

va0a1a2
and B012

wb0b1b2
. The two bubbles might coincide or might

be different. If they are different and at least one of them is planar, then the
line L3

vw is called a 1-Dipole.
A 1-Dipole can be contracted, i.e. the line L3

vw together with the vertices
v and w can be deleted from the graph, and the remaining lines reconnected
respecting the coloring (see Fig. 7). In the dual gluing, a 1-Dipole of color 3
represents two tetrahedra sharing the triangle (of color 3) such that the ver-
tices opposite to the triangle (duals to B012

va0a1a2
and B012

wb0b1b2
) are different.

The contraction translates in squashing the two tetrahedra, merging the two
vertices, and coherently identifying the remaining triangles 0, 1 and 2 (see
Fig. 7).

In this picture, it is clear why one of B012
va0a1a2

or B012
wb0b1b2

is required to
be planar. If both points opposite to the triangle 3 were isolate singularities,
the squashing of tetrahedra would decrease the number of singular points and
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would not be a homeomorphism. It is however a homeomorphism as long as
one of the points is regular.5

The vertices v and w belong to the same faces 03, 13 and 23 (F 03
vwa0b0

,
F 13
vwa1b1

, F 23
vwa2b2

), but distinct faces 01, 02 and 12 (F 01
va0a1

, F 01
wb0b1

, F 02
va0a2

,
F 02
wb0b2

and F 12
va1a2

, F 12
wb2b2

). They also belong to the same bubbles 013, 023
and 123, (B013

vwa0a1b0b1
, B023

vwa0a2b0b2
, B123

vwa1a2b1b2
) but different bubbles 012

(B012
va0a1a2

and B012
wb0b1b2

). We track the effect of the 1-Dipole contraction on
the graph G. Taking B012

va0a1a2
the planar bubble, the contraction

• deletes the vertices v and w and the line L3
vw.

• glues L0
va0

on L0
wb0

to form a new line L0
vw (and similarly for colors 1 and

2).
• transforms the face F 03

vwa0b0
into a face F 03

a0b0
(and similarly for 13 and 23).

• glues the face F 01
va0a1

on the face F 01
wb0b1

to form a new face F 01
a0b0b1a1

(and
similarly for 02 and 12).

• transforms the bubble B013
vwa0a1b0b1

into a bubble B013
a0a1b0b1

(and similarly for
023 and 123)

• glues B012
va0a1a2

on B012
wb0b1b2

to form a new bubble B012
a0b0a1b1a2b2

.

The bubbles 013, 023 and 123 transform trivially under contraction. Call
n, l, f and g (n′, l′, f ′ and g′) the vertices, lines, faces and genus of one of
these bubbles before (after) contraction. We have

|n′| = |n| − 2, |l′| = |l| − 3, |f ′| = |f | − 1 ⇒ g′ = g. (20)

The bubble B012
va0a1a2

(with na, la fa and ga) is glued on B012
wb0b1b2

(with
nb, lb fb and gb) to form the new bubble B012

a0b0a1b1a2b2
(with n′

b, l
′
b, f

′
b and g′

b)
and

|n′
b|= |na| + |nb| − 2, |l′b|= |la| + |lb| − 3, |f ′

b|= |fa| + |fb| − 3 ⇒ g′
b = ga + gb.

(21)

Thus, g′
b = gb if ga = 0. If B012

wb0b1b2
is dual to a conical singularity (gb �= 0),

then the new bubble B012
a0b0a1b1a2b2

is dual to an identical singularity, and the
two dual pseudo manifolds are homeomorphic [32]. Were we to allow a con-
traction when both ga, gb �= 0 we would merge two conical singularities into a
unique (more degenerate) conical singularity.

4.2. Amplitude

Suppose that all lines enter v and exit w. We denote h0;v the group element
associated with L0

va0
, etc. and use the shorthand notation (01); v for F 01

va0a1

etc. The contribution of all faces containing v and/or w to the amplitude of G
is

5 See [32], especially the remark on page 93 in the proof of the main theorem.
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∫
dh0;vdh0;wdh1;vdh1;wdh2;vdh2;wdh3

δN(03)(h0;vh
−1
3 h0;wf

03) δN(13)(h1;vh
−1
3 h1;wf

13) δN(23)(h2;vh
−1
3 h2;wf

23)

δN(01);v(h0;vh
−1
1;vf

01
v ) δN(02);v(h2;vh

−1
0;vf

02
v ) δN(12);v(h1;vh

−1
2;vf

12
v )

δN(01);w(h−1
1;wh0;wf

01
w ) δN(02);w(h−1

0;wh2;wf
02
w ) δN(12);w(h−1

2;wh1;wf
12
w ), (22)

where f03 denotes the product of the remaining group elements along the face
03 and similarly for the rest. We first change variables to h′

0;w = h−1
3 h0;w,

dh′
0;w = dh0;w (and similarly for h1;w and h2;w). The integral over h3 is trivial.

Forgetting the primes we obtain
∫

dh0;vdh0;wdh1;vdh1;wdh2;vdh2;w

δN(03)(h0;vh0;wf
03) δN(13)(h1;vh1;wf

13) δN(23)(h2;vh2;wf
23)

δN(01);v(h0;vh
−1
1;vf

01
v ) δN(02);v(h2;vh

−1
0;vf

02
v ) δN(12);v(h1;vh

−1
2;vf

12
v )

δN(01);w(h−1
1;wh0;wf

01
w ) δN(02);w(h−1

0;wh2;wf
(02)
w ) δN(12);w(h−1

2;wh1;wf
(12)
w ). (23)

We change again variables to h0 = h0;vh0;w dh0 = h0;w (and similarly for h1;w

and h2;w) to obtain
∫

dh0;vdh0dh1;vdh1dh2;vdh2

δN(03)(h0f
03) δN(13)(h1f

13) δN(23)(h2f
23)

δN(01);v(h0;vh
−1
1;vf

01
v ) δN(02);v(h2;vh

−1
0;vf

02
v ) δN(12);v(h1;vh

−1
2;vf

12
v )

δN(01);w(h−1
1 h1;vh

−1
0;vh0f

01
w ) δN(02);w(h−1

0 h0;vh
−1
2;vh2f

02
w )

δN(12);w(h−1
2 h2;vh

−1
1;vh1f

12
w ). (24)

We integrate h1;v, h2;v using δN(01);v and δN(02);v (hence h1;v = f01
v h0;v, h

−1
2;v =

h−1
0;vf

02
v ), and Eq. (22) becomes
∫

dh0;vdh0dh1dh2

δN(03)(h0f
03) δN(13)(h1f

13) δN(23)(h2f
23)

δN(12);v(f
01
v f02

v f12
v )

δN(01);w(h−1
1 f01

v h0f
01
w ) δN(02);w(h−1

0 f02
v h2f

02
w ) δN(12);w(h−1

2 f12
v h1f

12
w ). (25)

Remark that, ignoring δN(12);v, the integrand of Eq. (25) corresponds to the
graph with the 1-Dipole contracted. But δN(12);v reproduces the external face
of a ribbon graph obtained by cutting the vertex v in the bubble B012

va0a1a2
.

The latter is a planar ribbon graph; hence, by Eq. (11) δN(12);v(f
01
v f02

v f12
v ) can

be replaced by δN (e). Recalling that the number of vertices decreases by 2 we
obtain that the amplitudes of G and G − L3

vw (the graph with the 1-Dipole
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Figure 8. 2-Dipole contraction

L3
vw contracted) are proportional

AG =
(λλ̄)
δN (e)

δN (e)AG−L3
vw = (λλ̄)AG−L3

vw . (26)

4.3. 2-Dipoles

A 2-Dipole of colors 23 (see Fig. 8) is a couple of lines connecting the same two
vertices v and w, L2

vw and L3
vw such that the faces F 01

va0a1
and F 01

wb0b1
are dif-

ferent. The 2-Dipole forms a face F 23
vw. Like the 1-Dipoles, the 2-Dipoles can be

contracted (by deleting the lines 2 and 3 forming the 2-Dipole and reconnect-
ing the rest of the lines respecting the colors). This is represented in Fig. 8.
After contraction, the two faces F 01

va0a1
and F 01

wb0b1
are glued into a unique

face F 01
a0a1b0b1

. A 2-Dipole is dual to two tetrahedra sharing two triangles (of
colors 2 and 3 for Fig. 8) such that the edge opposite to the two triangles in
each tetrahedron (dual to the faces F 01

va0a1
and F 01

wb0b1
) are different. The con-

traction translates in squashing the two tetrahedra and coherently identifying
the remaining boundary triangles. This move always represents a homeomor-
phism [32]. Denoting G −F 23

vw the graph obtained from G after contracting the
2-Dipole, a short computation along the lines of the one for 1-Dipoles yields

AG =
(λλ̄)
δN (e)

AG−F 23
vw . (27)

The Dipole contraction moves can be inverted into Dipole creation moves. The
fundamental result we will use in the sequel [32] is that two pseudo manifolds
dual to colored graphs G and G′ are homeomorphic if G and G′ are related by
a finite sequence of 1 and 2-Dipole creation and contraction moves. We call
two such graphs “equivalent”, G ∼ G′.

5. Bubble Routing and Core Graphs

In the literature one finds two classes of results (bounds and evaluations) for
amplitudes of GFT graphs. They are expressed either in terms of the number
of vertices [27,28] or in terms of the number of bubbles [26,29]. In order to
build the 1/N expansion in CGFT, we need to strike the right balance between
the vertices and the bubbles of a graph. This is achieved by a bubble routing
algorithm.

5.1. Bubble Routing

We start by choosing a set of roots of G for all colors i. For the color 3, if all
the bubbles B012 are planar, we choose one of them as root and denote it R012

1 .
If there exist non-planar bubbles 012, we set a non-planar bubble as principal
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Figure 9. A tree T 3 in the 012 connectivity graph

root R012
1 , and the other non-planar bubbles as “branch roots” R012

2 , R012
3 , . . ..

We denote the set of 012 roots of G by R012 = {R012
1 , R012

2 , . . . }. We repeat
this for all colors (and denote RG the set of all roots of G).

We associate with the bubbles 012 of G a “012 connectivity graph”. Its
vertices represent the various bubbles 012. Its lines are the lines of color 3 in
G. They either start and end on the same bubble 012 (in which case they are
“tadpole” lines in the connectivity graph), or not. A particularly simple way
to picture the 012 connectivity graph is to draw G with lines 0, 1 and 2 much
shorter than the lines 3. We chose a tree in the connectivity graph, T 3 (and
call the rest of the lines 3 “loop lines”). For a branch root R012

q , the line inci-
dent on it and belonging to the path in T 3 connecting R012

q to the principal
root R012

1 is represented as dashed. All the other lines in T 3 are represented
as solid lines. An example is given in Fig. 9.

All the solid lines in T 3 are 1-Dipoles, and we contract them. We end up
with a connectivity graph with vertices corresponding to the roots R012

q . The
remaining lines of color 3 cannot be 1-Dipoles (they are either tadpole lines or
they separate two non-planar roots). The number of 1-Dipoles of color 3 con-
tracted is |B012| − |R012|. Neither the number nor the topology of the bubbles
of the other colors B013, B023 and B123 is changed under these contractions.

Having exhausted a complete set of 1-Dipoles of color 3, we repeat the
procedure for the 1-Dipoles of color 2. The routing tree T 2 is chosen in the
graph obtained after contracting the 1-Dipoles of color 3 and depends on T 3,
T 2(T 3). The contraction of 1-Dipole of color 2 changes the 012 connectiv-
ity graph, but it cannot create new 1-Dipoles of color 3: the topology of the
012 bubbles is unaffected by reducing 1-Dipoles of color 2; hence, the lines of
color 3 will still either be tadpole lines or separate two non-planar roots 012.
After a full set of 1-Dipole contractions indexed by four distinct routing trees
T 3, T 2(T 3), T 1(T 2, T 3), T 0(T 1, T 2, T 3), we obtain a Core Graph.6

Definition 1 (Core Graph). A colored graph with 2p vertices Gp is called a
Core Graph at order p if, for all colors i, it either has a unique (planar or
non-planar) bubble P î1 or all its bubbles P î1, P

î
2, . . . are non-planar.

6 If G is dual to a manifold and one further reduces a full set of 2-Dipoles, one recovers a
“gem” graph of [31].



842 R. Gurau Ann. Henri Poincaré

The amplitude of the graph G and of the Core Graph obtained after
routing are related by

AG = (λλ̄)|BG |−|RG |AGp , 2p = |NG | − 2 (|BG | − |RG |) . (28)

The Core Graph one obtains by routing is not independent of the routing trees
T 3, T 2, T 1, T 0. The same graph leads to several equivalent Core Graphs, all
at the same order p, Gp ∼ G′

p ∼ . . .. One can prove that all equivalent Core
Graphs at the same order Gp ∼ G′

p have the same amplitude. Only the cre-
ation/contraction of dipoles of color i can change the number of bubbles of
colors î, and the latter only create/annihilate planar bubbles. It follows that
the numbers of bubbles of colors î of Gp and Gp′ are equal, and consequently,
the total numbers of 1-Dipole creations and contractions are equal. As Gp and
G′
p have the same number of vertices, the total numbers of 2-Dipole creations

and contractions are also equal and AGp = AG′
p .

We denote Gp = {[Gp]} the set of equivalence classes of Core Graphs at
order p under the equivalence relation ∼. The amplitude is a well-defined func-
tion of the equivalence class [Gp]. Under an arbitrary routing, any graph will
fall in a unique equivalence class [Gp]. The free energy of the colored Boulatov
model admits a topological expansion in Core Graphs classes

F (λ, λ̄) =
∞∑

p=1

∑

[Gp]∈Gp

C [Gp](λ, λ̄)A[Gp], (29)

where C [Gp](λ, λ̄) is a combinatorial factor counting all the graphs routing to
a Core Graph class at order p. The scaling with N is entirely captured by the
Core Graph amplitude A[Gp]. A Core Graphs class is dual to a specific pseudo
manifold. Note however that the same pseudo manifold is represented by an
infinity of classes [Gp] at higher and higher orders in p.

Core Graphs are in three dimensions, the appropriate generalization of
the super rosettes of two-dimensional GFT. The only ingredient missing at
this point is some estimate of their amplitude.

Theorem 1 (The Core Graph bound). The amplitude of a Core Graph at order
p, Gp, with set of bubble P respects

|AGp | ≤ (λλ̄)p[δN (e)]−
1
3p+

1
3

∑
b∈P(1−gb)+1. (30)

Proof. We denote the set of lines and faces of Gp by L and F . The amplitude
of the Core Graph is

AGp =
(λλ̄)p

[δN (e)]p

∫ ∏

�∈L
dh�

∏

f∈F
δNf

⎛

⎝
→∏

�∈f
hσ

�|f

�

⎞

⎠ . (31)

Denote J ij the jacket of Gp with the faces ij and îj deleted. The idea
is to use the jacket graph to integrate explicitly as many group elements as
possible. Indeed, routing the faces of the jacket graph will associate a line with
all (save one) of its faces. Integrating, all (save one) of the δN functions of the
faces of the jacket graph will contribute 1, as

∫
dh δN (h−1 . . . )K(h) = K(. . . ).
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The effect of these integrations over the rest of the δN functions is exceedingly
complicated to track. However, we will not need to do it as we will just use a
naive bound δN (h) ≤ δN (e) for all of them. In detail,

AGp =
(λλ̄)p

[δN (e)]p

∫ ∏

�∈L
dh�

⎡

⎣
∏

f ′∈Fij∪F îj

δN
f ′

⎛

⎝
→∏

�∈f ′

hσ�|f′

�

⎞

⎠

⎤

⎦

⎡

⎣
∏

f∈J ij

δN
f

( →∏

�∈f

hσ�|f
�

)⎤

⎦ ,

(32)

and routing the faces of the jacket graph via a tree T̃ in the dual graph of the
jacket we get

AGp =
(λλ̄)p

[δN (e)]p

∫ ∏

�∈Lp

dh�

⎡

⎣
∏

f ′∈Fij∪F îj

δNf

⎛

⎝
→∏

�∈f ′

hσ
�|f′

�

⎞

⎠

⎤

⎦

×

⎡

⎣δNr

⎛

⎝
→∏

�/∈T̃

hσ
�|∪

f∈J ij f

�

⎞

⎠
∏

f∈J ij ,f �=r
δNf

⎛

⎝hσ
l(f,T̃ )|f

l(f,T̃ )

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠

⎞

⎠

⎤

⎦ .

(33)

Each of the δN of the faces of the jacket can now be associated uniquely with
a specific integral over some group element. For all the lines in T̃ , we change
variables to

h̃l(f,T̃ ) = hσ
l(f,T̃ )|f

l(f,T̃ )

⎛

⎝
→∏

� �=l(f,T̃ )

hσ
�|f

�

⎞

⎠ , (34)

and write (in sloppy notations)

AGp =
(λλ̄)p

[δN (e)]p

∫ ∏

�∈Lp\T̃

dh�
∏

l∈T̃

dh̃l

⎡

⎢
⎣

∏

f ′∈Fij
p ∪F îj

p

δNf ′(. . . )

⎤

⎥
⎦ δNr (. . . )

×

⎡

⎣
∏

f∈J ij ,f �=r
δNf

(
h̃l(f,T̃ )

)
⎤

⎦ . (35)

Each δN in the last line integrates with its associated h̃l(f,T̃ ), and we get

AGp =
(λλ̄)p

[δN (e)]p

∫ ∏

�∈Lp\T̃

dh�

⎡

⎣
∏

f ′∈Fij∪F îj

δNf ′(. . . )

⎤

⎦ δNr (. . . )

≤ (λλ̄)p

[δN (e)]p
[δN (e)]|F

ij |+|F îj |+1. (36)

One can use any of the three jackets of the graph to derive a bound. Using the
jacket which yields the best estimate, we always have

AGp ≤ (λλ̄)p

[δN (e)]p
[δN (e)]

|F|
3 +1, (37)
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and by Eq. (7) we have

2p− 4p+ |F| − |P| = −
∑

b∈P
gb ⇒ |F| = 2p+

∑

b∈P
(1 − gb). (38)

�

Note that
∑
b∈P(1 − gb) ≤ 4 (and equal 4 if and only if the Core Graph

is dual to a manifold). The Core Graph bound ensures that more and more
complicated topologies (i.e. topologies which cannot be represented by a Core
Graph with p vertices or less) are suppressed at least as [δN (e)]

7−p
3 in Eq. (29).

5.2. The 1/N Expansion

We are now in the position to perform the 1/N expansion of the colored GFT
model. In order to evaluate all contributions to the order [δN (e)]−α, one lists
all (equivalence classes of) Core Graphs up to order p = 3α+7. This is a finite
problem, hence solvable. Then one computes the amplitude of each Core Graph
(which can of course turn out to be much smaller than the value predicted by
the Core Graph bound). The free energy is

F (λ, λ̄) =
3α+7∑

p=1

∑

[Gp]∈Gp

C [Gp](λ, λ̄)A[Gp] +O([δN (e)]−α). (39)

The Core Graphs up to p = 3 are the graphs G1, G2, G3,a, G3,b, G3,c and G3,d

from Fig. 2. The Core Graphs G1, G2, G3,a and G3,b are dual to the three sphere
S3. The Core Graphs G3,a and G3,b are in the same equivalence class at order
3. The Core Graphs G3,c and G3,d are dual to pseudo manifolds: G3,c has two
non-planar bubbles each of genus 1, while G3,d has only one non-planar bubble
of genus 1. The Core Graph bound ensures that

A[G1] ≤ [δN (e)]2, A[G2] ≤ [δN (e)]
5
3 , A[G3,a] ≤ [δN (e)]

4
3 ,

A[G3,c] ≤ [δN (e)]
2
3 , A[G3,d] ≤ [δN (e)]. (40)

Contributions coming from Core Graphs at higher order are at most of order
δN (e). Direct computation shows that

A[G1] = [δN (e)]2, A[G2] = [δN (e)], A[G3,a] = [δN (e)]0,

A[G3,c] =
1

δN (e)

∫
dhduδN (hu−1h−1u), A[G3,d] = [δN (e)]0. (41)

and A[G3,c] = 1 if G = U(1), or A[G3,c] = [δN (e)]−1
∑
j 1 ≈ [δN (e)]−2/3 for

G = SU(2). The partition function of the colored Boulatov model develops as

F (λ, λ̄) = C [G1](λ, λ̄)[δN (e)]2 +O([δN (e)]), (42)

and all graphs contributing to the dominant order are dual to manifolds homeo-
morphic with the three sphere S3.
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6. Conclusion

Throughout this paper,7 when evaluating amplitudes, we repeatedly replaced
δN (gh) δN (h) by δN (g) δN (h). Of course, the two expressions are equal only in
the N → ∞ limit. For finite N , the equality holds only in the power counting
sense, i.e. up to corrections which vanish in the N → ∞ limit. All the “=”
signs in this paper should be interpreted in this sense (including in our final
expansion (39)). On the contrary, the “≤” signs (i.e. the bounds on the graph
amplitudes) hold at finite N , and all “=” signs can be traded for “≤”. Indeed,
both the face routing and the behavior of the amplitude under 1-Dipole con-
tractions hold as upper bounds by performing only changes of variables and
bounding, at the last step, some δN (g) by δN (e) which holds at finite N .

The colors of CGFT are crucial in establishing the 1/N topological expan-
sion encoded in Eq. (29) and theorem 1. The definitions of bubbles, Dipoles,
jackets, connectivity graphs routing trees and Core Graphs are given in terms
of colors. A legitimate question is which of these concepts can be extended for
non-colored GFT models. Whereas bubbles can be defined for more general
models [25], they generically exhibit singularities. Dipole contractions cannot
be defined in general (in the absence of colors, one does not know how to
reconnect the half lines). The jackets are ill-defined for generic models (the
same face can contain two strands of the same line: deleting such a face does
not lead to a ribbon graph). Connectivity and Core Graphs cannot be defined
in generic models. As almost all tools required to establish the 1/N expansion
of CGFT do not generalize to non-colored models, it is highly unlikely that
the latter admit a 1/N expansion.8

Using the 1/N expansion performed in this paper, one can now investigate
the generalization in higher dimensions of many features of matrix models. One
can study for instance the dominant spherical sector, explore a double scaling
limit, investigate a possible phase transition and its relation to conformal field
theory, generalize the KPZ relations, and the list goes on.
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