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Abstract

Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis
elegans have become key model organisms in modern neuroscience. In addition to their low
maintenance costs and easy sharing of strains across labs, one key appeal is the possibility
to monitor single or groups of animals in a behavioural arena while controlling the activity of
select neurons using optogenetic or thermogenetic tools. However, the purchase of a com-
mercial solution for these types of experiments, including an appropriate camera system as
well as a controlled behavioural arena, can be costly. Here, we present a low-cost and mod-
ular open-source alternative called ‘FlyPi’. Our design is based on a 3D-printed mainframe,
a Raspberry Pi computer, and high-definition camera system as well as Arduino-based opti-
cal and thermal control circuits. Depending on the configuration, FlyPi can be assembled for
well under €100 and features optional modules for light-emitting diode (LED)-based fluores-
cence microscopy and optogenetic stimulation as well as a Peltier-based temperature stim-
ulator for thermogenetics. The complete version with all modules costs approximately €200
or substantially less if the user is prepared to ‘shop around’. All functions of FlyPi can be con-
trolled through a custom-written graphical user interface. To demonstrate FlyPi’s capabili-
ties, we present its use in a series of state-of-the-art neurogenetics experiments. In addition,
we demonstrate FlyPi’s utility as a medical diagnostic tool as well as a teaching aid at Neuro-
genetics courses held at several African universities. Taken together, the low cost and mod-
ular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of
applications, including the classroom, diagnostic centres, and research labs.
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Introduction

The advent of protein engineering has brought about a plethora of genetically encoded actua-
tors and sensors that have revolutionised neuroscience as we knew it but a mere decade ago.
On the back of an ever-expanding array of genetically accessible model organisms, these
molecular tools have allowed researchers to both monitor and manipulate neuronal processes
at unprecedented breadth (e.g., [1-3]). In parallel, developments in consumer-oriented
manufacturing techniques such as 3D printing as well as low-cost and user-friendly micro-
electronic circuits have brought about a silent revolution in the way that individual research-
ers may customise their lab equipment or build entire setups from scratch (reviewed in: [4-
7]). Similarly, already ultra-low-cost light-emitting diodes (LEDs), when collimated, now
provide sufficient power to photo-activate most iterations of Channelrhodopsins or excite
fluorescent proteins for optical imaging, while a small Peltier-element suffices to thermo-acti-
vate heat-sensitive proteins [8—10]. In tandem, falling prices of high-performance charge-
coupled device (CCD) chips and optical components such as lenses and spectral filters mean
that today, already a basic webcam in combination with coloured, transparent plastic or a dif-
fraction grating may suffice to perform sophisticated optical measurements [11,12]. Taken
together, modern biosciences today stand at a precipice of technological possibilities, in
which a functional neuroscience laboratory set-up, capable of delivering high-quality data
over a wide range of experimental scenarios, can be built from scratch for a mere fraction of
the cost traditionally required to purchase any one of its individual components. Here, we
present such a design.

Assembled from readily available off-the-shelf mechanical, optical, and electronic com-
ponents, “FlyPi” provides a modular solution for basic light and fluorescence microscopy as
well as time-precise opto- and thermogenetic stimulation during behavioural monitoring
of small, genetically tractable model species such as zebrafish (Danio rerio), fruit flies (Dro-
sophila melanogaster), or nematodes (e.g., C. elegans). The system is based on an Arduino
microcontroller [13] and a Raspberry Pi 3 single-board computer (RPi3; [14]), which also
provides sufficient computing power for basic data analysis, word processing, and web
access using a range of fully open-source software solutions that are preinstalled on the
secure digital (SD) card image provided. The mechanical chassis is 3D printed, and all
source code is open, such that the design and future modifications can be readily distributed
electronically to enable rapid sharing across research labs and institutes of science education.
This not only facilitates reproducibility of experimental results across labs, but also promotes
rapid iteration and prototyping of novel modifications to adapt the basic design for a wide
range of specialised applications. More generally, it presents a key step towards a true
democratisation of scientific research and education that is largely independent of financial
backing [4].

Here, we first present the basic mode of operation, including options for microposition-
ing of samples and electrodes, and demonstrate FlyPi’s suitability for light microscopy
and use as a basic medical diagnostic tool. Second, we present its fluorescence capability
including basic calcium imaging using GCaMPS5 [1]. Third, we survey FlyPi’s suitability
for behavioural tracking of Drosophila and C. elegans. Fourth, we demonstrate optogenetic
activation of Channelrhodopsin 2 [3] and CsChrimson [15] in transgenic larval zebrafish
as well as Drosophila larvae and adults. Fifth, we evaluate the performance of FlyPi’s Pel-
tier-thermistor control loop for thermogenetics [16]. Sixth, we briefly summarise our
efforts to introduce this tool for university research and teaching in sub-Saharan Africa
[4,17].
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Results
Overview

The basic FlyPi can resolve samples down to approximately 10 microns, acquire video at up to
90 Hz, and acquire time-lapse series over many hours. It consists of the 3D-printed mainframe
(Fig 1A-1D), one RPi3 computer with a Pi camera and off-the-shelf objective lens, one Ardu-
ino-Nano microcontroller, as well as a custom printed circuit board (PCB) for flexible attach-
ment of a wide range of actuators and sensors (Fig 1C). The main printed frame allows
modular placement of additional components into the camera path, such as holders for petri
dishes or microscope slides (Fig 1D-1I). This basic build, including power adapters, cables,
and the module for lighting and optogenetic stimulation, can be assembled for less than €100
(S1 Table; Fig 1D). Additional modules for fluorescence imaging (Fig 1E), temperature control
(Fig 1F), or an automated focus drive (Fig 1G) can be added as required. For a full bill of mate-
rials (BOM), see S1 Table. A complete user manual and assembly instructions are deposited on
GitHub (https://github.com/amchagas/Flypi/blob/master/User%20and%20Assembly%
20Manual_revised.pdf). In time, additional content and updated versions will be added to the
FlyPi GitHub repository (https://github.com/amchagas/Flypi/).

Basic camera operation and microscopy

To keep the FlyPi design compact and affordable yet versatile, we made use of the Raspberry Pi
(RPi) platform, which offers a range of FlyPi-compatible camera modules. Here, we use the
‘adjustable focus RPi red-green-blue (RGB) camera’ (S1 Table), which includes a powerful
12-mm threaded objective lens. Objective focal distance can be gradually adjusted between
approximately 1 mm (peak zoom) and infinity (panoramic, not shown), while the camera
delivers 5-megapixel Bayer-filtered colour images at 15 Hz. Spatial binning increases peak fra-
merates to 42 Hz (x2) or 90 Hz (x4). Alternatively, the slightly more expensive 8-megapixel
RPi camera or the infrared-capable no-infrared filter (NO-IR) camera can be used. Objective
focus can be set manually or via a software-controlled continuous-rotation micro servo motor
(Fig 1G). Alternatively, the RPi CCD chip can be directly fitted above any other objective with
minimal mechanical adjustments.

A custom-written Graphical User Interface (GUI, S1 Fig) using the Python-based PiCamera
library allows for control of framerates, sensitivity, contrast, white balance, and digital zoom.
Control over other parameters can be added as required. The GUI facilitates saving images
and image sequences in jpeg format and video data in h264 or audio video interleave (AVT)
format. Notably, the GUI can also function independent of the remainder of FlyPi components
if only easy control for a RPi camera is required.

The camera can be mounted in two main configurations: upright or inverted (Fig 2A and
2B). While the former may be primarily used for resolving larger objects such as adult Dro-
sophila (Fig 2C) or for behavioural tracking, the latter may be preferred for higher-zoom appli-
cations (Fig 2D and 2E) and fluorescence microscopy (see below) or if easy access to the top of
a sample is required. Here, the image quality is easily sufficient to monitor basic physiological
processes such as the heartbeat or blood flow in live zebrafish larvae (Fig 2F, S1 Video).

If required, specimens can be positioned by a 3D-printed micromanipulator [4] (Fig 2B).
Up to three manipulators can be attached to the free faces of FlyPi (Fig 1D and 1I). Manipula-
tors can also be configured to hold probes such as electrodes or stimulation devices (Fig 11).
Like the camera objective, manipulators can be optionally fitted with continuous-rotation
servo motors to provide electronic control of movement in three axes [4]. These motors can be
either controlled via software or via a stand-alone joystick unit based on a separate Arduino-
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Fig 1. Overview. A. The 3D model, colour coded by core structure (black), mounting adapters (blue), and
micromanipulator (green). B. Printed parts and electronics, partially assembled. C. Wiring diagram and
summary of electronics. Full bill of materials (BOM) in S1 Table. D. The assembled FlyPi with single
micromanipulator and light-emitting diode (LED)-ring module, diffusor, and Petri dish adapter mounted in the
bottom. E. Filter wheel mounted above the inverted camera objective. F. Peltier element and thermistor
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embedded into the base. G. Automatic focus drive. H. Petri dish mounting adapters. I. A second
micromanipulator mounted to the left face of FlyPi holding a probe (here, a 200-pl pipette tip for illustration)
above the microscope slide mounted by the micromanipulator on the right.

https://doi.org/10.1371/journal.pbio.2002702.g001

Uno microcontroller and a Sparkfun Joystick shield [19]. Depending on print quality and
manipulator configuration, precision is in the order of tens of microns [4].

For lighting, we use an Adafruit Neopixel 12 LED ring [20] comprising 12 high-power
RGB-LEDs that can be configured for flexible intensity and wavelength lighting. For example,
the LED ring with all LEDs active simultaneously can be used to add ‘white’ incident or trans-
mission illumination (e.g., Fig 2A and 2F) while behavioural tracking can be performed under
dim, red light. A series of white weighing boats mounted above the ring can be used as diffu-
sors (Fig 2A). Long-term time-lapse imaging, for example, to monitor developmental pro-
cesses or bacterial growth, can be performed in any configuration. Lighting is controlled from
the GUI through an open Adafruit LED control Python library.

The implementation of a cost-effective option for digital microscopy also opens up possibil-
ities for basic medical diagnosis, such as the detection of small parasitic nematodes Brugia
malayi or Wuchereria bankrofti in human lymph tissue samples (Fig 2G and 2H) or Schisto-
soma eggs in human urine (Fig 2I). Similarly, the image is sufficient to detect and identify
counterstained types of blood cells in an infected smear (here, Mansonella perstans; Fig 2] and
2K).

Fluorescence microscopy

Next, we implemented fluorescence capability based on a 350 mA 410 nm LED attached to a
reflective collimator as well as ultra-low-cost theatre lighting filters. For this, the excitation and
emission light was limited by a low-pass and a notch filter, respectively (Fig 3A-3D, S1 Table).
Imperfect emission filter efficiency for blocking direct excitation light necessitated that the
source was positioned at 45° relative to the objective plane, thereby preventing direct excita-
tion bleed-through into the camera path (Fig 3A and 3B). Many commonly used fluorescent
proteins and synthetic probes exhibit multiple excitation peaks. For example, Green Fluores-
cent Protein (GFP) is traditionally excited around 488 nm; however, there is a second and
larger excitation peak in the near UV [21] (Fig 3D, but see [1]). Here, we made use of this
short-wavelength peak by stimulating at 410 nm to improve spectral separation of excitation
and emission light despite the suboptimal emission filter. Fig 3C shows the fluorescence image
recorded in a typical fluorescence test slide. The RGB camera chip allowed simultaneous visu-
alisation of both green and red emission. If required, the red channel could be limited either
through image processing or by addition of an appropriate short-pass emission filter posi-
tioned above the camera. Next, using green fluorescent beads (100 nm, Methods), we mea-
sured the point-spread function (psf) of the objective as 5.4 um (s.d.) at full zoom (Fig 3E and
3F). This is >10 times broader than that of a typical state-of-the-art confocal or 2-photon sys-
tem [22], though without optical sectioning, and imposes a theoretical resolution limit in the
order of approximately 10 um. Notably, with an effective pixel size of approximately 1 um (Fig
1E), the system is therefore limited by the objective optics rather than the resolution of the
camera chip, such that the use of a higher numerical aperture objective would yield a substan-
tial improvement in spatial resolution. It also means that at peak zoom, the camera image can
be binned at x4 for increased speed and sensitivity without substantial loss in image quality.
Next, we tested FlyPi’s performance during fluorescence imaging on live animals. At lower
magnification, image quality was sufficient for basic fluorescence detection as required, for
example, for fluorescence-based sorting of transgenic animals (screening). We illustrate this
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Fig 2. Basic light microscopy. A, B. The camera and objective can be mounted in upright (A) or inverted
mode (B). In each case, the micromanipulator allows accurate positioning of a microscope slide in the image
plane, while the light-emitting diode (LED) ring coupled to a series of diffusors provides for flexible spectrum
and brightness illumination (A). C. At low zoom, the magnification is appropriate to provide high-resolution
colour images of several animals at once (here, D. melanogasterfed with 5 mM sucrose in 0.5% agarose

dyed with blue or red food dyes (Food Blue No. 1 and Food Red No. 106 dyes; Tokyo Chemical Industry Co.,
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Japan) as described in [18]. D, E. When the objective is fully extended, magnification is sufficient to resolve
large neurons of the mouse brain, while different positions of the LED ring permit one to highlight different
structures in the tissue. F. The system is also appropriate to provide high-resolution imagery of zebrafish
larvae (D. rerio) with only room lighting (cf. S1 Video). G, H. Brugia malayi (G) and Wuchereria bankrofti (H) in
human lymph tissue biopsy. I. Schistosoma eggs in human urine. J. Mansonella perstans in human blood
smear (Wright Giemsa stain) and K. magnification of bottom-right image section.

https://doi.org/10.1371/journal.pbio.2002702.9002

using a transgenic zebrafish larva (3 days postfertilisation [dpf]) expressing the GFP-based cal-
cium sensor GCaMP5G in all neurons (Fig 3G-31, S2 Video). Similarly, the system also pro-
vided a sufficient signal-to-noise ratio for basic calcium imaging, demonstrated here using
Drosophila larvae driving GCaMP5 in muscles that reveal clear fluorescence signals associated
with peristaltic waves as the animal freely crawls on a microscope slide (Fig 3]-3M; see also S3
Video, cf. [24]). However, the system failed to provide a sufficient signal-to-noise ratio for
imaging clear calcium signals in substantially smaller structures, such as neurons of the Dro-
sophila antennal lobe or zebrafish optic tectum (not shown). This is likely related to the limited
optical power and large field of depth of the objective used, and might, therefore, be amelio-
rated in the future by integration of different commercial objectives and/or optical filters. Fur-
ther fluorescence example videos are provided in the supplementary materials (S4 and S5
Videos).

Behavioural tracking

“To move is all mankind can do’. Sherrington’s (1924) thoughts on the ultimate role of any ani-
mal’s nervous system still echoes today, when despite decades of (bio)technological advances,
behavioural experiments are still amongst the most powerful means for understanding neuro-
nal function and organisation. Typically, individual or groups of animals are placed in a con-
trolled environment and filmed using a camera system. Here, FlyPi’s colour camera with
adjustable zoom offers a wide range of video-monitoring options, while the RGB LED ring
provides for easily adjusted wavelength and intensity lighting (Fig 4A) including dim red light,
which is largely invisible to many invertebrates including C. elegans (Fig 4B, S6 Video) and
Drosophila. A series of mounting adapters for petri dishes (Fig 1H) as well as a custom cham-
ber consisting of a 3D-printed chassis and two glass microscope slides for adult Drosophila
(Fig 4C) can be used as behavioural arenas. Following data acquisition, videos are typically fed
through a series of tracking and annotation routines to note the spatial position, orientation,
or behavioural patterns of each animal. Today, a vast range of open behavioural analysis pack-
ages is available, including many that run directly on the RPi3 such as CTrax [25], used here to
track the movements of adult Drosophila in a 10-s video (Fig 4D; S7 Video).

Optogenetics and thermogenetics

One key advantage of using genetically tractable model organisms is the ability to selectively
express proteins in select populations of cells whose state can be precisely controlled using
external physical stimuli such as light (Optogenetic effectors, e.g., [26]) or heat (Thermoge-
netic effectors, e.g., [16]). Through these, the function of individual or sets of neurons can be
readily studied in behavioural experiments. A plethora of both light- and heat- sensitive pro-
teins are available, with new variants being continuously developed. Many of these proteins
exhibit sufficient sensitivity for activation by collimated high-power LEDs, rather than having
to rely on more expensive light sources like a Xenon lamp or a laser. Similarly, temperature
variation over a few degrees Celsius, as achieved by an off-the-shelf Peltier element with ade-
quate heat dissipation, is sufficient to activate or inactivate a range of temperature-sensitive
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Fig 3. Fluorescence microscopy. A. A collimated 410 nm light-emitting diode (LED) angled at 45° and two
ultra-low-cost theatre lighting filters provide for fluorescence capability. B. A photo of the fluorescence setup.
C. Fluorescence test slide. D. Top: Spectra of excitation LED and filters superimposed (dark blue) on green
fluorescent protein (GFP) excitation (light blue) and emission (green) spectra. Emission filter in orange.
Bottom: Quantum efficiency of the OmniVision OV5647 charge-coupled device (CCD) camera chip used in
the Raspberry Pi (RPi) system, taken from [23]. E, F. Point-spread function (psf) measured using green
fluorescent beads (Methods): Standard deviation is approximately 5.4 um. G, H. Three days postfertilisation
(dpf) Zebrafish larva expressing GCaMP5Gf in neurons (HuC: GCaMP5G) in transmission (G) and
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fluorescence mode (H). I. At low zoom, the system can be used for fish sorting (cf. S2 Video). Note the
absence of green fluorescence in the brain of the nontransgenic animal to the upper right. J-M. Calcium
Imaging in Drosophila larva expressing GCaMP5 in muscles (Mef2-Gal4; UAS-myr::GCaMP5). J, K. Three
regions of interest placed across the raw image stack of a freely crawling larva (J) reveal period bouts of
increased fluorescence, as peristaltic waves drive up calcium in muscles along the body (K). Arrowheads in J
indicate the positions of peaks in a calcium wave. L. A space-time plot of the time-differentiated image stack,
averaged across the short body axis, reveals regular peristaltic waves. Warm colours indicate high positive
rates of change in local image brightness. M. A single peristaltic wave (as indicated in L) in 12 image planes

separated by 100-ms intervals (cf. S5 Video).

https://doi.org/10.1371/journal.pbio.2002702.9003
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Fig 4. Behavioural tracking. A, B. Red light illumination from the light-emitting diode (LED) ring can be used
to illuminate animals during behavioural tracking—C. elegans is shown here on an Agar plate (B). C. A
behavioural chamber based on two microscope slides and a 3D-printed chassis is adequate for behavioural

monitoring of adult Drosophila. D. Animals tracked using Ctrax [25].

https://doi.org/10.1371/journal.pbio.2002702.9004
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proteins. We therefore implemented both opto- and thermogenetic stimulation capability for
FlyPi.

Optogenetics. For optogenetic activation, we used the LED ring (Fig 5A), whose spectrum
and power are appropriate for use with both ChR2 (single LED ‘blue’ Pwr,40: 14.2 mW) as well
as ReaChr and CsChrimson (‘red’ Pwrgyg: 7.2 mW; ‘green’ Pwrs;g: 7.5 mW) (Fig 5B)
[3,15,27,28]. Alternatively, an Adafruit 8 x 8 high-power single-wavelength LED matrix [20]
can be attached for spatially selective optogenetic or visual stimulation [29]. For demonstra-
tion, a zebrafish larva (3 dpf) expressing ChR2 in all neurons was mounted on top of a micro-
scope slide, which was in turn held above the inverted objective using the micromanipulator
(Fig 5A and 5C). The LED ring was positioned facedown approximately 2 cm above the ani-
mal, outside of the centrally positioned camera’s field of view. Concurrent maximal activation
of all 12 ‘blue’ LEDs (Pwry¢0: approximately 4.9 mW cm 2 at the level of the specimen) reliably
elicited basic motor patterns for stimuli exceeding 500 ms, illustrated here by pectoral fin
swimming bouts (Fig 5C and 5D, S8 Video). Substantially shorter stimuli did not elicit the
behaviour (e.g., third trial: approximately 150 ms), nor did activation of the other wavelength
LEDs or blue light activation in ChR2-negative control animals (not shown). This strongly
indicated that motor networks were activated through ChR2 rather than innate, visually medi-
ated escape reflexes in response to the light (cf. [30]) or photomotor responses [31]. Notably,
in the example shown, while the stimulus artefact was used as a timing marker, excitation light
could be blocked (>95% attenuation) using an appropriate filter (Fig 5B dark red trace, S1
Table) without substantially affecting image quality, while timing could be verified using the
flexibly programmable low-power RGB LED normally integrated into the Peltier-thermistor
loop (not shown).

We also tested ChR2 activation in Drosophila larvae. Animals were left to freely crawl on
ink-stained agarose with both the LED ring and camera positioned above. Activation of all 12
blue LEDs reliably triggered body contractions for the duration of the 1-s stimulus, followed
by rapid recovery (Fig 5E and 5F). Finally, full-power activation of the red LEDs reliably trig-
gered proboscis extension reflex (PER) in adult Drosophila expressing CsChrimson in the gus-
tatory circuit (Fig 5G and 5H). In this latter demonstration, we made use of the GUI’s protocol
function, which allows easy programming of microsecond-precision looping patterns control-
ling key FlyPi functions such as LEDs and the Peltier Loop (see below).

Thermogenetics. Owing to their remarkable ability to tolerate a wide range of ambient
temperatures, many invertebrate model species including Drosophila and C. elegans also lend
themselves to thermogenetic manipulation. Through the select expression of proteins such as
Trp-A or shibire® [16,34], sets of neurons can be readily activated or have their synaptic drive
blocked by raising the ambient temperature over a narrow threshold of 28°C and 32°C, respec-
tively. Here, FlyPi offers the possibility to accurately control the temperature of the upper sur-
face of a 4 cm x 4 cm Peltier element embedded in its base, with immediate feedback from a
temperature sensor (Fig 6A, S1 Table). A central processing unit (CPU) fan and heat sink
below the Peltier element dissipate excess heat (Fig 6B, S1 Table). The setup reaches surface
temperatures + approximately 20°C around ambient temperature within seconds (approxi-
mately 1°C/s) and holds set temperatures steady over many minutes (s.d. < 1°C) (Fig 6C).

Discussion

We primarily designed FlyPi to achieve a good balance of performance, cost, and flexibility in
its use. Using higher quality components, individual function performance can certainly be
improved (see Potential for further development). Here, it is instructive to compare FlyPi’s
microscope function to other open microscope designs. For example, the fully 3D-printable
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Fig 5. Optogenetics. A. Experimental configuration suitable for optogenetic stimulation of an individual zebrafish larva suspended in a drop
of E3 (Methods). B. Spectrum and peak power of the three light-emitting diodes (LEDs) embedded at each ring position. Spectral filters can
be used to limit excitation light reaching the camera (Rosco Supergel No. 19, ‘Fire’). C. Zebrafish larva (3 days postfertilisation [dpf])
expressing ChR2 broadly in neurons (Et(E1b:Gal4)s1101t, Tg(UAS::Cr.ChR2_H134R-mCherry)s1985t, nacre-/-). D. The animal exhibits
pectoral fin burst motor patterns upon activation of blue LEDs (cf. S8 Video). E, F. Drosophila larvae expressing ChR2 in all neurons (elav-
GAL4/+; UAS-shibre'; UAS-ChR2/+; UAS-ChR2/+) crawling on ink-stained agar reliably contract when blue LEDs are active. G, H.
Proboscis extension reflex (PER) in adult Drosophila expressing CsChrimson in the gustatory circuit (w; +; GMR86A08-GAL4/
UAS-CSChrimson; the GMR86A08-GAL4 is part of the Janelia Farm Flightlight collection [32]; its effect on PER is a personal
communication from Olivia Schwarz and Jan Pielage, University of Kaiserslautern, Germany, who observed this phenotype as part of
behavioural screen [33]) is reliably elicited by activation of red LEDs.

https://doi.org/10.1371/journal.pbio.2002702.g005
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Fig 6. Thermogenetics. A. The 4 cm x 4 cm Peltier element embedded in the FlyPi base, with the Thermistor
clamped into one corner. B. Side view with FlyPi propped up on a set of 3D-printed feet to allow air dissipation
beneath the base. The central processing unit (CPU) fan is positioned directly beneath the Peltier. C.
Performance of the Peltier-thermistor feedback loop. Command 15°C and 35°C indicated by blue and red
shading, switching every 5 minutes; room temperature 19°C (no shading).

https://doi.org/10.1371/journal.pbio.2002702.9006

microscope stage of the “Waterscope” [35] achieves superior stability of the focussing mecha-
nism. However, unlike FlyPj, this design cannot achieve the same range of possible magnifica-
tions needed for behavioural experiments. Some other open microscope designs (e.g., [36,37])
use a larger fraction of commercial components to provide superior image quality and/or sta-
bility, albeit invariably at a substantially higher cost. On the extreme low-cost scale, available
designs typically do not provide the imaging systems (i.e., the camera, control software, and
processor) but instead rely on the addition of a mobile phone camera or, indeed, the eye itself
(e.g., [38-40]). Next, FlyPi also provides for a powerful range of sample illumination options,
which typically exceed available alternatives. To our knowledge, no alternative open micro-
scope design encompasses the experimental accessories and control systems required for beha-
vioural tracking under both opto- and thermogenetic control.

Another key aspect of FlyPi’s design is its modular nature. This means that the system does
not require all integrated options to be assembled to function. For example, if the main pur-
pose of an assembled unit is to excite Channelrhodopsin, the only module beside the base unit
is the LED ring. Similarly, only the Peltier-thermistor circuit is needed for Thermogenetics
experiments. This means that units designed for a dedicated purpose can be assembled quickly
and at substantially reduced cost. Moreover, given a functional base unit, it is easy for the user
to modify any one part or to integrate a fully independent module built for a different purpose
altogether. The modular nature also renders the design more robust in the face of difficulties
with sourcing building components.
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Potential for further development

Clearly, the current FlyPi only scratches the surface of possible applications. Further develop-
ment is expected to take place as researchers and educators integrate aspects of our design into
their laboratory routines. To explicitly encourage resharing of such designs with the commu-
nity, we maintain and curate a centralised official project page (http://open-labware.net/
projects/flypi/) linked to a code repository (https://github.com/amchagas/Flypi). Indeed, a
basic description of the FlyPi project has been online since 2015, which has led to several com-
munity-driven modifications. For example, a recent modification of the 3D-printed main-
frame implements the camera and focus motor below a closed stage [41]. At the expense of a
fixed camera position, this build is substantially more robust and thus perhaps more suitable,
e.g., for classroom teaching. Other community-driven modifications include a version in
which all 3D-printed parts are replaced by Lego™ blocks [42] as well as several forks geared to
optimise the code, details in the 3D model, or additions in the electronic control circuits.
Currently, one obvious limit of FlyPi is spatial resolution. The system currently resolves
individual human red blood cells (Fig 2K), but narrowly fails to resolve malaria parasites
within (not shown). Here, the limit is optical rather than related to the camera chip, meaning
that use of a higher numerical aperture and magnification objective lens will yield substantial
improvements. This development might come in hand with additional improvements in the
micromanipulator’s Z-axis stability to facilitate focussing at higher magnification—for exam-
ple, as implemented in the Waterscope [35]. Similarly, photon catch efficiency of the CCD sen-
sor could be improved by use of an unfiltered (monochrome) chip. Unfortunately, to date, no
such chip is available for the RPi platform; however, it may be possible to carefully scratch off
the Bayer filter using a wooden chisel [43]. Next, the contrast of fluorescence images could be
markedly improved by further investment in optical filters. Other alleys of potential further
development include the following: (i) the addition of further options for fluorescence micros-
copy to work over a wider range of wavelengths, likely through the use of other excitation
LEDs and spectral filters; (ii) FlyPi could also be tested for stimulating photo-conversion of
genetically encoded proteins such as CamPari, Kaede, or photoconvertible GFP [44-46]; (iii)
auto-focussing could be implemented by iteratively rotating the servo-assisted focus while
evaluating changes in the spatial autocorrelation function or Fourier spectrum of the live
image; (iv) a motorised manipulator could be integrated for stage-automation through a sim-
ple software routine; and (v) one or several FlyPis could be networked wirelessly or through
the integrated Ethernet port to allow centralised access and control, thereby removing the
need for dedicated user interface peripherals. Taken together, by providing all source code and
designs under an open-source license, together with an expandable online repository, we aim
to provide a flexible, modular platform upon which enthusiastic colleagues may build and
exchange modifications in time. We will be pleased to add modifications to our basic design to
the online project repositories as appropriate. For this, please contact the first author directly.

Classroom teaching and laboratory improvisation

In large parts of the world, funding restrictions hamper the widespread implementation of
practical science education—a problem that is pervasive across both schools and universities
[4,47]. Often, limitations include broken or complete lack of basic equipment such as low-
power light microscopes or computing resources. Here, the low cost and robustness of FlyPi
may offer a viable solution. If only one unit can be made available for an entire classroom, the
teacher can project the display output of FlyPi to the wall such that many students can follow
demonstrated experiments. Already a low amount of funding may furnish an entire classroom
with FlyPis, allowing students in groups of two or three to work on and maintain their own
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unit. The relative ease of assembly also means that building FlyPi itself could be integrated into
part of the syllabus. In this way, a basic technical education in electronics and soldering or
basic 3D printing could be conveyed in parallel. As an additional advantage, each student
could build their own equipment, which brings about further benefits in equipment mainte-
nance and long-term use beyond the classroom.

To survey to what extent FlyPi assembly and use may be beneficial in a classroom scenario,
we introduced the equipment to African biomedical MSc and PhD students as well as senior
members of faculty during a series of multi-day workshops at Universities in sub-Saharan
Africa since 2015, including the University of KwaZulu Natal (Durban, SA), the International
Centre of Insect Physiology and Ecology (icipe, Nairobi, Kenya), Kampala International Uni-
versity (Dar es Salaam, Tanzania and Ishaka Bushyeni, Uganda), and the International Medi-
cal and Technical University (IMTU, Dar es Salaam, Tanzania). In addition, colleagues have
used and modified the design for projects held in Accra, Ghana, Khartoum, Sudan, and
Ishaka, Uganda. In one workshop, we only provided the 3D-printed parts, the custom PCB,
and off-the-shelf electronics and took students though the entire process of assembly and
installation. Having had no previous experience with basic electronics, soldering, or the use
of simple hand tools such as a Dremel or cable-strippers, all students successfully assembled a
working unit. Towards the end of the training, students used their own FlyPi to perform
basic neurogenetics experiments with Drosophila, including heat activation of larvae express-
ing shibire" in all neurons (elav-GAL4/+; UAS-shibre®,UAS-ChR2 / +; UAS-ChR2 / +, cf.
Fig 6) and optogenetic activation of ChR2 to elicit a range of behaviours in both adults and
larvae (cf. Fig 5). Following the training, students took their assembled FlyPis home for their
own research and teaching purposes. In other courses, we brought preassembled FlyPis with
a range of different modules. Students learned to operate the equipment within minutes and
subsequently used them for a range of experiments and microscopy tasks, including several
novel configurations not formally introduced by the faculty. Indeed, many experiments pre-
sented in this paper were performed during these training courses. We also used individual
FlyPi modules to improvise workarounds for incomplete commercial lab equipment. For
example, the RPi camera with focus drive and live image-processing options served as an
excellent replacement for a missing Gel-doc camera. Similarly, we used FlyPi as a replace-
ment camera for odour-evoked calcium imaging in Drosophila antennas on a commercial,
upright fluorescence microscope or for dissection demonstrations under a stereoscope that
also utilised the LED rings for illumination. Moreover, FlyPi’s programmable General Pur-
pose Pins (GPPs) and LEDs were used to drive time-precise light-stimulus series, e.g., for
independently recorded Drosophila electroretinograms (ERGs). Similarly, the Peltier-feed-
back circuit was adequate to maintain developing zebrafish embryos at a controlled tempera-
ture during prolonged experiments or to reversibly block action potential propagation in
long nerves through local cooling. Clearly, beyond its use as a self-standing piece of equip-
ment and teaching tool, the low cost and modular nature of FlyPi also renders it versatile to
support or take over a wide range of additional functions in the lab. In hand, the use and
assembly of a system like FlyPi may inspire confidence in researchers’ ability to build and
modify other pieces of equipment themselves, shaped to their individual needs, which in a
teaching scenario is perhaps the greatest benefit of all.

Conclusion

Taken together, we anticipate that the open design of FlyPi will be useful in scientific teaching
and research as well as for medical professionals working in low-resource settings looking to
supplement their diagnostic toolkit. We anticipate that in time, further improvement and new
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designs will emerge from the global open hardware community. Notably, a curated collection
of further “Open-Labware” [4,48] designs can be found on the PLOS website [49].

Methods

A complete assembly and user manual is deposited on GitHub (https://github.com/amchagas/
Flypi/blob/master/User%20and%20Assembly%20Manual_revised.pdf).

Assembly time and necessary skills

From our previous workshop experiences, the assembly of the FlyPi (including software setup)
should take about 5 hours for a person with no previous soldering experience, provided that
all individual components are in place. Experienced users can expect to be done in 2 to 3
hours.

3D modelling and printing

3D modelling was performed in OpenSCAD [50], and all files are provided as both editable
scad and complied surface tesselation lattice (stl) files. All parts were printed in polylactic acid
(PLA) on an Ultimaker 2 3D printer (Ultimaker, Geldermailsen, Netherlands) in six prear-
ranged plates using the following parameters: infill 30%, no supports, 5-mm brim, layer height
0.1 mm, print speed 60 mm/s, and travel speed 200 mm/s. Total printing time of a single FlyPi,
including all presented modules, was about 40 hours. Notably, this time can be substantially
reduced by using faster print settings and/or a larger nozzle, as is commonly implemented in
lower-cost 3D printers. For example, using a well-calibrated delta Rep-Rap delta (www.reprap.
org) printing at full speed, the entire system can be printed at sufficient precision in less than
20 hours. In case a 3D printer is not locally available, several available “print-on-demand” ser-
vices (e.g., Shapeways, Sculpteo, 3D hubs) can be used to source the parts. We estimated that
the cost to have parts printed in plastic from one of the services available at 3Dhubs to be
approximately €40.

PCB design and printing

The PCB was designed in KiCad [51] and is provided as the native KiCad file format, as well as
the more widely used gerber file format. The PCB facilitates connections between peripherals
and the microcontroller and was designed to be modular such that only components that will
be used need to be soldered on the board. The power circuitry designed for a single 12V 5 A
power supply is provided. The large spacing between component slots, PCB labelling, and con-
sistent use of the “through-hole” component format is intended to facilitate assembly by users
with little soldering experience. Using the provided Gerber files, it is possible to order the
PCBs from a variety of producers (e.g., pcbway.com, seeedstudio.com/pcb, dirtypcbs.com). Of
course, if required, the entire PCB could also be improvised using individual cables and/or a
suitable breadboard by taking reference to the circuit diagram provided.

The GUI

The GUI (S1 Fig) was written in Python3. The control functions for each peripheral compo-
nent is created in its own class, making it easier for the end user to create/alter functions inde-
pendently. These classes are then contained in a ‘general purpose’ class, responsible for the
display of the user interface and addressing the commands to be sent to the Arduino board
(responsible for time-precise events and direct interaction with peripherals, for details see
below). The communication between the RPi and the Arduino is established via universal
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serial bus (USB) through a serial protocol (Python Serial library [52]). The GUI is created
using Tkinter [53]. Both libraries are compatible with Python2 and Python3.

The GUI is also capable of creating folders and saving files to the Raspberry Pi desktop. For
simplicity, the software creates a folder called ‘FlyPi_output’ and subfolders depending on the
type of data being acquired (time lapse, video, snapshots, temperature logging). The files
within the subfolders are created using date and time as their names, preventing overwriting
of data.

Arduino

We used an ATmega328-based Arduino Nano [13]. The board was chosen due to a high num-
ber of input/output ports, its variety of communication protocols (e.g., Serial, I2C), its low cost
and easy availability (including several ultra-low-cost clones at €2 to €3), very well-docu-
mented environment (hardware specifications, function descriptions, ‘how to’ recipes), and
large user database. The board is programmed in C++ together with the modifications added
by the Arduino integrated development environment (IDE). The board is responsible for con-
trolling all peripheral devices except the camera and provides microsecond precision for time
measurement. The code can be adapted to most of the other boards of the Arduino family,
with small changes (e.g., digital, analogue, and serial port addresses).

Raspberry Pi 3 operating system

We used Raspian [54] as the operating system (OS) on the Raspberry Pi 3 [14] for its installa-
tion simplicity through ‘new out of the box software’ (NOOBS) [55] and because it is derived
from Debian [56], a stable and well-supported GNU-Linux distribution. However, any Linux
distribution compatible with the Raspberry Pi and the chosen Python3 libraries can be used.
Arduino compatibility is not mandatory, since once the board is loaded with the correct code,
which can be done on any computer, the Arduino IDE is not used further, as all live communi-
cation goes via the serial port directly from Python.

Spectral and power measurements

We used a commercial photo-spectrometer (USB2000+VIS-NIR, Ocean Optics, Ostfildern,
Germany) and custom-written software in Igor-Pro 7 (Wavemetrics) to record and analyse
spectra of LEDs and filters. Peak LED power was determined using a Powermeter (Model 818,
200-1800 nm, Newport). We used fluorescent beads (PS-Speck TM Microscope Point Source
Kit P-7220, ThermoFisher) for estimating FlyPi’s psf.

Video and image acquisition

All static image data was obtained as full-resolution RGB images (2592 x 1944 pixels) and
saved as jpeg. All video data was obtained as RGB at 42 Hz (x2 binning), yielding image stack
of 1296 x 972 pixels, and saved as h264. Video data was converted to AVI using the ffmpeg
package for GNU/Linux (ffmpeg.org, a conversion button is added to the GUI for simplicity).
All further data analysis was performed in Image-J (NIH) and Igor-Pro 7 (Wavemetrics). Fig-
ures were prepared in Canvas 15 (ACD Systems).

Calcium imaging in larval Drosophila muscles

Second instar larvae (Mef2-Gal4; UAS-myr::GCaMP5) were left to freely crawl between a
microscope slide and cover slip loosely suspended with tap water. For analysis, x2 binned
video data (42 Hz) was further down-sampled by a factor of 2 in the image plane and a factor
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of 4 in time. Only the green channel was analysed. Following background subtraction, regions
of interest were placed as indicated (Fig 3]). Next, from each image frame, we subtracted the
mean image of four preceding frames to generate a “running average time-differential” stack
—shown as the space-time plot in Fig 3L with the original x-axis collapsed. Individual noncol-
lapsed frames of this stack, separated by 100-ms intervals, are shown in Fig 3M.

Zebrafish ChR2 activation

A 3 dpf zebrafish larva (Et(E1b:Gal4)s1101t, Tg(UAS:Cr.ChR2_H134R-mCherry)s1985t,
nacre-/-) was mounted in a drop of E3 medium (5 mM Na(l, 0.17 mM KCI, 0.33 mM CaCl,,
0.33 mM MgSO,, pH adjusted to 7.4 using NaHCO3) on top of a microscope slide and placed
immediately above the inverted camera objective. The NeoPixel 12 LED ring was placed
about 2 cm above the specimen, facing down. Concurrent maximal activation of all 12 blue
LEDs for more than 500 ms reliably elicited pectoral fin swimming bouts. Shorter stimuli
were not effective. RGB image data was obtained at 42 Hz, down-sampled by a factor of 4 in
time and visualised by tracking the mean brightness of two regions of interest placed onto
the pectoral fins.

Drosophilalarva ChR2 activation

First, instar Drosophila larvae (elav-GAL4/+; UAS-shibre®, UAS-ChR2/+; UAS-ChR2/+,
raised on standard food mixed with 200 uM all-trans retinal as described in [33]) were placed
on agarose darkened with Indian ink (1% v/v) within the lid of a 50-ml falcon tube and left to
freely crawl. The camera and NeoPixel LED ring were placed about 3 cm above the surface.
Concurrent activation of all 12 blue LEDs for 1 s at a time reliably triggered larval contractions.
Image data acquired at 42 Hz and saved as 8-bit greyscale. Larval length was quantified manu-
ally in Image] by measuring the distance between head and tail along the body axis at three
time points: t = -1, 0.5, and 5 s relative to the flash (t = 0-1 s). n = 12 responses from three ani-
mals, error bars in standard deviation.

Drosophila adult Chrimson activation

Adult Drosophila (w; +; GMR86A08-Gal4/UAS-CsChrimson raised on standard food mixed
with 200 pM all-trans retinal as described in [33]) were fixed to a cover slide by gluing the back
of their thorax with nail varnish, with limbs moving freely. The NeoPixel 12 LED ring was
positioned around the camera objective about 2 cm above the fly, pointing down. Concurrent
maximal activation of all 12 red LEDs for 1 s, separated by 2-s intervals, reliably elicited the
PER. RGB image data was obtained at 42 Hz (x2 binning). The image stack was converted to
8-bit greyscale, and background over time was subtracted from the entire image stack to limit
the excitation light artefact. To calculate proboscis position over time, we plot image brightness
over time within a region of interest placed at the tip of the fully extended proboscis.

Thermogenetics

To assess the performance and stability of the Peltier-Thermistor loop we exported the Peltier
command setting and Thermistor reading at 2 Hz through the serial port into an Ascii file and
analysed the data using Igor Pro 6 (Wavemetrics).

Supporting information

S1 Fig. Graphical User Interface (GUI). Screenshots of the Python-based GUI divided into
four main control panels that can be individually activated depending on user requirements:
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A, Camera control, B, LED, C, Peltier and Focus Servo control, D, Custom protocol window.
For details, please refer to the user and assembly manual online: https://github.com/amchagas/
Flypi/blob/master/User%20and%20Assembly%20Manual.pdf.

(PDF)

S1 Table. Bill of materials (BOM). Complete list, estimated costs and online links to all
required parts, organised by modules. For details, please refer to the user and assembly manual
online: https://github.com/amchagas/Flypi/blob/master/User%20and%20Assembly%
20Manual.pdf.

(XLSX)

S1 Video. Zebrafish larva transmission to visualise circulation (related to Fig 2F).
(AVI)

$2 Video. Zebrafish larva fluorescence sorting (related to Fig 3I).
(AVI)

$3 Video. Zebrafish larva expressing GFP in the heart (related to Fig 3).
(AVI)

$4 Video. Zebrafish eggs expressing GCaMP5 in all neurons (related to Fig 3).
(AVI)

S5 Video. Drosophila larva calcium imaging (related to Fig 3]-3M).
(AVI)

$6 Video. C. elegans crawling freely (related to Fig 4B).
(AVI)

S7 Video. Drosophila adults walking freely in custom chamber (related to Fig 4D).
(AVI)

S8 Video. Zebrafish expressing ChR?2 in all neurons under blue light (related to Fig 5C and
5D).
(AVI)

S9 Video. Drosophila larvae ChR2 under blue light (related to Fig 5E and 5F).
(AVI)

$10 Video. Drosophila adult proboscis extension reflex driven by CsChrimson using red
light (related to Fig 5G and 5H).
(AVI)
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